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We show that a simple OSp(1/2) world line gauge theory in 0-brane phase XNéeg PM(7) with spin
degrees of freedorgM(7), formulated for a @+ 2)-dimensional spacetime with two time@(r),xo'(r),
unifies many physical systems which ordinarily are described by a one-time formulation. Different systems of
one-time physics emerge by choosing gauges that embed ordinary toineZrdimensions in different ways.
The embeddings have different topology and geometry for the choice of time amonig-thedimensions.
Thus, two-time physics unifies an infinite number of one-time physical interacting systems, and establishes a
kind of duality among them. One manifestation of the two times is that all of these physical systems have the
same quantum Hilbert space in the form of a unique representation of,&OWith the same Casimir
eigenvalues. By changing the number of spinning degrees of fregdtm), a=1,2,..,n (including no spin
n=0), the gauge group changes to O8f%). Then the eigenvalue of the Casimir operators of §@)depend
onn and the content of the one-time physical systems that are unified in the same representation dapend on
The models we study raise new questions about the nature of spadgibse6-282(198)05620-3

PACS numbsgs): 11.25.Hf, 11.10.L.m, 12.60.Jv

I. INTRODUCTION various ways turned out to be equivalent to different choices
of Hamiltonians that describe ordinary one-time physics. In

In two recent paperEl,2] we showed that various physi- this way, different looking physics corresponds to gauge
cal systems, which normally are considered unrelated, arehoices within the same theory. The gauge transformations
actually unified by the same theory that establishes a kind ahat map them into each other may be interpreted as dualities
duality among them. Examples of such systems included thén a universe of two times
free relativistic particle ind spacetime dimensions, the H  In this paper the theory is generalized by including anti-
atom ind—1 space dimensions, and the harmonic oscillatocommuting phase space variables for world line fermions
in d—2 space dimensions with its mass identified with ay™(7). The gauge group becomes OSp(1/2), and
momentum in an extra dimension. Related ideas were cor(/™,XM,PM) form a triplet. At the end of the paper we
sidered in Refs[3—6]. Our aim in this paper is twofold. further generalize this tm world line fermionSz/fg"(r), a
First, to generalize the theory to describe spinning systemsz1,2,..,n, and gauge group OSpf2). The requirement
and second to present an infinite array of interacting modelghat this be a two-time theory remains the same for any
(relativistic, nonrelativistic, arbitrary potentials, curved back-The content of the one-time physical dual sectors changes as
grounds, etg.with spin, that are unified by gauge transfor- a function ofn. However, for a fixech all dual physics is
mations(dualities in the same theory. Our understanding of described within the same quantum Hilbert space that corre-
the quantum version of the theory is solidified by working sponds to a unique unitary representation of @) with
out many examples and gauge choices in detail. fixed Casimir eigenvalues.

Through all these examples we emphasize that one-time The paper is organized as follows. After formulating the
physics with various interactions are unified in some geoQSp(1/2) gauge theory, we quantize it covariantly, and show
metrical sense as two-time physics. The theory in H&f2]  that the gauge invariant states must be described by a unique
is a simple Sf2) gauge theory on the world line. &) isthe  representation of S@(2) with fixed Casimir eigenvalues.
global isometry group of the quantum relatidasp]=i and ~ Next we choose specific gauges, which we call “particle
it transforms &,p) as a doublet. The idea was to turn this gauge,” “light-cone gauge,” “H-atom gauge,” “anti—de
group into a local symmetry of some theory. This wasSitter (AdS) gauge,” “conformal gauge,” and study the
loosely motivated by the fact that all known dualities involve quantum theory in each of those gauges. We show that the
a transformation of canonically conjugate phase space varphysics looks different according to the gauge choice of
ables. The S{2) gauge theory on the world line achieved time, but that the Hilbert space is the same in each case, and
this, but it required that the world line vectors that it has the same eigenvalues of the Casimir operators of
(XM(7),PM(7)) be in a spacetime with two timelike coordi- SO(,2). In a semiclassical approach in the H-atom gauge
natesx®(7),X° (7). This turned out to be a boon rather thanwe show that any Hamiltonian of the fornk=p?/2
a drawback. The presence of two times together with thetV(r,p,S) with any potential energy functiol/, emerges
larger gauge symmetry allowed the possibility of gaugeas a gauge choice. At the end of the paper we argue that
choices that are ghost free and physigalitary). The gauge whenn changes, the spin content changes. For example, in
fixed theory has a single time. The ability to choose time inthe particle gauge the relativistic particle that is described

0556-2821/98/5@.0)/10600420)/$15.00 58 106004-1 ©1998 The American Physical Society



ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 58 106004

corresponds to the antisymmetric fomlﬂz... Mpﬂ(x) that We can then construct more OSp(1/2) invariants by using

couples top-branes, withp=n/2— 1 for evenn, and similar ~ the covariant derivatives and the metric defined in £).

fermionic counterparts for odd. (D,®Y)g?*®} . In particular we construct a gauge invariant
The message of our work is that two-time physics is notaction

only possible, but also is a basis for unifying many features

of one-time physics in some geometrical manner. This raise ab

new questions about the nature of time and space. Our gaug f d=(D; CD )9 q)b MN ©

symmetry approach in 0-brane phase space connects together

dualities and two-time physics inextricably from each other, T .

and gives a new rich area to explore further and generalize to = 5 f dAD XM X' —iD M N (10

higher p-branes. Our work supports the idea that the funda- 0

mental theory of our universe may be better understood in a

two-time formL_JIation, as var_ious hints and theories have sug- :J dr X,- X1+ lﬂ o h— 1A'JX X +iF! X ).

gested from different directiog-18|.

(11)

Il. GAUGING OSp (1/2) The equation of motion of the gauge fields give the follow-

OSp(1/2) has two local fermionis'(7) and three local ing constraints:
bosonmw”(r) parameters. Under the subgroup SR)2the
s' with i=1,2 form a doublet, while the symmetrie" Xi-Xj=0, Xi-¢=0. (12)
=o' form a triplet. Consider the OSp(1/2) tripleds) (7)
=(yM, XY, X} (one for eactM) which transform similar to
the fundamental representation of OSp(1/2):

As in the purely bosonic case the signature of the metric
N must be @,2) including two timelike dimensions oth-
erwise the constraints have no nontrivial solutions. The ac-

tion is manifestly invariant under S@(2) transformations
since the metricyMN is invariant. The conserved generators
of the symmetry have an orbital part'™ and spin parg“N:

oyM=sXM,  sXM=¢g (o XM —iskyM). 1)

The complex numbei is introduced indXM to insure that

the product of fermiongs®y™ is Hermitian, assuming that JMN—| MN_ gMN (13
each fermion is Hermitian individually. For eadh, 4™ is a
singlet of Sp(ZR) while Xi'\’I is a doublet of Sf(2). Two such LMN=X§"X§—X§‘X2M , (14)

triplets ®Y ,®p' form an OSp(1/2) invariant™N under the
dot product with the metrig®® given by 1
SMNZEU//M%DN—(//NI,&M)- (15
IMN= g2l =XMeI XN —iyMyN. 2)
. The total generatorgMN are OSp(1/2) gauge invariant ac-
Fermionic and bosonic gauge potentials,@"') are in-  cording to Eq.(2) (take the antisymmetric part oMN).

troduced in one to one correspondence with the parameters. From the action we obtain the canonical conjugate pairs
There are two fermions='(7) and three boson®\’(7)  xM=xM and x}'=PM. Furthermore, the canonical conju-

=AJ(7). They transform as gate toy™ is naivelyiyM/2, however this is also a second
o " Lok class constraint. Once the second class constraint is taken
oF' =d.s+tw eyF —ATeys, ©) into account, the commutation rules for quantizing the sys-
- - . , _ . o o tem covariantly are
AT =0, 0w+ w*e Al + ke AT —isTFI—islF'.  (4)
[XM,PN]:i’/]MN, {l/lM,wN}:ﬂMN. (16)
The following covariant derivatives DT<I>E';" The y™ form a Clifford algebra which is represented by
=(D,yM,D XM): gamma matricess™=yM/v2, where the gamma matrices
are normalized in the standard way™,yN}=22"N. The
D,yM=9 yM— F‘XiM , (5 guantum system is subject to first class constraib®s
DX =9.X — si(AXY —iF*yM), (6) X X=PP=X-P=X-4=P-¢=0, 7

which will be imposed on the Hilbert space. These con-
straints form the OSp(1/2) superalgebra defined by three
bosonic and two fermionic generators

transform similar to OSp(1/2) triplets
8(DyM)=sD XM, (7)

1 1
_ 2 2 —
(D XM =g (0D XM —is*D,yM). (8) Jg= 7 (XT+ P9, J1=7(X-P+P-X), (18)
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—E(XZ—PZ) S _ 1 (P+iX)- ¢

4 ’ + ‘/i — ’ (19)
1 . .

