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No-boundary wave function of the anti–de Sitter space-time and the quantization ofL
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The application of the ‘‘no-boundary’’ condition to space-times with initially open spatial sections may lead
to extra conditions on physical quantities of these space-times. In the present Brief Report, we verify the above
statement in a model where we compute the semi-classical approximation to the ‘‘no-boundary’’ wave function
of the anti–de Sitter space-time. For this model the ‘‘no-boundary’’ conditions impose a well defined, discrete
spectrum for the cosmological constant. As a by-product of our investigations we also find that among the
space-times contributing to the above wave function there are two complex conjugate ones that show a new
type of signature change.@S0556-2821~98!03820-X#

PACS number~s!: 04.60.Kz, 98.80.Hw
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The ‘‘no-boundary’’ condition is a very successful set
boundary conditions@1#. Since its introduction it has bee
shown to fix uniquely the wave function of several spa
times of cosmological as well as astrophysical interest.
addition to that, it also produced some important predictio
on the physical behavior of these space-times.

For a given model, the ‘‘no-boundary’’ conditions speci
the set of four-geometries which must be summed over
that a wave function may be derived through the path in
gral formalism. These four-geometries should be comp
regular, with a single three-dimensional, spacelike bound
hypersurface. Therefore, if one foliates these four-geome
in three-dimensional, spacelike hypersurfaces plus a time
line, the hypersurfaces must necessarily be closed.

Most of the cases studied so far dealt with space-tim
whose spacelike hypersurfaces are naturally closed@1–3#,
and very few considered the possibility of initially ope
spacelike hypersurfaces@4#. Of course, in the last case
mathematical technique of compactification had to be u
@5#.

In Ref. @4#, the space-times contributing, in the semicla
sical approximation, to a specific ‘‘no-boundary’’ wav
function, were foliated by flat, compactified, spacelike h
persurfaces. There, it was shown that the requirement
these space-times were regular resulted in extra condit
upon them. In particular, their actions were labeled by
dered pairs of coprime integers.

In this Brief Report we would like to show another e
ample of the application of the regularity and compactn
conditions from the ‘‘no-boundary’’ proposal, upon spac
times whose spacelike hypersurfaces are initially open.
shall see that it will lead to extra conditions upon physi
quantities.

We shall compute the semiclassical approximation to
‘‘no-boundary’’ wave function (Cnb), Ref. @2#, of the
anti–de Sitter space-time. As a matter of simplicity we sh
restrict our attention to 211 dimensions. As a by-produc
we shall see that among the space-times contributing
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Cnb , there are two complex conjugate ones that show a n
type of signature change@6,7#.

The anti–de Sitter space-time represents an homo
neous, isotropic, constant negatively curved, universe, wh
only source of stress energy is a negative cosmological c
stant (L). In addition to this, it is also foliated by open
constant negatively curved, spacelike hypersurfaces.

We start by writing down the appropriate Euclidean m
ric ansatz in its Arnowitt-Deser-Misner~ADM ! form @8#

ds251N2~ t !dt21a2~ t !@dx21sinh2xdu2#, ~1!

whereN(t) is the lapse function,a(t) is the scale factor, and
the coordinates vary over their usual domain@8#.

From the line element Eq.~1!, we see that the spatia
sections are pseudo-spheres which are open. As we
mentioned above, the ‘‘no-boundary’’ conditions restr
these spatial sections to be closed therefore we must c
pactify the pseudospheres.

There are several works in the literature where the exp
process of compactification of the pseudosphere orH2, is
performed. Here, we shall follow Ref.@9#, where theH2 is
transformed into a double torus. Then, the spatial section
the line element Eq.~1!, will be double tori. Because of the
compactification process the coordinatex will vary, now,
over a finite domain.

In order to obtainCnb , we must solve the Einstein’s
equations@8#, for Eq. ~1!, subjected to the ‘‘no-boundary’
conditions. For our case these conditions are given in R
@10#, and result in the following choices.

We shall choose the point where the scale factor vanis
to be the zero value of the time scale. With this choice
shall be able to picture our universe starting att50, from
this surface of zero volume and evolving untilt5t1 , where
we shall furnish the other required value of the scale fac
say,a(t1)5a1 . Introducing those quantities in the Einste
equations, and rescaling the time in order thatt151, we get
the four solutions given below.

