
PHYSICAL REVIEW D, VOLUME 58, 106004
Gauge symmetry in phase space with spin, a basis for conformal symmetry
and duality among many interactions

Itzhak Bars and Cemsinan Deliduman
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484
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We show that a simple OSp(1/2) world line gauge theory in 0-brane phase spaceXM(t),PM(t) with spin

degrees of freedomcM(t), formulated for a (d12)-dimensional spacetime with two timesX0(t),X08(t),
unifies many physical systems which ordinarily are described by a one-time formulation. Different systems of
one-time physics emerge by choosing gauges that embed ordinary time ind12 dimensions in different ways.
The embeddings have different topology and geometry for the choice of time among thed12 dimensions.
Thus, two-time physics unifies an infinite number of one-time physical interacting systems, and establishes a
kind of duality among them. One manifestation of the two times is that all of these physical systems have the
same quantum Hilbert space in the form of a unique representation of SO(d,2) with the same Casimir
eigenvalues. By changing the number of spinning degrees of freedomca

M(t), a51,2,...,n ~including no spin
n50!, the gauge group changes to OSp(n/2). Then the eigenvalue of the Casimir operators of SO(d,2) depend
on n and the content of the one-time physical systems that are unified in the same representation depend onn.
The models we study raise new questions about the nature of spacetime.@S0556-2821~98!05620-3#

PACS number~s!: 11.25.Hf, 11.10.Lm, 12.60.Jv
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I. INTRODUCTION

In two recent papers@1,2# we showed that various phys
cal systems, which normally are considered unrelated,
actually unified by the same theory that establishes a kin
duality among them. Examples of such systems included
free relativistic particle ind spacetime dimensions, the
atom ind21 space dimensions, and the harmonic oscilla
in d22 space dimensions with its mass identified with
momentum in an extra dimension. Related ideas were c
sidered in Refs.@3–6#. Our aim in this paper is twofold
First, to generalize the theory to describe spinning syste
and second to present an infinite array of interacting mod
~relativistic, nonrelativistic, arbitrary potentials, curved bac
grounds, etc.! with spin, that are unified by gauge transfo
mations~dualities! in the same theory. Our understanding
the quantum version of the theory is solidified by worki
out many examples and gauge choices in detail.

Through all these examples we emphasize that one-
physics with various interactions are unified in some g
metrical sense as two-time physics. The theory in Refs.@1,2#
is a simple Sp~2! gauge theory on the world line. Sp~2! is the
global isometry group of the quantum relations@x,p#5 i and
it transforms (x,p) as a doublet. The idea was to turn th
group into a local symmetry of some theory. This w
loosely motivated by the fact that all known dualities invol
a transformation of canonically conjugate phase space v
ables. The Sp~2! gauge theory on the world line achieve
this, but it required that the world line vector
„XM(t),PM(t)… be in a spacetime with two timelike coord
natesX0(t),X08(t). This turned out to be a boon rather tha
a drawback. The presence of two times together with
larger gauge symmetry allowed the possibility of gau
choices that are ghost free and physical~unitary!. The gauge
fixed theory has a single time. The ability to choose time
0556-2821/98/58~10!/106004~20!/$15.00 58 1060
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various ways turned out to be equivalent to different choi
of Hamiltonians that describe ordinary one-time physics.
this way, different looking physics corresponds to gau
choices within the same theory. The gauge transformati
that map them into each other may be interpreted as dual
~in a universe of two times!.

In this paper the theory is generalized by including an
commuting phase space variables for world line fermio
cM(t). The gauge group becomes OSp(1/2), a
(cM,XM,PM) form a triplet. At the end of the paper w
further generalize this ton world line fermionsca

M(t), a
51,2,...,n, and gauge group OSp(n/2). The requirement
that this be a two-time theory remains the same for anyn.
The content of the one-time physical dual sectors change
a function ofn. However, for a fixedn all dual physics is
described within the same quantum Hilbert space that co
sponds to a unique unitary representation of SO(d,2) with
fixed Casimir eigenvalues.

The paper is organized as follows. After formulating t
OSp(1/2) gauge theory, we quantize it covariantly, and sh
that the gauge invariant states must be described by a un
representation of SO(d,2) with fixed Casimir eigenvalues
Next we choose specific gauges, which we call ‘‘partic
gauge,’’ ‘‘light-cone gauge,’’ ‘‘H-atom gauge,’’ ‘‘anti–de
Sitter ~AdS! gauge,’’ ‘‘conformal gauge,’’ and study the
quantum theory in each of those gauges. We show that
physics looks different according to the gauge choice
time, but that the Hilbert space is the same in each case,
that it has the same eigenvalues of the Casimir operator
SO(d,2). In a semiclassical approach in the H-atom gau
we show that any Hamiltonian of the formH5p2/2
1V(r ,p,S) with any potential energy functionV, emerges
as a gauge choice. At the end of the paper we argue
when n changes, the spin content changes. For example
the particle gauge the relativistic particle that is describ
©1998 The American Physical Society04-1
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ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 58 106004
corresponds to the antisymmetric formAm1m2¯mp11
(x) that

couples top-branes, withp5n/221 for evenn, and similar
fermionic counterparts for oddn.

The message of our work is that two-time physics is
only possible, but also is a basis for unifying many featu
of one-time physics in some geometrical manner. This ra
new questions about the nature of time and space. Our g
symmetry approach in 0-brane phase space connects tog
dualities and two-time physics inextricably from each oth
and gives a new rich area to explore further and generaliz
higherp-branes. Our work supports the idea that the fun
mental theory of our universe may be better understood
two-time formulation, as various hints and theories have s
gested from different directions@7–18#.

II. GAUGING OSp „1/2…

OSp(1/2) has two local fermionicsi(t) and three local
bosonicv i j (t) parameters. Under the subgroup Sp(2,R) the
si with i 51,2 form a doublet, while the symmetricv i j

5v j i form a triplet. Consider the OSp(1/2) tripletsFa
M(t)

5(cM,X1
M ,X2

M) ~one for eachM ! which transform similar to
the fundamental representation of OSp(1/2):

dcM5siXi
M , dXi

M5« ik~vklXl
M2 iskcM !. ~1!

The complex numberi is introduced indXi
M to insure that

the product of fermionsiskcM is Hermitian, assuming tha
each fermion is Hermitian individually. For eachM , cM is a
singlet of Sp(2,R) while Xi

M is a doublet of Sp~2!. Two such
triplets Fa

M ,Fb
N form an OSp(1/2) invariantI MN under the

dot product with the metricgab given by

I MN5Fa
MgabFb

N5Xi
M« i j Xj

N2 icMcN. ~2!

Fermionic and bosonic gauge potentials (Fi ,Ai j ) are in-
troduced in one to one correspondence with the parame
There are two fermionsFi(t) and three bosonsAi j (t)
5Aji (t). They transform as

dFi5]ts
i1v ik«klF

l2Aik«kls
l , ~3!

dAi j 5]tv
i j 1v ik«klA

l j 1v jk«klA
il 2 isiF j2 isjFi . ~4!

The following covariant derivatives DtFa
M

5(Dtc
M,DtXi

M):

Dtc
M5]tc

M2FiXi
M , ~5!

DtXi
M5]tXi

M2« ik~AklXl
M2 iF kcM !, ~6!

transform similar to OSp(1/2) triplets

d~Dtc
M !5siDtXi

M , ~7!

d~DtXi
M !5« ik~vklDtXl

M2 iskDtc
M !. ~8!
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We can then construct more OSp(1/2) invariants by us
the covariant derivatives and the metric defined in Eq.~2!
(DtFa

M)gabFb
N . In particular we construct a gauge invaria

action

S05
1

2 E
0

T

dt~DtFa
M !gabFb

NhMN ~9!

5
1

2 E
0

T

dt@DtXi
M« i j Xj

N2 iD tc
McN#hMN ~10!

5E
0

T

dtFX2•]tX11
i

2
c•]tc2

1

2
Ai j Xi•Xj1 iF iXi•c G .

~11!

The equation of motion of the gauge fields give the follo
ing constraints:

Xi•Xj50, Xi•c50. ~12!

As in the purely bosonic case the signature of the me
hMN must be (d,2) including two timelike dimensions oth
erwise the constraints have no nontrivial solutions. The
tion is manifestly invariant under SO(d,2) transformations
since the metrichMN is invariant. The conserved generato
of the symmetry have an orbital partLMN and spin partSMN:

JMN5LMN1SMN, ~13!

LMN5X1
MX2

N2X1
NX2

M , ~14!

SMN5
1

2i
~cMcN2cNcM !. ~15!

The total generatorsJMN are OSp(1/2) gauge invariant ac
cording to Eq.~2! ~take the antisymmetric part ofI MN!.

From the action we obtain the canonical conjugate pa
X1

M5XM and X2
M5PM. Furthermore, the canonical conju

gate tocM is naively icM/2, however this is also a secon
class constraint. Once the second class constraint is ta
into account, the commutation rules for quantizing the s
tem covariantly are

@XM,PN#5 ihMN, $cM,cN%5hMN. ~16!

The cM form a Clifford algebra which is represented b
gamma matricescM5gM/&, where the gamma matrice
are normalized in the standard way$gM,gN%52hMN. The
quantum system is subject to first class constraints~12!

X•X5P•P5X•P5X•c5P•c50, ~17!

which will be imposed on the Hilbert space. These co
straints form the OSp(1/2) superalgebra defined by th
bosonic and two fermionic generators

J35
1

4
~X21P2!, J15

1

4
~X•P1P•X!, ~18!
4-2
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GAUGE SYMMETRY IN PHASE SPACE WITH SPIN,A . . . PHYSICAL REVIEW D 58 106004
J25
1

4
~X22P2!, S65

1

2&
~P6 iX !•c, ~19!