JiziE(PiIX)ZZJliIJZ. (20)

The OSp(1/2) superalgebra among these first class con-

straints is given by

[J3,d1]1=132, [J3,d2]=—id1, [J1,d2]=— 33,
(21
1 i
[J3isi]:izsii [‘]lvsi]zisiy
1
[Jz,S¢]=1§S:. (22
J3
{S. S.}== §<Jltuz) O (23
whereJ. =(J;*iJ;). Thus {;,J,,J3) are represented on
the row (S.,S.) by the Pauli matrices X')#?,

=(i01/2ji0,/2,05/2), respectively, i.e., [J3i,S.]
=iESiB(JEi)Ba and the last line may be written 4§, ,Sg}
=363

The quadratic and cubic Casimirs of the superalgebra

0OSp(1/2) are

C,(0SH1/2))=J5-J5-J5—-S,S_+S_S,, (24)

C3(OSH1/2)=S,J5S_ +S_J,S,
+iS,(J;—iJ5)S; —iS_(J;+iJ,)S_ .

These commute with all the generataxsS,. In terms of

the canonical operators, with the orders of operators takemetric componentsn

into account, the quadratic Casimir becomes

(:z(os|a(1/2))——(xMPZxM X-PP-X)+ 6(d2—4)
1
Z [l//M ] (XMPN—XNPM)
1
ta i (295
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1
C,(SQ(d,2))= EJMN‘]MN:_LMNLMN

1
+§SMNSMN+LMNSMN

=(XMP2Xy—X-PP-X)
1 2
a2 ) =y 9l
+%[¢Ma¢N](XMPN_XNPM)- (26)

Therefore, we find the following relation between the qua-
dratic Casimir operators of S@(2) and OSp(1/2):

CZ(SO(d,Z))=4C2(OSp(1/2))—%(d+2)(d—1),

(27)
where we have used¢- =3(d+2). Similarly, the higher
order Casimir operators of the conformal group,

=(1/nN)Tr(iJ)" are obtained in terms of the Casimir opera-
tors of OSp(1/2).

In the gauge invariant sector the quadratic Casimir opera-
tor of the gauge group must vani§ty(1/2)=0. Therefore,
the physical sector is characterized by

C,(OSH1/2)=0, C,(SOd,2))=— %(d+2)(d—1).

(28)

Similarly, the eigenvalue€,(SO(d,2)) are completely fixed
after setting all OSp(1/2) Casimir operators equal to zero.
We will not use the higher Casimir operators in this paper.
We will verify the result forC,(S0O(d,2)) in noncovariant
guantization in several gauges.

Ill. PARTICLE GAUGE AND DIRAC EQUATION

Consider the basis('\" [X*',X~',X*] with non-zero
=y '*'=-1 and p»**=diag
(=1,+1,-- ,+1) Minkowski metric. Choose two bosonic
gaugesX*'zl, P*'=0, and one fermionic gaugg™ =

and solve explicitly two bosonic and one fermionic con-
straintsX?=X-P=X- =0. We will call this the relativistic
particle gauge. The remaining degrees of freeddnp*, *
are in Minkowski spacetime and they parametrize
XM PM yM as follows:

M=[+",~",ul,

XM=[1x%/2,x*],

Similarly, the cubic Casimir operator is computed in terms of

the canonical operators.
Next, consider the quadratic Casimir operator of &Q@J
given by

PM:[OIX'pva]v p2=01

wM:[ny' i/’! lr//M]! (29)
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There is manifest S@(—1,1) Lorentz symmetry. There re- where we have useds*’s,,=3 (- #)*— 3¢ ¢ and ¢ ¢
mains one bosonic and one fermionic gauge degrees of free= y- y/2=d/2. This agrees precisely with the OSp(1/2)
dom and the corresponding constraipfs=0, Y*p,=0.The gauge invariance requiremen(8) obtained in covariant
guantum rules argx*,p”]=in*" and{¢*,¢"}=n*". The quantization in the previous section.
quantum states are labeled |y, p) or | ,x) with p?=0 and Hence all of the Dirac particle’s states correspond to a
#*p,=0 to be satisfied on states. The indexs a spinor  single and very special representation of 8@]. This fea-
index in d dimensions, and/* acts like the Dirac gamma ture is a reflection of the two-time nature of the spacetime
matrix y*— y*/v2 on these states. Note that2y*“p,)®> that underlies the Dirac particle, as is clear in our formula-
=p2, so that the constraint?=0 need not be considered tion. As we will see, the same quantum representation de-
separately. scribes many other physical systems by simply choosing

For the general physical stat¢¥) the constraint other gauges in the two-time spacetime. In this sense, in the
v2y*p,|¥)=0 becomes the Dirac equation for a masslesgwo-time spacetime, the Dirac particle is dual to all the other
particle. When expressed i-space(x,a|¥)=W¥ ,(x) the physical systems that we will describe below.
physical state constraint takes the form of the Dirac equation

IV. LIGHT CONE GAUGE AND HARMONIC

(X,a|(V2y*p,)|¥)=—i(y*9,¥),=0. (30 OSCILLATOR
The effective field theory is therefore given by the action for A. Free particle in light cone gauge
the free Dirac field ind dimensions Consider the basix'\"=(X+',X*',X+,X*,X‘) with the
e metric "N taking the values;” ~'= " ~=—1 in the light
Seﬁ=f d*xWiy-oW. (3)  cone type dimensions, whilgi= 8 for the remainingd

— 2 space dimensions. Thus one tix& is a linear combi-

The conformal generatof&3) in this gauge take the form 4o ofX*', and the otheX® is a linear combination of
1 X*. The gauge group OSp(1/2) has three bosonic and two
J*' T =2 (x-p+p-x)+isg, (32) fermionic gauge parameters, hence we can make three
2 bosonic and two fermionic gauge choices. We define the

N light cone gauge aX* =1, P*' =0, X* =7, andy™ = ¢°

J7 E=pH, JHT=xEpT-XTpEt+ st (33)  —0. There is no more gauge freedom left over, so all remain-
1 1 1 ing degrees of freedom are physical. Inserting this gauge into

_ . ” the constraint$17), and solving them, one finds the follow-
)= EX”pMXX_ Ex”p-x— 2% PXE—1Sox" = 87X, ing componer?tsnexpressed ir? terms of the remaining inde-

(39 pendent degrees of freedom (p*,x,p',#'):

where s#”=(i/2) (y* " — " ¢*). The operatorx,p, iy are M=[+',—"+,—.i],
quantum ordered so that tH&'N satisfy the correct algebra
for any comple><§0. Thg parametes, |s an operatqr order- XM:[ly()'(’Z/Z_ rx*),r,x*,ii], (36)
ing constant which is fixed by hermiticity according to the
Lorenz invariant dot product for states(¥|¥) I ) )

. e . M -2 -+ 7P + p i
=[d9 IxW oW, Hermiticity (IMNW|W)=(W|IN) PT=10|x-p=x"p" =3 +) P, }
fixessy=1/2. In contrast, in the purely bosonic case we had - P (37)
so=1. Thus the presence of the compley=i/2 is required
for HermitianJ*' ~',J~"#. Furthermores, should be consis- . pd P -
tent with the correct dimension of the Dirac fielddrdimen- lﬂM =10x-¢y—7—,0,—, zﬁ'} (38
sions. When the dimension operatdf*u is applied on the )
Dirac field (x,a|id* =~ |W)=(x-a+id—s))¥,(x) we One can verify that this gauge corresponds to the free rela-
must obtain gd—sy)=(d—1)/2. Thus we find agairs, tivistic massless particle, by inserting the gauge fixed form

—1/2. The quadratic Casimir operator becorf@bital parts (36) into the action(11). Since all constraints have been
d P P solved, theA'!,F' terms drop out, and we get

X,p drop ou}
a5 1 Soszdr aXMPNy +i—(//-¢9 ¢+0+0
Cz(SO(d,Z))=—Z+SO+ 55" S 0 T MN T o ¥
2 1 1 T . Pz i
- a4 rA2_ — n— -nt— ol i
— 4+4+8(d d) fodT(&TXp (97.X P 2p++2¢1a7¢ . (39)
1 This is the action of the free massless spinning relativistic
T §(d+2)(d_1)’ (35) particle in the light cone gauge, in the first order formalism,
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with the correct Hamiltoniarp~=p2/2p™. Note that both ~Where
time coordinates have been gauge fixed, =1 and X*

=17, to describe the free particle. This is the light cone
“time.”

