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Conformal field theory correlators from classical field theory on anti–de Sitter space:
Vector and spinor fields

W. Mück* and K. S. Viswanathan†

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
~Received 3 June 1998; published 8 October 1998!

We use the AdS-CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The
connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.
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I. INTRODUCTION

The study of conformal field theories~CFT’s! in dimen-
sions larger than 2@1,2# has recently been boosted by Ma
dacena’s conjecture that the largeN limit of certain confor-
mal field theories ind dimensions can be described b
supergravity and string theory on (d11)-dimensional
anti–de Sitter~AdS! space@3#. Subsequently, this conjectur
has been given a more precise formulation@4,5# and it has
been shown that, in fact, any field theory on AdSd11 is
linked to a conformal field theory on the AdS boundary@5#.
This observation is entirely due to the fact that one obtain
metric on the AdS boundary by multiplying the AdS metr
with a function, which has a single zero on the boundary
order to counteract the divergence of the AdS metric. Ho
ever, this function is otherwise arbitrary, which imposes
symmetries of the conformal group on the boundary met
All one needs then is a suitable connection between the fi
on AdSd11 and its boundary. Schematically, this connecti
is given by

ZAdS@f0#5E
f0

Df exp~2I @f#!

[ZCFT@f0#5 K expS E ddxOf0D L , ~1!

wheref0 is a suitably defined boundary value of the Ad
field f and couples as a current to the boundary confor
field theory operatorO. In the classical approximation th
path integral on the left-hand side~lhs! is, of course, redun-
dant.

Field theories on AdS spaces have been the subjec
research in the past@6–14#. More recently, the AdS-CFT
correspondence has been investigated for scalar fields@15–
17#, gauge fields@17#, spinors@18#, classical gravity@19# and
type IIB string theory@20,21#. For a comprehensive list o
recent references see@17#.

Using as representation of AdSd11 the upper half space
x0.0, xiPR, with the metric
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1

x0
2 dxmdxm ~2!

(m50,1,...,d), its boundary is compactifiedRd ~the points
with x050 and the single pointx05`!. We will frequently
denote AdS vectors by (x0 ,x) and usexi to specify the com-
ponents ofx.

The fact that the AdS metric diverges on the bound
presents a difficulty in the AdS-CFT correspondence, wh
is to be met with care. The natural solution is to calculate
AdS action on a surface,x05e, and then take the limite
→0. However, the exact connection between the AdS fie
f and the boundary fieldsf0 is subtle. Whereas Witten@5#
stated thatf should approachf0 times a certain power ofx0
as x0→0, it was soon realized@17# that in certain cases, in
order to satisfy Ward identities, one must formulate a pro
Dirichlet boundary value problem on the surfacex05e and
take the limite→0 at the very end. A detailed investigatio
taking into account this subtlety has so far been done o
for scalar fields@16,17#. We find it therefore necessary t
extend our previous investigation of the scalar field@16# to
the vector and Dirac fields on AdSd11 . To be general, we
shall include a mass term in the vector field action, which
considered in Sec. II. In Sec. III we will give account of th
Dirac field. The minimal coupling of the Dirac and gaug
fields is considered in Sec. IV, and Sec. V contains the c
clusions.

II. VECTOR FIELD

The starting point is the action

I 5E dd11xAgS 1

4
FmnFmn1

1

2
m2AmAmD ~3!

with the usual relationFmn5]mAn2]nAm . The equation of
motion derived from Eq.~3! is

¹mFmn2m2An50, ~4!

which implies the subsidiary condition

¹mAm50. ~5!

Within our representation of anti–de Sitter space~2! one
can use Eqs.~4! and ~5! to obtain an equation forA0 :
©1998 The American Physical Society06-1
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@x0
2]m]m1~12d!x0]02~m22d11!#A050. ~6!

Introducingm̃25m22d11 we know from the consideratio
of the scalar field that the solution of Eq.~6!, which does not
diverge forx0→`, is given by

A0~x!5E ddk

~2p!d e2 ik•xx0
d/2a0~k!K ã~kx0!, ~7!

with

ã5Ad2

4
1m̃25A~d22!2

4
1m2. ~8!

