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Conformal field theory correlators from classical field theory on anti-de Sitter space:
Vector and spinor fields
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We use the AdS-CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The
connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.
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I. INTRODUCTION 1
ds?=—dx*dx* 2)
The study of conformal field theorig€FT’s) in dimen- Xo

sions larger than 21,2] has recently peen boogted by Mal- (x=0,1,...d), its boundary is compactifiel® (the points
dacena’s conjecture that the larlyelimit of certain confor- ity xo=0 and the single point,=c). We will frequently

mal field theories ind dimensions can be described by yonote AdS vectors byg,x) and usex; to specify the com-
supergravity and string theory ond+{ 1)-dimensional ponents ofx. ’ '

anti—de Sitte(AdS) space3]. Subsequently, this conjecture ~ The fact that the AdS metric diverges on the boundary

has been given a more precise formulatj@rb] and it has  hresents a difficulty in the AdS-CFT correspondence, which
been shown that, in fact, any field theory on Ad$is s tg be met with care. The natural solution is to calculate the
linked to a conformal field theory on the AdS bound®y.  ags action on a surfaces,= €, and then take the limie
This observation is entirely due to the fact that one obtains a4 However. the exact connection between the AdS fields
metric on the AdS boundary by multiplying the AdS metric 4 and the boundary fieldg, is subtle. Whereas Wittef5]

with a function, which has a single zero on the boundary ing4iaq thatp should approackb, times a certain power of,

order to counteract the divergence of the AdS metric. HOW'asxo—>O, it was soon realizeftL7] that in certain cases, in

ever, this function is otherwise arbitrary, which imposes the, ey g satisfy Ward identities, one must formulate a proper
symmetries of the gonforr_nal group on Fhe boundary MetiChirichlet boundary value problem on the surfagg= e and
All one needs then is a suitable connection between the fiel ke the limite—0 at the very end. A detailed investigation

on AdS;.; and its boundary. Schematically, this connectionyaying into account this subtlety has so far been done only

is given by for scalar fields[16,17. We find it therefore necessary to
extend our previous investigation of the scalar figlé] to
the vector and Dirac fields on A¢$,. To be general, we
ZAdS[qSO]:f Do exp —I[¢]) shall include a mass term in the vector field action, which is
bo considered in Sec. II. In Sec. Il we will give account of the
Dirac field. The minimal coupling of the Dirac and gauge
EZCFT[¢O]:<6XF< f ddx0¢o) > (1) fields is considered in Sec. IV, and Sec. V contains the con-
clusions.

where ¢, is a suitably defined boundary value of the AdS Il. VECTOR FIELD
field ¢ and couples as a current to the boundary conformal
field theory operato®. In the classical approximation the
path integral on the left-hand sidlns) is, of course, redun- 1 1
dant. |:f dd“x@(ZFWFW+ EmZAMA” ®)
Field theories on AdS spaces have been the subject of
research in the pag6—-14]. More recently, the AdS-CFT
correspondence has been investigated for scalar figkls
17], gauge field$17], spinorg 18], classical gravity19] and
type IIB string theory[20,21]. For a comprehensive list of VMF“”—mZA”=O, (4)
recent references s¢&7].

Using as representation of AglS, the upper half space \yhich implies the subsidiary condition
Xo>0, X; € R, with the metric

The starting point is the action

with the usual relatiorF ,,=d,A,—3,A,. The equation of
motion derived from Eq(3) is

V,A*=0. (5)
*Email address: wmueck@sfu.ca Within our representation of anti—de Sitter sp&2gone
"Email address: kviswana@sfu.ca can use Eqs(4) and(5) to obtain an equation fol,:
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[X§9,0,+ (1= d)Xgdo— (M*—d+1)JA;=0.  (6)

Introducingm?=m?—d+ 1 we know from the consideration

of the scalar field that the solution of E@), which does not
diverge forx,—, is given by

d%
Ao(X)=J Weﬂk x5 %ag(K)K7(kXo), (7)

with

~ dz - \/(d—2)2
A — 2= 2
@ 7 +m 7 +m-. (8)