The quantization rules are[x ,p"]=inp""=—i, . : : . .
G S g 4l dh— & The phvsical is a spin operator in the transverse dimensions. The quantum
[X'.p']=id", and{y/,y'} =4 - The physical quantum states gperators are ordered so that all generagdt¥ are Hermit-
for ¢ corresponfi to the basis for the Clifford algelfvath ian. The constant that appears id~'~ arises due to quan-
d—2 transverse)’s). These consist of left spinors of dimen- tum operator ordering ambiguities. It is fixeddo=2—d by
sion 2972/2"1 and right spinors of dimension "> in  demanding the correct closure for the commutator
even dimensions

A
Si= 5 [§,i] (46)

(L~ L 1=idIL™" ", —a=2-d. (47)
d=12:16 © 163,
In contrast, in the purely bosonic case we had a similar
d=10:8 @8R, apose= — 1 [1,2].
The Hilbert space may be labeled by the commuting mo-
d=8:4 ®4g, mentum operators of the free particle as well as its spin in the
form of helicity states as given above in E¢0)
d: G:ZL@ZR,
Ip,p*.p~=p%2p™;helicities . (48)

This is the free particle Hilbert space, which is complete. It is
For odd dimensions one gets the sum of thandR spinors  unitary and has the usual delta function normalization. Wave
of the lower even dimension. These are the helicity states fgsackets with finite positive norm are constructed as usual,
massless fermions from the light cone point of view. Forand they correspond to the solutions of the Dirac equation of
example in four dimensions there is one degree of freedorthe previous section written in light cone coordinates. The
for a massless left handed "neutrino” and one degree obperatorsJMN given above act on the states in a natural way

freedom for a massless right handed “neutrino.”

The SO@,2) generators of Eq13) now take the form{at

=0)

and these states form a basis for 8@). The Casimir ei-
genvalues are easily computed directly by squaring the op-
erators. By using our previous calculation of the purely

bosonic casgl,2], and the property;- = (d—2)/2, we find

Ji=xpl-xip'+s!, sQd-2), (4D (see also below
=2
P _ 1 _ 1 1
+-_ +-__ = + + ~ IMN __ - _
J T J 2(x pT+pTXT), > MM n= 8(d+2)(d 1), (49
! 1 -, !
J- +:§ x’p*, JT T=p7, in agreement with fully covariant quantization and Lorentz
1 covariant quantizations given in the previous sections.
JV T =2 (X-pFp-Xx—XpT—pTX7), The interpretation of the physics in this basis of 802
2 SQ2,2) is, of course, the same as the previous section. Next we show
1 . “2 4 5252 ] o that the same construction of S2) has a different physi-
8p" (x*p™+p™X°—2a) cal interpretation.
r_ X_ - - - - _ _
J7 = - 7(X' p+p-X)+x prx B. Harmonic oscillator with spin
1 o s The same realization of S@(2), with the same eigenval-
+ F(X p'—xp")s! ues of the Casimir operators, is also related to the Harmonic
) - (42 oscillator. In Eq.(42) the SG2,2) subgroup which is equiva-
lent to SL(2R)_®SL(2R)r has the following generators
J*i=pl, Jti=—gp*, (43) Gg'1, with the standard algebreGy,G,]1=iG,: [Go,G,]
:_iG]_, [Gl,Gz]:_iGo,
—i_ i Siginl . dij 1 o e
J X p 2pT p'Xp S pr (44) SL(Z,R)RG§:§(J+ - _\]+7), GgiG?:\], ),
(50)
L ip— % pr—six
=i 2 2 L 1 r—1 L L_qx'=
=l 1. 1 (45 SL2R) :Gz=5(3" ~ +377), GptGi=J" .
o din oyt iy nt +y—
2xpx+2x(xp+px) (51)
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Thus the compact generatGI‘g of SL(2R)g is given by the
harmonic oscillator Hamiltonian

-2

4p*

1 ! ’ l -,
Go=5(" "+ )=+ 7 xp" (52

The mass of the harmonic oscillator M=2p* and the

PHYSICAL REVIEW D 58 106004

The SL(2R),®SL(2R)r subspace is labeled by
liLp™;jrm), wherem is the eigenvalue of the compact gen-
erator of SL(2R)g that coincides with the Hamiltonia@ff
=m=E, andp” is the eigenvalue of the SL(R), generator
J*' =G+ Gi=p*. We will compare these quantum num-
bers to those of the harmonic oscillator given above.

First we comparem to the energy eigenvalug. The

frequency isw=1/2. The mass is given by the generatorquantum numbem is determined from representation theory

J* " =pT=G5+G} of SL(2R)".

of SL(2R). SinceG0 is a positive operator, the only pos-

Even though the particle has spin degrees of freedom, thgible representatlon is the positive discrete series, for which

harmonic oscillator Hamiltonian is independent of spin. ForE Go

a fixed mass M=2p*, its quantum eigenstates
[p* En ,1,s,j) are labeled with the eigenvalues of enekgy
—GO, orbital and spin angular momentulys and/orj for
total SOd—2) spinJ'l. Of course, from the solution of the
harmonic oscillator quantum mechanicsdr-2 space di-

m=jg+1+n, with n,=0,1,2,... . There remains
to show thatjg+1 is the remaining part of Ed55), which
we will do below.

The SO@—2) quantum numberd (S) are determined by
orbital | and spin quantum numbess In the construction of
S0(d,2) given in Eq.(42) orbital angular momentur'! can

mensions, we already know that the energy quantum nunPnly have representations labeled by intedetbat corre-

bers should beE=w[n+3(d—2)]=n/2+3(d—2), with
the angular momentum also determined:

n=0,1,2,.., (53

I=n,(n—2),(n—4),...,(0 or 1). (54)
The degeneracy of the state at levelcorresponds to an

SU(d—2) multiplet described by a single row Young tab-

leau with n boxes, times the degeneracy of the spin states

sponds to the completely symmetric traceless tensor
Tiliz“'il()z) with | indices in @—2) dimensions. Similarl
is limited to the spinor representations listed in E4f)). The
direct product of these representations is what is symbolized
by the quantum number$,§). So, these are the same angu-
lar momentum labels as the harmonic oscillator.

There remains to specify the values jof,jg. They are
computed through the Casimir operators

iLr(iLrT 1) =(GsP2—(GTR2—(GyR2 (57

which is the same at every level. This Young tableau decom-
posed under S@(-2) gives completely symmetric traceless Using thex,p, i representation foB§ s, given in Eqs.(42),

tensors withl indicesT,; Loy (x) with the values of indi-

cated above. The tota]" SO(d 2) spinj is obtained by
combining the orbital and spin parts for SD{2). To make

a connection to the group theory below it is useful to rewrite

n=1+2n, where bothl,n, are positive integers, ami has

(50) we find that theyj, g are not independent of the orbital
and spin angular momenta

the meaning of radial quantum number. So we may write the

energy eigenvalue in the form

E=

1 |
G§=Z(d—2)+§+nr. (55)

Now we explain how these harmonic oscillator quantum
numbers fully label the same unique representation o
S0(d,2), and how the full set of harmonic oscillator states at

all energy levels provide aingleirreducible representation.
The key here is that the masp?2 as well as the spin are

allowed values of SQ(—2) spin areZS”S"

jrjrT1)= 8L L'+—(d 2)(d—6), (58)
1 1
jiL(jL+1)= L L'J+—(d 2)(d—6)+ = Lus'
—1J Ji— 1L L= —(d-2 59
=7 8 —( ) (59

F’he allowed elgenvalues for SO 2) orbital angular mo-

mentum are; L”L"—I(I+d 4) (completely symmetric
traceless tensor withindices ind—2 d|men3|on}s and the
§(d—2)(d

labels of the representation and they must transform under 3) [from - gr=(d—2)/2]. From these we deduce the al-
S0O(d,2). In this sense the mass is the analogue of a moduluU§wed values ofig,j,_ and SOf—2) total angular momen-
parameter that transforms under duality. Furthermore, th&imj,

choice of G§ as Hamiltonian implies a different choice of

time as embedded id+2 dimensions, as compared to the

free particle time.

A basis for the group theory representation space is la-
beled by the SQ{,2) Casimir eigenvalues, and the SD( 9'V€S

—2)®SL(2R) ®SL(2R)g subgroups

|Casimir eigenvalues;S@—2);SL(2,R). ;SL(2R)g)

=|Casimir eigenvaluet;s;j p*;jrMg)- (56)

o 1 1

JR(JR+1)_ZI(I+d_4)+1_6(d_2)(d_6) (60)
'—1| ld 3 =0,1,2 61
Jr=5l+zd=5, 1=012,... (61)

Similarly, we obtainj, , for d=5,
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d=58q3),5=i1/2, M:(+,1_,101i)1
1 .
5 =i +1), XM=(0r-p,r.r), (64)
ey LT3 3sTS
- J: - ) ]:_ ,_ 1_ 7_ ’_ 1" 2
i 0= 2'2'2'2'2 v_ (4 P
d=5 ' . 1 ~ 1 I l 1 1| I l 9 P 11 Zloip ’ (65)
Ju(et )_E( +s)(I+s+ )_Z (I+ )_1_6’
11 \/ 1/ 1 ( 1 i)
1, = — — —_ i - i — f— = 01 My 'ri 3 (66)
i==5+3 (J+2 J+2r1) 2 ¥ gep.yrd
(62
wherei=1,2,..,(d—1). All constraints X?=P?=X.P=X
andd=6 =y P=0, are explicitly solved. The generators of the
e _ . conformal group(13) take the form(recall »* = = 7%=
(ci 6:S04)=SU(2), @ SU(2)g,S_r=*+1/2, il
EJ”'J”=2j1(j1+1)+2j2(j2+1), L
(11 11 J- +/=§(r-p+p~r), (67)
U1J2={3+3:2/%2272
1 1 1 3 , o,
B R P S JO+ =r, JI+ :rI’ 68
JLd_6_< (],1—0—2)@ j+2,j)j 5152, (68)
- o 3 I I 3 1 a 1
(it =|5+s|{5+s+1|-7, 30 = Zpirp+ S+ s L, (69)
3 2 ro2rY
WG+ D=jG+D~-5 .
11 J‘*'=—Ep-rpi—lpir-p+£p"r‘pj+br—lz+9'jp'
=373 J2j+1)7-3. 2 2 2 r ’('70)
(63
For other values ofl the computation of | is a technical i0_ _ l i+ pir)+ 1 ij.
matter. This verifies that the energy eigenvalue and other 2(rp P rg i 7D

guantum numbers coincide with the group theoretical repre-

sentation labels. The only independent labels are those of the Ji=ripl—rip' 4 S, (72)

harmonic oscillators, including mass and spin, while the re-

maining group theory labels are determined by them. AmongNhere

the group theory labels we must include the madds

=2p*.

