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The updated experimental data are used to analyze the final-state interaction phases of the two-body decay

amplitudes of theB mesons,B→D̄p,D̄r,D̄* p, and D̄* r. Combining the upper bounds on the branching
fractions of the color-suppressed neutral modes with those of the charged modes, we have set constraints on the

relative phases between the amplitudesA(B0→X2Y1) andA(B1→X0Y1) whereX5D̄ or D̄* andY5p or
r. The numbers that we have obtained point to small final-state interactions. When these relative phases are
expressed in those of the isospin amplitudes, the bounds become less tight, since the experimental errors
accumulate. In the decay where many multibody channels are open, however, there is little advantage in
breaking up the observed amplitudes into the isospin eigenchannels for analysis of the final-state interactions.
@S0556-2821~98!50323-2#

PACS number~s!: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

It is important to know in the nonleptonic decay of theB
mesons how much phase is generated for the decay ampli-
tudes by the final-state interaction. Many calculations were
made on the short-distance effects assuming that the long-
distance effects be small or simply ignoring them@1#. Over
the years, various arguments have been presented in support
of small to vanishing long-distance phases for the two-body
decay@2–4#. Since there is no method to compute the long-
distance effects accurately, some warned about the possibil-
ity of large phases@5#. Experimentally, persistence of the
color suppression is one strong qualitative evidence for the
small phases. To learn about the final-state interaction phases
of the B decay, we have analyzed here the recently updated
data@6# on the two-body decay modes. Specifically, we have

chosen the decay modesB→D̄p, D̄* p, D̄r, and D̄* r,
which proceed through the nonpenguin interactions. With the
current experimental uncertainties, the data are consistent
with vanishing dynamical phases in all cases. Thanks to the
substantial improvement in the accuracy of measurement,
however, our analysis sets the meaningful upper bounds on
the relative phases of the decay amplitudes. The most strin-
gent bound has been set at the level of 10°.

Before starting, we would like to point out significance
and insignificance of the isospin amplitudes in the nonlep-
tonic decays. In the decays where only a small number of
decay channels are open, analyzing the isospin amplitudes
has a clear advantage. In the extreme case where only the
stateAB and its isospin-related states are allowed, we should
study their isospin eigenstates, since the decay amplitudes of
definite isospin carry the strong interaction eigenphases of
elasticAB scattering@8#. When another final stateCD exists
and couples toAB, it still makes sense to analyze the 232
S-matrix ofAB andCD with definite isospin. However, the
advantage disappears when more than a few channels are
open and a channel coupling occurs in the final state. In this
case, the strong interaction S-matrix is anN3N matrix (N
@1). In terms of the eigenphase shiftsda defined by
^buSua&5dbae

2ida(a,b51,2,3,•••N), the decay amplitude

into a hadron channelh ~e.g.,D2p1 or an isospin eigenstate

of D̄p) can be expressed as

A~B→h!5 (
a51,2,•••N

A~B→a!eidaOha , ~1!

whereOha is the diagonalization matrix between the hadron
basis and the eigenchannels:

uh&5(
a

Ohaua&. ~2!

If the decay occurs through the interactions carrying a com-
mon CP-phase@e.g.,;(d̄LgmuL)( c̄LgmbL) and the interac-
tions arising from the QCD corrections to it#, the CP-phase
factors out: A(B→a)* 5A(B→a)e22idCP. Unfortunately,
we have no practical way to solve the multichannel problem

for da andOha . If, for instance, theB0→D̄p amplitude of
I 51/2 involvesN(@1) eigenchannels, theB0→D2p1 am-
plitude would also contain roughly as many eigenchannel
amplitudes, only by a factor of two or so more. In neither
case is the decay phase simply related to the strong-
interaction eigenphases. That is to say, breaking up the two-
body states into the isospin eigenchannels accomplishes very
little in relating the decay phases to the strong-interaction
S-matrix when scattering is highly inelastic. Therefore there
is no intrinsic merit in studying the phases of theI 51/2 and