J656
1

4i
~P6 iX !25J16 iJ2 . ~20!

The OSp(1/2) superalgebra among these first class
straints is given by

@J3 ,J1#5 iJ2 , @J3 ,J2#52 iJ1 , @J1 ,J2#52 iJ3,
~21!

@J3 ,S6#56
1

2
S6 , @J1 ,S6#5

i

2
S7 ,

@J2 ,S6#57
1

2
S7, ~22!

$S6 ,S6%56
i

2
~J16 iJ2!, $S1 ,S2%5

J3

2
, ~23!

whereJ65(J16 iJ2). Thus (J1 ,J2 ,J3) are represented o
the row (S1 ,S2) by the Pauli matrices (S i)b

a
5( is1/2,is2/2,s3/2), respectively, i.e., @Ji ,Sa#
5 iSb(S i)

b
a and the last line may be written as$Sa ,Sb%

5Sab
i Ji .

The quadratic and cubic Casimirs of the superalge
OSp(1/2) are

C2„OSp~1/2!…5J3
22J1

22J2
22S1S21S2S1 , ~24!

C3„OSp~1/2!…5S1J3S21S2J3S1

1 iS1~J12 iJ2!S12 iS2~J11 iJ2!S2 .

These commute with all the generatorsJi ,Sa . In terms of
the canonical operators, with the orders of operators ta
into account, the quadratic Casimir becomes

C2„OSp~1/2!…5
1

4
~XMP2XM2X•PP•X!1

1

16
~d224!

1
1

4 S 1

2i
@cM ,cN#~XMPN2XNPM ! D

1
1

4
c•c. ~25!

Similarly, the cubic Casimir operator is computed in terms
the canonical operators.

Next, consider the quadratic Casimir operator of SO(d,2)
given by
10600
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C2„SO~d,2!…5
1

2
JMNJMN5

1

2
LMNLMN

1
1

2
SMNSMN1LMNSMN

5~XMP2XM2X•PP•X!

1
1

4
@2~c•c!22c•c#

1
1

2i
@cM ,cN#~XMPN2XNPM !. ~26!

Therefore, we find the following relation between the qu
dratic Casimir operators of SO(d,2) and OSp(1/2):

C2„SO~d,2!…54C2„OSp~1/2!…2
1

8
~d12!~d21!,

~27!

where we have usedc•c5 1
2 (d12). Similarly, the higher

order Casimir operators of the conformal groupCn
5(1/n!)Tr( iJ)n are obtained in terms of the Casimir oper
tors of OSp(1/2).

In the gauge invariant sector the quadratic Casimir ope
tor of the gauge group must vanishC2(1/2)50. Therefore,
the physical sector is characterized by

C2„OSp~1/2!…50, C2„SO~d,2!…52
1

8
~d12!~d21!.

~28!

Similarly, the eigenvaluesCn„SO(d,2)… are completely fixed
after setting all OSp(1/2) Casimir operators equal to ze
We will not use the higher Casimir operators in this pap
We will verify the result forC2„SO(d,2)… in noncovariant
quantization in several gauges.

III. PARTICLE GAUGE AND DIRAC EQUATION

Consider the basisXM5@X18,X28,Xm# with non-zero
metric componentsh18285h2818521 and hmn5diag
(21,11,̄ ,11) Minkowski metric. Choose two bosoni
gaugesX1851, P1850, and one fermionic gaugec1850,
and solve explicitly two bosonic and one fermionic co
straintsX25X•P5X•c50. We will call this the relativistic
particle gauge. The remaining degrees of freedomxm,pm,cm

are in Minkowski spacetime and they parametri
XM,PM,cM as follows:

M5@18,28,m#,

XM5@1,x2/2,xm#,

PM5@0,x•p,pm#, p250,

cM5@0,x•c,cm#, cmpm50. ~29!
4-3



-
fre

d

es

tio

fo

a
-
e

a

2)

a

me
la-
de-
ing
the
er

two
ree

the

in-
into
-
de-

ela-
rm
n

tic
m,

ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 58 106004
There is manifest SO(d21,1) Lorentz symmetry. There re
mains one bosonic and one fermionic gauge degrees of
dom and the corresponding constraintsp250, cmpm50. The
quantum rules are@xm,pn#5 ihmn and $cm,cn%5hmn. The
quantum states are labeled byua,p& or ua,x& with p250 and
cmpm50 to be satisfied on states. The indexa is a spinor
index in d dimensions, andcm acts like the Dirac gamma
matrix cm→gm/& on these states. Note that (&cmpm)2

5p2, so that the constraintp250 need not be considere
separately.

For the general physical stateuC& the constraint
&cmpmuC&50 becomes the Dirac equation for a massl
particle. When expressed inx-space^x,auC&5Ca(x) the
physical state constraint takes the form of the Dirac equa

^x,au~&cmpm!uC&52 i ~gm]mC!a50. ~30!

The effective field theory is therefore given by the action
the free Dirac field ind dimensions

Seff5E ddx C̄ ig•]C. ~31!

The conformal generators~13! in this gauge take the form

J18285
1

2
~x•p1p•x!1 is0 , ~32!

J18m5pm, Jmn5xmpn2xnpm1smn, ~33!

J28m5
1

2
xlpmxl2

1

2
xmp•x2

1

2
x•pxm2 is0xm2smnxn ,

~34!

where smn5( i /2)(cmcn2cncm). The operatorsx,p,c are
quantum ordered so that theJMN satisfy the correct algebr
for any complexs0 . The parameters0 is an operator order
ing constant which is fixed by hermiticity according to th
Lorenz invariant dot product for states^CuC&
5*dd21xC̄g0C. Hermiticity ^JMNCuC&5^CuJMNC&
fixes s051/2. In contrast, in the purely bosonic case we h
s051. Thus the presence of the complexis05 i /2 is required
for HermitianJ1828,J28m. Furthermores0 should be consis-
tent with the correct dimension of the Dirac field ind dimen-
sions. When the dimension operatoriJ1828 is applied on the
Dirac field ^x,au iJ1828uC&5(x•]1 1

2 d2s0)Ca(x) we

must obtain (12 d2s0)5(d21)/2. Thus we find agains0

51/2. The quadratic Casimir operator becomes~orbital parts
x,p drop out!

C2„SO~d,2!…52
d2

4
1s0

21
1

2
smnsmn

52
d2

4
1

1

4
1

1

8
~d22d!

52
1

8
~d12!~d21!, ~35!
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where we have used12 smnsmn5 1
2 (c•c)22 1

4 c•c and c•c
5g•g/25d/2. This agrees precisely with the OSp(1/
gauge invariance requirements~28! obtained in covariant
quantization in the previous section.

Hence all of the Dirac particle’s states correspond to
single and very special representation of SO(d,2). This fea-
ture is a reflection of the two-time nature of the spaceti
that underlies the Dirac particle, as is clear in our formu
tion. As we will see, the same quantum representation
scribes many other physical systems by simply choos
other gauges in the two-time spacetime. In this sense, in
two-time spacetime, the Dirac particle is dual to all the oth
physical systems that we will describe below.

IV. LIGHT CONE GAUGE AND HARMONIC
OSCILLATOR

A. Free particle in light cone gauge

Consider the basisXM5(X18,X28,X1,X2,Xi) with the
metrichMN taking the valuesh18285h12521 in the light
cone type dimensions, whileh i j 5d i j for the remainingd

22 space dimensions. Thus one timeX08 is a linear combi-
nation of X68, and the otherX0 is a linear combination of
X6. The gauge group OSp(1/2) has three bosonic and
fermionic gauge parameters, hence we can make th
bosonic and two fermionic gauge choices. We define
light cone gauge asX1851, P1850, X15t, andc185c0

50. There is no more gauge freedom left over, so all rema
ing degrees of freedom are physical. Inserting this gauge
the constraints~17!, and solving them, one finds the follow
ing components expressed in terms of the remaining in
pendent degrees of freedom (x2,p1,xW i ,pW i ,cW i):

M5@18,28,1,2,i #,

XM5@1,~xW2/22tx2!,t,x2,xW i #, ~36!

PM5F0,S xW•pW 2x2p12
tpW 2

2p1D ,p1,
pW 2

2p1 ,pW i G ,

~37!

cM5F0,xW•cW 2t
pW •cW

p1 ,0,
pW •cW

p1 ,cW i G . ~38!

One can verify that this gauge corresponds to the free r
tivistic massless particle, by inserting the gauge fixed fo
~36! into the action~11!. Since all constraints have bee
solved, theAi j ,Fi terms drop out, and we get

S05E
0

T

dtS ]tX
MPNhMN1

i

2
c•]tc1010D

5E
0

T

dtS ]txW•pW 2]tx
2p12

pW 2

2p1 1
i

2
c i]tc

i D . ~39!

This is the action of the free massless spinning relativis
particle in the light cone gauge, in the first order formalis
4-4
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with the correct Hamiltonianp25pW 2/2p1. Note that both
time coordinates have been gauge fixed,X1851 and X1

5t, to describe the free particle. This is the light co
‘‘time.’’

The quantization rules are@x2,p1#5 ih1252 i ,

@xW i ,pW j #5 id i j , and$cW i ,cW j%5d i j . The physical quantum state
for cW correspond to the basis for the Clifford algebra~with
d22 transversecW 8s!. These consist of left spinors of dimen
sion 2L

(d22)/221 and right spinors of dimension 2R
(d22)/221 in

even dimensions

d512:16L % 16R ,

d510:8L % 8R ,

d58:4L % 4R ,

d56:2L % 2R ,

d54:1L % 1R . ~40!