The Lorentzian solutions

N5 iNI , ~2!
©1998 The American Physical Society01-1
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where

NI5aFp26arccos~a1 /a!G
and

a~ t !5a sin~NIt/a!, a25
1

uLu
~3!

valid for a1,a. These space-times, Eqs.~2! and ~3!, are
known in the literature as anti–de Sitter space-times@11#.

The complex solutions

N5NR1 iNI , ~4!

where

NI5a
p

2
, NR56a arcsinhb, b5AS a1

a
D 2

21

~5!

and

a~ t !5aR~ t !1 iaI~ t !, ~6!

where

aR~ t !5a sin~NIt/a!cosh~NRt/a!, ~7!

aI~ t !52a cos~NIt/a!sinh~NRt/a!, ~8!

and this solution holds fora1.a.
In order to identify the signature change nature of th

complex solutions Eqs.~4! and ~6!, we follow closely Ref.
@6#.

First, we rewrite the general expression of the Euclide
action @12# for the metric ansatz Eq.~1!:

I @N,a1#52AE @ ȧ2~ t !2N21a2~ t !N2uLu#
1

N
dt, ~9!

whereA is a finite, defined number proportional to the vo
ume of the compact, spacelike hypersurfaces.

Then, we introduce a complex variableT̄ defined as the
product

T̄5Nt, ~10!

and rewrite the action Eq.~9! in terms ofT̄.
The contourC along which we must evaluate the action

the complexT̄ plane is a straight line. Its initial and fina
points are given with the aid of Eqs.~4!, ~5!, and ~10!, re-
spectively, by

T̄i50 and T̄f5NR1 iNI . ~11!

Next, for the present case of a negativeL, we deform the
above contourC producing a new contourC8. C8 starts
10750
e

n

running along the imaginaryT̄ axis from 0 toT̄5 iNI where
it turns abruptly to run parallel to the realT̄ axis up toT̄f Eq.
~11!.

If we rewrite the complex scale factor Eqs.~6!–~8! in
terms ofT̄ Eq. ~10!, we obtain the following expressions fo
aR(T̄) andaI(T̄):

aR~ T̄!5a sin~ T̄I /a!cosh~ T̄R/a!, ~12!

aI~ T̄!52a cos~ T̄I /a!sinh~ T̄R/a!, ~13!

where T̄R and T̄I are, respectively, the real and imagina
parts ofT̄. In terms ofaR(T̄), aI(T̄), and the contourC8, it
is easy to identify the signature change nature of the comp
solution.

Along C8, aI(T̄) Eq. ~13! is nil. This happens because o
the first part of the circuit we haveT̄R50, and on the second
part T̄I5ap/2. aR(T̄) is initially nil, as demanded by the
‘‘no-boundary’’ proposal for minisuperspace models@10#,
for T̄I50. Then, it behaves as

aR~ T̄I !5a sin~ T̄I /a!, ~14!

until reaching the valuea, for T̄I5ap/2. From there onward
it goes as

aR~ T̄R!5a cosh~ T̄R/a!, ~15!

up to the final surface where it isa1 .
Observing the transformation Eq.~10!, one can see tha

on the first part ofC8, N is imaginary. Therefore, the metri
Eq. ~1! has a Lorentzian signature there. On the other ha
on the second part ofC8, it has an Euclidean signature (L
→E).

One may verify the correctness of the above cont
choice by proving that the extrinsic curvature at the bou
ary surface whereT̄5 iap/2 (S) between the Lorentzian
and Euclidean sectors is nil@6#. For our model, this junction
condition translates to the conditionda(T̄)/dT50 at S.

Along the first part ofC8, a(T̄) is given by Eq.~14!,
therefore,

da~ T̄!

dT̄
5cos~ T̄I /a!. ~16!

The junction condition is then easily seen to be satisfied
S. As a by-product of the above analysis we obtain that n
to t50, the complex solutions are anti–de Sitter space-tim

The regularity of the Lorentzian and complex solution
the final requirement of the ‘‘no-boundary’’ conditions, ma
be studied together because from Eqs.~1!, ~3!, ~6!–~8!, we
notice that all of them have singularities only att50. As a
matter of fact this regularity investigation has already be
done in Ref.@9#, where a systematic procedure to identify t
presence of conical singularities, called the holono
method@13#, was used in the above space-times.
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 58 107501
The solutions of the following equation, derived in Re
@9#, guarantee the absence of conical singularities in
event t50 of the space-times above with compactifie
spacelike hypersurfaces:

Np52pn, ~17!

wherep is the period of a compactified direction andn is a
nonzero, positive integer.