3/2 amplitudes ofB0→D̄p instead of the phases of theB0

→D2p1 and B0→D̄0p0 amplitudes. It would not be sur-
prising if we have already encountered this situation in theD
decay. TheK2p1 channel of theD0 decay couples to
K̄0p0,K̄0h, and severalK̄ppp channels, resonant and non-
resonant with different internal quantum numbers. In the
past, analysis was made for the isospin amplitudes ofD

→K̄p and KK̄ @7#. In the presence of many other decay
channels open, we may equally well present the decay phases
for the directly observed amplitudes instead of the isospin
amplitudes, particularly in theB decay.
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II. PARAMETRIZATION OF AMPLITUDES
AND EXPERIMENTAL DATA

Since our purpose is to learn about how large the final-
state interaction phases are in theB decay, we wish to sepa-
rate out a CP-phase from the decay amplitudes. For this rea-
son, we consider the decay modes in which the nonpenguin
interactions dominate. Best measured are the two-body de-
cay modes which are caused by the quark processb→cūd.
We analyze four sets of the two-body decay modes:

B→D̄p,

B→D̄r,

B→D̄* p,

B→D̄* r. ~3!

Each set consists of three decay modes, for instance,B1

→D̄0p1, B0→D2p1, and B0→D̄0p0 for B→D̄p. All
four sets of decays have the same isospin structure. Since the
weak Hamiltonian transforms likeDI 51, there are two in-

dependent decay amplitudes in each set. ChoosingB→D̄p
as an example, we can parametrize the observed amplitudes
in terms of the isospin amplitudes as

A01[A~B1→D̄0p1!5A3/2, ~4!

A21[A~B0→D2p1!5
1

3
~A3/212A1/2! ,

A00[A~B0→D̄0p0!5
A2

3
~A3/22A1/2!.

Then the three amplitudes obey the sum rule,

A012A215A2A00. ~5!

We denote two relative phases as

d215arg~A21 /A01!, ~6!

d005arg~A00/A01!.

With the constraint of the sum rule Eq.~5!, the two phases
are dependent. We can use alternatively the phase difference
of the isospin amplitudes,

d I5arg~A1/2/A3/2! ~7!

for parametrization.
From the 1998 edition of the Particle Data Group book

@6#, we have extracted the magnitudes of amplitude after
making the phase space corrections ofp2l 11 on the assump-

tion that thes-wave dominates inD̄p and D̄* r, and the

p-wave inD̄* p andD̄r. The results are tabulated in Table I
whereuA21u is normalized to unity up to experimental un-
certainties. Only upper bounds have been measured for
uA00u. We treat the experimental errors for the three ampli-
tudes as uncorrelated. Actually, a small portion of the errors

(160.0128) in uA21u and uA00u comes from a common
source, which is the lifetime ofB0. However, this hardly
affects our final numbers.

III. RESULTS OF ANALYSIS

The sum rule Eq.~5! can be expressed as a triangular
relation in the complex plane for each set of the decay
modes. A typical pattern of the triangular relation is depicted
in Fig. 1, where the phase ofA01 is chosen to be zero for
reference.A2A00 is confined inside the circle. The sign am-
biguity or the phase ambiguity byp of A21 /A01 has been
fixed such that the three amplitudes be consistent with the
sum rule. The sum rule has the ambiguity of the reflection
with respect to the real axis. We have fixed this reflection
ambiguity or the complex conjugation ambiguity by choos-
ing d21 between 0° and 180°. Thend00 is negative by the
sum rule. The bands shown by broken curves at the ends of
the arrows indicate the experimental errors. Note that for
A21 , the arrow is attached to the direction of2A21 . In all
cases, the triangular relation can be satisfied with zero phases
if we take account of the experimental uncertainties. Here we
pose the following question: Up to how large phases can be
accommodated by the current data if we take the quoted
experimental errors seriously?

We have tabulated the answer to the question in Table II.
Listed are the bounds on the relative phasesd21 andd00. In
obtaining those bounds, the quoted experimental uncertain-
ties have been taken into account as uncorrelated errors. For
comparison, we have also listed the corresponding values for

TABLE I. The decay amplitudes extracted from the data.A01 ,

A21 , and 21/2A00 denoteA(B1→D̄0p1), A(B0→D2p1), and

21/2A(B0→D̄0p0), respectively, in the case ofB→D̄p, and the
corresponding amplitudes in other cases.uA01u is normalized to
unity up to an experimental error.

