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Nexus solitons in the center vortex picture of QCD
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It is very plausible that confinement in QCD comes from linking of Wilson loops to finite-thickness vortices
with magnetic fluxes corresponding to the center of the gauge group. The vortices are solitons of a gauge-
invariant QCD action representing the generation of gluon mass. There are a number of other solitonic states
of this action. We discuss here what we call nexus solitons, in which for gauge groi) Sulf toN vortices
meet at a center, or nexus, provided that the total flux of the vortices adds tdraetbN). There are
fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as composites of Abelian em-
bedded monopoles, whose Dirac strings are cancelled by the flux condition and fully non-Abelian, resembling
a deformed sphaleron. Analytic solutions are available for the quasi-Abelian case, and we discuss variational
estimates of the action of the fully non-Abelian nexus solitons i(ZU The non-Abelian nexuses carry
Chern-Simons numbepr topological charge in four dimensiond heir presence does not change the funda-
mentals of confinement in the center-vortex picture, but they may lead to a modified picture of the QCD
vacuum.[S0556-282(198)01422-7

PACS numbds): 12.38.Aw, 12.38.Lg, 14.76.e

[. INTRODUCTION and will be important for us in constructing the objects con-
sidered here, which we call nexus solitons. A nexus soliton

The center-vortex picture of confinement in QCD washas several thick vorticgsip to N of them for gauge group
proposed long agf1l-5|. In essence it identifies the QCD SU(N)] which meet at a central region which is essentially

vacuum as a condensate of finite-thickness vortices of cd2f magnetic-monopole character, with exponentially falling
dimension 2 ind=3,4; these vorticesclosed loops ind field strengths as one moves out from the center. In order

—3, closed surfaces id=4) have a finite transverse exten- that this central reg_ion have f_inite action, the magnetic fluxes
L . of the several vortices meeting at the center should add to
sion measured_ by the inverse g'“?” mass and possess m ro. If not, the monopole region has fields which diverge as
netic fluxes which are expressed via elements of the center of-2 4; 1he origin, similar to the Wu-Yang monopole or the
the gauge group. broken-symmetry monopoles found by Corrigeinal. long
In more recent times there has been a resurgence of woggo[16). Moreover, if the fluxes do not add to zero there can
on the center-vortex picture, primarily on the latt{@-10.  pelong-rangemonopole fields behaving as 2 at large dis-
This has resulted in spectacular confirmation of the centerances, as well as naked Dirac strings. These last two phe-
vortex picture of confinement, with the SU(2) string tensionnomena are due to the termination of Dirac strings at the
being fully captured by the vortex-dominance approximationmonopole, in the case where the fluxes do not add to zero
of replacing the exact Wilson loop value by-§", whereN  (modN).
is the total linking number of vortices linked to the loop. In previous solitons of the center-vortex pictyrd this
The center vortices resemble Dirac strings in carryingunwanted behavior is simply avoided, in part by having the
quantized magnetic flux confined to a closed loop or surfacdpop or surface representing the vortex be closed, and in part
but differ radically from them in that the center-vortex flux is by cancellation of Dirac-string singularities between a trans-
spread out over a finite transverse extent. If the flux werg/ersely extended part of the solution and a naked Dirac
instead fully localizedto a delta function in the continuum, String. (In fact, the center vortex is simply an Abelian
or to a single lattice spacing on the latti¢eo things would ~ Nielsen-Olesen vortex embedded in the gauge group but
go wrong: First, the action of the vortices would be quadrati-With infinite Higgs mass, or otherwise described it is a soli-
cally infinite, either in the continuurl] or on the lattic§7].  ton of an effective low-energy QCD action consisting of the
Second, these thin vortices would contribute nothing whatusual G? term plus a gauged nonlinear sigma model term,
soever to the adjoint “string tension{more properly, a pe- 9iving a gauge-invariant mass to the gluoAny boundaries
rimeter term in the potential resembling a linearly rising po-of the loop or surface gives rise, as is well-known, to objects
tential which breaks leaving only a Coulomb term. In fact, Mathematically identical to the original Dirac monopole plus
lattice simulations[11,12 and continuum theory13—15 associated string. In addition to these closed vortices, the
show that the thick vortices of the center-vortex picture docenter-vortex picture also has a spherically symmetric static
lead to a breakable “string” potential for the adjoint repre- Solution, resembling a sphaleron but with no symmetry
sentation, directly attributable to the thickness of the vortice®reaking[17]. It has no Dirac strings in the usual spherical
which can only partially overlap the Wilson loop. gauge presentatioh.
Avoidance of Dirac-string singularities is a key point in
constructing solitons in the continuum center-vortex picture,
IAs with the Wu-Yang monopole it can be transformed into an
Abelian gauge where it does have a Dirac string, but the required
*Email address: Cornwall@physics.ucla.edu gauge transformation is singular.
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The existence of nexus solitons was alluded to long agavith a quick review of the elements of the center-vortex
[1,18], but to the author's knowledge these have not beemicture, including the effective action.
explicitly constructed. We patrtially fill that gap here, both for
SU(2) and SU(3). Incertain cases, which we call quasi- Il. THE CENTER-VORTEX PICTURE
Abelian, we can give explicit analytic results and in other
cases, which are fully non-Abelian, we restrict ourselves to For convenience we will from now on, except when oth-
variational estimates. These nexus solitons go considerabffwise noted, work in three dimensions, since all the solitons
beyond the original vortex solutions, which as mentionedWe find are static. It was argued long ad¥] that the low-
above are really embedded Abelian Nielsen-Olesen vortice€nergy effective energy functionglof QCD consisted of the
the new solitons really cannot be described by Abelian emusual three-dimensional action plus a gauged nonlinear
beddings. The non-Abelian solution which we discuss is essigma model term, representing the generation of a gluon
sentially a QCD sphalerofL7] from which several fat vor- mass. In turn, the gluon mass appef8] because of the
tices emerge. It carries topological chafge Chern-Simons  fundamental infrared instability of QCD uh= 3,4, where the
(CS number ind=3]. It can be thought of as a sphaleron- Schwinger-Dyson equations only have nonsingular solutions
vortex Composite, and in SU(Z) is energetica”y Stab]eWhen a mass of sufficient size is generated. The ene?gy is
against decay into a sphaleron and a vortex. In SU(3) the
guasi-Abelian nexus with three unit-flux vortices is stable 1 a1 ) 5 )
against decay into a QCD sphaleron on energetic grounds; E= _zf d°x TTr[Gij(X)] +MATrDU%. (D)
this stability is not likely for the SU(3) non-Abelian nexus, 9
which is much heavier.