For odd dimensions one gets the sum of theL andR spinors
of the lower even dimension. These are the helicity states
massless fermions from the light cone point of view. F
example in four dimensions there is one degree of freed
for a massless left handed ‘‘neutrino’’ and one degree
freedom for a massless right handed ‘‘neutrino.’’

The SO(d,2) generators of Eq.~13! now take the form~at
t50!

Ji j 5xW i pW j2xW j pW i1Si j , SO~d22!, ~41!

J1825
pW 2

2p1 , J1252
1

2
~x2p11p1x2!,

J2815
1

2
xW2p1, J1815p1,

J18285
1

2
~xW•pW 1pW •xW2x2p12p1x2!,

J2825F 1

8p1 ~xW2pW 21pW 2xW222a!

2
x2

2
~xW•pW 1pW •xW !1x2p1x2

1
1

2p1 ~xW i pW j2xW j pW i !Si j

G §

SO~2,2!,

~42!

J18 i5pW i , J1 i52xW i p1, ~43!

J2 i5x2pW i2
1

2p1 pW j xW i pW j2
1

p1 Si j pW j , ~44!

J28 i5F 1

2
xW j pW ixW j2

1

2
xW•pW xW i2Si j xW j

2
1

2
xW i pW •xW1

1

2
xW i~x2p11p1x2!

G , ~45!
10600
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where

Si j 5
1

2i
@cW i ,cW j # ~46!

is a spin operator in the transverse dimensions. The quan
operators are ordered so that all generatorsJMN are Hermit-
ian. The constanta that appears inJ282 arises due to quan
tum operator ordering ambiguities. It is fixed toa522d by
demanding the correct closure for the commutator

@L28 i ,L2 j #5 id i j L282, →a522d. ~47!

In contrast, in the purely bosonic case we had a sim
abose521 @1,2#.

The Hilbert space may be labeled by the commuting m
mentum operators of the free particle as well as its spin in
form of helicity states as given above in Eq.~40!

upW ,p1,p25pW 2/2p1;helicities&. ~48!

This is the free particle Hilbert space, which is complete. I
unitary and has the usual delta function normalization. Wa
packets with finite positive norm are constructed as us
and they correspond to the solutions of the Dirac equation
the previous section written in light cone coordinates. T
operatorsJMN given above act on the states in a natural w
and these states form a basis for SO(d,2). The Casimir ei-
genvalues are easily computed directly by squaring the
erators. By using our previous calculation of the pure
bosonic case@1,2#, and the propertycW •cW 5(d22)/2, we find
~see also below!

1

2
JMNJMN52

1

8
~d12!~d21!, ~49!

in agreement with fully covariant quantization and Loren
covariant quantizations given in the previous sections.

The interpretation of the physics in this basis of SO(d,2)
is, of course, the same as the previous section. Next we s
that the same construction of SO(d,2) has a different physi-
cal interpretation.

B. Harmonic oscillator with spin

The same realization of SO(d,2), with the same eigenval
ues of the Casimir operators, is also related to the Harmo
oscillator. In Eq.~42! the SO~2,2! subgroup which is equiva
lent to SL(2,R)L ^ SL(2,R)R has the following generator
G0,1,2

L,R with the standard algebra@G0 ,G1#5 iG2 : @G0 ,G2#
52 iG1 , @G1 ,G2#52 iG0 ,

SL~2,R!R :G2
R5

1

2
~J18282J12!, G0

R6G1
R5J687,

~50!

SL~2,R!L :G2
L5

1

2
~J18281J12!, G0

L6G1
L5J686.

~51!
4-5
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Thus the compact generatorG0
R of SL(2,R)R is given by the

harmonic oscillator Hamiltonian

G0
R5

1

2
~J1821J281!5

pW 2

4p1 1
1

4
xW2p1. ~52!

The mass of the harmonic oscillator isM52p1 and the
frequency isv51/2. The mass is given by the generat
J1815p15G0

L1G1
L of SL(2,R)L.

Even though the particle has spin degrees of freedom,
harmonic oscillator Hamiltonian is independent of spin. F
a fixed mass M52p1, its quantum eigenstate
up1,En ,l ,s, j & are labeled with the eigenvalues of energyE
5G0

R , orbital and spin angular momentuml ,s and/or j for
total SO(d22) spinJi j . Of course, from the solution of th
harmonic oscillator quantum mechanics ind22 space di-
mensions, we already know that the energy quantum n
bers should beE5v@n1 1

2 (d22)#5n/21 1
4 (d22), with

the angular momentum also determined:

n50,1,2,..., ~53!

l 5n,~n22!,~n24!,...,~0 or 1!. ~54!

The degeneracy of the state at leveln corresponds to an
SU(d22) multiplet described by a single row Young ta
leau with n boxes, times the degeneracy of the spin sta
which is the same at every level. This Young tableau deco
posed under SO(d22) gives completely symmetric tracele
tensors withl indicesTi 1i 2¯ i l

(xW ), with the values ofl indi-

cated above. The totalJi j SO(d22) spin j is obtained by
combining the orbital and spin parts for SO(d22). To make
a connection to the group theory below it is useful to rewr
n5 l 12nr where bothl ,nr are positive integers, andnr has
the meaning of radial quantum number. So we may write
energy eigenvalue in the form

E5G0
R5

1

4
~d22!1

l

2
1nr . ~55!

Now we explain how these harmonic oscillator quantu
numbers fully label the same unique representation
SO(d,2), and how the full set of harmonic oscillator states
all energy levels provide asingle irreducible representation
The key here is that the mass 2p1 as well as the spin are
labels of the representation and they must transform un
SO(d,2). In this sense the mass is the analogue of a mod
parameter that transforms under duality. Furthermore,
choice ofG0

R as Hamiltonian implies a different choice o
time as embedded ind12 dimensions, as compared to th
free particle time.

A basis for the group theory representation space is
beled by the SO(d,2) Casimir eigenvalues, and the SOd
22)^ SL(2,R)L ^ SL(2,R)R subgroups

uCasimir eigenvalues;SO~d22!;SL~2,R!L ;SL~2,R!R&

5uCasimir eigenvalues;l ,s; j Lp1; j RmR&. ~56!
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The SL(2,R)L ^ SL(2,R)R subspace is labeled b
u j Lp1; j Rm&, wherem is the eigenvalue of the compact ge
erator of SL(2,R)R that coincides with the HamiltonianG0

R

5m5E, andp1 is the eigenvalue of the SL(2,R)L generator
J1815G0

L1G1
L5p1. We will compare these quantum num

bers to those of the harmonic oscillator given above.
First we comparem to the energy eigenvalueE. The

quantum numberm is determined from representation theo
of SL(2,R). SinceG0

R is a positive operator, the only pos
sible representation is the positive discrete series, for wh
E5G0

R5m5 j R111nr with nr50,1,2,... . There remains
to show thatj R11 is the remaining part of Eq.~55!, which
we will do below.

The SO(d22) quantum numbers (l ,s) are determined by
orbital l and spin quantum numberss. In the construction of
SO(d,2) given in Eq.~42! orbital angular momentumLi j can
only have representations labeled by integersl that corre-
sponds to the completely symmetric traceless ten
Ti 1i 2¯ i l

(xW ) with l indices in (d22) dimensions. Similarlys
is limited to the spinor representations listed in Eq.~40!. The
direct product of these representations is what is symboli
by the quantum numbers (l ,s). So, these are the same ang
lar momentum labels as the harmonic oscillator.

There remains to specify the values ofj L , j R . They are
computed through the Casimir operators

j L,R~ j L,R11!5~G0
L,R!22~G1

L,R!22~G2
L,R!2. ~57!

Using thexW ,pW ,cW representation forG0,1,2
L,R given in Eqs.~42!,

~50! we find that theyj L,R are not independent of the orbita
and spin angular momenta

j R~ j R11!5
1

8
Li j L

i j 1
1

16
~d22!~d26!, ~58!

j L~ j L11!5
1

8
Li j L

i j 1
1

16
~d22!~d26!1

1

2
Li j S

i j

5
1

4
Ji j J

i j 2
1

8
Li j L

i j 2
3

16
~d22!. ~59!

The allowed eigenvalues for SO(d22) orbital angular mo-
mentum are 1

2 Li j L
i j 5 l ( l 1d24) ~completely symmetric

traceless tensor withl indices ind22 dimensions!, and the
allowed values of SO(d22) spin are1

2 Si j S
i j 5 1

8 (d22)(d
23) @from cW •cW 5(d22)/2#. From these we deduce the a
lowed values ofj R , j L and SO(d22) total angular momen-
tum j ,

j R~ j R11!5
1

4
l ~ l 1d24!1

1

16
~d22!~d26! ~60!

gives

j R5
1

2
l 1

1

4
d2

3

2
, l 50,1,2,... . ~61!

Similarly, we obtainj L , for d55,
4-6
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j Ld55
05

¦

d55:SO~3!,s561/2,
1

2
Ji j J

i j 5 j ~ j 11!,

j 5 l 61/2, j 5
1

2

1

,
3

2

1

,
3

2

2

,
5

2

1

,
5

2

2

,...,

j L~ j L11!5
1

2
~ l 1s!~ l 1s11!2

1

4
l ~ l 11!2

9

16
,

j L52
1

2
1

1

2
AS j 1

1

2D S j 1
1

2
61D22

~62!

andd56

j Ld56
5

¦

d56:SO~4!5SU~2!L ^ SU~2!R ,sL,R561/2,
1

2
Ji j J

i j 52 j 1~ j 111!12 j 2~ j 211!,

~ j 1 , j 2!5S l

2
6

1

2
,

l

2D % S l

2
,

l

2
6

1

2D
5S j , j 7

1

2D % S j 7
1

2
, j D j 5

1

2
,1,

3

2
,2,...,

j L~ j L11!5S l

2
1sD S l

2
1s11D2

3

4
,

j L~ j L11!5 j ~ j 11!2
3

4

j L52
1

2
1

1

2
A~2 j 11!223.

~63!