It is useful to introduce fields with Lorentz indices by

Ãa5ea
mAm5x0Aa , ~9!

whereea
m denotes the vielbein (a50,1,...,d). The virtue of

this is seen when considering the componentsÃi ( i
51,2,...,d), whose equation of motion is again obtain
from Eqs.~4! and ~5! and is given by

@x0
2]m]m1~12d!x0]02m̃2#Ãi52x0] i Ã0 . ~10!

The solution of the homogeneous part of Eq.~10! can be
taken over fromA0 and the inhomogeneous equation
solved by making a good guess as to which form the solu
should have. One obtains

Ãi~x!5E ddk

~2p!d e2 ik•xx0
d/2S ai~k!K ã~kx0!

1 ia0~k!
ki

k
x0K ã11~kx0! D . ~11!

We have now to impose the subsidiary condition~5!,
which in terms of the Lorentz index fields reads

x0]mÃm2dÃ050. ~12!

Inserting Eqs.~7! and ~11! into Eq. ~12! yields

a0S ã2
d

2
11D5 iaiki , ~13!

which determinesa0 in the generic case of massive vect
fields, but leaves it undetermined in the massless case
order to find a prescription which is valid for both cases,
us first impose the boundary conditions on the fieldsÃi . It is
useful to write

ai5bi1bki . ~14!

Settingx05e in Eq. ~11! we then find

biK ã1kiFbKã1 ia0

e

k
K ã11G5e2d/2Ãe,i~k!, ~15!
10600
n
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where the argumentke of the modified Bessel functions ha
been omitted andÃe,i(k) denotes the Fourier transform o
the Dirichlet boundary value of the fieldÃi . We can deter-
minebi anda0 from Eq.~15! by identifying the first term on
the LHS with the RHS and demanding that the second te
on the LHS be zero. This yields

bi5e2d/2
Ãe,i~k!

K ã
, ~16!

a05 i
kbKã

eK ã11
. ~17!

Substituting Eqs.~14! and ~17! into Eq. ~13! we find the
missing coefficient

b5
biki

k2

keK ã11

~12D̃ !K ã2keK ã21

, ~18!

where a functional relation of the modified Bessel functio
has been used to rearrange the denominator and we
definedD̃5ã1d/2.

Let us use the AdS-CFT correspondence to calculate
two-point functions of currentsJi , which couple to the mas
sive vector fieldsA0,i . After integration by parts and usin
Eq. ~4! the action~3! takes the value

I 52
1

2 E ddxe2dÃe,i@2Ãe,i1eF̃e,0i #, ~19!

where F̃0i5]0Ãi2] i Ã0 contains the interesting part. Usin
the solutions~7! and ~11! with the coefficients obtained in
Eqs.~14!, ~16!, ~17! and ~18! one finds

F̃e,0i5S d

2
2ã D 1

e
Ãe,i1E ddk

~2p!d
e2 ik•xÃe, j~k!k

K ã21

K ã

3F2d i j 1
kikj

k2

keK ã11

~D̃21!K ã1keK ã21
G . ~20!

We take the limite→0 by substituting the first terms of th
series expansion of the modified Bessel functions in Eq.~20!.
The series expansion is given by

Kn~z!5z2n2n21G~n!F12S z

2D 2n G~12n!

G~11n!
1¯ G , ~21!

where the ellipsis indicates terms of orderz2n and z2n12n

(n51,2,...). Ourexperience from the scalar field@16# tells
us that the relevant terms are proportional tok2ãd i j and
k2ã22kikj . We obtain these by keeping only the leading o
der terms for the denominators in Eq.~20! and using the
appropriate terms for the numerators. In particular, the te
k2ã from Eq. ~21! is needed only forK ã21 in the numerator
of Eq. ~20!. One obtains
6-2
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F̃e,0i5S d

2
2ã D 1

e
Ãe,i

1S e

2D 2ã21 G~12ã !

G~ã !
E ddk

~2p!d e2 ik•xÃe, j~k!

3S 2k2ãd i j 1
2ã

D̃21
k2ã22kikj1¯ D , ~22!

where the ellipsis denotes all other terms representing e
contact terms in the two-point function or terms of high
order ine. Performing the integrals in Eq.~22! and inserting
the result into Eq.~19! yields

I 5
1

2 S ã112
d

2D E ddxe2dÃe,i~x!Ãe,i~x!

2
1

2

2c̃ãD̃

D̃21
E ddxddyÃe,i~x!Ãe,i~y!

e2~D̃2d!

ux2yu2D̃

3S d i j 22
~x2y! i~x2y! j

ux2yu2 D1¯ , ~23!

with

c̃5
G~D̃!

pd/2G~ã!
.

