
PHYSICAL REVIEW D, VOLUME 58, 107503
Binary neutron-star systems: From the Newtonian regime to the last stable orbit
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We report on the first calculations of fully relativistic binary circular orbits to span a range of separation
distances from the innermost stable circular orbit~ISCO!, deeply inside the strong field regime, to a distance
(;200 km) where the system is accurately described by Newtonian dynamics. We consider a binary system
composed of two identical corotating neutron stars, with 1.43M ( gravitational mass each in isolation. Using
a conformally flat spatial metric we find solutions to the initial value equations that correspond to semi-stable
circular orbits. At large distance, our numerical results agree exceedingly well with the Newtonian limit. We
also present a self consistent determination of the ISCO for different stellar masses.@S0556-2821~98!04222-2#

PACS number~s!: 04.25.Dm, 04.40.Dg, 95.30.Sf, 97.80.Fk
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Neutron-star binary systems are currently of interest
sources of gravitational radiation@1,2#. The development of
a new generation of laser interferometric and cryoge
gravitational wave detectors@3# has renewed interest in the
oretical models for generating gravitational radiation. Bina
systems composed by neutron stars and/or black holes
the most promising sources of detectable gravitational ra
tion. However, the expected signal-to-noise ratio is so l
that the extraction of information will be difficult withou
good theoretical waveforms. Thus, it is important to ac
rately model such systems.

At the frequencies of interest for laser interferomet
~10–100 Hz! and cryogenic (;1000 Hz) detectors the or
bits enter the strong gravity regime. Expansion methods
plicable in the Newtonian limit begin to breakdown befo
the strong field regime. Hence, it becomes imperative
model the binary evolution with a method which accurat
extends from the Newtonian limit to the strong gravity r
gime. In this paper we present the first such calculati
These calculations are for one particular scenario, nam
that of two equal-mass stars constrained to rigid corotatio
circular orbits. Nevertheless, this represents a plaus
benchmark for the expected gravity wave signal.

Many groups have performed numerical simulations us
different approximations to this problem. Preliminary resu
have been achieved using Newtonian dynamics@4# or post-
Newtonian expansion techniques@5#. While these approxi-
mations work well when the stars are very far from ea
other, they become unreliable when the distance betw
stars reduces to a few stellar radii.

Recently, a new fully relativistic approximation has be
used@6–8# to model binary neutron-star systems. This a
proximation is mainly based upon a restriction that the s
tial part of the metric tensor is forced to be conformally fl
Work by Wilson and Mathews@6# and Wilson, Mathews and
Marronetti@7# reported the first fully relativistic calculation
of quasi-stable circular orbits employing this approximatio
The most controversial@9,19# of their results predicts that
for certain conditions, the stars could collapse into bla
holes prior to the merger. This controversy is irrelevant
0556-2821/98/58~10!/107503~4!/$15.00 58 1075
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the present work in that it has been demonstrated@8,10# that
this effect does not occur when rigid corotation is impose

Baumgarteet al. @10# recently developed a method fo
using the conformally flat condition~CFC! to compute rig-
idly corotating stars. They found circular orbits for ve
close separation distances~a few stellar radii! and estimated
the point of secular instability of the stars. In the prese
work however, we implement a scheme to directly determ
the location of the ISCO for systems with different tot
masses. We also present numerical solutions for quasi-st
circular orbits for corotating neutron stars that cover a w
range of separation distances between the stars. Henc
the first time we present the much needed calculation c
necting the strong field regime at theinnermost stable circu-
lar orbit ~ISCO! with the weak field region where the syste
is well described by Newtonian dynamics.

A full discussion of the CFC method can be found in@7#.
We use the~311! spacetime slicing as defined in th
Arnowitt-Deser-Misner~ADM ! formalism @11,12#. Utilizing
Cartesianx,y,z isotropic coordinates, proper distance is e
pressed

ds252~a22bnbn!dt212bndxndt1gnsdxndxs, ~1!

where the lapse functiona describes the differential lapse o
proper time between two hypersurfaces. The quantityb i is
the shift vector denoting the shift in space-like coordina
between hypersurfaces andg i j is the spatial three-metric
The Latin indices go from 1 to 3.

Using York’s ~311! formalism @12#, the initial value
equations can be written as follows; the Hamiltonian co
straint equation can be written

R516pr1KnsK
ns2K2, ~2!

where R is the Ricci scalar curvature,Kns is the extrinsic
curvature, andr is the mass-energy density.