For the complex solutions we learned that neart50, N is
given byNI , Eq. ~5!, and for the Lorentzian solution by Eq
~2!. Therefore, if we demand that these space-times be r
lar by solving Eq.~17! for the appropriateN and impose by
simplicity that the resulting spectra ofuLu be identical, we
find

uLun,m5@n1~21!ma1#2
m2p2

n2 . ~18!

This equation, givesuLu as a function ofa1 , n, and m,
which is a nonzero, positive integer.

We are now in position to write down theCnb Ref. @2#,
for the present model. As a matter of simplicity we shall n
introduce any extra condition but convergence in order to
the integration contour forCnb @6#.

For the case wherea1AuLun,m,1, the Lorentzian solu-
tions Eqs.~2! and ~3!, will give the following Cnb ~up to
renormalization!, with the aid of the expression forI Eq. ~9!,
for a fixed pair (n,m):

Cnb~n,m!
L 52 expS 2ıA

AuLun,m

p

2 D
3cosH A

AuLun,m

@xA12x22arccos~x!#J ,

~19!

where we introduced the new variablex[a1AuLun,m. For
the case wherea1AuLun,m.1, the complex solutions Eqs.~4!
and ~6!, give for a fixed pair (n,m) ~up to renormalization!,

Cnb~n,m!
C 5expS 2ıA

AuLun,m

p

2 D expH A
AuLun,m

@2xAx221

1arcsinhAx221#J . ~20!

It is clear then, that for a given value ofa1 greater~smaller!
than 1/AuLun,m, we shall have an infinite number ofuLun,m ,
R

10750
e
,

u-

t
x

Eq. ~18!, and of associatedCnb(n,m)
C , Eq. ~20! @Cnb(n,m)

L Eq.
~19!#, one for each pair (n,m). So, for a givena1 the state of
the universe in the present model is specified by the p
(n,m).

We may try to obtain some information about the mod
universe by studying the wave-functions, Eqs.~19! and ~20!
and their suitability to describe the classical anti–de Si
space-time at the semi-classical level. Let us describe
behavior of the two wave functions above in terms of t
variable x. Note that for fixed values of the cosmologic
constant this variable gives a direct measure of the s
factor for final hypersurfaces.

We notice that each of the wave functions above cor
spond to distinct regions, whetherx is smaller or greater than
1. Cnb(n,m)

L , is an oscillatory function ofx, and is defined in
the region wherex,1. So, this is the classically allowe
region.Cnb(n,m)

C , is a decreasing exponential function ofx,
and is defined in the region wherex.1. So, this is the clas-
sically forbidden region.

The universe has a probability proportional
Cnb(n,m)

L* Cnb(n,m)
L to be in the classically allowed region

This probability varies with cos2, from Eq.~19!. On the other
hand, the universe has an exponentially decreasing prob
ity, proportional toCnb(n,m)

C* Cnb(n,m)
C , Eq. ~20!, to be found

in the classically forbidden region.
The properties of the quantum density probabilities m

tioned above derived from the wave functions Eqs.~19! and
~20!, are those one would expect to be semiclassically as
ciated with the anti–de Sitter space-time. From Refs.@8# and
@11#, we know that the scale factora(t) for the anti–de Sitter
space-time is a sine or cosine function of the time coordin
t. It varies from zero up to a maximum value 1/AuLu, and
then decreases back to zero. Therefore, classically,a(t) can-
not be greater than 1/AuLu.

Finally, it is important to mention that the papers in Re
@14# were the first ones to compute the ‘‘no-boundary
wave-function for a negatively curved space-time. One m
not compare the results derived here with the ones der
there because first, and most importantly, they have not c
sidered contributions to the wave function from space-tim
foliated by spacelike hypersurfaces. Secondly, they have
restricted their attention to the anti–de Sitter space-time.
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the course of this work. I would also like to thank G. Huis
and B. Kay for helpful discussions, the Gravity and Cosm
ogy Group of DFT-UERJ for the invitation to work there
and finally to CAPES of Brazil for the partial financial sup
port.
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