The realization of SQf,2) on this harmonic oscillator gi:i(¢i Y — iy, (73

system is quite nontrivial. As already verified, the Casimir 2i

eigenvalues for SQ@,2) are the ones determined by

OSp(1/2) gauge invariance in E@8). The choice of time as  As in the purely bosonic cagé] there are ordering ambigu-

embedded ird+2 dimensions has a different topology than ities represented by the constaatb that appear idy.. - and

the free particle. The quantum space is dual to the free pad. /; respectively. By using the basic commutation relations

ticle, while both systems represent the same two-time quaramong(r,p,#) one can check that the S@@) commutation

tum theory in unitarily equivalent bases. relations are indeed satisfied for aay while b is fixed to
b= —a by demanding correct closure for the commutator

V. “H ATOM” WITH SPIN
[307',019=-iJ~ " —b=—a. (74)
The free Dirac particle may be described in tkit=r
gauge(see next sectigninstead of thex” =7 gauge of the |n contrast, in the purely bosonic case we hag =
previous section. To describe the H atom we take a gauge a, .. (d—2)/4. The remaining parametarwill be fixed
that is dual to the free Dirac particle. The duality relation topy the OSp(1/2) gauge invariance, not by the 8@J alge-

the free particle is obtained by flipping the rolesrgb fol- bra, as will be discussed below.

lowed by a discrete $p) transformation. The resulting It is evident that the operatod® form the algebra of the
gauge is(at fixed timer=0) X* =0, P* =1, P°=0, ¢* rotation subgroup SQ@(—1). Its quadratic Casimir operator
=0: is given by
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1 i 1 i i 1 i
EJ”J :EL”L +L|JS +§SJS|

C L1
=(cpr!—r-pp-1)+ LS+ Z (204 )= i ).
(75

Similarly, the following three operators form a 8CP) sub-
algebra:

’ ’

J-'+'=3,, 0+ =3,-3,,

N -

30 '=Z(Jp+Jy),

1 - 2a 1 .
Jzzz(r-p-kp-r), (J0+Jl):prp+T+FSjL]y

JO—lel’. (76)
For anya they close correctly
[J0.911=132,  [Jo.d2]=—1J1, [J1,d2]=—1Jo.
(77)

The compact generatdy is given in terms of the canonical
operators as

J:JO—/+EJ0+’:Ei i+§+£+i LI, (78
0 2 PP Tt oSty

PHYSICAL REVIEW D 58 106004

1

CZZEJMNJMN

:_(‘]—'+')2+JO—'JO+/+JO+/‘]0—'_Ji—'Ji+'
. ) o1 .
"qi—’ 01i0
— Y 3004 23,90

o leto8,
—-gd-gdzt4e

1 1
:—g(d+2)(d—1)—>a=Z. (80
We see than=; is fixed by the requirement of OSp(1/2)
gauge invarianc€28) that was obtained in covariant quanti-
zation. Therefore the last step fixes the valuesadnd b
uniguely in the gauge invariant sector

a=—b= (81

Z.

These values correspond to the following quantum ordering
of the operators %~

Jo—’zlpirpiJriJris.Lii
2 4r  2r Y

1

1 1 N
1 T2 e T g gL
r 2p}r 8r(3 2d)+2rS”L . (82

We now proceed to solve the system algebraically, and
show its relation to the H-atom. A basis for the quantum
theory is chosen to diagonalize the Hamiltonian. In our case
we will show that this corresponds to the ) represen-
tation basis labeled by the subgroups

The quadratic Casimir operator for this subalgebra takes the

form

JI+1)=35-35-35=00""00""+ 900130 — (37 "")?

1 . - 1 ) 1
:ELijL]+S]LJ+Z(d_2) _Z+2a
—lJ Jil lSij +1d 2)? 1+2
=53ij0' = 58§+ 7(d=2)"- 7 +2a

1 1
= _JileJ + g(d_l)(d_4)+2a,

5 (79

where we have usedS!S;=3(y ¥)2—i¢-y¢ and ¢y

=(d—1)/2. We see that the quadratic Casimir operators o
the S{1,2) subalgebra and that of the rotation subgroup

|Casimir eigenvalues;S@—1);SQ(1,2)), (83
and that all the states of the “H atom” with spin correspond
to a single irreducible representation of SIXK), with the
Casimir eigenvalues given before by the covariant quantiza-
tion [i.e., OSp(1/2) gauge invariange

As explained earlier, since we have two timelike dimen-
sions, the choice of “time” corresponds to a choice of
Hamiltonian as a combination of the generators of Q).
One such choice is dual to another via OSp(1/2) gauge trans-
formations. We now make the following choice for “Hamil-

tonian” h=J%9=J, which is the compact generator of the
SQ(1,2) subgroup. One way of justifying this gauge choice is
the algebraic demonstration below that it corresponds to the
Ir potential. Another way is to choose (aanonically re-
ated gauge in which the original action reduces to the in-

SO(@—1) are related to each other in this representation oféracting system with i/potential, and then show that °

S0(d,2) may now be evaluated. All orbital pantg drop
out, and the result is

for the spinless case. See also the last paragraph of section
(VI B). Thus, consideh=J%°=J, in the form
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1 1 1 m
— 7. —10-"4 ~ 10+’ Th2 .. 1/2 —
h=Jy=1J +2J 2p+2 r+ (r4Imy)=0. (87
=r1’2-5 2+1_(3—2d)+ 1 S Lil ¢V We now recognize that the statég,)=(r*3jm)) are
2 P 2 8r2 2r2 i eigenstates of the hydrogen atom Hamiltonian. Actually this
F 1 1 is a rescaled form of the standard Hamiltonian equation writ-
= | p2 2|_ L+ z(d_z)(d—4)) ten in terms of dimensionful coordinates and momenga
—rlr2 2 2r rl2 ~
1 (3-2d) 1 ' 2«
| +§_ 8r2 +?S|il‘ m_?"' |¢m>:Em|l//m>- (88)
L] 2 ! ij ! J The quantized energy is
=r E Pr E\] J”_ES' SJ q ay
a2 a2
1 4 5 1 E=——S=—"—"—. (89
“Ad2_ _ _ —Le12 n 2 2
+4d 4d+4 +2 r m (J+1+n,)
1 1/1 1 1 We still need to figure out the values dfs a function of the
1/215 pZ+ = (EJ'JJ” + g(d2—5d+8) 2} 172 quantized integerk andn, . As an example consider=4,
SOd—1)=S0(3), forwhich we are familiar with the use
1 of addition of angular momentum. Adding spin 1/2 to orbital
1/2 e+ 2J(J+ 1)) rt2, (84 guantum numbef, givesj=1*1/2 with1=0,1,2,... . From
these we computé@(j) by insertingj(j +1)=%JijJ” in Eq.
Here we have used (79):
221ij 1 J__1+1m __113355
P*=pr+ 5 2L Lij+ 7 2(d=2)(d—4), (N==5FT5V@+4j"+4]) [=5.5.5.5:5:5
where 1
=—§+2 V(B+412+81)j 111 OF (2+417)_ 1.
_ 1 1
Pr=5r T PHPT 5 (90)

