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Binary neutron-star systems: From the Newtonian regime to the last stable orbit
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We report on the first calculations of fully relativistic binary circular orbits to span a range of separation
distances from the innermost stable circular oft®CO), deeply inside the strong field regime, to a distance
(~200 km) where the system is accurately described by Newtonian dynamics. We consider a binary system
composed of two identical corotating neutron stars, with M43 gravitational mass each in isolation. Using
a conformally flat spatial metric we find solutions to the initial value equations that correspond to semi-stable
circular orbits. At large distance, our numerical results agree exceedingly well with the Newtonian limit. We
also present a self consistent determination of the ISCO for different stellar mc33856-282(98)04222-3

PACS numbg(s): 04.25.Dm, 04.40.Dg, 95.30.5f, 97.80.Fk

Neutron-star binary systems are currently of interest ashe present work in that it has been demonstra8eti0] that
sources of gravitational radiatidi,2]. The development of this effect does not occur when rigid corotation is imposed.
a new generation of laser interferometric and cryogenic Baumgarteet al. [10] recently developed a method for
gravitational wave detectof8] has renewed interest in the- using the conformally flat conditiofCFC) to compute rig-
oretical models for generating gravitational radiation. Binaryidly corotating stars. They found circular orbits for very
systems composed by neutron stars and/or black holes aftose separation distancés few stellar radji and estimated
the most promising sources of detectable gravitational radiathe point of secular instability of the stars. In the present
tion. However, the expected signal-to-noise ratio is so lowvork however, we implement a scheme to directly determine
that the extraction of information will be difficult without the location of the ISCO for systems with different total

good theoretical waveforms. Thus, it is important to accu-mnasses. We also present numerical solutions for quasi-stable
rately model such systems. circular orbits for corotating neutron stars that cover a wide

At the frequencies of interest for laser interferometricrange of separation distances between the stars. Hence for

(10—100 Hz and cryogenic {1000 Hz) detectors the or- the f_irst time we present the much needed calculati_on con-

bits enter the strong gravity regime. Expansion methods aplecting the strong field regime at theermost stable circu-

plicable in the Newtonian limit begin to breakdown before lar orbit (ISCO) with the weak field region where the system

the strong field regime. Hence, it becomes imperative tdS Well described by Newtonian dynamics.

model the binary evolution with a method which accurately A full discussion of the CFC method can be found .

extends from the Newtonian limit to the strong gravity re-We use the(3+1) spacetime slicing as defined in the

gime. In this paper we present the first such calculationArnowitt-Deser-MisneADM) formalism[11,12. Utilizing

These calculations are for one particular scenario, namelfzartesianx,y,z isotropic coordinates, proper distance is ex-

that of two equal-mass stars constrained to rigid corotation ifressed

circular orbits. Nevertheless, this represents a plausible

benchmark for the expected gravity wave signal. ds’= —(a®= BB dt*+ 2B, dX dt+ y,dx"dx®, (1)
Many groups have performed numerical simulations using

different approximations to this problem. Preliminary resultswhere the lapse functioa describes the differential lapse of

have been achieved using Newtonian dynarféjsor post- ~ proper time between two hypersurfaces. The quargitys

Newtonian expansion techniqués]. While these approxi- the shift vector denoting the shift in space-like coordinates

mations work well when the stars are very far from eachbetween hypersurfaces ang; is the spatial three-metric.

other, they become unreliable when the distance betweehhe Latin indices go from 1 to 3.

stars reduces to a few stellar radii. Using York's (3+1) formalism [12], the initial value
Recently, a new fully relativistic approximation has beenequations can be written as follows; the Hamiltonian con-

used[6—8] to model binary neutron-star systems. This ap-straint equation can be written

proximation is mainly based upon a restriction that the spa-

tial part of the metric tensor is forced to be conformally flat. R=16mp + K, K"*— K2, )

Work by Wilson and Mathewg5] and Wilson, Mathews and

Marronetti[ 7] reported the first fully relativistic calculations whereR is the Ricci scalar curvature,q is the extrinsic

of quasi-stable circular orbits employing this approximation.curvature, ang is the mass-energy density.