For other values ofd the computation ofj L is a technical
matter. This verifies that the energy eigenvalue and o
quantum numbers coincide with the group theoretical rep
sentation labels. The only independent labels are those o
harmonic oscillators, including mass and spin, while the
maining group theory labels are determined by them. Amo
the group theory labels we must include the massM
52p1.

The realization of SO(d,2) on this harmonic oscillato
system is quite nontrivial. As already verified, the Casim
eigenvalues for SO(d,2) are the ones determined b
OSp(1/2) gauge invariance in Eq.~28!. The choice of time as
embedded ind12 dimensions has a different topology tha
the free particle. The quantum space is dual to the free
ticle, while both systems represent the same two-time qu
tum theory in unitarily equivalent bases.

V. ‘‘H ATOM’’ WITH SPIN

The free Dirac particle may be described in thex05t
gauge~see next section! instead of thex15t gauge of the
previous section. To describe the H atom we take a ga
that is dual to the free Dirac particle. The duality relation
the free particle is obtained by flipping the roles ofr ,p fol-
lowed by a discrete Sp~2! transformation. The resulting
gauge is~at fixed timet50! X1850, P1851, P050, c18

50:
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M5~18,28,0,i !,

XM5~0,r•p,r ,r i !, ~64!

PM5S 1,
p2

2
,0,pi D , ~65!

c5S 0,c•p,
1

r
c•r ,c i D , ~66!

where i 51,2,...,(d21). All constraints,X25P25X•P5X
•c5c•P50, are explicitly solved. The generators of th
conformal group~13! take the form~recall h18285h005
21!

J28185
1

2
~r•p1p•r !, ~67!

J0185r , Ji 185r i , ~68!

J0285
1

2
pi rpi1

a

r
1

1

2r
Si j L

i j , ~69!

Ji 2852
1

2
p•rp i2

1

2
pir•p1

1

2
pj r ipj1b

r i

r 2 1Si j pj ,

~70!

Ji052
1

2
~rpi1pi r !1

1

r
Si j r j , ~71!

Ji j 5r ipj2r jpi1Si j , ~72!

where

Si j 5
1

2i
~c ic j2c jc i !. ~73!

As in the purely bosonic case@2# there are ordering ambigu
ities represented by the constantsa,b that appear inJ018 and
J18 i respectively. By using the basic commutation relatio
among~r ,p,c! one can check that the SO(d,2) commutation
relations are indeed satisfied for anya, while b is fixed to
b52a by demanding correct closure for the commutator

@J028,Ji0#52 iJ i 28→b52a. ~74!

In contrast, in the purely bosonic case we hadbbose5
2abose2(d22)/4. The remaining parametera will be fixed
by the OSp(1/2) gauge invariance, not by the SO(d,2) alge-
bra, as will be discussed below.

It is evident that the operatorsJi j form the algebra of the
rotation subgroup SO(d21). Its quadratic Casimir operato
is given by
4-7
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1

2
Ji j J

i j 5
1

2
L i j L

i j 1L i j S
i j 1

1

2
Si j S

i j

[~r jp2r j2r•pp•r !1L i j S
i j 1

1

4
@2~c•c!22c•c#.

~75!

Similarly, the following three operators form a SO~1,2! sub-
algebra:

J2818[J2 , J028[
1

2
~J01J1!, J018[J02J1 ,

J25
1

2
~r•p1p•r !, ~J01J1!5pi rpi1

2a

r
1

1

r
Si j L

i j ,

J02J15r . ~76!

For anya they close correctly

@J0 ,J1#5 iJ2 , @J0 ,J2#52 iJ1 , @J1 ,J2#52 iJ0 .
~77!

The compact generatorJ0 is given in terms of the canonica
operators as

J05J0281
1

2
J0185

1

2
pi rpi1

a

r
1

r

2
1

1

2r
Si j L

i j . ~78!

The quadratic Casimir operator for this subalgebra takes
form

J~J11!5J0
22J1

22J2
25J028J0181J018J0282~J2818!2

5
1

2
L i j L

i j 1Si j L
i j 1

1

4
~d22!22

1

4
12a

5
1

2
Ji j J

i j 2
1

2
Si j Si j 1

1

4
~d22!22

1

4
12a

5
1

2
Ji j J

i j 1
1

8
~d21!~d24!12a, ~79!

where we have used12 Si j Si j 5
1
2 (c•c)22 1

4 c•c and c•c
5(d21)/2. We see that the quadratic Casimir operators
the SO~1,2! subalgebra and that of the rotation subgro
SO(d21) are related to each other in this representation
SO(d,2). The overall quadratic Casimir operator f
SO(d,2) may now be evaluated. All orbital partsr ,p drop
out, and the result is
10600
e

f

f

C25
1

2
JMNJMN

52~J2818!21J028J0181J018J0282Ji 28Ji 18

2Ji 18Ji 282Ji0Ji01
1

2
Ji j J

i j

52
1

8
d22

1

8
d2

3

4
14a

52
1

8
~d12!~d21!→a5

1

4
. ~80!

We see thata5 1
4 is fixed by the requirement of OSp(1/2

gauge invariance~28! that was obtained in covariant quant
zation. Therefore the last step fixes the values ofa and b
uniquely in the gauge invariant sector

a52b5
1

4
. ~81!

These values correspond to the following quantum order
of the operators inJ028:

J0285
1

2
pi rpi1

1

4r
1

1

2r
Si j L

i j

5r 1/2F1

2
p2G r 1/22

1

8r
~322d!1

1

2r
Si j L

i j . ~82!

We now proceed to solve the system algebraically, a
show its relation to the H-atom. A basis for the quantu
theory is chosen to diagonalize the Hamiltonian. In our c
we will show that this corresponds to the SO(d,2) represen-
tation basis labeled by the subgroups

uCasimir eigenvalues;SO~d21!;SO~1,2!&, ~83!

and that all the states of the ‘‘H atom’’ with spin correspo
to a single irreducible representation of SO(d,2), with the
Casimir eigenvalues given before by the covariant quant
tion @i.e., OSp(1/2) gauge invariance#.

As explained earlier, since we have two timelike dime
sions, the choice of ‘‘time’’ corresponds to a choice
Hamiltonian as a combination of the generators of SO(d,2).
One such choice is dual to another via OSp(1/2) gauge tr
formations. We now make the following choice for ‘‘Hami
tonian’’ h5J0805J0 which is the compact generator of th
SO~1,2! subgroup. One way of justifying this gauge choice
the algebraic demonstration below that it corresponds to
1/r potential. Another way is to choose a~canonically re-
lated! gauge in which the original action reduces to the
teracting system with 1/r potential, and then show thatJ080

is related to the Hamiltonian. This was done explicitly in@2#
for the spinless case. See also the last paragraph of se
~VI B !. Thus, considerh5J0805J0 in the form
4-8



t
-
l
he
o

w

e
-

e

m

his
rit-

al

e’’
-
pin

it
rel-
n

-
or-

iffi-
ses
del

are

is-
f

GAUGE SYMMETRY IN PHASE SPACE WITH SPIN,A . . . PHYSICAL REVIEW D 58 106004
h5J05J0281
1

2
J018

5r 1/2F1

2
p21

1

2
2

~322d!

8r 2 1
1

2r 2 Si j L
i j G r 1/2

5r 1/2F 1

2 S pr
21

1

2r 2 L i j L i j 1
1

4r 2 ~d22!~d24! D
1

1

2
2

~322d!

8r 2 1
1

2r 2 Si j L
i j

G r 1/2

5r 1/2H 1

2 Fpr
21

1

r 2 S 1

2
Ji j Ji j 2

1

2
Si j Si j

1
1

4
d22

4

4
d1

5

4D G1
1

2J r 1/2

5r 1/2H 1

2 Fpr
21

1

r 2 S 1

2
Ji j Ji j 1

1

8
~d225d18! D G1

1

2J r 1/2

5r 1/2F1

2 S pr
21

1

r 2 J~J11! D1
1

2G r 1/2. ~84!

Here we have used

p25pr
21

1

2r 2 L i j L i j 1
1

4r 2 ~d22!~d24!,

where

pr5
1

2r
r•p1p•r

1

2r

is the Hermitian radial momentum canonically conjugate
r , and have shown thatJ(J11), which is the quadratic Ca
simir of SO~1,2! as given in Eq.~79!, emerges in the radia
equation. From here one may proceed in two ways. Eit
one may solve the radial equation given below directly,
use an algebraic approach. The agreement between the t
a check of our calculation.

We proceed with the algebraic approach. Sinceh5J0 is a
generator of the SO~1,2! algebra it is diagonalized on th
usual SO~1,2! basisuJm& wherem is the quantized eigen
value of the compact generatorJ0 . Evidently the operatorh
is positive, thereforem can only be positive. This is possibl
only in the positive unitary discrete series representation
SO~1,2!, and therefore the spectrum ofm must be

m5J111nr , nr50,1,2,... , ~85!

where, as we will see shortly, the integernr will play the role
of the radial quantum number.