It is useful to introduce fields with Lorentz indices by

A= elA,=XoA,, 9)

whereeX denotes the vielbeina=0,1,...d). The virtue of
this is seen when considering the componeds (i
=1,2,..
from Egs.(4) and(5) and is given by
[X59,,0 m2JA; = 2XodiA, .

u T (1=d)Xodp— (10

The solution of the homogeneous part of Ef0) can be
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where the argumerke of the modified Bessel functions has
been omitted anoT\e,i(k) denotes the Fourier transform of
the Dirichlet boundary value of the fieldl,. We can deter-
mineb; anda, from Eq.(15) by identifying the first term on
the LHS with the RHS and demanding that the second term
on the LHS be zero. This yields

ci(K
b= K'f | (16)
_kbK; L
Qo= IEKa+l 17

Substituting Eqs(14) and (17) into Eq. (13) we find the
missing coefficient

LDk keKgi
k> (1-3)Kz—keKs_,

: (18

.d), whose equation of motion is again obtainedwhere a functional relation of the modified Bessel functions

has been used to rearrange the denominator and we have
definedA = a+d/2.

Let us use the AdS-CFT correspondence to calculate the
two-point functions of currents;, which couple to the mas-
sive vector fieldsAg; . After integration by parts and using

taken over fromA, and the inhomogeneous equation is Eq. (4) the action(3) takes the value
solved by making a good guess as to which form the solution

should have. One obtains

- dk
A00= | g e R oK ko)

ki
+iag(k) XOKa+1(kXO)) 1y

We have now to impose the subsidiary conditis),
which in terms of the Lorentz index fields reads

Xod,A,—dAg=0. (12)
Inserting Eqs(7) and(11) into Eq. (12) yields
~ d _
dp CY_§+1 :|aiki, (13)

which determines in the generic case of massive vector
fields, but leaves it undetermined in the massless case. In
order to find a prescription which is valid for both cases, let

us first impose the boundary conditions on the fidigs|t is
useful to write

a|:bi+bki . (14)
Settingxy= € in Eqg. (11) we then find
K+ ki| b i Ky | =€ %A (K), (19

(O
IZ_E d X€e Aé,i[_AE,i+6FE,Oi]1 (19)

whereF ;= doA;— d;A, contains the interesting part. Using
the solutions(7) and (11) with the coefficients obtained in
Egs.(14), (16), (17) and(18) one finds

- d 1A f dk R
o= —— — e i
912 et (277)¢ : -
kik; keK>,
X| =8+ ) = (20

K> (A—1)Kz+keKs 4

We take the limite— 0 by substituting the first terms of the
series expansion of the modified Bessel functions in(EQ).
The series expansion is given by

z\T'(1-v)
5

K (2)=z2""2""T'(v)|1- T(1+ )

+ } (22

where the ellipsis indicates terms of ordg and z?”*2"
(n=1,2,...). Ourexperience from the scalar fie[d6] tells

us that the relevant terms are proportlonalkﬁﬁ“é,l and
K2a- 2k; k;. We obtain these by keeping only the leading or-
der terms for the denominators in E0) and using the
appropriate terms for the numerators. In particular, the term

