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Chiral solitons in a current coupled Schradinger equation with self-interaction
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Recently nontopological chiral soliton solutions were obtained in a derivatively coupled nonlinear Schro
dinger model in #1 dimensions. We extend the analysis to include a more general self-coupling potential
(which includes the previous casemd find chiral soliton solutions. Interestingly, even the magnitude of the
velocity is found to be fixed. The energy abldl) charge associated with this nontopological chiral soliton are
also obtained[S0556-282(98)00322-1

PACS numbeis): 11.10.Lm, 03.50.Kk, 11.10.Kk

The study of solitons, localized travelling solutions with a have soliton solutions whicfti) are chiral, i.e., having only a
finite energy density in nonlinear scalar field theories, has dixed sign of velocity andii) have a velocity which cannot
long history[1]. In recent timeg2+1) dimensional theory be arbitrarily reduced, i.e., the absence of Galilean invari-
with matter fields coupled to gauge fields governed byance. Note that the E@2) belongs to the same class of the
Chern-Simons action has also been found to have solitoBerivative Nonlinear Schidinger equation of Kaup and
solutions, which is of relevance to the quantum Hall effectNewell [7] which reads

[2].

In a recent work, a derivatively coupled scale invariant igyp=— F5p=ia, (P ¢P). €)
nonlinear Schrdinger equation in 41 dimensions, obtained . . _
partially by the dimensional reduction of @+1) dimen- Equation(2) cannot be directly obtained from a local La-

sional theory, was shown to have a novel, soliton solutiongrangian. Instead, as shown in Rg3], the following La-

the soliton exists only for a fixed sign of velocity, but for a grangian density provides an equation of motion equivalent
range of magnitudg3]. Such solitons are likely to have ap- tO that of Eqg.(2), by a suitable redefinition of the field, as
plications in one-dimensional systems such as quantum wirggdicated below:

and in the description of chiral waves which are travelling
edge states, in the quantum Hall eff¢4]. Apart from its
potential application, it is of intrinsic interest to see if the
known nonlinear equation can be modified to admit solitons,
which travel only unidirectionally. Such studies have beenwherep=o* o,

carried out recently for generalized Korteweg—de Vries The equation of motion following from the above La-
(KdV) and other nonlinear equations] and also for the grangian is

multicomponent nonlinear Schdimger equatiori6]. In this

ﬁ2 2

:. * —_——
L=ih®* oD -5 (4)

Y
(7X+|§p ()]

letter, we extend the analysis of RE8], which introduced . h? PYRE h
the current coupled nonlinear Schinger equation, to in- ihd®=— ﬁ( dxt1 5P d+ E)\JCI), (5)
clude a more general self-coupling and study the soliton so-
lution of the model. where
The nonlinear Schiinger equation in £1 dimension,
with cubic nonlinearity, given by f A
J=—Im(<1>* <9X+i—p><1>>, (6)
52 m 2
. _ 2 *
ha Zmﬁxdf 9wy @ obeys the continuity equation
is well studied and soliton solutions are constructed. This d(d* )+ 3, I(x)=0. )
model is found to be completely integrable. Recently a new
nonlinear Schrdinger equation was constructed, which hasBy redefining the fieldd by
nonlinearity due to current coupling, rather than charge den-
sity coupling in the equation: A
w15 [ ayp. | ®

ﬁZ
o= Zmaxw M OGO YD), @ Eq. (2) is obtained after using continuity E¢p) for J.

Incidentally, the Lagrangian density) is related to(2
wherej = a/mIm(* d,)is the current density. This deriva- +1) dimensional nonrelativistic field coupled to a(1)
tive nonlinear Schidinger (DNLS) equation was found to gauge field, whose kinetic term is the Chern-Simon term, by
dimensional reduction. In the ensuifg+1) dimensional
theories, forA;=B(x,t) field, which is nonpropagating, a
*Electronic address: mssp@uohyd.ernet.in kinetic term of the form §B/dt)(dB/dx) is added by hand.
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By using Hamiltonian reductiofeand by a phase redefinition omb a
of ) A,(x,t) andB(x,t) can be eliminated resulting in Eq. p(X—Ut)Z(TMZ 1—-—M?2