Let us now show the relation to the hydrogen ato
Hamiltonian. Applyingh on these states we have

r 1/2F1

2
p21

1

2
1¯ G r 1/2uJm&5muJm&. ~86!

Multiplying it with the operatorr 21/2 from the left, this equa-
tion is rewritten as
10600
o

r
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o is

of

F1

2
p21

1

2
2

m

r
1¯ G~r 1/2uJm&)50. ~87!

We now recognize that the statesucm&5(r 1/2u jm&) are
eigenstates of the hydrogen atom Hamiltonian. Actually t
is a rescaled form of the standard Hamiltonian equation w
ten in terms of dimensionful coordinates and momentar̃ ,p̃

F p̃2

2M
2

a

r̃
1¯G ucm&5Emucm&. ~88!

The quantized energy is

En52
a2

m2 52
a2

~J111nr !
2 . ~89!

We still need to figure out the values ofJ as a function of the
quantized integersl and nr . As an example considerd54,
SO(d21)5SO(3), forwhich we are familiar with the use
of addition of angular momentum. Adding spin 1/2 to orbit
quantum numberl , gives j 5 l 61/2 with l 50,1,2,... . From
these we computeJ( j ) by insertingj ( j 11)5 1

2 Ji j J
i j in Eq.

~79!:

J~ j !52
1

2
1

1

2
A~314 j 214 j ! j 5

1

2
,
1

2
,
3

2
,
3

2
,
5

2
,
5

2
,...

52
1

2
1

1

2
A~614l 218l ! j 5 l 11/2 or ~214l 2! j 5 l 21/2.

~90!

The energy depends on both onj andnr and therefore there
is no accidental degeneracies, such as the SO~4! in 4D. For
other dimensionsd we computeJ by using a similar proce-
dure.

Although we have named this gauge the ‘‘H-atom gaug
~with quotes! because of the 1/r potential, evidently the sys
tem does not describe the usual H atom with the usual s
correction, since the spin dependence has a differentr de-
pendence than the usualL•S correction~here 1/r 2, whereas
the usual correction is 1/r 3!. Nevertheless, as seen below,
is possible to find a gauge that gives any interacting non
ativistic Hamiltonian, including the correct spin correctio
for the H atom. However, the SO(d,2) representation be
comes considerably more complicated and the quantum
dering issues for all the generators become technically d
cult to resolve. Our aim here was to show that for the ca
for which we could resolve the quantum ordering, the mo
does correspond to the same representation of SO(d,2) in all
gauges, and hence the corresponding physical systems
dual in this sense in the quantum theory.

VI. ARBITRARY INTERACTIONS AS GAUGE CHOICES

The action in a general gauge is given in Eq.~11!. We
will show that we can construct any interacting nonrelativ
tic system ind21 space dimensions, with Hamiltonian o
the form
4-9
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H5
p2

2
1V~r ,p,Si j !, ~91!

with any potential functionV, and SO(d21) spin 1
2 Si j Si j

5 1
8 (d21)(d22), simply by taking appropriate gaug

choices for time. We must emphasize that we expect
there are more gauge choices that would yield other form
Hamiltonians.

A. Free spinning particle in timelike gauge

First let us remind ourselves of the method by recons
ering the free massless particle of Eq.~29! in the timelike
gauge@x0(t)5t#. The same method will be applied to th
more general case. The following parametrization solves
of the constraints~17!:

M5~18,28,0,i !,

XM5S 1,
1

2
~r22t2!,t,r i D , ~92!

PM5~0,r•p2uput,upu,pi !, ~93!

c5F0,S r•c2
r•p

p2 p•c D ,0,c i2
pi

p2 p•c D1xXM1jPM,

~94!

wherex,j represents fermionic gauge freedom, and they
be chosen at convenience so as to obtain the simplest
sible action or SO(d,2) generators. This gauge is OSp(1/
dual to the H-atom gauge~64! used in the previous section
At t50, the duality transformation consists of choosingx
50 andj52(1/p2)p•c, plus a discrete Sp~2! transforma-
tion that interchangesXM,PM, and then renamingr↔p. By
inserting this gauge choice, withj5x50, into the action
~11! we obtain

S05E
0

T

dtFP•]tX1
i

2
c•]tc1010G

5E
0

T

dtF ṙ•p2upu1
i

2
c̃ i]tc̃

j G , ~95!

where

c̃ i5S d i j 2
pipj

p2 Dc j . ~96!

This action describes the free massless relativistic spinn
particle, with HamiltonianH5upu. Using Noether’s theorem
we see that the generator of rotations isJi j 5Li j 1S̃i j , where
S̃i j 51/2i (c̃ i c̃ j2c̃ j c̃ i). Only the spin components perpe
dicular to momentum can appear sincec̃•p50. This is as it
should be for a massless particle that has only helicity co
ponents. We keptd21 components inc i instead ofd22
components that would have been possible by taking
gaugec•p50. The reason is to maintain manifest rotati
symmetry SO(d21), and for this we paid the price of hav
10600
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ing the projectord i j 2pipj /p2. This projector appears in th
anticommutation relations$c̃ i ,c̃ j%5d i j 2pipj /p2. The gen-
erators of SO(d,2) are obtained by inserting the gaug
choice above into the general expression; obviously the
mions appear only in the formS̃i j .

B. Arbitrary potential

We now show that any interacting system correspond
another gauge choice, with a rather different topology
embedding time in (d12) spacetime. Consider the bas
XM5(X08,X0,XI) and PM5(P08,P0,PI) with metric h0808

5h00521 andh IJ5d IJ. Choose one gauge such that t
four functionsX08,X0,P08,P0 are expressed in terms of thre
functionsF,G,u

X085F cosu, X05F sin u, ~97!

P0852G sin u, P05G cosu. ~98!

Inserting this form in the constraints~17! gives

XM5F@cosu,sin u,nI #,

PM5G@2sin u,cosu,mI #, ~99!

cM5@c08,c0,c I #,

where

c085cosun•c2sin um•c, ~100!

c05sin un•c1cosum•c, ~101!

andnI ,mI areEuclideanunit vectors that are orthogonal. W
choose the following parametrization for these unit vect
in the basisI 5@18,i # where I 518 denotes the extra spac
dimension andi 51,2,...,(d21) labels ordinary space:

nI5F 1

rV
A22Hr•p, S 1

r
r i1

r•p

rV
pi D G , ~102!

mI5F S 11
p2

V D , 2A22H
1

V
pi G ,

where

H5
p2

2
1V, ~103!

and V(r ,p,c) is any potential energy function, giving an
Hamiltonian. We emphasize that this is the most general
lution of the constraints~17! that had taken the formnInI

5mImI51, andmInI50. Even though the solution is ex
pressed with a particular choice of coordinates, and an a
trary functionV, this does not involve a gauge choice. W
still have the freedom of choosing two bosonic gauge fu
tions and two fermionic gauge functions. These gau
choices will be made as needed in the discussion bel
4-10
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Since all the constraints are explicitly solved, theAi j ,Fi

terms drop out in the action~11! and we get

S05E
0

T

dtS ]tX
MPN1

i

2
cM]tc

N1010DhMN

5E
0

T

dtF GF~2]tu1mI]tn
I !1

i

2
c I]tc

I

2
i

2
~m•cn•c2n•cm•c!]tu

2
i

2
„n•c]t~n•c!1m•c]t~m•c!…

G
~104!

5E
0

T

dtS pi]tr
i1

i

2
c i]tc

i2H D .

A total derivative]t(2r•p) has been dropped in the la
line. To derive the last line we have used

mI]tn
I52

A22H

rV

3@r•p]t~ ln A22H !2]t~r•p!1p•]tr #,

~105!
x

s

10600
which follows from themI ,nI given above, and we hav
made the following choices of gauges: one bosonic ga
choice

GF52
rV

A22H
, ~106!

to insure that thep•]tr term is correctly normalized so tha
the momentump is indeed the canonical conjugate to th
coordinater , and another bosonic gauge choice for ‘‘time’’t

u~t!52E t

dt8@H1Q#
A22H

rV
, ~107!

whereQ is given below, so that the only term containing]tr
in the Lagrangian is of the formp•]tr , and the only term
containing]tc

i is of the form (i /2)c i]tc
i . With these gauge

choices we insure that the remaining term in the action gi
just the HamiltonianH. We find H in the last line of Eq.
~104! providedQ is chosen~i.e., u is chosen! as follows:
F12
i

2
~m•cn•c2n•cm•c!

A22H

rV GQ5r•p]t~ ln A22H !1
i

2
~m•cn•c2n•cm•c!

A22H

rV
H1

i

2
c18]tc

18

2
i

2
@n•c]t~n•c!1m•c]t~m•c!#. ~108!
qs.
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There still remains freedom to choose fermionic gauges
simplify this expression. For example, one may take

c185aVc•r1bp•c, ~109!

where a,b may be chosen as arbitrary functions. For e
ample, takinga50 andb521/A22H gives

c1852m•c52
p•c

A22H
, n•c5c•r /r , ~110!

and this simplifies the SO(d,2) generators~see below!. An-
other choice that simplifies generators isaV5A22H/r•p
and b5A22H/V. This simplifies alsoQ by giving (m
•cn•c2n•cm•c)50.

The last form of the action~104! is the first order formal-
ism, with the Hamiltonian given in Eq.~103!. This form
shows that the unconstrained variables (r i ,pi) andc i are the
standard canonical variables. The middle line of Eq.~104!
shows that the system in (d21) space dimensions ha
SO(d) dynamical symmetry. The first line shows that theH
to

-

atom has a dynamical symmetry SO(d,2) which mixes the
two timelike coordinates with thed space coordinates.