It is worth noting[19] that even the original Abelian cen- This action is usable only at low energies, because at high

. - - - energies we must account for the vanish[2,21] of the
ter vortices can carry topological charge, whichdi 3 is mass, somewhat similar #12(q) ~(G2)/q? where(G?) is

associated with the linking or self-linking of vorticés d the condensate expectation vafiehe mass must vanish at
=4, this is expressed as an intersection number of sur)facez P

This topological charge is not necessarily integral, but can b'9e momentum if we are to find solutions to the

) . . . chwinger-Dyson equatiorf20].
uantized in units of N for gauge group SW). This need ; . .
got be a contradiction with %eri%di?:ity gquLiJrf)the 9 angle The fundamental Abelian-vortex solution of the equations

or with integral quantization of the Chern-Simons level. of motion coming from the equations of motion of &) is

Aside from questions of dependence of QCD dynamics,
which we will not discuss here, of what good are these vor- Ai(%;3)=(27Q, /i) €10, § dz{Ap(X—2)— Ag(x—2)}.
tices? The answer is, for confinement at least, that they are
not good for much of anything; they do ndt] change the 2

basic picture of confinement for the fundamental representa- . . .
tion which arises when one uses center vortices withouti€ré the integral is over a closed loop of coordinates

nexus solitons. An interesting question which we are not in &M (30) is the massivémasslessfree propagator in three
position to answer yet is whether nexus solitons, which ar&imensions, an®@; is anNXNSU(N) matrix in the Cartan
capable in principle of internetting the center-vortex vacuunsubalgebra. Itis normalized so that the long-rangg) (part

in a very complicated wafjsee Fig. 4b) below], actually do  ©f the Wilson loop integraP exgd$dxA(X)] for a Wilson

so. Put another way, the question is whether the change #90P linked once to the vortex is in the center of the group.
entropy arising from this internetting is in a sense and of g-or the fundamental-representation Wilson loop, this means
size which can overcome the positive action needed for the

nexus monopole regions. If this happens the vacuum conden- exp(2miQ,) =exp(2mwiJ/N). €

sate will look quite different from the usu#@haive center-

vortex condensate, and possibly could be detected in latticA convenient set of matriceQ; is formed from a set of

calculations. fundamental Cartan matric€y; :
Although nothing definite is known yet, we believe that
nexusegprovided that they actually condenseill play an Qi=diag I/N, ..., IN,—1+1/N,IN, ..., IN), (4)

important role through their coupling to fermions in under-
standing chiral symmetry breaking in QCD aBd-L viola-

tion in h_lgh-temperature glectr_oweak theor_y, because thezWe use the usual anti-Hermitean gauge potential matrix
non-Abelian nexuses provide sites for localized anomalou \3/21)A%(x), with TrAPAP=(1/2)8,,: Di=di+ A . The matrix
processes. Similar sites are provided by reconnection of ce U is a unitary matrix undergoing left transformations when the
ter vortices, where one will need to understand the role o