Decay modes uA01u uA21u 21/2uA00u

D̄p 160.0487 0.774160.0526 ,0.218860.0028

D̄r 160.0682 0.790760.0708 ,0.248160.0032

D̄* p 160.0451 0.797660.0320 ,0.449760.0058

D̄* r 160.1007 0.676560.1668 ,0.276560.0035

FIG. 1. The sum rule holds in the triangular relation typically as
shown here. The phase ofA01 has been chosen to be zero for
reference. 21/2A00 is confined inside the circle. The bands indicated
by broken lines at the ends ofA01 and2A21 represent their ex-
perimental uncertainties. The upper bound onuA00u constrains the
angled21 betweenA21 andA01 to small values, while the phase
of A00 is subject to larger uncertainties than that ofA21 .
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the decayD→K̄p which has the identical isospin properties

asB→D̄p. Its decay interactions are also the same in struc-
ture up to the replacement ofb→c and c→s. The most
important, albeit anticipated, conclusion is that the phase
d21 betweenA21 and A01 must be small in all cases ex-

cept possibly forB0→D̄* p. As the measurement on the
branching fractions, particularly of the color-suppressed
modes, will improve in the future, either the upper bounds
listed in Table II will be tightened or actual values may
emerge ford21 . We are not far from seeing the actual val-
ues. In contrast tod21 , the phased00 betweenA00 andA01

is only loosely constrained. The reason is fairly obvious in
Fig. 1: Though the triangle is very flat, i.e., the final-state
interaction is small, the smallness ofuA00u leaves room for
the phase ofA00 to be large. Even ifd00 turns out to be large
in the future, it should be interpreted as an accident due to
the smallness ofuA00u, not as a consequence of large final-
state interactions.

We can express the phases in terms of the isospin ampli-
tude phased I5d1/22d3/2. In the last column of Table II we
have listedd I .1 Since it is d21 and d00 that experiment
measures directly, the experimental uncertainties accumulate

and get enhanced when expressed ind I .
It is a clear conclusion of our analysis that the final-state

interaction is indeed small and the phase must be fairly small

at least forB→D̄p,D̄r, andD̄* r. The smallness of the final
state interaction phase for the two-body decay was advocated
by an intuitive argument based on QCD@2#. It is actually
required by the phase-amplitude dispersion relation unless
the amplitude is abnormally enhanced or suppressed in mag-
nitude @4#. The possibility that the highly suppressed two-
body decay amplitudes such asA00 can have large decay
phases has been predicted in the random S-matrix model of
the final-state interaction@4#. The smallness of the final-state
interaction is a phenomenon special to the two-body decay.
It does not imply the same in the multibody or inclusive
decays. In the decays where more than two hadrons is pro-
duced from a heavy particle, the phase of the decay ampli-
tude depends on the invariant subenergies in the final state. It
is almost obvious theoretically that if one or more of the
subenergies is small, the phase of the decay amplitude can be
large.

To summarize, we have quantified the smallness of the
final-state interaction phases which is implied by the color
suppression in theB decay. According to the latest world-
average data, the final-state interaction phases have already
been bounded fairly tightly. Our analysis shows that the cur-
rent bounds on the color-suppressed neutral modes should
not be far from their actual values. Lowering the upper
bounds on the branching fractions of the color-suppressed
modes together with more accurate measurement of the
color-favored modes will set even severe limits on the final-
state interaction phases or give their actual values. They will
have an important implication in the CP violation search
through the modes such asB→pp.
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TABLE II. The bounds on the phasesd215arg(A21 /A01),
d005arg(A00/A01), and d I5arg(A1/2/A3/2). We have chosen as
0°,d21,180°, which leads tod00,0 andd I.0.

Decay modes d21(.0) d00(,0) d I(.0)

D̄p ,11° .244° ,19°

D̄r ,16° .260° ,26°

D̄* p ,29° .259° ,46°

D̄* r ,21° .254° ,40°

D→K̄p 80°67° 270°68° 90°67°
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