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Chiral solitons in a current coupled Schrödinger equation with self-interaction
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~Received 17 June 1998; published 22 October 1998!

Recently nontopological chiral soliton solutions were obtained in a derivatively coupled nonlinear Schro¨-
dinger model in 111 dimensions. We extend the analysis to include a more general self-coupling potential
~which includes the previous cases! and find chiral soliton solutions. Interestingly, even the magnitude of the
velocity is found to be fixed. The energy andU~1! charge associated with this nontopological chiral soliton are
also obtained.@S0556-2821~98!00322-1#

PACS number~s!: 11.10.Lm, 03.50.Kk, 11.10.Kk
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The study of solitons, localized travelling solutions with
finite energy density in nonlinear scalar field theories, ha
long history @1#. In recent times~211! dimensional theory
with matter fields coupled to gauge fields governed
Chern-Simons action has also been found to have so
solutions, which is of relevance to the quantum Hall effe
@2#.

In a recent work, a derivatively coupled scale invaria
nonlinear Schro¨dinger equation in 111 dimensions, obtained
partially by the dimensional reduction of a~211! dimen-
sional theory, was shown to have a novel, soliton soluti
the soliton exists only for a fixed sign of velocity, but for
range of magnitude@3#. Such solitons are likely to have ap
plications in one-dimensional systems such as quantum w
and in the description of chiral waves which are travelli
edge states, in the quantum Hall effect@4#. Apart from its
potential application, it is of intrinsic interest to see if th
known nonlinear equation can be modified to admit solito
which travel only unidirectionally. Such studies have be
carried out recently for generalized Korteweg–de Vr
~KdV! and other nonlinear equations@5# and also for the
multicomponent nonlinear Schro¨dinger equation@6#. In this
letter, we extend the analysis of Ref.@3#, which introduced
the current coupled nonlinear Schro¨dinger equation, to in-
clude a more general self-coupling and study the soliton
lution of the model.

The nonlinear Schro¨dinger equation in 111 dimension,
with cubic nonlinearity, given by

i\] tc52
\2

2m
]x

2c2g~c* c!c ~1!

is well studied and soliton solutions are constructed. T
model is found to be completely integrable. Recently a n
nonlinear Schro¨dinger equation was constructed, which h
nonlinearity due to current coupling, rather than charge d
sity coupling in the equation:

i\] tc52
\2

2m
]x

2c2l j ~x,t !c~x,t !, ~2!

where j 5 \/m Im(c*]xc)is the current density. This deriva
tive nonlinear Schro¨dinger ~DNLS! equation was found to
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have soliton solutions which~i! are chiral, i.e., having only a
fixed sign of velocity and~ii ! have a velocity which canno
be arbitrarily reduced, i.e., the absence of Galilean inv
ance. Note that the Eq.~2! belongs to the same class of th
Derivative Nonlinear Schro¨dinger equation of Kaup and
Newell @7# which reads

i] tc52]x
2c6 i ]x~c* c2!. ~3!

Equation~2! cannot be directly obtained from a local La
grangian. Instead, as shown in Ref.@3#, the following La-
grangian density provides an equation of motion equival
to that of Eq.~2!, by a suitable redefinition of the field, a
indicated below:

L5 i\F* ] tF2
\2

2mUS ]x1 i
l

2
r DFU2

~4!

wherer5F* F.
The equation of motion following from the above La

grangian is

i\] tF52
\2

2mS ]x1 i
l

2
r D 2

F1
\

2
lJF, ~5!

where

J5
\

m
ImS F* S ]x1 i

l

2
r DF D , ~6!

obeys the continuity equation

] t~f* f!1]xJ~x!50. ~7!

By redefining the fieldF by

F5expS i
l

2E dyr~y,t ! Dc, ~8!

Eq. ~2! is obtained after using continuity Eq.~5! for J.
Incidentally, the Lagrangian density~4! is related to~2

11! dimensional nonrelativistic field coupled to anU~1!
gauge field, whose kinetic term is the Chern-Simon term,
dimensional reduction. In the ensuing~111! dimensional
theories, forA35B(x,t) field, which is nonpropagating, a
kinetic term of the form (dB/dt)(dB/dx) is added by hand.
©1998 The American Physical Society03-1
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By using Hamiltonian reduction~and by a phase redefinitio
of c! Am(x,t) andB(x,t) can be eliminated resulting in Eq
~4!.