o . auge potential is gauge transformed.
1IN quantization of such reconnection processes. It would sye will not actually account for this high-energy decrease in

certainly be interesting to demonstrate the existence, usingass with the consequence that the second term in the &jien
suitable lattice boundary conditions, of nexuses on the latpgarithmically divergent at short distances, for the vortices. Of
tice. We will discuss in the concluding section what could becourse, if the mass vanishes quadratically at short distances in ac-
learned about nexus solitons and other elements of theiality, this is a spurious divergence. In fact, the nexuses themselves
center-vortex picture from lattice calculations. We begindo not suffer from this logarithmic divergence.
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FIG. 1. An isolated SU(2) nexugircle) and unit-flux vortices
(lines), with field strengths reversing at the nexus.

where —1+1/N is in theith position. OnlyN—1 of these
matrices are linearly independent, because the sum of all of
them is zero. Then the matrice;+Q;+Q,+---, with
i#j#k#---, obey Eq.(3) if there areJ terms in the sum.
For 1<=J<[N/2], where the square brackets indicate the in-

tegral _part, we can choose in any convenient way one repre- FIG. 2. An isolated SU(3) nexus-vortex combination.
sentative 0fQ; from such sums, and for greater valued\bf

we use instead the matric€s,;=Q_;, representing anti- whose fluxes add to zero at the nexus core. However, the

vortices of flux—J. For future use we record U(1) nexuses are marginally stable to decay into simple
loops, which is not so for the quasi-Abelian nexuses.
Q§:J(N_J) . (5) . It yvill pe evid.ent that.the essentially Abelian nexuses we
N find in this section are in some sense composites of mono-

) ) ] ] polelike excitations. However, it will turn out to be impos-
Confinement now arises ih=3,4[1] by averaging over the gjpje to separate the nexuses into their fundamental parts,
fluctuating phase factors, E(g), which arise in evaluating sjnce each part is a monopole with a thick vortex carrying
the expectation value of the Wilson loop. For SU(2) there ishe flux into the central monopole region, but a naked Dirac
only one nontrivial vortex, and it is self-conjugate; for sying is needed to carry the flux out. In a nexus all these

SU(3) there is one vortex and its antivortex. naked Dirac strings cancel because of the condition that the
total flux is zero; they do not cancel for the pieces from
[1. NEXUS SOLITONS which the nexus is made.

We are looking for solutions to the equations of motion
coming from Eq(1) which have several thick vortices meet- A. U(1) nexuses?

ing at a monopole-like center, or nexus, with finite action We ask whether there is a nexus in a U(l) gauge group,
and nonsingular field strengths. For SU(2) the only nonsuch as electromagnetism, but with a mass term; the physical
trivial case is when twd=1 vortices meet, as in Fig. 1. By analogue would be a superconductor. It should be apparent
convention we choose ingoing arrows, representing vortehat all the vortex fluxes must add to zero at the nexus, or
magnetic fields directed towdrdhe nexus, to describe @ else there will be monopole fields which are either singular
nexus, and the opposite direction corresponds to an antigt short distances or are long-range or both. However, for
exus. For SU(3) there is only one additional nontrivial future use it is worth detailing the explicit forms of the dif-
nexus, as given in Fig. 2, in which thrée=1 vortices meet. ficulties encountered with nonzero total flux. We first give

Actually, these figures are slightly misleading, since ulti-the well-known form of the solutio2) for an Abelian cen-
mately the vortex strings must close. The true situationter vortex lying along thez axis, in standard cylindrical-
therefore, is that of Figs. For SU(2)] and 4[for SU(3)]  coordinate notation:
and generalizations thereof, which have as many nexuses as o L
anti-nexuses. We note a device for constructing pictures of Jn
nexuses: the SU(3) graphs of Figs. 2 and 4 are topologically Ai(x)= i_‘ﬁi[ MK1(Mp) = ;} 6)
the same as baryonic Wilson loops, with baryon violation of
+1 unit at every nexus or antinexygiven that the baryon
number of a quark is 1J3 Of course, suctB violation is
entirely absent in QCD, which is vectorlike, and this is only
a heuristic analogue.

We begin by looking for nexuses which are essentially
Abelian, like the center vortices themselves. There are two
possible types: U(1) nexuses and quasi-AbelianigUfex-
uses with charges in the Cartan subalgebra. In both cases the
only possible nexuses are constructed of thick vortices

“Defining the sense of magnetic fields in non-Abelian theories
requires some conventions. We choose to assign a positive sign to
all the Q; and a negative sign fd@y_;=Q; for 1<J<[N/2]. FIG. 3. SU(2) nexuses in a closed vortex.
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FIG. 5. An isolated SU{) vortex-nexus combination, with up
to N vortices meeting at the nexus; the sum of fluxes must vanish
(modN).

distance field behavior of 87 is uncompensated, and leads
to a badly divergent action. Moreover, there is now a naked
Dirac string coming from the long-range part of Eg). All

of this is unacceptable.