k?® from Eq.(21) is needed only foK7_, in the numerator
of Eg. (20). One obtains
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- d _\1. (17) and (18) into Eq. (11) and replacingK ,(ke) by the
Feo= R A leading order term of its asymptotic expansi@d) one finds
e\ 2e 1 (1 - a)j ik xA-1
i e KRR, (K AbquX _ Jdd 0
(2) F(a (277)(:1 ,J( ) ( ) on ) Xg+|X—y|2)A
- 2w _ _
_k2a5ij+~_k2a—2kikj+... , (22) | 8. — (X y)i(x Y)J . 2
i-1 T Xy 0
where the ellipsis denotes all other terms representing eith
contact terms in the two-point function or terms of higher eélmnarly taking the limit in Bq.(7) yields
order ine. Performing the integrals in E¢22) and inserting i
the result into Eq(19) yields ABHIK ) = — Xg(X—Y);
()=——— | dYA, () —5———>x3 ENTYYIS
(Xo+[x=yl%
1/. d D ~
I=5|a+1-3 Jd xe AL (X)ALi(X) (28
1 2CaA J» y e2(A—d) IIl. FREE DIRAC FIELD
d“xd AE e ) )
2% VAR T |x—y[?4 Let us start with the action
(X=y)i(x—y); _
X(ﬁij—2—2—|x_'y| JRRRE @3 1= | d*58a00 (@ -myyx)
with d
G| d%vhy(x)¥(x), (29
-~ T@)
- 72T (@) where we supplemented the dynamical bulk action with a
surface tern{18] with an undetermined coefficiel@. The
Identifying surface term is necessary in order to obtain a two-point func-
- tion of spinors in the boundary conformal field theory. The
Agj(x)=lim €*~9A_i(x) (24)  equation of motion fors derived from the actiori29) is the
€—0 Dirac equation

and using the AdS-CFT correspondence of the form d
(D—m) i/f(X):(XoY,ﬂ,L_ E?’o_m) #(x)=0, (30

exp(—IAdS)E<ex;{J’ d%J;(X)Ag;(X) > (25)

where the matricesy, are the Dirac matrices of

we can read off from Eq(23) the finite distance two-point (d+1)-dimensional Euclidian space, i.ey,y,+y,7,
function as =24,,. Acting with y,d, on Eq.(30) one obtains the sec-

ond order differential equation

2cal (X=y)i(X=y); d 1 d?
J(x)J(x)=——| §—2—"——
PHOOK = ( Xy ) i s |

X |x—y| 28, (26)

o ) . ) The solution of Eq.(31), which does not diverge fogg
which is of the form dictated by conformal invariance. It _ , is obtained in a similar fashion as in the scalar and

shows in particular thal, has the conformal dimensiah. vector cases and is given by
This is of course as expected, but in view of the fact that the
integrals in Eq.(22) have to combine to give exactly the d% X D2 ot
terms in parentheses in E(6) it is a non-trivial check of (X _f (2me © "X [a” (K) K- 1/2(kXo)
our derivation. Moreover, our result coincides for the mass-
less case with the one obtained[it]. +a” (k) Kns1/2(kX%o) 1, (32
In contrast to the two-point function, which is determined
by a boundary integral, interactions involve integrals overwhere the spinora™ satisfy y,a™=+a*. The expression
the volume of Adg. ;. Hence, higher correlation functions (32) is in general not a solution of the Dirac equati@0). In
are not sensitive to the order of taking the>0 limit and we  fact, substituting Eq(32) into Eq. (30) we find that the
shall take it for the fieldsA,. Substituting Eqs(14), (16), spinorsa® anda™ must be related by
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i agreement with the condition found [i18]. On the other
a~=pkiva’. (33 hand, we cannot prescribg" for m>0, asy_ would then
diverge. The casen<O is just the opposite. Fam=0 we
Our next task is to impose boundary conditions on thehaveK_;,=K;,, and hence one can prescribe either of the
solution (32). However, there is a major difference to the functionsy; .
scalar and vector cases. The origin of this difference lies in We shall in the following consider the case=0. Insert-
the nature of the differential equations, which serve as théng Egs.(36) and(33) into Eqg. (32) we finally find
equations of motion for the fields. In the scalar cglg and
vector case(cf. Sec. 1) we have second order differential dk L [Xp) (PR
equations. Hence, we could impose two sets of boundary (%) f 2m)a e €
data, namely the field and its derivative. Instead of the latter

we demand that the field be well behaved in the volume of K %

AdSy, ,, i.e. for xq—o, which yields a unique solution to ol il K- 1’2(kX0)+Km+1’2(kXO)>

the Dirichlet problem. On the other hand, the Dirac equation B

(30) is a first order differential equation. Thg—c behav- " e (k) 39
ior of the solutions of the Dirac equation is crucial from the K a(ke)

AdS field theory point of view and cannot be abandoned.