Note that timet is embedded in the (d12)-dimensional
spacetime in a rather complicated way as given through E
~97!, ~106!–~108!. In this section the (d12)-dimensional
XM space has the topology ofS2

% Sd. This and other topolo-
gies ~e.g., as discussed in other sections! are permitted as
solutions of the same set of constraints that followed fr
the action~11!. The detailed parametrization ofS2 and Sd

involves the potentialV as well as phase space~r ,p!, and
such details affect the choice of time through equatio
~107!, ~108!. Conversely, one may view the presence of t
potentialV as a result of the gauge choice for time. Thus,
topology of the (d12)-dimensional space, as well as th
geometry of its phase space ind11,d,d21 dimensions are
equivalent to the presence of forces that are represente
the potentialV. In some sense, embedding time as a curve
d12 dimensions, and then arranging the evolution of
system as a function of this curve, corresponds to a Ham
tonian with a potentialV. Thus the choice of the time curv
4-11
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is equivalent to the choice of the Hamiltonian. So a spec
V corresponds to a specific time curve. Changing the t
curve changes the interaction.

The generators of SO(d,2) may now be constructed fo
any interacting system with spin. All we need to do is
insert the gauge fixed form forXM,PM,cM at t50 ~or u
50! into 13. In the classical version, in which operator o
dering is not taken into consideration, we obtain for a
choice ofc18

J0805
2rV

A22H
1SIJnImJ ,

JIJ5
2rV

A22H
~nImJ2nJmI !1SIJ, ~111!

J08I5
2rV

A22H
mI2SIJnJ , J0I5

rV

A22H
nI2SIJmJ .

~112!

The Casimir operator is expected to be independent oV
since its value must be consistent with the gauge invar
treatment of the theory, as in Sec. II, whereV does not ap-
pear. First note that the orbital parts drop out, and it takes
form

C25
1

2
SIJSIJ1~SIJnImJ!

22~SIJnJ!
22~SIJmJ!

25
1

2
S̃IJS̃IJ .

~113!

It depends only on the components of spin that are perp
dicular to bothmI ,nI , given by S̃IJ5(1/2i )@c̃ I ,c̃J#, with
c̃ I5c I2nIn•c2mIm•c. In the classical theory fermion
square to zeroc̃•c̃50, thenC250, as expected from the
classical version Eq.~28!. Similarly, for the spinless theory
the classical Casimir operator vanishes for any potentialV.

When c18 is gauge fixed as in Eq.~109! the generators
take the form

J0805
2rV

A22H
1

1

2rV
~ar•p2A22H !Li j S

i j , ~114!

J08185
2rV

A22H
S 11

p2

V D1
1

2
~b2ar•p!Li j S

i j , ~115!

J08 i5rpi2~11r•pA22H !
Si j r j

r

2
r•p

rV
~11bA22H !Si j pj , ~116!

J0185r•p1
1

2
aA22HLi j S

i j , ~117!
10600
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J0i5
V

A22H
S r i1

r•p

V
pi D2a~p21V!Si j r j ~118!

1
1

V
@A22H2b~p21V!#Si j pj , ~119!

J18 i5
1

V
A22Hr•ppi2aVSi j r j2bSi j pj ~120!

1
V

A22H
S 11

p2

V D S r i1
r•p

V
pi D , ~121!

Ji j 5Li j 1Si j , ~122!

where

Li j 5r ipj2r jpi , Si j 5
1

2i
@c i ,c j #. ~123!

Note that if we takear•p2A22H50 and rV5constant,
we find that the generatorJ080 is simply related to the
Hamiltonian. This was the case for the Coulomb poten
and was used in the H-atom gauge for the choice of Ham
tonian. WhenV is not the Coulomb potential the relatio
between the generatorsJMN and the Hamiltonian is no
simple, and then the Hamiltonian is not easily diagonaliz
by algebraic means.

VII. ANTI –DE SITTER GAUGE

It is also possible to find gauges that correspond to p
ticles in various curved spacetimes. We will ignore the f
mions to keep it simple. As an example we consider the A
spacetime. Consider the basisXM5(X08,X18,Xm) with
h181852h080851, andhmn5Minkowski. The Latin letter
m denotes vector components in flat space, and we will
serve the Greek letterm for vector components in curve
space. Choose two gaugesX1851, P1850, and solve the two
constraintsX25X•P50, and letX08(x),Xm(x) be given in
terms ofxm in curved space

M5~08,18,m!,

XM5„6A11Xm
2 ~x!,1,Xm~x!…, ~124!

PM5S Xm~x!em
m~x!pm

6A11Xm
2 ~x!

,0,em
m~x!pmD . ~125!

Note thatP250 has not been imposed yet, and there still
one more bosonic gauge freedom. Hereem

m(x) is the inverse
of em

m(x) defined by

em
m~x!5]mXm~x!2Xm~x!

X~x!•]mX~x!

11Xm
2 ~x!

. ~126!
4-12
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It is designed just such thatpm has the meaning of canonica
momentum when we insert this gauge in the action

S05E
0

T

dtS ]tX
MPNhMN2

1

2
A22P•P2020D

5E
0

T

dtS ẋm
•pm2

1

2
A22Gmn~x!pmpnD . ~127!

The remaining part of the action imposes the constraintP2

50,

Gmn~x!pmpn50, ~128!

where the inverse metricGmn(x) follows from Eq.~125!

Gmn5em
men

nS hmn2
XnXm

11X2D . ~129!

Taking its inverse one findsGmn

Gmn5em
men

n~hnm1XnXm!5]mX•]nX2
~X•]mX!~X•]nX!

11X2 .

~130!

It turns out that this coincides with the metric obtained fro
the two conditions X250 and ds25dX•dX
5dxmdxnGmn(x), using any parametrization fo
X08(x),Xm(x), in the gaugeX1851:

Gmn~x!5]mXm~x!]nXn~x!hmn2]mX08~x!]nX08~x!,
~131!

215Xm~x!Xn~x!hmn2X08~x!X08~x!. ~132!

The last form~131! makes it evident that this is the Ad
metric in (d21,1) dimensions. To construct it explicitly, on
may choose any convenient function forXm(x), find the cor-
respondingX08(x) and insert it into Eq.~131!. See below for
some examples.
10600
In the quantum theory the constraint is imposed on sta
uf&. It is useful to consider the fieldf(x)5^xuf&. The con-
straint equation becomes a differential equation on this fie
The operators involved in the constraint must be ordered
natural ordering corresponds to the Laplacian condition

1

A2G
]m@A2GGmn~x!]nf~x!#50. ~133!

The effective field theory that gives this equation is

Seff5
1

2 E ddxA2GGmn]mf]nf. ~134!

We have seen that the OSp(1/2) gauge covariant ac
~11! is capable of describing curved spacetime as well. T
underlying reason for this is the ability to choose time a
gauge in nonunique ways because we have more than
timelike coordinate in thed12 dimensional spacetime. Fo
each choice of time embedded ind12 dimensions the cor-
responding canonical Hamiltonian looks different. In partic
lar, the topology and geometry of the embedding ind12
dimensions is different than the previous cases. Neverthe
these systems are OSp(1/2) gauge equivalent, or dual to
other, since they all correspond to the same action and s
representation of SO(d,2).

A. Case No. 1 ford52

Consider the following AdS parametrization ford52,
which solves all the constraintsX25P25X•P5X•c
5P•c50 ~including fermions! and gives an explicit metric
Here «5sgn(p)561 is present to insure that the Hami
tonian is positive~see below!. We can still choose two fer-
mionic gauges, such asj5x50 which makecM trivial,
however, we will not choose a fermionic gauge yet and
that at the end, gauge invariant quantities, such as the Ha
tonian and the conformal generators, do not depend on th
fermions at the classical level~but they do at the quantum
level as we will see!:
M5@08,18,0,1#,

XM5@« coshx cos t,1,« coshx sin t,sinhx#, ~135!

PM5F «p sinh x cos t «p sinh x sin t

,0, ,p coshx

2p sin t 1p cos t
G ~136!

cM5F «j cos t «j sin t

j coshx2x sinh x

1j sinh x sin t, ,2j sinh x cos t,x

2x coshx sin t 1x coshx cos t

G . ~137!
4-13
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We need to evaluate the derivatives

dXM5F 2« dt coshx sin t « dt coshx cos t

,0, ,dx coshx

1«p dx sinh x cos t 1« dx sinh x sin t
G , ~138!

dcMu t505F j dt sinh x j dx sinh x «j dt2j dx coshx

, , ,0

2x dt coshx 2x dx coshx 1x dx sinh x
G

1F dj coshx 2dj sinh x

« dj, , ,dx

2dx sinh x 1dx coshx
G . ~139!
us
ic
n

f
uge
en
ing

he

ry-

y
,2)

n-

r

The metric in (t,x) space is obtained by computing

ds25~dX!252dt2 cosh2 x1~dx!2, ~140!

c•dc5~jx2xj!~dt « coshx2dx!. ~141!

Although we have useddcMu t50 in this computation for
convenience, the result is valid for anyt. This form also
gives the Lagrangian in the second order form

L5
1

2A22~]tX!21
i

2
c•]tc

5
1

2A22@2~]tt !
2 cosh2 x1~]tx!2#

1s~2]tt« coshx1]tx!, ~142!

where

s5
1

2i
~jx2xj!. ~143!

Note that there is no kinetic term for the fermionsj,x hence
they are not dynamical, and we will see that they are j
gauge freedom. Alternatively, after making the gauge cho
t(t)5t, the Lagrangian in the first order formalism is give
directly by Eq.~11!