Of course, the way to cure these problems is to make sure
that the sum of vortex fluxes is zero, whenever several
strings terminate at a common point. The gauge potential is
of the form

27
(b) Ai(X) =~ €ijk ]

FIG. 4. Possible configurations for SU(3) nexuses and vortices.

3

qu dzfAp(X—2)—Ae(x—=2)]|, (7)
T'(A)

HereK,(Mp) is the Hankel function of imaginary argument,
which falls off exponentially at large argument but behavesvhere the sum of the U(1) fluxeg, is zero, and thd", are
as 1Mp nearp=0. This term comes from th&,, propaga- string paths which meet at the origin, as in Fig. 5. Each path
tor in Eq. (2), while the 1p term comes fromh; this latter  integral runs from 0 to infinity. All thdong-rangemonopole
term is a long-range pure-gauge term, obviously singular afields from theA, terms cancel, because they are isotropic
p=0. TheK; term just cancels the explicitdterm. Thisis and string independent, the short-range parts of these terms
what we meant earlier when we said that the center vortegancels the 17 field strengths from the massive terms at the
has an extended part with a Dirac string just cancelling arorigin, for the same reason, and the Dirac strings all cancel
explicit Dirac string. If this did not happen there would be abetween the short-range and long-range terms, just as for the
field strength proportional té(x) (y), which yields a qua- center vortex.
dratically divergent action. Clearly this cancellation occurs Note that this is not useful as a model for SU(2) nexuses,
for any closed-loop integral in Eq2), sinceA, behaves as since with two fluxesy;= —q, the fields do not correspond
A, at short distances. to Fig. 1, but rather one field points into and the other out of
Now consider terminating the string integral in E) at  the nexus. This just gives the usual center vortex with no
some convenient point, say the origin. Then thg part of  nexus, at least if the strings joining at the nexus lie along a
Eq. (2) gives a thick vortex along the negatizeaxis plus a common axis, say theaxis. The SU(2) nexus is truly non-
massive monopole whoggsotropig field strength goes as Abelian, and will be discussed in Sec. IV.
1/r2 at the origin but decays exponentially at infinity. Thg There is another more useful interpretation of the gauge
part gives the original Dirac monopole, with its string can- potential (7), in which the strings form closed loops, some
celling that of the massive term as before, but also with ssegments of which lie along a common line. Examples of
long-rangemonopole with field strength- 1/r? at both short  triple nexuses, corresponding to &), aregiven in Fig. 6,
and long distances. The short-distance part of this fieldvhich may be considered as possible realizations of Fig. 4.
strength is cancelled by that of the massive term, but thén Fig. 6(@), if the strings labeled 1,2 have incoming fluxes
long-distance part survives. This does not happen in QCDq,q,, respectively, which we will take to be positive, then
where all field strengthgbut not all gauge potentiglsare  the double string has incoming fluxq; —q, and automati-
short ranged, so it would seem that thg part of Eq.(2) cally respects the condition of zero flux sum. However, the
must have an integral over a closed loop. But then if weconfiguration of Fig. ) is manifestly unstable into decay
terminate the massive part of E@) at some point, its short- into its constituent loops, because the action of the double
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matrices, whose sum is zero, are just the flux matri@esf
Eq. (4) for SU(3) but with different names. They obey

exp2miT, ) =exp2mi/3) (nosumora). 9

The stringd", in Eq. (8) correspond to the numbered strings

in Fig. 6(b). As in Sec. Il A the triple string in this figure is

a phantom string, with no Dirac string or thick vortex, so it

contributes nothing to the action.

We will compute the action of the nexus, that is, the total

action associated with Eq8) minus the action associated
(@) with the vortices. Only the special case where the nontrivial
part of stringa runs along the positive coordinate axisll
the way to infinity will be given explicitly. In evaluating the
action from Eq.(1) observe that the TB;U|? term is the
same as TA;—Ug;U"Y2=Tr| 4|, and that this form in-
volves only the short-rangd, part of A;; the Ay part
comes fromUg,U 1. This mass part of the action contains
the short-distance logarithmic divergence mentioned earlier,
but it occurs only in the thick vortices and not in the nexus,
which has finite action.