Identifying

A0,i~x!5 lim
e→0

eD̃2dÃe,i~x! ~24!

and using the AdS-CFT correspondence of the form

exp~2I AdS![ K expS E ddxJj~x!A0,j~x! D L , ~25!

we can read off from Eq.~23! the finite distance two-poin
function as

^Ji~x!Jj~x!&5
2c̃ãD̃

D̃21
S d i j 22

~x2y! i~x2y! j

ux2yu2 D
3ux2yu22D̃, ~26!

which is of the form dictated by conformal invariance.
shows in particular thatJi has the conformal dimensionD̃.
This is of course as expected, but in view of the fact that
integrals in Eq.~22! have to combine to give exactly th
terms in parentheses in Eq.~26! it is a non-trivial check of
our derivation. Moreover, our result coincides for the ma
less case with the one obtained in@17#.

In contrast to the two-point function, which is determin
by a boundary integral, interactions involve integrals ov
the volume of AdSd11 . Hence, higher correlation function
are not sensitive to the order of taking thee→0 limit and we
shall take it for the fieldsAm . Substituting Eqs.~14!, ~16!,
10600
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~17! and ~18! into Eq. ~11! and replacingKn(ke) by the
leading order term of its asymptotic expansion~21! one finds

Ai
bulk~x!5

c̃D̃

D̃21
E ddyA0,j~y!

x0
D̃21

~x0
21ux2yu2!D̃

3S d i j 22
~x2y! i~x2y! j

x0
21ux2yu2 D . ~27!

Similarly, taking the limit in Eq.~7! yields

A0
bulk~x!52

2c̃D̃

D̃21
E ddyA0,j~y!

x0
D̃~x2y! j

~x0
21ux2yu2!D̃11

.

~28!

III. FREE DIRAC FIELD

Let us start with the action

I @c̄,c#5E dd11xAgc̄~x!~D” 2m!c~x!

1GE ddxAhc̄~x!c~x!, ~29!

where we supplemented the dynamical bulk action with
surface term@18# with an undetermined coefficientG. The
surface term is necessary in order to obtain a two-point fu
tion of spinors in the boundary conformal field theory. T
equation of motion forc derived from the action~29! is the
Dirac equation

~D” 2m!c~x!5S x0gm]m2
d

2
g02mDc~x!50, ~30!

where the matricesgm are the Dirac matrices o
(d11)-dimensional Euclidian space, i.e.,gmgn1gngm
52dmn . Acting with gm]m on Eq.~30! one obtains the sec
ond order differential equation

F]m]m2
d

x0
]02

1

x0
2 S m22

d2

4
2

d

2
2g0mD Gc~x!50.

~31!

The solution of Eq.~31!, which does not diverge forx0
→`, is obtained in a similar fashion as in the scalar a
vector cases and is given by

c~x!5E ddk

~2p!d e2 ik•xx0
~d11!/2 @a1~k!Km21/2~kx0!

1a2~k!Km11/2~kx0!#, ~32!

where the spinorsa6 satisfy g0a656a6. The expression
~32! is in general not a solution of the Dirac equation~30!. In
fact, substituting Eq.~32! into Eq. ~30! we find that the
spinorsa1 anda2 must be related by
6-3
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a25
i

k
kig ia

1. ~33!

Our next task is to impose boundary conditions on
solution ~32!. However, there is a major difference to th
scalar and vector cases. The origin of this difference lies
the nature of the differential equations, which serve as
equations of motion for the fields. In the scalar case@16# and
vector case~cf. Sec. II! we have second order differentia
equations. Hence, we could impose two sets of bound
data, namely the field and its derivative. Instead of the la
we demand that the field be well behaved in the volume
AdSd11 , i.e. for x0→`, which yields a unique solution to
the Dirichlet problem. On the other hand, the Dirac equat
~30! is a first order differential equation. Thex0→` behav-
ior of the solutions of the Dirac equation is crucial from t
AdS field theory point of view and cannot be abandon
Hence, only half of the general solutions are available
fitting the boundary data, which means that only half t
components of the spinorc can be prescribed on the boun
ary, the other half being fixed by a relation which will b
determined in a moment. This result is important also from
CFT point of view. Considering the boundary term of t
action ~29! we realize that, if one could prescribe the ent
boundary spinor, then there would be only a contact term
the CFT two-point function. The trade-off is that we ca
obtain only correlators for spinors, which have half the nu
ber of components as the fieldc. This means that the bound
ary spinors are Weyl or Dirac spinors ford even or odd,
respectively@18#.