Hence, only half of the general solutions are available forin a similar fashion one can solve the equation of motion for
fitting the boundary data, which means that only half thethe conjugate spinor:
components of the spina¥ can be prescribed on the bound-

ary, the other half being fixed by a relation which will be — = —
determined in a moment. This result is important also from a YO)(D+m)=(x)
CFT point of view. Considering the boundary term of the

action (29) we realize that, if one could prescribe the entire The solution in the casm=0 is
boundary spinor, then there would be only a contact term in

- d

the CFT two-point function. The trade-off is that we can _ Xo (d+1)/2 J:(k)

obtain only correlators for spinors, which have half the num- P(x)= f —d e 'k X( ) P

ber of components as the fie§d This means that the bound- (2 € m+ 12 Ke)

ary spinors are Weyl or Dirac spinors for even or odd, Ki i

respectively[18]. X ( 7 K- 272(k%o) + K 1,2(kx0)) , (40

Letting xo= € in (32) we find

where ==y .1(1+ v0). Again we find a relation between

Kivi
Ye(k)= €TV Kyt Ik “Kmi12/a*(k), (34  the components of the boundary spinor, which is given by
where (k) is the Fourier transform of the boundary spinor ¢p (k)= ¢ (K)i |_7. m-1/2. (41)
and we have omitted the arguméat of the modified Bessel Km+ 112
functions. We can determire’ from Eq.(34) in two ways,
namely by Let us turn now to the two-point function for the bound-

ary spinorsy™ and y~, which couple togg and iy, , re-

+ . . . . .
o (@+1)2 e (K) spectively. Inserting the solutions of the equations of motion

a* (k)= 35 . .
Km—1/2 into the action(29), the bulk term vanishes and the surface
term can be written as
or
- I—G’df d% PR (=K + g (K (—k
a+(k)=e‘<d+1>’2ﬁ (/le(k)’ 39 =Ge W[df (K (=kK)+¢ (K (k)]
ik Kz (42)
whereyr, = 3(1= yo) .. Substituting Eq(36) into Eq.(35)  Using the relation$37) and (41) one finds
we find thaty! andy_ are related by
v K I:Ge_df ddxddyJ —dddk gl Oy (%)
i 22 _ €
st =—i 50 Ko e (0, (37 (2m)
x| 2i 21 K-z 43
The question as to which of the functiosis should be used ! K Kms1 pe (y)- (43

as boundary data is, in general, not a matter of choice, but is

dictated by the=— 0 limit. Here we have to distinguish three We use the expansidi21) for the modified Bessel functions
cases. Ifm>0, K,,_, diverges slower tha#,; 1, for € in the numerator and the leading order term in the denomi-
—0 and thus we find thag —0, if we fix ¢_ . Thisis in  nator. Hence, we find, after integration,
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. . Yi(Xi— Vi) IV. INTERACTION BETWEEN SPINOR
|=- ZCGJ dddeylﬂa—(X) Wrmlﬂo_(y), (44) AND GAUGE FIELDS
: Calculating the first order interaction between the spinor
where we defined and massless vector fields serves two purposes. First, it pro-

. m—d/2. . — — . e di— vides another detail of the AdS-CFT correspondence in the

o =lim € Yo and go=1Iim e ¥e (49 form of the vector-spinor-spinor three-point function. In con-
<0 <0 trast to the scalar three-point function, conformal symmetry

does not fix, but only restricts the form of this particular

three-point function[1]. Hence, the calculation will yield

more than just a coefficient in front of a universal function.
r N +m Second, a check of the Ward identity corresponding to gauge
c=— invariance will reveal that no supplementary surface term of