Taking the traces in the actidd) yields the action

|:|(12)+|(13)+|(23), (10)

where
(b)

- . . 1
FIG. 6. Depiction of SU(3) vortex strings as closed Dirac | :_j d3x{[B@—B®124 M 4@ — ()72
strings. The double string ita) is physical, but not inb), since it (@b) 3g° {l ] [ I3
carries no flux or energy. Iifa) the double string is unstable to (12
separation for the Abelian nexus.

and
string, proportional to @+ q)?, is larger than the sum of o

the actions for strings 1 and 2. d3q gid-x / _ g'q@
In Fig. 6b), if the string fluxesq; are chosen to add to Bfa)Isz SRSV @ —1,

zero, then the triple string down the middle is a phantom (2m)* (@*—ie)(q°+M )\ q

string, with no energy, because its flux is zero. This configu- (12)

ration is not unstable to decay into its constituent loops, 4 iG-% J.

which would require supplying the energy needed to separate A= j a t €7 g4 (13)

the phantom loop into three real loops. However, it is not a : (2m)? (@ —ie)(q?+M?)’

useful description of true SU(3) nexuses, because these will

have the same acticiper unit length along each of its three In these equationg® and similar forms means the appro-

vortices. In a U(1) group where thg are three real num- priate component along the axasof the chosen string; e.g.,

bers, it is impossible to find three real nonzero numbersl(a)zc]é(a), where e? is the unit vector along the string

whose sum is zero and whose squares are all equal. Wirection(assumed to be straightn our case, with the string

conclude that a U(1) description of nexuses is not possiblealong the axes, one can drop the parentheses and interpret the

and turn to quasi-Abelian nexuses. a as ordinary spatial indices. The serves as a cutoff for the
_ _ integration out to infinite distance along an axis, that is, one
B. Quasi-Abelian nexuses can think of the integration along an axis being stopped at a

The only interesting SU(2) case is the non-Abelian casélistanceL=¢"*. The total action in Eq(10) has a part
of the next section, so we start with £8). We use thdorm diverging ase ™ ; we will define the nexus action as this total

(7) action minus the divergent part.
Straightforward calculation gives the total energy of the
ol nexus as
Ai(x)= |_2 Taa€ijk
a=1 27M
=—. (14)
<[ datsuea-siea1, @ 9

This is a remarkably small value, about one-tenth of the en-
whereT;;1,T,,,T3; are defined in the Eq29) below; these ergy [17] of the QCD sphaleron. But unlike the sphaleron
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this quasi-Abelian nexus carries no topological charge, as immonopole can be transformed, bysiagular gauge transfor-
easily checked. We will see, when we consider fully non-mation, to an Abelian form with a Dirac string:

Abelian configurations next, that forming topological charge

costs a considerable amount of energy. The energy of a . . PR

nexus depends on the orientation of the strings, and the value Aj=UAU+UgU _;J3¢i(1_0039)v (17)
in Eq. (14) is neither the smallest nor the largest energy as
the orientations vary, but it is characteristic. Clearly, it is
possible for the whole collection of vortices plux nexus to
annihilate itself, by choosing the strings to coincide every
where, but it is also possible to go to zero nexus energy i
another way. Imagine taking strings 1 and 2 of Figo)&o

lie along the negative axis, while string 3 lies along the
positive z axis as we started with. The configuration is geo-
metrically like that of Figs. 1 or 3 now. However, since
T11+ Too=—Taz, 0ne of the strings is reversed and this con-
figuration turns out to be an ordinary center vortex with no
nexus at all.

U=expifd-¢); UJ-rU 1=J,. (18)

“This form is essentially the original Dirac monopole, with a
r%tring along the negative axis. The string flux is twice the
minimum flux [corresponding td=2 in the notation of Eq.
(3)], so it contributes nothing to Wilson loops.

By a second singular gauge transformation wih
=exp(¢Js) we can shift half this flux to the positiveaxis
[which replaces *cosf by —cosé in Eq. (17)]. At this
point the magnetic fields associated with the vortex cores do
point as desiredsee Fig. L We can now, if we wish, make
another gauge transformation with ! to restore spherical

IV. NON-ABELIAN NEXUSES symmetry as much as possible.
The combination of these three gauge transformations,

The only interesting nexus in SU(2) gauge theory is not anamely,
guasi-Abelian one, which is just like the SU(3) nexus de-
scribed above with strings 1 and 2 coinciding. It is a truly U-lei®lay=g I T=\, (19
non-Abelian object, roughly describable as a deformation of
the SU(2) sphaleron mentioned abdvie]. There are also  \yhen applied to the Wu-Yang configuration, leads to a de-
SU(3) non-Abelian counterparts. In both cases there is N@yrmed kinematical ansatz which we give below in E2{l).
analytic solution, and it would be tedious to find good nu-within this new ansatz we can describe the conventional
merical solutions, since one must solve several nonlineatycp sphaleron17,18 and deformations which describe
partial differential equations simultaneousgompare to the  thick vortices emerging from it.