The most controversidl9,19 of their results predicts that, The momentum constraints have the forb3]

for certain conditions, the stars could collapse into black _ _ _

holes prior to the merger. This controversy is irrelevant to D (K"=9"K)=87S, 3
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whereD,, is the three-space covariant derivative @dare o 6 R
the spatial components of the four-momentum density. K=o (VIBI+VIB'=356;VnB"), (12)
The CFC method restricts the spatial metsig to the
form whereK'l = 1 i.
4 We assume that the matter behaves like a perfect fluid
yi=*8;i 4) .
! 1 with a stress-energy tensor
where the conformal facto# is a positive scalar function. THY = (po(1+ €) + P)ukbu’+ Pgt” (13)

This approximation simplifies greatly the equations. It is mo-

tivated in part by the fact that the gravitational radiation inang yse a polytropic equation of st4E0S

most systems studied so far is small compared to the total

gravitational mass. The CFC is a frequently employed ap- p:kpg' (14)

proach to the initial value problem in numerical relativity. Its

application here is consistent with the quasi-equilibrium orbitwith P the pressure ankl a constant. The results presented

approximation. Further justification for its use can be foundnhere are for stars with = 2.

in Refs.[8] and[14]. Following Baumgarteet al. [10], for rigidly corotating
The CFC leads to a set of elliptic equations for the metricstars, the fluid four velocity can be taken as proportional to a

components. Using E2) in combination with the maximal  Killing vector

slicing condition tr)=0, we get the following equations

for ¢ and (@ ¢): d d

E +w ﬁ, (15)
V2p=—4mp,, ©)
wherew is the orbital angular frequency add the azimuth
V(ap)=4mp,, (6) coordinate. In this case the steady-state limit of the hydrody-
namics momentum equatidi] yields the relativistic Ber-
where theV; represent flat-space derivatives and the sourc@oulli equation[10]
terms are
1 ( 1+C

= rnlaa—™ )

5

b , , 1 (16
pP1= - PoW+ poel (W =1)+ 1]+ EKnsKnS

2
(7)  whereq=P/pg, Cis a constant of integration andis the

matter proper velocity16]. From Eqs(13) and(16) we find
ad® ) ) expressions for the proper baryonic matter densjtand the
p2= T{Po(3W —2)+poe[ (W +1)—3] material momentum densi§ as functions of the fields. We
choosea, B', ¢, andq as the independent variables of our
set of equations.
' (8) The set of equations is solved numerically using an itera-
tive algorithm based upon a specially designed elliptic

wherepy is the rest-mass density, the internal energy per solver. This method consists of a combination of multigrid
unit of rest massI" the adiabatic index, and&/ a generaliza- ~ @lgorithms and domain decomposition techniq[#. The
tion of the special relativistiey factor[7]. A solution of Eq. three-dimensional spatial volume where the equations are

(6) determines the lapse function after E) is used to solved is divided into concentric layers. These layers are
determine the conformal factor. centered around the star and the grid resolution decreases

The shift vector@ can be decomposdds5]; with the distance from the stars. To avoid bias, each iteration
cycle starts assuming zero angular frequency and spherical
1 stars. The equations are solved iteratively until numerical
'=B'- ZV'X. (99  convergence for the fields and the frequency is achieved. Our
calculations utilize 40 grid points on average across the stel-
lar diameter. This is about twice as large as the number used
in previous work [10]. This efficient use of computer
memory permits us to describe adequately the interior of the
stars even when they are so far apart that they approach the
regime of Newtonian point masses.
i Cevuin e The boundary conditions are estimated from the first
VB'=2V,In(a¢ )K"~ 16mad”S. (1) terms in a multipole expansion of the fields. This method is
- quite accurate when the boundary surfaces are very far from
An equation for the extrinsic curvatuk€' is derived[7]  the stars, which is the case in our computations. Thus, these
using the time evolution equation and the maximal slicingmethods allow us to connect between the strong gravitational
condition field regime close to the ISCO and the Keplerian regime.

7
ns
+ 16 KnsK

This is introduced into Eq(3) to obtain the following two
elliptic equations:

V2x=V,.B", (10)
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FIG. 1. Orbital frequency as a function of the coordinate sepa- FIG. 2. Binding energy of the system as a function of the orbital
ration between star centers. The solid line represents Kepler's lavfféduency as seen by a distant observer. The points represent the
the circles are the orbits corresponding to a sequence of stell&vbits of the high resolution runs and the solid line corresponds to a
baryonic mass of 1.5, and the squares are results from Baum- polynomial fit. We identify the lowest point as the ISCO of the
garteet al.[10]. system.