-1

@ mb?
In Ref.[3], an interesting nontopological soliton solution 1
was discovered for this novel, derivative coupled nonlinear
Schralinger equation, having chiral motion in a global rest X( \/mWZ+COSHMnX) (14
frame, whenV(¢* ¢) is absent and also wheW(¢* ¢) is
repulsive cubic. It should be of interest to examine whetheonly when the velocity
these type of solutions exist for other interactions. In this
note, we extend the analysis of RER] to include a more 8c
general nature of anharmonicitigsotentia) and discuss the v= _(T) (15

nature of the soliton solutions in this model. The potential we
add to the Lagrangian is of the form where

V(p2)=ap2”+2+bp“+2+0p4, (9) 1/2

mv\? 2me,
—| +
h h

wherep?=(¢* ¢) anda, b, andc are dimensionful coupling

constants. The=1 andn=2 cases are included in R¢8]. Note that sign of\ determines the direction of velocity,
Such anharmonic potential terms has been considered eammplying the chiral nature of the solitons. Chirality is due to
lier in the context of models describing both firSt-andthe constraint orv rather than Omz_ Note that the magni-
second-order transitions, and topological, nontopological anglide of the velocity is also fixed.
periodic solutions were obtaing8]. In the case, when=1 and 2, the solutiop(x,t) is valid
Interestingly we find, as shown below, except for1l  without any restriction on the magnitude of the velocity.
and 2, soliton solutions are of a fixed velocityith fixed  Chirality nature of the solution still exists for these cases
magnitude and signThis has to be contrasted with the result except forn=2 anda<0 as shown in Ref.3].
of Ref. [3], where only the sign of the velocity has fixed.  The conservedJ(1) charge associated with the soliton
Such velocity selection is also present in a modified sinesgjution is
Gordon theory[9]. We also calculate th&J(1) charge and
energy of these soliton solutions.
The equations of motion following from the Lagrangian N:f dx(¢* ¢)
(4), with the potential9) added is,

1 dy
i%o ¢=—h—2 PRLYS 2¢+ &J¢+V’¢ (10) B Mn(aﬁ)z’”f (/8 +costy ) 2"

t 2m\ " 2P 2 ’
whereV’ = dV/dp?. In order to construct the soliton solu ! A Q ( ! ) (16

= p- } = @-min| /|
tion make the ansatz, Mn(aB)?" J1-pB° 12

¢=p(X—vt)ei0(X't) (11) where
wherev is the velocity. Using Eq(11) in (7), one gets a= ZTmbM‘Z,
LY Ap?

0="C -2 (12) —\/E
A= mb?

Using Eqg.(12) and Eq.(11), the equation of motior{10)

becomes andQ, (k) is Legendre function of second kirfid0].
Energy associated with this soliton configuration is

,[[mo\? 2mee]  mux , 2mdV
i e L A A PR

5=J dxH, 17)

wherewqy= 4,0 and
where

av
d—=(a(2n+2)p2”+1+b(n+2)p”*1+40p3). 52
g H= 5Dy [*+V(p?). (19

Note forn=1 andn=2, Eq.(13) reduces to that considered
in Ref.[3]. This nonlinear equation admits a localized solu-is the Hamiltonian density. Substituting the ansdt2), and
tion for n>2, using Eq.(13) in Eqg. (11), we get
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ﬁZ
E= f dXﬁ

Now substituting the solutiofiL3),

2

2
(p'>2+(¥ p2+ﬁ—TV<p2). (19

2mb

2 1
7 v e
—(n+2)/2n 1
Q(2/n)(—2)
V1+p8

2ma
#°M
1

E=|M?+

BZ

X
1+ B2

1
+ n(aB)(2”+2)/n

2

{Ma%l—ﬁ%+

—(2n+2)/2n

1+ B2

Q(n+2)/n( \/?BZ)
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—2/n

BZ
1+ B2

2mc
X
ﬁzM n(aﬂ)4/n

1
Q(4n)/n( \/?,82) .

(20

Here Q% are the associated Legendre functions of second
kind and Q8=Q,,. Interestingly, for both attractive and re
pulsive cases of highest anharmonicitg>0 and a<0),
finite energy chiral soliton solution exists. The study of in
teresting cases of topological soliton and soliton with non-
trivial boundary conditionsi.e., with nonzero density at spa-
tial infinity) is in progress.
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