7921 m+ E) the order of the gauge coupling is needed.
2 We shall use the action for minimally coupled spinor and
gauge fields, together with the spinor surface term,

for the e—0 limit and

d+1

In the casan=0 thek integration in Eq.(43) can be done

without the asymptotic expansion and leads to the same re- de1 1 vy T )
sult. Using the AdS-CFT correspondence ' :f d***xVg PP T (D —igA-m)y
exp(—lAds)E<eXP(JddX(;¢o+$§x*)>>, (46) +Gf d%hyy. (51)
the two-point function reads The equations of motion derived from E®1) are
— ~ . YiX%i—Y) V F#'=—iqelyyaih, 52
(X" (¥)x " (y))=2cG WWIH (47) ~ A€advad 52
(D—m)¢=iqgAy (53

Hence, the spinorg and y have the conformal dimension ) )
m+d/2. Our result agrees up to the appropriate normaliza@nd its conjugate
tion with the one found in18]. . -
For calculating interactions we are interested in the bulk (D +m)=—iqyA. (54)

behavior of the spinorg and y. It is obtained by replacing e split the gauge field into its free pa&t® and the remain-

Kms 12(ke) by the leading order term of its asymptotic ex- der A Substituting Eq(53) into Eg. (51) and using th
pansion in Eqs(38) and(40). One finds the expressions ecenrjatioﬁ O;Jmsoltigr:n]%F(%')( vael?ir?d 9. (51) and using the

lﬂb”'k(x):éf d%[xo— yi(Xi— V)] |:f iy e d _iA(O)Fw),Oi_EAg1>F<o>,0i+GE¢
2¢e ! € !

(48)

+0(g?). (55)

Most importantly, the bulk terms vanish. Moreover, using
and the appropriate Green’s function to calcul#€") (cf. [16]
for the scalar field analogliewe realize that also the second
Ebulk(x):ef ddyEg(y)[Xo_,_ yi(X—y)] ter.m in Eq.'(55) is zero. The first term only yields the two-
point function for the conserved currenls However, the
last term will give the two-point function for the spinors and
the three-point function couplingiand the spinors. This sur-
which coincide with those if18] up to normalization. A  Prising fact comes about as follows. Going back to the deri-
good check of the derivation of these expressions is provide§ftion of the spinor two-point function, we realize that it was
by the casem=0. SinceK. 42)=(V@/22)e %, it is pos- generated by the relatior{87) and (41) between thet+ and

sible to carry out the integration in E(38) with the result components of the spinors on the boundary. These rgla—
tions will be altered by the presence of the interaction. Writ-

X(X%+|X_y|2)f(d+l)/27mxg/2+m, (49)

d+ 1) ing
¢(X)=f ddy —1x8/2[(x0—e)2+|x—y|2]‘(d+1)/2 P(x)= O (x)+ ¢y P (x)+ O(g?), (56)
,n_d/ZF(_)
2 tﬁ(l)(X):iqf d* Vg AY) O(y),
X[Xo— €= ¥i(Xi—Yi) 1o (¥). (50) (57)
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whereS(x,y) is the spinor Green’s function defined by

(B-mSixy) = Y (58)
Vaox)
we find, using Eq(37),
kI | Km
0 0= i (0
l_|—270 % Km 1/2) l//(l)(k)‘f‘o(qz)
m+ 1/
(59)

where we omitted the argumekg of the modified Bessel
functions. Similarly, one finds, for the conjugate field,

Y(x)=¢ O+ ¢y (x)+ O(g?), (60)
P00 =1q [ 6y Gy AY)SY.0),
(61)
with?
Syo(By+my=— 25 62
V(%)
and, using Eq(41),
b =g (k)i '7' Kmov2 )40
m+1/2
Kivi Km—12) 1= 70
X 1_ITKm+1/2) > +O(q2) (63

Substituting Eqs(59) and (63) into the spinor surface term
in the form(42), one finds that the contribution to the action

of first order inq is

IV=Ge™ J AL O (0= ? (01 (x)

— DL ()~ O () T+ O(6?).