Letting x05e in ~32! we find

ce~k!5e~d11!/2S Km21/21 i
kig i

k
Km11/2Da1~k!, ~34!

wherece(k) is the Fourier transform of the boundary spin
and we have omitted the argumentke of the modified Besse
functions. We can determinea1 from Eq. ~34! in two ways,
namely by

a1~k!5e2~d11!/2
ce

1~k!

Km21/2
~35!

or

a1~k!5e2~d11!/2
kig i

ik

ce
2~k!

Km11/2
, ~36!

wherece
65 1

2 (16g0)ce . Substituting Eq.~36! into Eq.~35!
we find thatce

1 andce
2 are related by

ce
1~k!52 i

kig i

k

Km21/2

Km11/2
ce

2~k!. ~37!

The question as to which of the functionsce
6 should be used

as boundary data is, in general, not a matter of choice, b
dictated by thee→0 limit. Here we have to distinguish thre
cases. Ifm.0, Km21/2 diverges slower thanKm11/2 for e
→0 and thus we find thatce

1→0, if we fix ce
2 . This is in
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agreement with the condition found in@18#. On the other
hand, we cannot prescribece

1 for m.0, asce
2 would then

diverge. The casem,0 is just the opposite. Form50 we
haveK21/25K1/2 and hence one can prescribe either of t
functionsce

6 .
We shall in the following consider the casem>0. Insert-

ing Eqs.~36! and ~33! into Eq. ~32! we finally find

c~x!5E ddk

~2p!d e2 ik•xS x0

e D ~d11!/2

3S 2 i
kig i

k
Km21/2~kx0!1Km11/2~kx0! D

3
ce

2~k!

Km11/2~ke!
. ~38!

In a similar fashion one can solve the equation of motion
the conjugate spinor:

c̄~x!~D”Q 1m!5c̄~x!S ]Qmgmx02
d

2
g01mD50. ~39!

The solution in the casem>0 is

c̄~x!5E ddk

~2p!d e2 ik•xS x0

e D ~d11!/2 c̄e
1~k!

Km11/2~ke!

3S i
kig i

k
Km21/2~kx0!1Km11/2~kx0! D , ~40!

wherec̄e
65c̄e

1
2 (16g0). Again we find a relation between

the components of the boundary spinor, which is given b

c̄e
2~k!5c̄e

1~k!i
kig i

k

Km21/2

Km11/2
. ~41!

Let us turn now to the two-point function for the boun
ary spinorsx1 and x̄2, which couple toc̄0

1 and c0
2 , re-

spectively. Inserting the solutions of the equations of mot
into the action~29!, the bulk term vanishes and the surfa
term can be written as

I 5Ge2dE ddk

~2p!d @c̄1~k!c1~2k!1c̄2~k!c2~2k!#.

~42!

Using the relations~37! and ~41! one finds

I 5Ge2dE ddxddyE ddk

~2p!d eik•~x2y!c̄e
1~x!

3S 2i
kig i

k

Km21/2

Km11/2
Dce

2~y!. ~43!

We use the expansion~21! for the modified Bessel function
in the numerator and the leading order term in the deno
nator. Hence, we find, after integration,
6-4
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I 522ĉGE ddxddyc̄0
1~x!

g i~xi2yi !

ux2yud12m11 c0
2~y!, ~44!

where we defined

c0
25 lim

e→0
em2d/2ce

2 and c̄0
15 lim

e→0
em2d/2c̄e

1 ~45!

for the e→0 limit and

ĉ5

GS d11

2
1mD

pd/2GS m1
1

2D .

In the casem50 the k integration in Eq.~43! can be done
without the asymptotic expansion and leads to the same
sult. Using the AdS-CFT correspondence

exp~2I AdS![ K expS E ddx~ x̄2c0
21c̄0

1x1! D L , ~46!

the two-point function reads

^x1~x!x̄2~y!&52ĉG
g i~xi2yi !

ux2yud12m11 . ~47!