SU(2) sphaleron, which is described by a single nonlinear The first step in implementing the new ansatz is to deter-
ordinary differential equatiop So we will content ourselves mine the appropriate pure-gauge behavior of the nexus-
with some simple variational estimates for the nexus energyortex combination at large distancésy which we mean

in SU(2); for SU(3)[and by a simple extension SNJ]Jwe  that bothp andz are large. We compose this from the gauge
stop at setting up thénontrivial) gauge kinematics for the v in Eq. (19) above, appropriate to represent the strings
nexus. The primary reason, aside from the complexity Ohointing into the nexus of Fig. 1, and a pure-gauge form
going further, is that it is clear that the non-Abelian nexusesppropriate to a spherical configuration, such as a sphaleron.

have considerably higher energy than the quasi-Abelian nexso we take the behavior at long distance of the gauge poten-
uses and are not likely to play an important role. tial to be

A. SU(2) non-Abelian nexus A—Z28,27%, Z=gllBN+ 1T (20)

Although the nexus has cylindrical symmetry only, it is ] . .
useful to think of this nexus in relation to the usual Witten ~\We now wish to apply these considerations to deform the
spherically symmetric static ansatz usual QCD sphalerofi7,18. This object is spherically sym-
metric, has short-ranged field strengths, and a CS number of
1/2. It corresponds to choosig(r) in Eq. (20) to besw. The
deformation we use is to be thought of as an ansatz for de-
termining approximately the nexus mass by a variational
_ A A A principle; the ansatz is not necessarily one which fully ex-
X = €jadalichi(Jj=r;d-1). (16) presses the kinematics of the nexu8o we write

1 PO
iAj=5[(®—1)Xf +c.c]+1;J-TBy; (19

HereJ,= o /2 are the SU(2) generators addB, are func-

tions ofr. As usual®=®,;+id, is a complex scalar field iAj=£[(<I>—1)X-* +C_C_]+[¢)J.J.F|31_ (21)
coupled to a U(1) gauge potentil, whoser component is 2 J
B;.

We can motivate further developments by referring to
some well-known results on the Wu-Yang monopole, which 5t is easy to write a cylindrically symmetric ansatz which is ki-
is recovered atb,B;=0 in Eq. (15). This monopole, be- nematically self-consistent. This leads to coupled nonlinear partial
cause of a singularity at the origin, is not physically interest-differential equations for nine scalar components, which we have
ing, but it is mathematically simple. As is well known this not studied in detail.
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Note that in the last term on the right, the unit veatdnas  three functions. We drop the vortex term, and the resultant
energy is the nexus ener@y,. TheG? part in Eq.(1) of the
first term of the energy scales as\1/but the third(cross
term depends in a complicated way on bhand\ if we
use literally the expressiai22) for B;, where the mass scale
1 is M. However, it turns out to make little difference if we
Bi=——MK(Mp), (22)  replaceM in Eq. (22) by the variational parameterX./ in
P which case thés? part of the cross term also scales as.1/
that is, the vortex factor which multiplieg in the center Forl si(rjnp]icitg, Wehmake ﬁhis replalcemerr:t. The nexus energ):j
vortex taken by itselfEg. (6)]. Of course, this choice fdB, En IS efmg as the total energy less .t e vortex energy, an
h ; : ) o . after inserting Eqs(21), (22), (23), (25) in the energy func-
as cancellation of Dirac strings in its two parts, just as fortional and doing the integrals we find:
the usual vortex. There is a difference with the vortex in Eq. '
(6), however, in Egs(21), (22) the SU(2) matrices enter as

been replaced by the unit vectgr. Furthermore, the func-
tions ®; now depend not just on, but on the cylindrical
coordinatesp, z, ¢, and the functiorB; is taken to be

) 2 IV
J-r, instead ofl; as in Eqg.(6). This has the effect, as one En:1_9117T_+2_197i; (26)
readily checks, of giving Dirac-string singular field strengths NG g2

proportional toJ; but with oppositesign on either side of the

nexus, as schematized in Fig. 1. In the vortex, of course, ththe M?\ term comes from the mass term of the energy.
field strengths have the same signJgfwherever one goes Equation (26) has a minimum at\=0.933M, of value

on the vortex. Although this changes nothing about the3.22(4wM/g?). This energy for the nexus is rather smaller
asymptotic Wilson loop, which is indifferent to the sign of than the conventional QCD sphalerpti7], which is about
Js, it is @ gauge-invariant distinction. There is negular  5.44(47M/g?), and larger than that of the quasi-Abelian

gauge transformation which changés to J-7; the gauge hexus, which ifsee Eq(14)] 27M/g>.
transformation which does the job, in E{.8), is certainly

singular. B. SU(3) non-Abelian nexus

The next step is to choose simple variational forms for the . ' . .