The energy depends on both pandn, and therefore there
is no accidental degeneracies, such as the4si@ 4D. For
other dimensionsl we computel by using a similar proce-

is the Hermitian radial momentum canonically conjugate to,
r, and have shown thatJ+ 1), which is the quadratic Ca-
simir of SQ(1,2) as given in Eq(79), emerges in the radial

equation. From here one may proceed in two ways. Eithefi .
one may solve the radial equation given below directly, or AIthough we have named this gauge the “H-atom gauge”
use an algebraic approach. The agreement between the two(\g'th quotes because of the f/potential, evidently the sys-
a check of our calculation. tem does not describe the usual H atom with the usual spin
We proceed with the algebraic approach. Sineel, is a correction, since the spin depend_ence has azdlffarecm
generator of the SQ@,2) algebra it is diagonalized on the pendence than the u_suaIScorrectlon(here 1<, whereas _
the usual correction is ). Nevertheless, as seen below, it

usual S@1,2) basis|Jm) wherem is the quantized eigen- . . ; . .
value of the compact generatdg. Evidently the operaton |s_p_os_3|ble o f|nd_ a gauge t_hat gives any Interacting no_nrel-
ativistic Hamiltonian, including the correct spin correction

is positive, thereforen can only be positive. This is possible

only in the positive unitary discrete series representation of°" e H atom. However, the SQ{2) representation be-

SQ(1,2), and therefore the spectrum of must be comes considerably more complicated and the quantum or-
dering issues for all the generators become technically diffi-

m=J+1+n,, n,=0,1.2,..., (85  cult to resolve. Our aim here was to show that for the cases

for which we could resolve the quantum ordering, the model

where, as we will see shortly, the integgrwill play the role  does correspond to the same representation otlSp{n all

of the radial quantum number. gauges, and hence the corresponding physical systems are

Let us now show the relation to the hydrogen atomdual in this sense in the quantum theory.
Hamiltonian. Applyingh on these states we have

VI. ARBITRARY INTERACTIONS AS GAUGE CHOICES

1/2) —

r9Imy=mlIm). (86) The action in a general gauge is given in Efjl). We
will show that we can construct any interacting nonrelativis-
Multiplying it with the operator ¥ from the left, this equa- tic system ind—1 space dimensions, with Hamiltonian of

tion is rewritten as the form

1 1
12l "2 4.,
r [Zp +5+
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2

p ing the projectors;; — p;p; /p?. This projector appears in the
H=?+V(r,p,sij), (91)

anticommutation relation§y', '} = 8; —pip; /p>. The gen-
_ _ _ o erators of SO4,2) are obtained by inserting the gauge
Wltlh any potential functiorV, and SO@—1) spin ;S;S;  choice above into the general expression; obviously the fer-
=5(d—1)(d—2), simply by taking appropriate gauge mions appear only in the for@.
choices for time. We must emphasize that we expect that
there_ are more gauge choices that would yield other forms of B. Arbitrary potential
Hamiltonians.
We now show that any interacting system corresponds to
A. Free spinning particle in timelike gauge another gauge choice, with a rather different topology for

. . . .embedding time in ¢+2) spacetime. Consider the basis
First let us remind ourselves of the method by reconsid g 4+2) sp

UM (%0’ %0 M_ (p0' pO ply i 00!
ering the free massless particle of E89) in the timelike XT= (X0, X0.X) and PE=(P™,PT,PY) with metric 7
0 - - =9%=—1 and "= 6". Choose one gauge such that the
gauge[ x°(7)=r]. The same method will be applied to the ~ 7 _ 0,77 o oo o :
more general case. The following parametrization solves afiour functionsX™ ,X",P™,P” are expressed in terms of three

of the constraint§17): functionsF,G,u
M=(+',—',0j), X% =F cosu, X°=F sinu, (97)
XM:(l E(rZ_TZ) T ri) (92 P%=—-G sinu, P°=G cosu. (98)
'S AN
Inserting this form in the constraintd?7) gives
PM: n— i
(Or-p=Ipl7Ipl.p), (93) XM=F[cosu,sinu,n'],
r p ,
thr'w—p_fp-tﬂ),ow'—%p-tﬂ)wxM%PM, P'=G[ —sinu,cosu,m'], (99
94 '
59 M=% 9%y,
where y,¢ represents fermionic gauge freedom, and they can
be chosen at convenience so as to obtain the simplest po¥l€re
sible action or SQ4,2) generators. This gauge is OSp(1/2) o .
dual to the H-atom gaug4) used in the previous section. ¢~ =cosun-g—sinum- i, (100
At =0, the duality transformation consists of choosipg JO=sin un- -+ cosum- y, (101)

=0 andé&é=—(1/p?)p- ¢, plus a discrete §@) transforma-
tion that interchangeX™,PM, and then renaming—p. By
inserting this gauge choice, with= =0, into the action
(11) we obtain

andn',m' areEuclideanunit vectors that are orthogonal. We
choose the following parametrization for these unit vectors
in the basisl=[1',i] wherel=1" denotes the extra space
dimension and=1,2,..,(d—1) labels ordinary space:

i
P+, X+ 5494+ 0+0

1 1. rp.
| = [_ . T _ A
. o n—rV\/ 2Hr - p, rr+rvp}, (102
=f drjr-p—|p|+s¢'9,4 |, (95
0 2 p2 1 .
m'= 1+5], —V—2H vp'},
where
here
- pipi\ w
w‘=(6ij—# Y. (96) ,
H=p—+V, (103
This action describes the free massless relativistic spinning 2

particle, with HamiltoniarH =|p|. Using Noether’s theorem, . . ) .
ionglie-Lil +S where and Y(F,P,(//) is any poteptlal energy.functlon, giving any
we see that the generator of rotations'is= ' Hamiltonian. We emphasize that this is the most general so-
SI=12 (' —'4'). Only the spin components perpen- |ution of the constraint€17) that had taken the form'n'
dicular to momentum can appear sintep=0. Thisis asit =m'm'=1, andm'n'=0. Even though the solution is ex-
should be for a massless particle that has only helicity compressed with a particular choice of coordinates, and an arbi-
ponents. We keptl—1 components in/' instead ofd—2  trary functionV, this does not involve a gauge choice. We
components that would have been possible by taking thetill have the freedom of choosing two bosonic gauge func-
gaugey- p=0. The reason is to maintain manifest rotationtions and two fermionic gauge functions. These gauge
symmetry SO@d—1), and for this we paid the price of hav- choices will be made as needed in the discussion below.
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Since all the constraints are explicitly solved, tA&,F' which follows from them',n' given above, and we have

terms drop out in the actiofl1) and we get made the following choices of gauges: one bosonic gauge
T i choice
&Fi[dT«LXMPN+§¢M&¢N+O+O N
0
. rv
[ oo b ] GF=- , (106)
GF(—&Tu+mﬁTn)+§¢§T¢/ —2H

:JTdT — S (M- gn-g—n-ym- o,

to insure that the- d,r term is correctly normalized so that
the momentunp is indeed the canonical conjugate to the
coordinater, and another bosonic gauge choice for “time”

- IE(n' YaAn-g)+m- g (m- )
- (104

T N
— T Vv—2H
—fodT(p'arf'+§¢"9r‘/’"H : u(r)=—f dr'[H+Q] ——, (107)
A total derivatived.(—r-p) has been dropped in the last

line. To derive the last line we have used whereQ is given below, so that the only term containifg

[—2H in the Lagrangian is of the forrp- 4,r, and the only term
m'o.n'=— Y, containingd ¢ is of the form (/2)'9,¢'. With these gauge
choices we insure that the remaining term in the action gives
X[r-pd(In y=2H)—d.(r-p)+p-d.r], just the HamiltonianH. We find H in the last line of Eq.
(109 (104) providedQ is chosen(i.e., u is chose as follows:
|
i v—2H i V—2H i ,
1= S(m-yn-g—n-ym- ) —=—|Q=r-pd,(In y=2H)+ 5 (M- yn-y—n-ym-y) ——H+ Sy 9.y
i
5 [N gdn-g)+m-yo(m-4)]. (108

There still remains freedom to choose fermionic gauges t@tom has a dynamical symmetry S0#) which mixes the

simplify this expression. For example, one may take two timelike coordinates with thd space coordinates.
v Note that timer is embedded in thed(+ 2)-dimensional
Y =aVy-r+pp- ¢, (109 spacetime in a rather complicated way as given through Egs.
where @,8 may be chosen as arbitrary functions. For ex-(97), (106—(108. In this section the d+2)-dimensional
i : M £ S, This and other topolo-
ample, takinge=0 andB=—1/J—2H gives XM space has the topology 8f@ S". This and ot p
’ gies (e.g., as discussed in other sectipase permitted as
p- solutions of the same set of constraints that followed from