In Ref. @3#, an interesting nontopological soliton solutio
was discovered for this novel, derivative coupled nonlin
Schrödinger equation, having chiral motion in a global re
frame, whenV(f* f) is absent and also whenV(f* f) is
repulsive cubic. It should be of interest to examine whet
these type of solutions exist for other interactions. In t
note, we extend the analysis of Ref.@3# to include a more
general nature of anharmonicities~potential! and discuss the
nature of the soliton solutions in this model. The potential
add to the Lagrangian is of the form

V~r2!5ar2n121brn121cr4, ~9!

wherer25(f* f) anda, b, andc are dimensionful coupling
constants. Then51 andn52 cases are included in Ref.@3#.

Such anharmonic potential terms has been considered
lier in the context of models describing both first-a
second-order transitions, and topological, nontopological
periodic solutions were obtained@8#.

Interestingly we find, as shown below, except forn51
and 2, soliton solutions are of a fixed velocity~with fixed
magnitude and sign!. This has to be contrasted with the res
of Ref. @3#, where only the sign of the velocity has fixe
Such velocity selection is also present in a modified si
Gordon theory@9#. We also calculate theU~1! charge and
energy of these soliton solutions.

The equations of motion following from the Lagrangia
~4!, with the potential~9! added is,

i\] tf52
\2

2mS ]x1
il

2
r2D 2

f1
l\

2
Jf1V8f, ~10!

whereV85 dV/dr2. In order to construct the soliton solu
tion make the ansatz,

f5r~x2vt !eiu~x,t ! ~11!

wherev is the velocity. Using Eq.~11! in ~7!, one gets

u85
mv
\

2
lr2

2
. ~12!

Using Eq. ~12! and Eq.~11!, the equation of motion~10!
becomes

r95F S mv
\ D 2

1
2mv0

\ Gr1
mvl

\
r31

2m

\

dV

dr
, ~13!

wherev05] tu and

dV

dr
5„a~2n12!r2n111b~n12!rn1114cr3

….

Note forn51 andn52, Eq.~13! reduces to that considere
in Ref. @3#. This nonlinear equation admits a localized so
tion for n.2,
10770
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r~x2vt !5S 2mb

\
M 22A12

a

mb2
M2D 2 1/n

3S 1

A12 ~a/mb2! M2
1cosh~Mnx!D 2 1/n

~14!

only when the velocity

v52S 8c

l D , ~15!

where

M5F S mv
\ D 2

1
2mv0

\ G1/2

.

Note that sign ofl determines the direction of velocity
implying the chiral nature of the solitons. Chirality is due
the constraint onv rather than onv2. Note that the magni-
tude of the velocity is also fixed.

In the case, whenn51 and 2, the solutionr(x,t) is valid
without any restriction on the magnitude of the velocit
Chirality nature of the solution still exists for these cas
except forn52 anda,0 as shown in Ref.@3#.

The conservedU~1! charge associated with the solito
solution is

N5E dx~f* f!

5
1

Mn~ab!2/nE dy

~1/b 1coshy!2/n

5
1

Mn~ab!2/n

b

A12b2
Q~22n!/nS 1

A12b2D , ~16!

where

a5
2mb

\
M 22,

b5A12
aM2

mb2

andQn(k) is Legendre function of second kind@10#.
Energy associated with this soliton configuration is

E5E dxH, ~17!

where

H5
\2

2m
uDxfu21V~r2!. ~18!

is the Hamiltonian density. Substituting the ansatz~12!, and
using Eq.~13! in Eq. ~11!, we get
3-2
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E5E dx
\2

2mF ~r8!21S mv
\ D 2

r21
2m

\2
V~r2!G . ~19!

Now substituting the solution~13!,

E5FM21 S mv

\
D 2GN2

1

n~ab!~n12!/n S 2Ma2
2mb

\2M
D

3S b2

11b2D 2~n12!/2n

Q~2/n!S 1

A11b2D
1

1

n~ab!~2n12!/n FMa2~12b2!1
2ma

\2M
G

3S b2

11b2D 2~2n12!/2n

Q~n12!/nS 1

A11b2D
a,

ia

10770
3
2mc

\2Mn~ab!4/n F b2

11b2G22/n

Q~42n!/nS 1

A11b2D .

~20!

Here Qn
m are the associated Legendre functions of sec

kind and Qn
05Qn . Interestingly, for both attractive and r

pulsive cases of highest anharmonicity (a.0 and a,0),
finite energy chiral soliton solution exists. The study of
teresting cases of topological soliton and soliton with no
trivial boundary conditions~i.e., with nonzero density at spa
tial infinity! is in progress.

One of us~E.H.! thanks U.G.C., India for support throug
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