functions®, , which satisfy the appropriate boundary condi- We_ wish to find f(.)r SUR) with .N>2 the kind of nearly
tions at large distances from the nexus and vortex as e)épherlqally-symmetrlg nexuses discussed abovg fop2$U
pressed in Eq(20), with 8=, and lead to vanishing gauge In p_artlcular, we deslre to construct a nexus V\mh:enter
potential at the origin. We will do this in analogy to such vortices, each of unit flux, meeting at the nexus. It is clear

from the properties of th&; matrices[Eq. (4)] that this
forms for the QCD sphalerofil8]. The necessary depen- i
dence leads t(? P i8] ¥ dep requires an embedding of SU(2) other than the standard

ones, such a&;/2\,/2\3/2 in SU(3);these standard em-

®,=F(p,2)+G(p,z)cose, beddings cannot span the entire Cartan subalgebra, as the set
(23) of Q; does. Aside from the standard embedding of SU(2) as
®,=G(p,z)sine. a subalgebra of SW), there is always another embedding,
called the principal embedding2]” which does span the
The boundary conditions mentioned above lead to entire Lie algebra of SW). The kinematics of this sort of
embedding have already been used in R&6] for SU(3).
p,z—*: F—=0, G—-1, Here we briefly review the principal embedding and the for-
(29 mation of a spherically symmetric Cartan subalgebra, but
p,z—0: F—+1, G—0. stop short of a full-scale calculation of the properties of the

) ) ) . resultant nexus. The reason for not carrying out the full cal-
Simple functions obeying these boundary conditions are  cyjation is that the rotation generators we must use for
5 SU(3) are in thel=1 representation of S2), andtheir
F= A G= —pr (25) trace is four times as large as the1/2 generators used in
N2+r2’ )\2+pl’. the standard embedding of a unitary group in the rotation
group SUY2). As aresult, the nexus energy is about four
Here\ is a variational parametéThe appearance gfin G times as large as the conventional QCD sphaleron energy,
is required to prevent singularities from derivativesdof and is so large as to appear to be unimportant. Similarly, the
It only remains to calculate the energy or action from Eq.CS number is four times as large, and has the value 2.
(1), and to drop the vortex terms. The total energy has three In the principal embedding, the Lie algebra of the funda-
terms: The first term depends only @ , [Eq. (23)]; the  mentaINXN representation of SW) can be formed from
second term depends only on the vortex wave funcBgn representations of SU(2) with spih=(N—1)/2 as follows.
[Eg.(22)], and the third term is a cross term depending on allLet J, be the generators of SU(2) with this spin, and form
further elements of the Lie algebra of SUY via

SFor the QCD sphaleron, the choid®,=0, ®=(A>-r?)(A?
+r2) gives a sphaleron mass only 1/2% larger than the true mass.’l thank S. Ferrara for furnishing this reference.
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Mapdadp, Mapcdadpdes.-. (27 where® is acomplex doublescalar andX; is the kinematic
complex doublet
where theM tensors form a complete set @umerical sym-

metric and traceless tensors and the series terminateshat an Ji—1.3-T+i€qdd
with N—1 indices. Clearly the s¢27) plus theJ, form a Lie J _' ! (37
algebra withN>—1 elements. One forms a spherically- K+ €K
symmetric version of the Cartan subalgebra by choosing a
subset of the tensoMd .. .. as the appropriate symmetric and
and traceless combinations of the unit veatgr e.g., o
L Ki=raiQ=2(Tiara—riQ). (38)
Map="al b= % Bab- 28
ab—tath g %ab 28 Here the functions,,C,,® are all functions of . This is,

) _ ~ of course, the same basis as used by Corrigaal. [16], but
A spherically symmetric Cartan subalgebra then isjy 3 different notation. It can be extended to time-dependent

J-r, Mafalp, .- . functions by adding\, as a linear combination
Now we specialize to S(B). Forthis group the principal
embedding is the familiar “nuclear physics” decomposition iA,=B,Q+ CzJ'F- (39)

into O(3) plus a quadrupole tensor. In this group one has

{‘]1"]2"]3}:{)‘7’_7‘5’7‘2} in terms of the Gell-Mann matri- Under a gauge transformation given Yyof Eq. (35), one
ces and we normalize the symmetric and traceless quad”ﬁ'nds that

pole generators as

1 2 ¢_>e—i(ﬁ+(r1a)¢ , (40)
Tav=5{Ja.do} = 310an; 2 Taa=0. (29

a while B, ,C (y=1,2) are changed by gradients afg as
ébelian gauge fields would be. So the interpretation, similar

