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Nexus solitons in the center vortex picture of QCD
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It is very plausible that confinement in QCD comes from linking of Wilson loops to finite-thickness vortices
with magnetic fluxes corresponding to the center of the gauge group. The vortices are solitons of a gauge-
invariant QCD action representing the generation of gluon mass. There are a number of other solitonic states
of this action. We discuss here what we call nexus solitons, in which for gauge group SU(N), up toN vortices
meet at a center, or nexus, provided that the total flux of the vortices adds to zero~mod N). There are
fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as composites of Abelian em-
bedded monopoles, whose Dirac strings are cancelled by the flux condition and fully non-Abelian, resembling
a deformed sphaleron. Analytic solutions are available for the quasi-Abelian case, and we discuss variational
estimates of the action of the fully non-Abelian nexus solitons in SU(2). The non-Abelian nexuses carry
Chern-Simons number~or topological charge in four dimensions!. Their presence does not change the funda-
mentals of confinement in the center-vortex picture, but they may lead to a modified picture of the QCD
vacuum.@S0556-2821~98!01422-2#

PACS number~s!: 12.38.Aw, 12.38.Lg, 14.70.2e
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I. INTRODUCTION

The center-vortex picture of confinement in QCD w
proposed long ago@1–5#. In essence it identifies the QCD
vacuum as a condensate of finite-thickness vortices of
dimension 2 ind53,4; these vortices~closed loops ind
53, closed surfaces ind54! have a finite transverse exten
sion measured by the inverse gluon mass and possess
netic fluxes which are expressed via elements of the cente
the gauge group.

In more recent times there has been a resurgence of w
on the center-vortex picture, primarily on the lattice@6–10#.
This has resulted in spectacular confirmation of the cen
vortex picture of confinement, with the SU(2) string tensi
being fully captured by the vortex-dominance approximat
of replacing the exact Wilson loop value by (2)N, whereN
is the total linking number of vortices linked to the loop.

The center vortices resemble Dirac strings in carry
quantized magnetic flux confined to a closed loop or surfa
but differ radically from them in that the center-vortex flux
spread out over a finite transverse extent. If the flux w
instead fully localized~to a delta function in the continuum
or to a single lattice spacing on the lattice! two things would
go wrong: First, the action of the vortices would be quadra
cally infinite, either in the continuum@1# or on the lattice@7#.
Second, these thin vortices would contribute nothing wh
soever to the adjoint ‘‘string tension’’~more properly, a pe-
rimeter term in the potential resembling a linearly rising p
tential which breaks!, leaving only a Coulomb term. In fact
lattice simulations@11,12# and continuum theory@13–15#
show that the thick vortices of the center-vortex picture
lead to a breakable ‘‘string’’ potential for the adjoint repr
sentation, directly attributable to the thickness of the vorti
which can only partially overlap the Wilson loop.

Avoidance of Dirac-string singularities is a key point
constructing solitons in the continuum center-vortex pictu
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and will be important for us in constructing the objects co
sidered here, which we call nexus solitons. A nexus soli
has several thick vortices@up to N of them for gauge group
SU(N)# which meet at a central region which is essentia
of magnetic-monopole character, with exponentially falli
field strengths as one moves out from the center. In or
that this central region have finite action, the magnetic flu
of the several vortices meeting at the center should ad
zero. If not, the monopole region has fields which diverge
r 22 at the origin, similar to the Wu-Yang monopole or th
broken-symmetry monopoles found by Corriganet al. long
ago@16#. Moreover, if the fluxes do not add to zero there c
be long-rangemonopole fields behaving asr 22 at large dis-
tances, as well as naked Dirac strings. These last two p
nomena are due to the termination of Dirac strings at
monopole, in the case where the fluxes do not add to z
~mod N).