Yl'=—m y=— NETTR n-y=¢-rlr, (110  the action(11). The detailed parametrization & and S°
involves the potentiaV as well as phase spacep), and

and this simplifies the S@(2) generatorgsee below. An- such details affect the choice of Fime through equations
other choice that simplifies generatorsay/'=\—2H/r-p (107, (108. Conversely, one may view the presence of the
and B=\—2H/V. This simplifies alsoQ by giving (m potentialV as a result of t.he gauge choice for time. Thus, the
gn-g—n-gm- ) =0. topology of the @1+ 2)-dimensional space, as well as the
The last form of the actiofL04) is the first order formal- 9eometry of its phase spacedn-1d,d—1 dimensions are
ism, with the Hamiltonian given in Eq103. This form  equivalent to the presence of forces that are represented by
shows that the unconstrained variable’sg() and¢' are the  the potentiaV. In some sense, embedding time as a curve in
standard canonical variables. The middle line of E4) d+2 dimensions, and then arranging the evolution of the
shows that the system ind(1) space dimensions has system as a function of this curve, corresponds to a Hamil-
SO(d) dynamical symmetry. The first line shows that tHe tonian with a potentiaV/. Thus the choice of the time curve
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is equivalent to the choice of the Hamiltonian. So a specific
V corresponds to a specific time curve. Changing the time

curve changes the interaction.
The generators of S@(2) may now be constructed for

any interacting system with spin. All we need to do is to

insert the gauge fixed form foxM,PM yM at 7=0 (or u

=0) into 13. In the classical version, in which operator or-

R S RSN BTV PP
[—2H V ] ( )

dering is not taken into consideration, we obtain for any

choice of !’
, —-rv
\]O 0:—+S|Jn|mj,
v—2H
=r
M=——e——(n'm’—n’m")+ 8", (111
v—2H
, -rv rv
o'l — I _cld ol _ I _cld
J—mm S ny, J mn S¥m;.
(112

The Casimir operator is expected to be independenV of

1 )

+v[v—2H—B(p2+V)]S”pj, (119

Jl”—l J=2Hr-pp'— aVs! Sl 120

=y VT 2Hr-pp'=aVsSir—=BSp; (120

\% PP\, TP,

+ —= 1+v)(r+7p , (121

Ji=Ll+9I (122
where

Li=r'p!—rip', S=Z-[¢', '], (123

Note that if we takear-p—+—2H=0 andrV=constant,

since its value must be consistent with the gauge invariaritve find that the generatod®® is simply related to the

treatment of the theory, as in Sec. Il, wh&fedoes not ap-

Hamiltonian. This was the case for the Coulomb potential

pear. First note that the orbital parts drop out, and it takes thand was used in the H-atom gauge for the choice of Hamil-

form

1 1. -
C2:§SIJS|J+(SIJn|mJ)2_(SlJnJ)Z_(S”mJ)ZZE SECTR
(113

It depends only on the components of spin that are perpen-

dicular to bothm, ,n,, given by S7=(1/2)[¥',%’], with
W'=y'—n'n-y—m'm-y. In the classical theory fermions
square to zeraj- =0, thenC,=0, as expected from the
classical version Eq.28). Similarly, for the spinless theory
the classical Casimir operator vanishes for any poteitial

When ¢!’ is gauge fixed as in Eq109) the generators
take the form

) -rv 1 .
0'0_ b— . — . gl
J m-i— 2rV(ar p—Vv—2H)L;;SY, (119
0’1’ —-rv p2 1 i
LR R ICRC SRR CEE

). . Sijr.
Ji=rp'—(1+r-py—2H) - '

r- .
—r—Vp(l—I—,B\/—ZH)S"pj, (116

: 1 .
Jot =r-p+zay=—2HL;S!, (117

tonian. WhenV is not the Coulomb potential the relation
between the generatord"N and the Hamiltonian is not
simple, and then the Hamiltonian is not easily diagonalized
by algebraic means.

VII. ANTI —DE SITTER GAUGE

It is also possible to find gauges that correspond to par-
ticles in various curved spacetimes. We will ignore the fer-
mions to keep it simple. As an example we consider the AdS
spacetime. Consider the bask™=(X°" X! X™) with
11— 50'0"=1, and »™"=Minkowski. The Latin letter

m denotes vector components in flat space, and we will re-
serve the Greek letten for vector components in curved
space. Choose two gaugés =1, P =0, and solve the two
constraintsx?=X-P=0, and letx® (x),X™(x) be given in
terms ofx* in curved space

I

M=(0",1",m),
XM= (£ 1+ X2(x),1XM(x)), (124
oM XP(X)em(X)p, (125

—F——,0ge4, .
T P

Note thatP?=0 has not been imposed yet, and there still is
one more bosonic gauge freedom. Hefgx) is the inverse
of e}(x) defined by

€)= 3, XM(X) = X)X g,

1+Xo(x)
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It is designed just such that, has the meaning of canonical
momentum when we insert this gauge in the action

i

The remaining part of the action imposes the constrBmt
:O,

1
. XMPNpuN— §A22P~ P—o—o)

i 1
XK p,u_ EAZZGMV(X) p,upV .

(127

G*"(X)p.p,=0,

where the inverse metrié*”(x) follows from Eq.(125

(X-3,X)(X-3,X)
1+ X?

(128

Xnxm

T1ex e

— mn
G””—e’nﬁeﬁ( 7

Taking its inverse one find§,,

G,=elel( mamt XnXm) =3,X- 9, X—
(130

It turns out that this coincides with the metric obtained from
the two conditons X?=0 and ds’=dX-dX
=dx*dx"G,,(x), using any parametrization for

X% (x),X#(x), in the gaugex* =1:

G u(X) =3, XM(X) 3, X"(X) 9= 3, X° ()8, X% (%),
(131

—1=X"(x)X"(X) 7mn—X° (})X®'(x). (132

The last form(131) makes it evident that this is the AdS
metric in (d—1,1) dimensions. To construct it explicitly, one
may choose any convenient function §F(x), find the cor-
responding<® (x) and insert it into Eq(131). See below for
some examples.

PHYSICAL REVIEW D 58 106004

In the quantum theory the constraint is imposed on states
|). It is useful to consider the fielgh(x) = (x| ¢). The con-
straint equation becomes a differential equation on this field.
The operators involved in the constraint must be ordered. A
natural ordering corresponds to the Laplacian condition

1
V-6

The effective field theory that gives this equation is

I N=-GG*"(x)a,4(x)]=0. (133

1
Set=3 f d%\—GG*"d,$d,p. (134

We have seen that the OSp(1/2) gauge covariant action
(11) is capable of describing curved spacetime as well. The
underlying reason for this is the ability to choose time as a
gauge in nonunique ways because we have more than one
timelike coordinate in thel+2 dimensional spacetime. For
each choice of time embedded dr+2 dimensions the cor-
responding canonical Hamiltonian looks different. In particu-
lar, the topology and geometry of the embeddingdit 2
dimensions is different than the previous cases. Nevertheless
these systems are OSp(1/2) gauge equivalent, or dual to each
other, since they all correspond to the same action and same
representation of S@(2).

A. Case No. 1 ford=2

Consider the following AdS parametrization for=2,
which solves all the constraintX?=P?=X.P=X-
=P =0 (including fermion$ and gives an explicit metric.
Here e=sgnp)==*1 is present to insure that the Hamil-
tonian is positive(see below. We can still choose two fer-
mionic gauges, such ag=y=0 which makey™ trivial,
however, we will not choose a fermionic gauge yet and see
that at the end, gauge invariant quantities, such as the Hamil-
tonian and the conformal generators, do not depend on these
fermions at the classical levébut they do at the quantum
level as we will seg

M=[0',1',0,1],

XM=[e coshx cost,1¢ coshx sint,sinhx], (135
[ &p, sinhx cost &, sinhx sint

pM= ,0, ,p coshx (136
| —p sint +p cost
[ €& cost e sint

& coshx— y sinh x

yM= + ¢ sinhx sint, ,— & sinhx cost,x |- (137

| —x coshx sint + x coshx cost
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We need to evaluate the derivatives

[ —e dt coshx sint e dt coshx cost
dXxM= 0, dx coshx |, (138
| +ep dxsinhx cost +edx sinhx sint
&dt sinhx &dx sinh x e&dt— édx coshx
dyM|i—o= , : 0
| — x dt coshx — x dx coshx + y dx sinh x
d& coshx —dé& sinhx
+| e d§, ) d, . (139
—dy sinhx +dy coshx
|
The metric in €,X) space is obtained by computing The true canonical momentum B=p+s, and to insure
positivity of the Hamiltonian we chooseto be
ds?=(dX)%2= —dt? coslt x+(dx)?, (140
e=sgnp+s). (146
g-dy=(éx— x€)(dte coshx—dx). (14D we see thas is completely absorbed into the definition of

the canonical momentum and it disappeared from the gauge
invariant Hamiltonian. This means that we could have taken
s=0 from the beginning as a gauge choice, thus preserving
the definition of the canonical momentum Bs- p.