L5]tX•P1
i

2
c•]tc1010

5 ẋ~p1s!2H, ~144!

where

H5~p1s!« coshx5up1sucoshx. ~145!
10600
t
e

The true canonical momentum isP5p1s, and to insure
positivity of the Hamiltonian we choose« to be

«5sgn~p1s!. ~146!

We see thats is completely absorbed into the definition o
the canonical momentum and it disappeared from the ga
invariant Hamiltonian. This means that we could have tak
s50 from the beginning as a gauge choice, thus preserv
the definition of the canonical momentum asP5p.

The SO~2,2! generators are evaluated by inserting t
gauge choice into the general expression att5t50. If s is
allowed from the beginning we find that it appears eve
where in the combinationp1s. So, we sets50 as a gauge
choice. The result is

J0805upucoshx, J081852upusinh x, J0815upu, ~147!

J1815p coshx, J0152p sinh x, J1805p. ~148!

These satisfy the SO~2,2! algebra at the classical level. B
taking linear combinations we may construct the SO(2
5SL(2,R)L ^ SL(2,R)R generatorsJ0,1,2

L,R in the following
form:

J0
L6J1

L5
1

2
~p2upu!e7x, J2

L5
1

2
~p2upu!, ~149!

J0
R6J1

R5
1

2
~p1upu!e7x, J2

R5
1

2
~p1upu!. ~150!

We see that either the left moving or the right moving ge
erators must vanish in momentum space~but not inx space
or other quantum space!. The quadratic Casimir operators fo
both SL(2,R)L,R vanish at the classical level:

C2
L,R5~J0

L,R1J1
L,R!~J0

L,R2J1
L,R!2~J2

L,R!250. ~151!
4-14
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B. Quantum ordering case No. 1

We now need to order the operators at the quantum le
and make sure that the Casimir operator is consistent
the gauge invariance requirements at the quantum level.
call that for the purely bosonic system Sp~2! gauge invari-
ance we must haveC2„SO(d,2)…512d2/4 and for the
OSp(1/2) gauge invariance we must haveC2„SO(d,2)…5
2 1

8 (d12)(d21). For our cased52 we must have
C2„SO(2,2)…50 for the purely bosonic andC2„SO(2,2)…5
21/2 for the fermionic cases. We see that the fermions m
play a role.

Let us first deal with the purely bosonic case. For eith
the left or right movers we need Hermitian generators. Th
is ambiguity in the quantum ordering as illustrated by t
following possible Hermitian quantum ordering of the cla
sical exp:

ex/2pex/2, p1/2exp1/2, plex/2p122lex/2pl,..., ~152!

and similarly fore2xp ordering. If one reorders these to th
first form we find

exp→plex/2p122lex/2pl5ex/2S p21
1

4D l

p122lex/2,

~153!

e2xp→pl8e2x/2p122l8e2x/2pl8

5e2x/2S p21
1

4D l8
p122l8e2x/2. ~154!

We may also takel,l8 different from each other. In fact we
find that as long as

l1l851 ~155!

the quantum ordered generators close correctly and they
the Casimir operatorC250. Thus, let us takel5 1

2 1a and
l85 1

2 2a. Then we have

J06J15e7x/2S p21
1

4D ~1/2!7a

p62ae7x/2, J25p

~156!

with commutation rules

@J01J1 ,J02J1#5e2x/2S p21
1

4Dex/22ex/2S p21
1

4De2x/2

5S p2
i

2D 2

2S p1
i

2D 2

522ip

522iJ2 ~157!

and Casimir operator
10600
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C„SL~2,R!…5
1

2
~J01J1!~J02J1!

1
1

2
~J02J1!~J01J1!2~J2!2

5
1

2
e2x/2S p21

1

4Dex/2

1
1

2
ex/2S p21

1

4De2x/22p2

5
1

2 S p2
i

2D 2

1
1

8
1

1

2 S p1
i

2D 2

1
1

8
2p2

50. ~158!

In particular the valuesa50,1/2 yield interesting looking
generators:

a50:J06J15e7x/2S p21
1

4D 1/2

e7x/2, J25p, ~159!

a51/2:H J01J15e2x/2pe2x/2, J25p,

J02J15ex/2S p1
1

4pDex/2.
~160!

There is no way to decide which of these versions one sho
use for our problem.

Next we return to the spinning case. The following mod
fication of the purely bosonic generators give the desi
result for thea50,1/2 cases:

a50:J06J15e7x/2F S p21
1

4D 1/2

6gGe7x/2, J25p,

~161!

a51/2:H J01J15e2x/2pe2x/2, J25p1g,

J02J15ex/2S p1
1

4p
12g Dex/2.

~162!

Then the SL(2,R) algebra closes correctly and the Casim
operator is

C252g2. ~163!

The choiceg251/2 matches the spinning case.
It may be of interest to note the following more gene

construction of SL(2,R). Instead of the form parametrize
by a we can use a more general functionF(p)

J06J15e7x/2F S p21
1

4D 1/2GF61e7x/2, J25p ~164!

with Casimir operatorC250. Some choices ofF(p) are in-
teresting. For example, takingF5(p21 1

4 )21/2 yields
4-15
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J01J15e2x, J02J15ex/2S p21
1

4Dex/2, J25p.

~165!

It is interesting to note that we can find a gauge choice
XM,PM that yields these SO~2,2! generators att50, namely,
in Eqs. ~135!–~137! replace everywhere coshx by c(x,p)
5 (1/2p)(p2ex1e2x), and sinhx by s(x,p)5(1/2p)(p2ex

1e2x) and then proceed the same way. Sincec2(x,p)
2s2(x,p)51, the computation produces similar expressio
ending with the form~165!. Finally, this may be modified
with a parameterg

J01J15e2x, J02J15ex/2S p21
1

4
2g2Dex/2, J25p

~166!

to yield the Casimir operatorC252g2.

C. Case No. 2 ford52

Consider the following AdS parametrization ford52,
which solves all the constraints. By using similar methods
case No. 1 we compute the metric, action, and SO~2,2! gen-
erators:

M5@08,18,0,1#,

XM5@2cscx cost,1,2cscx sin t,2cot x#, ~167!

PM5F upusin x sin t 2upusin x cos t

,0,

1p cosx cos t, 1p cosx sin t

,pG ,

~168!

cM5jXM1x
PM

p
. ~169!

The metric is

ds25~dX!25
1

sin2 x
~2dt21dx2!, ~170!

c•dc5s~2« dt1dx!, ~171!

wheres5(1/2i )(jx2xj). The quantitys is absorbed into
the definition of true canonical momentum and it disappe
Thus we take its50 from the beginning, and compute th
Lagrangian

L5]tX•P1
i

2
c•]tc1010
10600
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,
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s.

5 ẋp2H with H5upu. ~172!

The SO~2,2! generators are

J0805upu, J18085p cosx, J1085p sin x, ~173!

J1815p, J105upucosx, J0185upusinx.
~174!

These satisfy the SO~2,2! algebra at the classical level. Th
SO(2,2)5SL(2,R)L ^ SL(2,R)R generatorsJ0,1,2

L,R are

J0
R5

1

2
~ upu1p!, J1

R6 iJ2
R5

1

2
~ upu1p!e6 ix, ~175!

J0
L5

1

2
~ upu2p!, J1

L6 iJ2
L5

1

2
~ upu2p!e6 ix. ~176!

We see that either the left moving or the right moving ge
erators must vanish in momentum space~but not inx space
or other quantum space!. The quadratic Casimir for both
SL(2,R)L,R vanishes at the classical level

C2
L,R5~J0

L,R!22~Ji
L,R1 iJ2

L,R!~J1
L,R2 iJ2

L,R!50. ~177!

D. Quantum ordering case No. 2

We now need to order the operators at the quantum le
and make sure that the Casimir operator is consistent w
the gauge invariance requirements at the quantum le
For the bosonic case we must haveC2„SO(d,2)…512d2/
450 and with fermions we must haveC2„SO(d,2)…
52 1

8 (d12)(d21)521/2. Let us first deal with the purely
bosonic case. For either the left or right movers we ne
Hermitian generatorsJ1,2,0

L,R , which implies J1
L,R2 iJ2

L,R

5(J1
L,R1 iJ2

L,R)†. The following ordering of operators is
Hermitian for any real numbera:

J16 iJ25e6 ix/2S p22
1

4D ~1/2!7a

p62ae6 ix/2, J05p.

~178!

The commutation rules close for anya

@J11 iJ2 ,J12 iJ2#5eix/2S p22
1

4De2 ix/2

2e2 ix/2S p22
1

4Deix/2

5S p2
1

2D 2

2S p1
1

2D 2

522p

522J0 ~179!

and the Casimir operator is zero:
4-16
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C„SL~2,R!…5~J0!22
1

2
~J11 iJ2!~J12 iJ2!

2
1

2
~J12 iJ2!~J11 iJ2!

5p22
1

2
eix/2S p22

1

4De2 ix/2

2
1

2
e2 ix/2S p22

1

4Deix/2

5p22
1

2 S p2
1

2D 2

1
1

8

2
1

2 S p1
1

2D 2

1
1

8

50. ~180!

In particular the valuea50 yields the generators

a50:J16 iJ25e6 ix/2S p22
1

4D 1/2

e6 ix/2, J05p.

~181!

There is no way to decide which of thesea versions one
should use for our problem.

Next we return to the spinning case. The following mo
fication of the purely bosonic generators give the desi
result for thea50 case

a50:J16 iJ25e6 ix/2F S p22
1

4D 1/2

6gGe6 ix/2, J05p.

~182!
10600
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Then the SL(2,R) algebra closes correctly and the Casim
operator is

C252g2. ~183!