Hence, the spinorsx and x̄ have the conformal dimensio
m1d/2. Our result agrees up to the appropriate normali
tion with the one found in@18#.

For calculating interactions we are interested in the b
behavior of the spinorsc and c̄. It is obtained by replacing
Km11/2(ke) by the leading order term of its asymptotic e
pansion in Eqs.~38! and ~40!. One finds the expressions

cbulk~x!5 ĉE ddy@x02g i~xi2yi !#

3~x0
21ux2yu2!2~d11!/22mx0

d/21mc0
2~y!

~48!

and

c̄bulk~x!5 ĉE ddyc̄0
1~y!@x01g i~xi2yi !#

3~x0
21ux2yu2!2~d11!/22mx0

d/21m , ~49!

which coincide with those in@18# up to normalization. A
good check of the derivation of these expressions is provi
by the casem50. SinceK61/2(z)5(Ap/2z)e2z, it is pos-
sible to carry out the integration in Eq.~38! with the result

c~x!5E ddy

GS d11

2 D
pd/2GS 1

2D x0
d/2@~x02e!21ux2yu2#2~d11!/2

3@x02e2g i~xi2yi !#c0
2~y!. ~50!
10600
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IV. INTERACTION BETWEEN SPINOR
AND GAUGE FIELDS

Calculating the first order interaction between the spin
and massless vector fields serves two purposes. First, it
vides another detail of the AdS-CFT correspondence in
form of the vector-spinor-spinor three-point function. In co
trast to the scalar three-point function, conformal symme
does not fix, but only restricts the form of this particul
three-point function@1#. Hence, the calculation will yield
more than just a coefficient in front of a universal functio
Second, a check of the Ward identity corresponding to ga
invariance will reveal that no supplementary surface term
the order of the gauge coupling is needed.

We shall use the action for minimally coupled spinor a
gauge fields, together with the spinor surface term,

I 5E dd11xAgF1

4
FmnFmn1c̄~D” 2 iqA” 2m!cG

1GE ddxAhc̄c. ~51!

The equations of motion derived from Eq.~51! are

¹mFmn52 iqea
nc̄gac, ~52!

~D” 2m!c5 iqA” c ~53!

and its conjugate

c̄~D”Q 1m!52 iqc̄A” . ~54!

We split the gauge field into its free partA(0) and the remain-
der A(1). Substituting Eq.~53! into Eq. ~51! and using the
equation of motion forF (0), we find

I 5E ddxe2dS 2
1

2e
Ai

~0!F ~0!,0i2
1

e
Ai

~1!F ~0!,0i1Gc̄c D
1O~q2!. ~55!

Most importantly, the bulk terms vanish. Moreover, usi
the appropriate Green’s function to calculateA(1) ~cf. @16#
for the scalar field analogue!, we realize that also the secon
term in Eq.~55! is zero. The first term only yields the two
point function for the conserved currentsJ. However, the
last term will give the two-point function for the spinors an
the three-point function couplingJ and the spinors. This sur
prising fact comes about as follows. Going back to the de
vation of the spinor two-point function, we realize that it w
generated by the relations~37! and ~41! between the1 and
2 components of the spinors on the boundary. These r
tions will be altered by the presence of the interaction. W
ing

c~x!5c~0!~x!1c~1!~x!1O~q2!, ~56!

c~1!~x!5 iqE dd11yAgS~x,y!A” ~y!c~0!~y!,

~57!
6-5
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whereS(x,y) is the spinor Green’s function defined by

~D” x2m!S~x,y!5
d~x2y!

Ag~x!
, ~58!

we find, using Eq.~37!,

c1~k!52 i
kig i

k

Km21/2

Km11/2
c2~k!

1
11g0

2 S 11 i
kig i

k

Km21/2

Km11/2
Dc~1!~k!1O~q2!,

~59!

where we omitted the argumentke of the modified Besse
functions. Similarly, one finds, for the conjugate field,

c̄~x!5c̄~0!~x!1c̄~1!~x!1O~q2!, ~60!

c̄~1!~x!5 iqE dd11yAgc̄~0!~y!A” ~y!S̄~y,x!,

~61!

with1

S̄~y,x!~D”Q x1m!52
d~x2y!

Ag~x!
~62!

and, using Eq.~41!,

c̄2~k!5c̄1~k!i
kig i

k

Km21/2

Km11/2
1c̄~1!~k!