The SQ@2,2) generators are evaluated by inserting the

1 i gauge choice into the general expressiorat=0. If s is

L= Kzz(ﬁrx)zﬂL 51//'(7## allowed from the beginning we find that it appears every-
where in the combinatiop+s. So, we ses=0 as a gauge
choice. The result is

Although we have usedyM|,_, in this computation for
convenience, the result is valid for any This form also
gives the Lagrangian in the second order form

1
= W[_(M)Z cosi x+(d,x)?]
+5s(—d,te coshx+4,x), (142 J%'%=|p|coshx, 31 =—|p|sinhx, J°1=|p|, (147)

where JV1=p coshx, J%=—p sinhx, J'°=p. (149

These satisfy the S@,2) algebra at the classical level. By
s= 57 (Ex—x9é). (143 taking linear combinations we may construct the SO(2,2)
=SL(2R)_ ®SL(2,R)r generatorslgy, in the following
Note that there is no kinetic term for the fermiofig hence ~ form:
they are not dynamical, and we will see that they are just
gauge freedom. Alternatively, after making the gauge choice 1 1
t(7) =, the Lagrangian in the first order formalism is given Jy+Jdi= E(p—|p|)e_x, ngz(p—|p|), (149
directly by Eq.(11)

1 1

L=&TX~P+I§¢-(9T¢+O+O J?“—’J?=§(p+|p|)e”, J2R=§(p+|p|). (150
We see that either the left moving or the right moving gen-
=x(p+s)—H, (144)  erators must vanish in momentum spdbat not inx space
or other quantum spageThe quadratic Casimir operators for
where both SL(2R)_ g vanish at the classical level:
H=(p+s)e coshx=|p+s|coshx. (145 Cz "= R+ I (g "= I — (337)?=0. (15D
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B. Quantum ordering case No. 1

1
We now need to order the operators at the quantum Ieve?(SL(z’R)): E(J°+Jl)(‘]°_‘]1)

and make sure that the Casimir operator is consistent with
the gauge invariance requirements at the quantum level. Re-
call that for the purely bosonic system (8pgauge invari-
ance we must haveC,(SO(d,2))=1—-d?%4 and for the

1
+ 5(30_31)(30“'31)_(32)2

OSp(1/2) gauge invariance we must ha®e(S0(d,2))= 1 ol 5. L\
-1 — - =-e p°+—|e
5(d+2)(d—1). For our cased=2 we must have 2 4
C,(S0(2,2)=0 for the purely bosonic an@,(S0(2,2)=
—1/2 for the fermionic cases. We see that the fermions must N A P,
play a role. +5€ pTt e P
Let us first deal with the purely bosonic case. For either
the left or right movers we need Hermitian generators. There 1 ‘2 1 1 iz 1 )
is ambiguity in the quantum ordering as illustrated by the =5|P73] tgts|Pt5] Tg—Pk
following possible Hermitian quantum ordering of the clas-
sical e*p: =0. (158)
X120 X2 (120X 12 A oXI2n1— 2 oX/2 0\ In particular the valuesx=0,1/2 yield interesting looking
epe’, pTepT, ptep e pt,..., (152 ;
generators:
and similarly fore™*p ordering. If one reorders these to the
first form we find ol > vz
a=0:JpxJ=e" ¥ p +Z e X J,=p, (159

eX )\ex/2 1—2)\ex/2 )\:exlz _ _
p—p p p JO+J1:e X/zpe x/2, ‘]zzp,

ex/2_ (160)

1 A
p2+ _) pl—Z)\eXIZ’

4
(153 a=1/2:

1
JO—leeX’Z( p+ E

e *p—ph e pt e} There is no way to decide which of these versions one should

N use for our problem.

[ B (154 Next we return to the spinning case. The following modi-
4 fication of the purely bosonic generators give the desired

result for thea=0,1/2 cases:

— efx/2

We may also taka ,\' different from each other. In fact we

find that as long as 1/2
a=0:Jy*+J;=e"*? p2+Z tyle™¥  J,=p,

AN =1 (159 (161)

the quantum ordered generators close correctly and they give

— A= X123 A—XI2 _
the Casimir operato€,=0. Thus, let us taka =%+« and JotJi=e Tpe 7 Jo=pty,

5 — 1_ = . 1
N =3—a. Then we have a=1/2: Jg—dy=e p+ %+2y)ex,2. (162
2)F a
Jotd;=e™ p2+ E w2 pt2eeN2 3 —p Then the SL(ZR) algebra closes correctly and the Casimir
0—+1 4 T2 operator is
(156
_ 2
with commutation rules Co==7" (163
The choicey?=1/2 matches the spinning case.
1 1 It may be of interest to note the following more general
[Jo+d1,d0—J1]=e %2 p?+ 7 e2—e¥? p?+ 7 e X2 construction of SL(R). Instead of the form parametrized
by @ we can use a more general functiBp)
i 2 i 2
:(p‘z) m|ptp) =—2p . i
JOiJ1:e+X/2 p2+ Z :|F+le+X/2, J2: p (164)
=-2iJ, (157
with Casimir operatoC,=0. Some choices df(p) are in-
and Casimir operator teresting. For example, takirfg= (p?+ %) ~*? yields
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1 =Xp— i =
‘]O+‘J1:e_xu JQ—J]_:eX/Z p2+Z ex/2, ‘]2:p- Xp H with H |p| (172)

(165  The SQ2,2) generators are

It is interesting to note that we can find a gauge choice for
XM PM that yields these S@,2) generators at=0, namely,

in Egs. (135—(137) replace everywhere coshby c(x,p)

= (1/2p)(p%e*+e™X), and sinhx by s(x,p)=(1/2p)(p?e* JV'1=p, J°%=|p|cosx, J°V=|p|sinx.

+e *) and then proceed the same way. Sirzéx,p) (174
—s?(x,p) =1, the computation produces similar expressions
ending with the form(165). Finally, this may be modified

370=|p|, 3" =p cosx, I”=psinx, (173

These satisfy the S@,2) algebra at the classical level. The

with a parametery SO(2,2)=SL(2R),_®SL(2,R)r generatorsgy, are
. =S pl+p), BiaB= (p|+pre= (179
J0+J1:e_x, \]O_J]_:eX/Z p2+Z_’yz)eX/2, J2=p 0 2 v M1—1Y2 2 ’
(166
. . L 1 L :qL L *ix
to yield the Casimir operatd®,= — y2. Jo= §(|p| -p), Jli|32=§(|p| —pe"*. (179
C. Case No. 2 ford=2 We see that either the left moving or the right moving gen-

erators must vanish in momentum spdbat not inx space

Consider the following AdS parametrization far= 2, . L
which solves all the constraints. By using similar methods tor other quantum spageThe quadratic Casimir for both

case No. 1 we compute the metric, action, and %52 gen- SL(ZR). r vanishes at the classical level

erators: L,R L,Ry2 L,R, :qL,R L,R_;:qL,R
C; =35 = (" +idzN)(IT" =133 7)=0. (177
M=[0',1',0,1],
D. Quantum ordering case No. 2
XM=[—cscx cost,1,—cscx sint,—cotx], (167) We now need to order the operators at the quantum level
and make sure that the Casimir operator is consistent with
the gauge invariance requirements at the quantum level.
_ _ _ For the bosonic case we must ha@g(SO(,2))=1—d%
|p[sinx sint —|p[sinx cost 4=0 and with fermions we must have,(SO(d,2))
pM— 0, p =—3(d+2)(d—1)=—1/2. Let us first deal with the purely
N ¢ N int - bosonic case. For either the left or right movers we need
b cosx cost, b cosxsin (168 Hermitian generatorsi’s,, which implies JpR—iJ5"®
=(35R+i35R)T. The following ordering of operators is
Hermitian for any real numbet:
PM
P il =—afix2f n2_ +2an*ix/2 —
Jixid,=e p 2 p—<“e , Jo=p.
The metric is (179
1 The commutation rules close for amy
ds?=(dX)?=—=— (—dt?*+dx?), (170
sir? x
_ _ _ 1\
[J1+132,31—13,] =€ p*-7 e 2
Y-dyp=s(—e dt+dx), (171

wheres=(1/20)({éx— x€). The quantitys is absorbed into
the definition of true canonical momentum and it disappears.

: 1\ .
_ eIX/Z( p2_ _) e|x/2
4

2

Thus we take its=0 from the beginning, and compute the _ 1\2 1\
Lagrangian =|Pm35) p+ 5] = -2p
=-2J, (179

i
L=0.X-P+ Ew' Irp+0+0 and the Casimir operator is zero:
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, 1 .
C(SL(2R)=(30)2= 5 (31 +132) (I~ 1d2)

1
_E(‘]l_i‘]z)(‘]l'HJZ)

1 1 .
—n2_ QX2 K2 T | A—ix/2
pr—5e (p 28
1 1\ .
_ T amiX2l h2_ | Qix/2
5€ (p 7)€
o, 1 1 2+1
“PT2iPT3) e
1 . 1 2+ 1
“21P*2) T8
=0. (180
In particular the valuexr=0 yields the generators
: 1\v2
a:O:JliiJZ:e+'X/Z(p2— Z) e*™2  J3,=p.
(181

There is no way to decide which of theseversions one
should use for our problem.