The momentum constraints have the form@13#

Dn~Kni2gniK !58pSi , ~3!
©1998 The American Physical Society03-1
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whereDn is the three-space covariant derivative andSi are
the spatial components of the four-momentum density.

The CFC method restricts the spatial metricg i j to the
form

g i j 5f4d i j , ~4!

where the conformal factorf is a positive scalar function
This approximation simplifies greatly the equations. It is m
tivated in part by the fact that the gravitational radiation
most systems studied so far is small compared to the t
gravitational mass. The CFC is a frequently employed
proach to the initial value problem in numerical relativity. I
application here is consistent with the quasi-equilibrium or
approximation. Further justification for its use can be fou
in Refs.@8# and @14#.

The CFC leads to a set of elliptic equations for the me
components. Using Eq.~2! in combination with the maxima
slicing condition tr(K)50, we get the following equation
for f and (af):

¹2f524pr1 , ~5!

¹2~af!54pr2 , ~6!

where the¹ i represent flat-space derivatives and the sou
terms are

r15
f5

2 Fr0W21r0e@G~W221!11#1
1

16p
KnsK

nsG
~7!

r25
af5

2 Fr0~3W222!1r0e@3G~W211!25#

1
7

16p
KnsK

nsG , ~8!

wherer0 is the rest-mass density,e the internal energy pe
unit of rest mass,G the adiabatic index, andW a generaliza-
tion of the special relativisticg factor @7#. A solution of Eq.
~6! determines the lapse function after Eq.~5! is used to
determine the conformal factor.

The shift vectorb i can be decomposed@15#:

b i5Bi2
1

4
¹ ix. ~9!

This is introduced into Eq.~3! to obtain the following two
elliptic equations:

¹2x5¹nBn, ~10!

¹2Bi52¹n ln~af26!Kin216paf4Si . ~11!

An equation for the extrinsic curvatureK̂ i j is derived@7#
using the time evolution equation and the maximal slic
condition
10750
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K̂ i j 5
f6

2a
~¹ ib j1¹ jb i2 2

3 d i j ¹nbn!, ~12!

whereK̂ i j 5f10Ki j .
We assume that the matter behaves like a perfect fl

with a stress-energy tensor

Tmn5„r0~11e!1P…umun1Pgmn, ~13!

and use a polytropic equation of state~EOS!

P5kr0
G , ~14!

with P the pressure andk a constant. The results present
here are for stars withG52.

Following Baumgarteet al. @10#, for rigidly corotating
stars, the fluid four velocity can be taken as proportional t
Killing vector

]

]t
1v

]

]F
, ~15!

wherev is the orbital angular frequency andF the azimuth
coordinate. In this case the steady-state limit of the hydro
namics momentum equation@8# yields the relativistic Ber-
noulli equation@10#

q5
1

11nS 11C

a~12v2!1/221D , ~16!

whereq5P/r0 , C is a constant of integration andv is the
matter proper velocity@16#. From Eqs.~13! and~16! we find
expressions for the proper baryonic matter densityr0 and the
material momentum densitySi as functions of the fields. We
choosea, b i , f, andq as the independent variables of o
set of equations.

The set of equations is solved numerically using an ite
tive algorithm based upon a specially designed ellip
solver. This method consists of a combination of multig
algorithms and domain decomposition techniques@17#. The
three-dimensional spatial volume where the equations
solved is divided into concentric layers. These layers
centered around the star and the grid resolution decre
with the distance from the stars. To avoid bias, each itera
cycle starts assuming zero angular frequency and sphe
stars. The equations are solved iteratively until numeri
convergence for the fields and the frequency is achieved.
calculations utilize 40 grid points on average across the s
lar diameter. This is about twice as large as the number u
in previous work @10#. This efficient use of compute
memory permits us to describe adequately the interior of
stars even when they are so far apart that they approach
regime of Newtonian point masses.

The boundary conditions are estimated from the fi
terms in a multipole expansion of the fields. This method
quite accurate when the boundary surfaces are very far f
the stars, which is the case in our computations. Thus, th
methods allow us to connect between the strong gravitatio
field regime close to the ISCO and the Keplerian regim
3-2
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BRIEF REPORTS PHYSICAL REVIEW D 58 107503
Domain decomposition techniques also provide a nat
way of code parallelization, which reduces the process
time enormously@17#.