Domain decomposition techniques also provide a naturadbsence of solutions for circular orbits when the stars are too
way of code parallelization, which reduces the processinglose. This situation is consistent with the existence of a
time enormoushf17]. dynamical instability which defines an innermost stable cir-
Solutions are obtained for Specific values of two free pa.CUlar orbit for the binary SyStem. HOWEVET, there is still the
rameters, namely, the coordinate distance between stars aR@ssibility that this absence is due to a problem in the con-
the stellar baryonic mass. The reason to choose the latter ay/@rgence of the numerical scheme. The ISCO determined
free parameter is that the baryonic mass of the star remairftere is thus the stable orbit with the highest angular fre-
constant during the inspiral that describes most of the timgluency(in the sequence shown in Fig. 1, it is @t=3576
evolution of the system. This differs from the approach ofrad/seg.
[10] who used central density and separation distances as The value of angular momentum at the ISCQJis1.61
free parameters and interpolated to find the solutions of conx 10** c?, which gives a value 08/M3=0.94. Thus, the
stant baryonic mass. In our calculations we iterate to obtain &tars could merge into a Kerr black hole without the further
given baryonic mass. This avoids the numerical error assdoss of angular momentum.
ciated with interpolation. Thus, we were able to construct Figure 2 shows the binding energy as a function of the
constant baryonic mass sequences of orbits with a minimurangular frequency of the system as seen by a distant ob-
number of code runs. server. The binding energy is represented as one half the
Using the CFC approximation we found solutions to theADM mass of the binary minus the gravitational energy of
initial value equations for semi-stable circular orbits for aan isolated star, divided by the baryonic mass of the isolated
binary system of identical neutron stars with 1%, bary-  star. The points correspond to the orbits obtained using high
onic mass and 1.4B1, gravitational mass in isolation. The resolution(more than 30 grid points across the stellar diam-
former values represent a typical neutron star and were olgten and the solid line corresponds to a polynomial fit. The
tained by fixing the value of the polytropic constaimt poly-  lowest plotted value of the binding energy on Fig. 2 coin-
tropic models physical quantities can be rescaled with theides with the orbit we identify as the ISCO. In this calcula-
polytropic constanf10]).
Figure 1 shows the angular frequency as seen by a distant 4000
observer as a function of the coordinate distance between the
centers of the stargircles. The coordinate distance is not a &
gauge invariant quantity, but since it converges asymptoti- s
cally to flat space separations, it allows us to compare our
results with Kepler's law(solid line). We can also compare
our results with those from Baumgarg al. [10] (squares
since we use the same coordinates. They estimate the onset
of secular instability after which the stars can no longer
maintain rigid corotation. They assume that the ISCO is
close to this point since the secular instability is expected to
occur just before the dynamical instability that defines the 2000 = 120 30 )
ISCO [18]. Note that their calculations include numerical M
solutions for orbits that are inside the ISCO which are used
to determine the turning point in the binding enetdg]. FIG. 3. Orbital angular frequency of the ISCO for stars with
The numerical method developed for this work shows thelifferent gravitational massé units of solar massgén isolation.
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tion no turning point was observe@vithin the numerical [10]. This is contrary to what is observed in fully hydrody-
erron. For large separationdow angular frequencigsthe  namical simulations. In Ref8] however it has been shown
value of the binding energy approaches zero as expected. analytically and numerically that no increase in central den-
Figure 3 shows the ISCO angular frequency for systemsity occurs for stars in rigid corotation. This also confirms
of stars with different gravitational mass in isolation. The that the effect is not an artifact of the CFC method.
angular frequencies shown in Fig. 3 are somewhat lower An analysis of the emission of gravitational radiation

(~10%) than the estimations corresponding to the seculagiong sequences of constant baryonic mass will be the sub-
instability points from Baumgartet al. [10]. This is most ject of a forthcoming article.

likely due to effects of grid resolution.

The excellent agreement between our results at large Work at University of Notre Dame was supported in part
separations and the values obtained from Newtonian dynanipy NSF grant PHY-97-22086. This work was performed in
ics provides an additional check on the numerical code.  part under the auspices of the U. S. Department of Energy by

We observe a slight decrease in the central density whethe Lawrence Livermore National Laboratory under contract
the stars approach each other similar to the results reported \W-7405-ENG-48.
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