The diagonal elements span the Cartan subalgebra. Expli . ; .
9 P 9 P to that of the corresponding Witten spherical ansatz for

ty, SU(2), isthat of a complexd=2 scalar field with two U(1)
Ty =diag —2/3,1/3,1/3,T = diag 1/3,— 2/3,1/3, gauge symmetries as indicated by E40), with B,C the
corresponding gauge potentials.
Tas=diag 1/3,1/3- 2/3). (30) Next we deform the spherically-symmetric ansatz as we
did for SU(2), byconstructing an SU(3) equivalent of Eq.
The Lie algebra takes the form (19). This requires first a specification of some angular func-
tions whose gradient gives the long-range pure-gauge part of
[Ja:Toc)=i€apaTacti€acdlbas (31  the vortices[the Ay term in Eq.(2)]. The necessary gener-
alization uses what is known, in the older electromagnetic
I literature, as the magnetic potentibl Corresponding to any
[Tab, Teal = 7 Je(€acedbat €ncedadt €adedbet €ndedac)- closed curvd’, the magnetic potential is defined as
(32
. . 1 1
The T, are normalized according to q)rzfe”kf daijakﬁ, (42
s X—Z

1 2
TrTachdzi OacObd ™t ObcOad— § Sapdcd | - (33

where the surfacé& has the curvd’ as its boundary. The
gradient of® gives theA, term in Eq.(2), with a 27 jump
The spherical basis for the Cartan subalgebra fsand giving the Dirac-string singular magnetic field whenever the
surfaceSis pierced by a closed loop linked 1o
Q=r.rpTap. (34) We choose three curves, much as shown in Figp),6
which has, as it must, two SU(3) nexuses joined by three
The most general spherically-symmetric form of the gaugehick vortices. There is also a line along which all the three
potential A; for SU(3) can be read off from the kinematic strings 1, 2, and 3 coincide, allowing for closure of these
structure of the pure-gauge potential three curves. To construct a single SU(3) nexus in isolation,
imagine that one of the two nexuses in the figure is taken to
A(N=VaVv~t V=expi[a(r)Q+A(r)J-r]. (35 infinity.
At large distances from the nexus and its attached vorti-
This yields ces, the gauge potential must approach a pure gaiigEq.
(20) for SU(2)]. We choose this gauge to be

. ~ .~ 1
iA = ) J. — — *
iA;=BrjQ+CqrjJ-r+ 2[((1) 1X; +tcel, (36 A—RdR™ L, (42)
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R= exp{i 5 . from this branching on the fundamental properties of the area
(43) law for Wilson loops. Some of the nexuses carry CS number

(or topological charge in four dimensiogndn fact, vortices
One easily sees that along the line where the three stringbemselves carry CS number or topological charge, quan-
coincide there is no 2 jump in the exponent oR, and no tized in units of IN. Such quantization is quite natural from
Dirac string. On the other hand, the jump associated with anthe point of view of solving the U(1) problefi23], but is
string taken by itself leads to a unit-flux Dirac string. For not natural from the viewpoint of periodicity of the angle
example, the zr jump around string 1 leads to a flux factor in units of 2r. However, these requirements can be recon-
expressed in ciled, and we will discuss this in the center-vortex picture in
a later publication.

Even though the nexuses may not play a large dynamical
role in QCD (at least at#=0), it is worthwhile looking for
them on the lattice, supplied with appropriate boundary con-
If the strings are chosen to lie along the positive coordinateyitions, as a test of the underlying properties of center vorti-
axes, as in the quasi-Abelian SU(3) vortex discussed abovees. It might be worthwhile to list here some of the other
the matrixR is unitarily equivalent to the same matrix with properties of the center vortex picture which are accessible to
the coefficients of the, replaced byT ,,; this is the analog  |attice calculations and other tests. First, the baryonic
of the construction of the gauge mati for SU(2) in EQ.  wilson-loop area law is predictd@4] to be aA-law, not aY
(19. law. Second, the fundamental premise of the center-vortex

picture is that confinement comes from a nontrivial group
V. SUMMARY AND CONCLUSIONS center. There are certain exceptional gro(he simplest is
G,) which have only a trivial center, and it would be inter-
esting to simulate them on the lattice to see if they confine.
*And third, there are tests yet to be devised which probe the
interaction of vortices and the angle.

1 1 1 . gous to a branched-polymer gel. There is, however, no effect
Q(‘I’a_ Eq)l_ 5P|+ EJ'r(q)Z_q)l)

R_>exp[—iw[Q+J-F]}=exp231i. (44)

picture, solitons which have up té thick vortices extending
from them, with total magnetic flux of zeranod N). These
solitons can be thought of as composed\omonopoles of

unit flux. Such mon_opolgs are unaccept_able |n_|solat|on,_as ACKNOWLEDGMENTS
they would come with singular naked Dirac strings, but in
the nexus these Dirac strings cancel. Ner 3 these solitons, This work was supported in part by the National Science

if entropically favored, would lead to a vortex vacuum analo-Foundation under Grant No. PHY9531023.
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