3S 12 i
kig i

k

Km21/2

Km11/2
D 12g0

2
1O~q2!. ~63!

Substituting Eqs.~59! and ~63! into the spinor surface term
in the form~42!, one finds that the contribution to the actio
of first order inq is

I ~1!5Ge2dE ddx$@c̄~0!1~x!2c̄~0!2~x!#c~1!~x!

2c̄~1!~x!@c~0!1~x!2c~0!2~x!#%1O~q2!. ~64!

On the other hand, from Eqs.~62! and~58! one can obtain

c~0!~x!5e2dE ddyS̄~x,y!@c~0!1~y!2c~0!2~y!# ~65!

and

c̄~0!~x!52e2dE ddy@c̄~0!1~y!2c̄~0!2~y!#S~y,x!,

~66!

1The relation betweenS̄ andS is of no importance here.
10600
respectively. Inserting Eqs.~57!, ~66!, ~61! and~65! into Eq.
~64! one then finds

I ~1!522GiqE dd11xAgc̄~0!A” c~0!. ~67!

Equation~67! has the same form as the minimal couplin
term, but is multiplied by 2G. It is determined by a bulk
integral, which means that the bulk behavior for the fie
can be used. Substituting Eqs.~27!, ~28! ~with D̃5d21!,
~48! and~49! into Eq.~67!, the following tedious calculation
involves Feynman parametrization of the denominator a
heavy numerator algebra. The result is

^Jj~x2!x1~x1!x̄2~x3!&5

2 iGqĉGS d

2D
pd/2~d2112m!

3F ~d22!g ig jgk

x12ix23k

x12
d x23

d x13
2m11

1~2m11!g ix13i

3
x12

2 x23j1x23
2 x12j

x12
d x23

d x13
2m13 G , ~68!

wherexab5xa2xb . After further algebra one finds that Eq
~68! can be written in the form

^Jj~x2!x1~x1!x̄2~x3!&5

2 iGqĉGS d

2D
pd/2~d2112m!

1

x12
d x23

d22x13
2m

3
g ix13i

x13
S d jk22

x23j x23k

x23
2 D

3S x13l

x13
2 2

x23l

x23
2 D

3@~d22!g lgk1~2m11!dkl#,

~69!

which is a specific case of the general expression dictate
conformal invariance@1#.

Finally, let us confirm the Ward identity@22#

]

]x2
j ^Jj~x2!x1~x1!x̄2~x3!&52 iq^x1~x1!x̄2~x3!&

3@d~x23!2d~x12!#. ~70!

From Eq.~68! one finds

]

]x2
j ^Jj~x2!x1~x1!x̄2~x3!&52 iGq2ĉ

g ix13i

x13
d12m11

3@d~x23!2d~x12!#. ~71!

Comparing Eqs.~71! and ~47! with Eq. ~70! we see that the
Ward identity is satisfied. This result is significant, since
6-6
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tells us that, to first order inq, no supplementary surfac
term except the one used already for the free Dirac field
required in the action for interacting fields.

V. CONCLUSIONS

In the present paper we used the AdS-CFT corresp
dence to calculate CFT correlators from the classical A
theories of vector and Dirac fields. We took care to addr
the proper treatment of thee→0 limit when calculating the
two-point functions. As for the scalar field@16,17#, this was
particularly important for the vector field with nonzero mas

Our calculation for the free Dirac field revealed the fu
details as to why only half the number of spinor compone
can be given as boundary data. For oddd this is exactly what
one wants, because the boundary spinor representation
only half the number of components as the bulk spinors.
evend the dimensions of the spinor representations are
same andg0 acts as the chirality operator on the bounda
spinors. This means that for evend we calculated only the
correlation functions for chiral spinors. However, the form
B

’’

n

10600
is

n-
S
s

.

s

has
r
e

-

ism can be extended to Dirac spinors by couplingx2 to an
AdS spinorc1 with positive massm and x1 to a field c2
with mass2m.

Minimally coupling the Dirac and massless vector fie
we calculated the CFT vector-spinor-spinor three-point fu
tion. The result should be interesting from a CFT point
view, as the form of this correlator is not totally fixed b
conformal invariance. Thus, our result could indicate wh
CFT is obtained by the AdS-CFT correspondence. Fina
we confirmed the validity of the Ward identity and foun
that no interaction surface terms are required in the actio
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