In previous solitons of the center-vortex picture@1# this
unwanted behavior is simply avoided, in part by having t
loop or surface representing the vortex be closed, and in
by cancellation of Dirac-string singularities between a tra
versely extended part of the solution and a naked Di
string. ~In fact, the center vortex is simply an Abelia
Nielsen-Olesen vortex embedded in the gauge group
with infinite Higgs mass, or otherwise described it is a so
ton of an effective low-energy QCD action consisting of t
usualG2 term plus a gauged nonlinear sigma model ter
giving a gauge-invariant mass to the gluon.! Any boundaries
of the loop or surface gives rise, as is well-known, to obje
mathematically identical to the original Dirac monopole pl
associated string. In addition to these closed vortices,
center-vortex picture also has a spherically symmetric st
solution, resembling a sphaleron but with no symme
breaking@17#. It has no Dirac strings in the usual spheric
gauge presentation.1

1As with the Wu-Yang monopole it can be transformed into
Abelian gauge where it does have a Dirac string, but the requ
gauge transformation is singular.
©1998 The American Physical Society28-1
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JOHN M. CORNWALL PHYSICAL REVIEW D58 105028
The existence of nexus solitons was alluded to long
@1,18#, but to the author’s knowledge these have not be
explicitly constructed. We partially fill that gap here, both f
SU(2) and SU(3). Incertain cases, which we call quas
Abelian, we can give explicit analytic results and in oth
cases, which are fully non-Abelian, we restrict ourselves
variational estimates. These nexus solitons go consider
beyond the original vortex solutions, which as mention
above are really embedded Abelian Nielsen-Olesen vorti
the new solitons really cannot be described by Abelian e
beddings. The non-Abelian solution which we discuss is
sentially a QCD sphaleron@17# from which several fat vor-
tices emerge. It carries topological charge@or Chern-Simons
~CS! number ind53#. It can be thought of as a sphalero
vortex composite, and in SU(2) is energetically sta
against decay into a sphaleron and a vortex. In SU(3)
quasi-Abelian nexus with three unit-flux vortices is stab
against decay into a QCD sphaleron on energetic grou
this stability is not likely for the SU(3) non-Abelian nexu
which is much heavier.

It is worth noting@19# that even the original Abelian cen
ter vortices can carry topological charge, which ind53 is
associated with the linking or self-linking of vortices~in d
54, this is expressed as an intersection number of surfac!.
This topological charge is not necessarily integral, but can
quantized in units of 1/N for gauge group SU(N). This need
not be a contradiction with periodicity of 2p in the u angle,
or with integral quantization of the Chern-Simons level.

Aside from questions ofu dependence of QCD dynamic
which we will not discuss here, of what good are these v
tices? The answer is, for confinement at least, that they
not good for much of anything; they do not@1# change the
basic picture of confinement for the fundamental represe
tion which arises when one uses center vortices with
nexus solitons. An interesting question which we are not i
position to answer yet is whether nexus solitons, which
capable in principle of internetting the center-vortex vacu
in a very complicated way@see Fig. 4~b! below#, actually do
so. Put another way, the question is whether the chang
entropy arising from this internetting is in a sense and o
size which can overcome the positive action needed for
nexus monopole regions. If this happens the vacuum con
sate will look quite different from the usual~naive! center-
vortex condensate, and possibly could be detected in la
calculations.

Although nothing definite is known yet, we believe th
nexuses~provided that they actually condense! will play an
important role through their coupling to fermions in unde
standing chiral symmetry breaking in QCD andB1L viola-
tion in high-temperature electroweak theory, because
non-Abelian nexuses provide sites for localized anomal
processes. Similar sites are provided by reconnection of
ter vortices, where one will need to understand the role
1/N quantization of such reconnection processes. It wo
certainly be interesting to demonstrate the existence, u
suitable lattice boundary conditions, of nexuses on the
tice. We will discuss in the concluding section what could
learned about nexus solitons and other elements of
center-vortex picture from lattice calculations. We beg
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with a quick review of the elements of the center-vort
picture, including the effective action.

II. THE CENTER-VORTEX PICTURE

For convenience we will from now on, except when ot
erwise noted, work in three dimensions, since all the solit
we find are static. It was argued long ago@17# that the low-
energy effective energy functionalE of QCD consisted of the
usual three-dimensional action plus a gauged nonlin
sigma model term, representing the generation of a gl
mass. In turn, the gluon mass appears@20# because of the
fundamental infrared instability of QCD ind53,4, where the
Schwinger-Dyson equations only have nonsingular soluti
when a mass of sufficient size is generated. The energy2

E5
1

g2E d3xH 21

2
Tr@Gi j ~x!#21M2 TruDiUu2J . ~1!

This action is usable only at low energies, because at h
energies we must account for the vanishing@20,21# of the
mass, somewhat similar toM2(q);^G2&/q2 where^G2& is
the condensate expectation value.3 The mass must vanish a
large momentum if we are to find solutions to th
Schwinger-Dyson equations@20#.