On the other hand, from Eq&2) and(58) one can obtain

(64)

¢(°)(X)=e‘df dUy SOt (y)— ¢ @~ (y)] (69

and

POx)=—e¢ f dUY [ O (y)— O (y)]1S(y, %),
(66)

The relation betwee® andS is of no importance here.

PHYSICAL REVIEW D 58 106006

respectively. Inserting Eq$57), (66), (61) and(65) into Eq.
(64) one then finds

|<1>:—2quf d gy O AY©). (67)
Equation(67) has the same form as the minimal coupling
term, but is multiplied by &. It is determined by a bulk
integral, which means that the bulk behavior for the fields
can be used. Substituting Eq®7), (28) (with A=d—1),

(48) and(49) into Eq.(67), the following tedious calculation
involves Feynman parametrization of the denominator and
heavy numerator algebra. The result is

. [d
—iGqcl’ E)
(JJ(XZ)X (Xl)X (X3)> T 2(d—1+2m)
X12iX23
X|(d=2)
7|7]7kx_dw
+(2m+1)’in13‘
XiZXZSj + X§3X12j 68)
—d o doZmT3 |
XIXoXT5

wherex,p,=X,— X, . After further algebra one finds that Eq.
(68) can be written in the form

'GAFd
IC]CE 1

7¥2(d—142m) x¢x35 X7

YiX13
XI— 5“(—
X13

X13 Xza)

X —_— e —

(Xis ng
X[(d=2) vyt (2m+1) dy ],
(69)

<JJ(X2)X+(X1)X (X3))=

X23iX23
2——
X23

which is a specific case of the general expression dictated by
conformal invariancgl].
Finally, let us confirm the Ward identity22]

d
ox}, —(Jj(x)x ™" (X)X~ (x3))=—iq(x" (X)X~ (X3))

X[8(Xz3) = 8(X12)]. (70)
From Eq.(68) one finds

d
A iR DX (ta)) = ~i1G2E Lgtzmis

X[8(X3) — 8(X12)]. (71

Comparing Eqgs(71) and(47) with Eq. (70) we see that the
Ward identity is satisfied. This result is significant, since it
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tells us that, to first order im, no supplementary surface ism can be extended to Dirac spinors by couplingto an
term except the one used already for the free Dirac field iAdS spinor; with positive masan and x* to a field ¢,

required in the action for interacting fields. with mass—m.
Minimally coupling the Dirac and massless vector field,
V. CONCLUSIONS we calculated the CFT vector-spinor-spinor three-point func-

tion. The result should be interesting from a CFT point of
In the present paper we used the AdS-CFT correspongiey, as the form of this correlator is not totally fixed by
dence to calculate CFT correlators from the classical AdQonformal invariance. Thus, our result could indicate which
theories of vector and Dirac fields. We took care to addresg:rT is obtained by the AdS-CFT correspondence. Finally,
the proper treatment of the—0 limit when calculating the e confirmed the validity of the Ward identity and found

two-point functions. As for the scalar fie[d6,17, this was  that no interaction surface terms are required in the action.
particularly important for the vector field with nonzero mass.

Our calculation for the free Dirac field revealed the full
details as to why only half the number of spinor components
can be given as boundary data. For afhis is exactly what
one wants, because the boundary spinor representation hasWe would like to thank D. Freedman and K. Sfetsos for
only half the number of components as the bulk spinors. Focommenting on the first version of this paper, which led to a
evend the dimensions of the spinor representations are theetter understanding of the interaction considered in Sec. IV.
same andy, acts as the chirality operator on the boundaryThis work was supported in part by an operating grant from
spinors. This means that for evenwe calculated only the NSERC. W.M. gratefully acknowledges support from Simon
correlation functions for chiral spinors. However, the formal- Fraser University.
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