The choiceg251/2 matches the spinning case.
In addition, there are also other orderings, such as

J11 iJ25~p1a!eix5~p1a11!eix, ~184!

J12 iJ25e2 ix~p1a* !5e2 ix~p1a* 11!, ~185!

J05p1
1

2
~11a1a* !, ~186!

wherea is a complex number to be determined by fixing t
Casimir operator. The algebra closes and the Casimir op
tor is

C25
1

4
~211a21a* 222uau2!. ~187!

We may choose many possible values fora @e.g., a
5(cotu1i)/A8# so thatC2521/2.

E. General d

As an example for generald consider the following
choice of AdS gauge consistent with the general form
~124!, parametrized in terms ofxm5(t,r ) andpm5(H,p)
M5@08,18,0,i #,

XM5F r 211

2r
cos t,1,

r 211

2r
sin t,

r 221

2r 2 r G , ~188!

PM5F r 221

2r
r•p cos t

r 221

2r
r•p sin t

2r 2

r 221 S p2
r

r 2 r•pD
,0, ,

2
2rH

r 211
sin t 1

2rH

r 211
cos t 1

r 211

2r 2 r•pr
G . ~189!
The metricGmn is given by

ds25dX•dX52S r 211

2r D 2

dt21
1

r 2 dr21S r 221

2r D 2

~dV!2.

~190!
The classical HamiltonianH5p0 follows from P2

5Gmnpmpn50:

H5
r 211

2
Apr

21S 2

r 221D 2 1

2
Li j Li j . ~191!
4-17
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The SO(d,2) generatorsLMN5XMPN2XNPM may now be
constructed by inserting the gauge choice att50. The form
is complicated and operator quantum ordering is difficult
this gauge. Therefore we will not go into details.

VIII. CONFORMAL GAUGE

The particle gauge in Eq.~29! may be modified by an
overall multiplicative functionF(x)

M5@18,28,m#,

XM5@1,x2/2,xm#F~x!, ~192!

PM5@0,x•p,pm#
1

F~x!
. ~193!

The P250 constraint is yet to be imposed. The methods
similar to those used for the AdS gauge. The metric t
corresponds to this gauge choice is

ds25dXMdXM5F2dxmdxm . ~194!

ThereforeF2 plays the role of the conformal factor for a
arbitrary conformal metric ind dimensions:

Gmn5F2~x!hmn . ~195!

The momentum constraint takes the form

P25Gmnpmpn5
hmn

F2~x!
pmpn50. ~196!

This is seen also by inserting the gauge into the action~11!,
which becomes~in the absence of fermions!

S5E dtS ]tx
mpm2

1

2
A22

hmn

F2~x!
pmpnD . ~197!

The quantum ordered version of the constraint is applied
statesuf& or f(x)5^xuf&. A good guess is that the quantu
ordering should correspond to the Laplacian for the me
Gmn

1

A2G
]m@A2GGmn]nf~x!#5

1

Fd ]m@Fd22hmn]nf~x!#50.

~198!

The effective field theory that gives this equation is@for the
spinless Sp~2! gauge theory#

Seff5E ddx Fd22~x!]mf̄]nfhmn. ~199!

This is modified to a Dirac equation for the theory with sp
@OSp(1/2) gauge theory#
10600
e
t

n

c

Seff5E ddx Fd21~x!C̄gm]nChmn . ~200!

The SO(d,2) generatorsJMN5XMPN2XNPM1SMN are
unaltered at the classical level since theF(x) factor cancels.
However, at the quantum level, they need to be quan
ordered so that they are Hermitian according to the dot pr
uct in curved backgrounds

^fuf&5
1

2 E dd21x Fd22~f̄ i ]0f2 i ]0f̄f!, ~201!

^CuC&5E dd21x Fd21C̄g0C. ~202!

After the quantum ordering one should check the Casi
operatorC2„SO(d,2)… and verify that it is consistent with Eq
~28! for the fermionic theory, and withC2512d2/4 for the
bosonic theory, as follows.

To find the correct order of operators consider the con
tion ^J1828fuf&5^fuJ1828f& or ^J1828CuC&
5^CuJ1828C&. We find that we must have

J18285
1

2
~x•p1p•x!1 is01

i

2
~d22!x•] ln F~x!.

~203!

The first term1
2 (x•p1p•x) is the Hermitian ordering for a

dot product with naive integration measure. The quant
correctionis0 , was already present in flat space due to h
miticity with a more involved dot product@s051 for f, and
s051/2 for C; see@1# and Eq.~33!#. The last term is re-
quired in the conformal curved backgroundF with the dot
products given above. The proof of Hermiticity uses the co
servation of the currentJm5( i /2)Fd22(f̄]mf2]mf̄f) or

Fd21C̄gmC, i.e., ]mJm50, that follows from the equation
of motion ~i.e., constraint!. This expression forJ1828 may
be rewritten in the form

J18285
1

2
~x• p̃1 p̃•x!1 is0 , ~204!

wherep̃m is the following order of operators:

p̃m5F ~1/2!~d22!~x!pmF2~1/2!~d22!~x!

5pm1 i ~d22!x•] ln F~x!. ~205!

We find that the rest of the generatorsJMN are also Hermit-
ian provided we use the result for flat space~33! and replace
everywherepm→ p̃m. The generators in curved conform
space are then given in terms of those in flat space by
prescription

Jconf
MN~x,p̃!5F ~1/2!~d22!~x!Jflat

MN~x,p!F2~1/2!~d22!~x!.
~206!
4-18
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Then the Casimir operator becomes

C2„SO~d,2!…conf

5F ~1/2!~d22!~x!C2„SO~d,2!…flatF
2~1/2!~d22!~x!

5C2„SO~d,2!…flat , ~207!

where the last step holds sinceC2„SO(d,2)…flat is indepen-
dent ofx or p @see Eq.~35!#. The same is true for all highe
Casimir operators because the orbital partx,p drops out@19#.
This proves again that the quantum theory in the confor
gauge has the same quantum Hilbert space as all o
gauges.

Similarly, one may go through all the previous gaug
that are closely associated with the particle gauge. Th
include the light cone gauge~36! and the timelike gauge
~93!. It would be interesting to study the modifications in t
presence of the conformal factorF for these cases since th
generates new representations of SO(d,2) for each choice of
F.

IX. OSp„n/2… GAUGE THEORY AND HIGHER SPINS

We can generalize the OSp(1/2) theory by adding m
copies of the fermionsca

M with a51,2,...,n. This provides
the possibility of describing particles and other systems w
higher spins. Thus, consider the fundamental representa
F I

M5(ca
M ,Xi

M) of OSp(n/2), with X1
M5XM and X2

M5PM

as before. Introduce the gauge fields

AIJ5S B@ab# Fai

« i j F
jb Ai j D , A,B5Bose, F5Fermi,

~208!

whereB@ab# is the antisymmetric SO(n) gauge field andAi j

is the symmetric Sp~2! gauge field, as before. There are al
2n fermionic gauge fieldsFai. The local OSp~n/2! gauge
invariant Lagrangian is

S05
1

2 E
0

T

dt~DtF I
M !gIJFJ

NhMN , gIJ:OSp metric

5E
0

T

dtF X2•]tX11
i

2
ca•]tca2

1

2
Ai j Xi•Xj

1 iF iaXi•ca2
1

2
Babca•cb

G .

~209!

As before, the constraints have nontrivial solutions provid
there are two times, and the global symmetry is SO(d,2).

Covariant quantization can be carried out as before
order to have OSp(n/2) singlets all of its Casimir operator
must vanish. Then we find that the quadratic Casimir ope
tor of SO(d,2) must have the special value

C2„SO~d,2!…5
1

8
~n22!~d12!~d1n22!. ~210!

This is consistent with then50 case of Refs.@1,2# and the
n51 case treated in this paper.
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The SO(d21,1) Lorentz covariant particle gauge is ea
to analyze:

M5~18,28,m!,

XM5~1,x2/2,xm!, ~211!

PM5~0,x•p,pm!, p250, ~212!

ca
M5~0,x•ca ,ca

m!, p•ca505c [a•cb] . ~213!

The remaining constraints and gauge symmetries are thos
worldline supergravity withn supersymmetries. These we
studied in Ref.@20#. From the analysis in Refs.@20# and @6#
we know that this system describes massless spinning
ticles. The effective fields that represent them are the a
logues of gauge fields, i.e., forms that couple top-branes
~with p5n/221!, and their fermionic generalizations

Am1m2¯mn/2
~x!, n5even, ~214!

Cam1m2¯m~n21!/2
~x!, n5odd. ~215!

When written in this form, the constraints generate the
propriate field equations that remove the ghosts and give
correct counting of degrees of freedom ind dimensions.

The SO(d,2) generators in the particle gauge have t
same form as Eq.~33!, but with

smn5
1

2i
~ca

mca
n2ca

nca
m!,

1

2
smnsmn5

n

8
d~d1n22!,

~216!

in the gauge invariant sector of SO(n) singlets
(c [a•cb]50). The quadratic Casimir operator is given
Eq. ~35!:

C252
d2

4
1s0

21
1

2
smnsmn . ~217!

So, now we need

s05S 12
n

2D ~218!

in order to agree with the requirements that followed fro
OSp(n/2) gauge invariance given in Eq.~210!. This value of
s0 gives the following dimensions for the field
Am1m2¯mn/2

(x), Cam1m2¯m(n21)/2
(x):

iJ1828~A or C!5d/22s05
1

2
~d1n22!. ~219!

This agrees with then50,1 cases which we have alread
studied explicitly in several forms.
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