PHYSICAL REVIEW D 58 106004

Then the SL(ZR) algebra closes correctly and the Casimir
operator is

Co=—7~ (183

The choicey?=1/2 matches the spinning case.
In addition, there are also other orderings, such as

Ji+id,=(p+a)e™=(p+a+l)e*, (184

Ji—id,=e X(pta*)=e X (pt+a*+1), (189
1

Jo=p+ E(l-i—a-l—a*), (186

wherea is a complex number to be determined by fixing the
Casimir operator. The algebra closes and the Casimir opera-
tor is

1
C2=Z(—1+a2+a*2—2|a|2). (187

We may choose many possible values far[e.g., a

Next we return to the spinning case. The following modi- = (cot 6+i)//8] so thatC,= —1/2.
fication of the purely bosonic generators give the desired

result for thea=0 case

E. Generald
] 1 1/2 . A . .
A, e I +ix/2 _ s an example for general consider the following
@=0J;x1J,=e [(p 4) Ty Jo=p. choice of AdS gauge consistent with the general formula
(182 (124, parametrized in terms of*=(t,r) andp*=(H,p)
|
M=[0',1",04],
XM_’r2+1 L r’+1  r’-1 188
—_ T cost,1, T sint, 2 ri, (188
rr2—1 r2—1 _ 2r2 r
or r-p cost or r-p sint _Tl P r—zl' p
PM= 0, , . (189
2rH 2rH r’+1
—r—2+—15|nt +—2+—1C03t +72—r~pr
|
The metricG,,, is given by The classical HamiltonianH=p°® follows from P?
=G,,p*p"=0:
2 2 1 r2—1\2
d52=dX-dX=—( dt?+ —dr?+ (dQ)2. r2+1 2 21 _
2r r 2r H= pZ+ —LUL;;. (191
(190 2 ro\re—1) 2
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The SO@,2) generatord MN=XMPN—XNPM may now be —
constructed by inserting the gauge choicé=ad. The form Seff:f dx FI )Wy "y, . (200
is complicated and operator quantum ordering is difficult in
this gauge. Therefore we will not go into details. The S0€,2) generatorgMN=XMpN—XNPM+ VN gre
unaltered at the classical level since ) factor cancels.
VIIl. CONFORMAL GAUGE However, at the quantum level, they need to be quantum

] ] - ordered so that they are Hermitian according to the dot prod-
The particle gauge in Eq29) may be modified by an ¢t in curved backgrounds

overall multiplicative functionF (x)

1 _ _
M=[+",=",ul], <¢|¢>=§fdd’lx FI"2(pidop—idopp), (201
XM=[1x%2,x*]F(x), (192 o

<\1r|\1f>=f di X FO7 1 . (202
PM:[O,X~ pva] L (193)

After the quantum ordering one should check the Casimir
operatorC,(S0(d,2)) and verify that it is consistent with Eq.
The P2=0 constraint is yet to be imposed. The methods are28) for the fermionic theory, and witlC,=1—d?4 for the
similar to those used for the AdS gauge. The metric thabosonic theory, as follows.

F(x)

corresponds to this gauge choice is To find the correct order of operators consider the condi-
tion (3" "glg)=(l3" "¢y or  (3VW|W)
ds*=dXMdXy=F?dx“dx, . (1949  =(w|3*' ~'¥). We find that we must have
ThereforeF? plays the role of the conformal factor for an ] i
arbitrary conformal metric il dimensions: Jt - zz(x- p+p-X)+isy+ E(d—2)x-a In F(x).
(203
G=F2(X) 7, (199
] The first term3(x- p+ p-x) is the Hermitian ordering for a
The momentum constraint takes the form dot product with naive integration measure. The quantum
correctionisy, was already present in flat space due to her-
2 ~pv o _ miticity with a more involved dot produdsy,=1 for ¢, and
P*=G PuPv=F205 PuP,=0. (198 5 =1/2 for W; see[1] and Eq.(33)]. The last term is re-

quired in the conformal curved backgrouRdwith the dot
This is seen also by inserting the gauge into the adtldp, ~ products given above. The proof of Hermiticity uses the con-
which becomesin the absence of fermiops servation of the currend*= (i/2)F9~2(pd*p— ") or
FI"lg i e, d,J#=0, that follows from the equation
S:f dr

i (197) of motion (i.e., constraint This expression 176)i A may

22 [
a.x"p, 5 A

F20x) PP - be rewritten in the form

The quantum ordered version of the constraint is applied on R R
stateg¢) or ¢(x)=(x|#). A good guess is that the quantum JT - =§(x- p+p-x)+isg, (204
ordering should correspond to the Laplacian for the metric
G ~

d wherep* is the following order of operators:

1 1 ~ _ _ _
\/:G(?M[‘/_GGMVﬁVQs(X)]:E{a#[Fd_zﬂMvaV(b(X)]:O. pM:F(l/Z)(d 2)(X)pMF (1/2)(d 2)(X)

(198 =p*+i(d—2)x-3d In F(x). (205

The effective field theory that gives this equatiorifisr the ~ We find that the rest of the generatafs" are also Hermit-
spinless S(?) gauge theory ian provided we use the result for flat sp488) and replace

everywherep“—p*. The generators in curved conformal

_ space are then given in terms of those in flat space by the
seﬁ:J' d F42(x)d,, 0, ™" (199  prescription
This is modified to a Dirac equation for the theory with spin ~ IJMN(x,p) = F(2(d=2)(x) gMN(x, p)F ~(1/2(d=2)(x)
[OSp(1/2) gauge theoty (209
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Then the Casimir operator becomes The SO@—1,1) Lorentz covariant particle gauge is easy
to analyze:
CZ(Sqd-Z))conf , ,
1/2)(d—2 —(1/2)(d-2 M=(+"="m),
=F120E2(x)C,(SA(d,2) )gaF ~ M2~ 2 (%)
XM= (1x%12,x#), 211
~ C,(SAd,2)nar (207 ( ) (a1
M_ 2_

where the last step holds sin€,(S0(d,2))q. is indepen- P"=(0x-p.p"), p°=0, (212
dent ofx or p [see Eq(35)]. The same is true for all higher M " o
Casimir operators because the orbital papt drops ouf19]. Ya=(0X-da,iha), P-ha=0=dpa vy (213

This proves again that the quantum theory in the conformal

gauge has the same quantum Hilbert space as all othgthe remaining constraints and gauge symmetries are those of
gauges. ] worldline supergravity witim supersymmetries. These were
Similarly, one may go through all the previous gaugesstydied in Ref[20]. From the analysis in Ref§20] and[6]
that are closely associated with the particle gauge. Thesge know that this system describes massless spinning par-
include the light cone gaugés6) and the timelike gauge ticles. The effective fields that represent them are the ana-
(93). It would be interesting to study the modifications in the jogues of gauge fields, i.e., forms that couplepibranes
presence of the conformal factBrfor these cases since this (with p=n/2—1), and their fermionic generalizations
generates new representations of 8QJ for each choice of

E. n=even, (214

A“l“z"'“nlz(x)’

IX. OSp(n/2) GAUGE THEORY AND HIGHER SPINS P n=odd. (215

“l‘ll‘z"'ﬂ(n—l)/z(x)'

We can generalize the OSp(1/2) theory by adding MO8\ hen written in this form, the constraints generate the ap-

tcr$p|es ofbt'?te fefrrgmnsl_jg with at'—|1,2,---dﬂ- t-lr;h's pr?wdes it ropriate field equations that remove the ghosts and give the
€ Possibility of describing particles and other SyStems With, , o ¢ counting of degrees of freedomdrdimensions.

higher spins. Thus, consider the fundamental representation Th ; :
. e S0(,2) generators in the particle gauge have the
O =(yy ,X[") of 0Sp(/2), with Xy'=X" and X3'=P" same form as Eq:33), but with
as before. Introduce the gauge fields
1 1 n
sﬂvzz(ng%— YLk, Es’”s,w:§d(d+n—2),

(216)

B[ab] Fai

AlJ: ) -
(SijFJb /A\Il

) , A,B=Bose, F=Fermi,

(208)

. ] ) . - in the gauge invariant sector of S@( singlets
[ab] 1
whereB!'?"! is the antisymmetric S@) gauge field and\ (Va: U

-yy=0). The quadratic Casimir operator is given in
is the symmetric S{2) gauge field, as before. There are alsog ! ) a P g
2n fermionic gauge field&=?'. The local OSM/2) gauge

invariant Lagrangian is d? )
1t Co=— 4 +sot 58S, (217
Sozzf dr(D, @M g " pyn, ¢":0Sp metric
0 So, now we need

[ 1. n
T X5 9. X1+ Ezpa-asza— EAJXi-Xj So= 1—5 (218

= fo dr N 1 . . . _

+iF"3X - ha— EBa Ya- in order to agree with the requirements that followed from

0OSp([n/2) gauge invariance given in ER10. This value of
(209 So gives the following dimensions for the fields
As before, the constraints have nontrivial solutions providedu,u, +u,, () Wauyuy -1y X):
there are two times, and the global symmetry is &@J.
Covariant quantization can be carried out as before. In
order to have OSp(/2) singlets all of its Casimir operators
must vanish. Then we find that the quadratic Casimir opera-
tor of SO@d,2) must have the special value This agrees with thev=0,1 cases which we have already
studied explicitly in several forms.

r ’ 1
iJ*V (A or W)=d/2=s,=5(d+n—2). (219

C,(SQ(d,2))= %(n—Z)(d+2)(d+n—2). (210
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