Solutions are obtained for specific values of two free
rameters, namely, the coordinate distance between stars
the stellar baryonic mass. The reason to choose the latter
free parameter is that the baryonic mass of the star rem
constant during the inspiral that describes most of the t
evolution of the system. This differs from the approach
@10# who used central density and separation distance
free parameters and interpolated to find the solutions of c
stant baryonic mass. In our calculations we iterate to obta
given baryonic mass. This avoids the numerical error as
ciated with interpolation. Thus, we were able to constr
constant baryonic mass sequences of orbits with a minim
number of code runs.

Using the CFC approximation we found solutions to t
initial value equations for semi-stable circular orbits for
binary system of identical neutron stars with 1.55M ( bary-
onic mass and 1.43M ( gravitational mass in isolation. Th
former values represent a typical neutron star and were
tained by fixing the value of the polytropic constant~in poly-
tropic models physical quantities can be rescaled with
polytropic constant@10#!.

Figure 1 shows the angular frequency as seen by a dis
observer as a function of the coordinate distance between
centers of the stars~circles!. The coordinate distance is not
gauge invariant quantity, but since it converges asympt
cally to flat space separations, it allows us to compare
results with Kepler’s law~solid line!. We can also compare
our results with those from Baumgarteet al. @10# ~squares!
since we use the same coordinates. They estimate the o
of secular instability after which the stars can no long
maintain rigid corotation. They assume that the ISCO
close to this point since the secular instability is expected
occur just before the dynamical instability that defines
ISCO @18#. Note that their calculations include numeric
solutions for orbits that are inside the ISCO which are u
to determine the turning point in the binding energy@10#.

The numerical method developed for this work shows

FIG. 1. Orbital frequency as a function of the coordinate se
ration between star centers. The solid line represents Kepler’s
the circles are the orbits corresponding to a sequence of st
baryonic mass of 1.55M ( , and the squares are results from Bau
garteet al. @10#.
10750
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absence of solutions for circular orbits when the stars are
close. This situation is consistent with the existence o
dynamical instability which defines an innermost stable c
cular orbit for the binary system. However, there is still t
possibility that this absence is due to a problem in the c
vergence of the numerical scheme. The ISCO determi
here is thus the stable orbit with the highest angular f
quency~in the sequence shown in Fig. 1, it is atv53576
rad/sec!.

The value of angular momentum at the ISCO isJ51.61
31011 cm2, which gives a value ofJ/MG

2 50.94. Thus, the
stars could merge into a Kerr black hole without the furth
loss of angular momentum.

Figure 2 shows the binding energy as a function of
angular frequency of the system as seen by a distant
server. The binding energy is represented as one half
ADM mass of the binary minus the gravitational energy
an isolated star, divided by the baryonic mass of the isola
star. The points correspond to the orbits obtained using h
resolution~more than 30 grid points across the stellar dia
eter! and the solid line corresponds to a polynomial fit. T
lowest plotted value of the binding energy on Fig. 2 co
cides with the orbit we identify as the ISCO. In this calcul

FIG. 3. Orbital angular frequency of the ISCO for stars w
different gravitational masses~in units of solar masses! in isolation.

-
w,
lar
-

FIG. 2. Binding energy of the system as a function of the orb
frequency as seen by a distant observer. The points represen
orbits of the high resolution runs and the solid line corresponds
polynomial fit. We identify the lowest point as the ISCO of th
system.
3-3
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BRIEF REPORTS PHYSICAL REVIEW D 58 107503
tion no turning point was observed~within the numerical
error!. For large separations~low angular frequencies! the
value of the binding energy approaches zero as expecte

Figure 3 shows the ISCO angular frequency for syste
of stars with different gravitational mass in isolation. T
angular frequencies shown in Fig. 3 are somewhat lo
~;10%! than the estimations corresponding to the secu
instability points from Baumgarteet al. @10#. This is most
likely due to effects of grid resolution.

The excellent agreement between our results at la
separations and the values obtained from Newtonian dyn
ics provides an additional check on the numerical code.

We observe a slight decrease in the central density w
the stars approach each other similar to the results reporte
n

a,

-

. D
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@10#. This is contrary to what is observed in fully hydrody
namical simulations. In Ref.@8# however it has been show
analytically and numerically that no increase in central d
sity occurs for stars in rigid corotation. This also confirm
that the effect is not an artifact of the CFC method.

An analysis of the emission of gravitational radiatio
along sequences of constant baryonic mass will be the
ject of a forthcoming article.
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