The fundamental Abelian-vortex solution of the equatio
of motion coming from the equations of motion of Eq.~1! is

Ai~x;J!5~2pQJ / i !e i jk] j R dzk$DM~x2z!2D0~x2z!%.

~2!

Here the integral is over a closed loop of coordinatesz,
DM (D0) is the massive~massless! free propagator in three
dimensions, andQJ is anN3NSU(N) matrix in the Cartan
subalgebra. It is normalized so that the long-range (D0) part
of the Wilson loop integralP exp@rdxkAk(x)# for a Wilson
loop linked once to the vortex is in the center of the grou
For the fundamental-representation Wilson loop, this me

exp~2p iQJ!5exp~2p iJ/N!. ~3!

A convenient set of matricesQJ is formed from a set of
fundamental Cartan matricesQi :

Qi5diag~1/N, . . . ,1/N,2111/N,1/N, . . . ,1/N!, ~4!

2We use the usual anti-Hermitean gauge potential ma
(la/2i )Aa(x), with Tr lalb5(1/2)dab ; Di5] i1Ai . The matrix
U is a unitary matrix undergoing left transformations when t
gauge potential is gauge transformed.

3We will not actually account for this high-energy decrease
mass, with the consequence that the second term in the action~1! is
logarithmically divergent at short distances, for the vortices.
course, if the mass vanishes quadratically at short distances in
tuality, this is a spurious divergence. In fact, the nexuses themse
do not suffer from this logarithmic divergence.
8-2
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NEXUS SOLITONS IN THE CENTER VORTEX PICTURE . . . PHYSICAL REVIEW D 58 105028
where2111/N is in the i th position. OnlyN21 of these
matrices are linearly independent, because the sum of a
them is zero. Then the matricesQi1Qj1Qk1•••, with
iÞ j ÞkÞ•••, obey Eq.~3! if there areJ terms in the sum.
For 1<J<@N/2#, where the square brackets indicate the
tegral part, we can choose in any convenient way one re
sentative ofQJ from such sums, and for greater values ofN
we use instead the matricesQN2J[Q2J , representing anti-
vortices of flux2J. For future use we record

Tr QJ
25

J~N2J!

N
. ~5!

Confinement now arises ind53,4 @1# by averaging over the
fluctuating phase factors, Eq.~3!, which arise in evaluating
the expectation value of the Wilson loop. For SU(2) there
only one nontrivial vortex, and it is self-conjugate; fo
SU(3) there is one vortex and its antivortex.

III. NEXUS SOLITONS

We are looking for solutions to the equations of moti
coming from Eq.~1! which have several thick vortices mee
ing at a monopole-like center, or nexus, with finite acti
and nonsingular field strengths. For SU(2) the only no
trivial case is when twoJ51 vortices meet, as in Fig. 1. B
convention we choose ingoing arrows, representing vo
magnetic fields directed toward4 the nexus, to describe
nexus, and the opposite direction corresponds to an an
exus. For SU(3) there is only one additional nontriv
nexus, as given in Fig. 2, in which threeJ51 vortices meet.

Actually, these figures are slightly misleading, since u
mately the vortex strings must close. The true situati
therefore, is that of Figs. 3@for SU(2)# and 4 @for SU(3)#
and generalizations thereof, which have as many nexuse
anti-nexuses. We note a device for constructing pictures
nexuses: the SU(3) graphs of Figs. 2 and 4 are topologic
the same as baryonic Wilson loops, with baryon violation
61 unit at every nexus or antinexus~given that the baryon
number of a quark is 1/3!. Of course, suchB violation is
entirely absent in QCD, which is vectorlike, and this is on
a heuristic analogue.

We begin by looking for nexuses which are essentia
Abelian, like the center vortices themselves. There are
possible types: U(1) nexuses and quasi-Abelian SU(N) nex-
uses with charges in the Cartan subalgebra. In both case
only possible nexuses are constructed of thick vorti

4Defining the sense of magnetic fields in non-Abelian theor
requires some conventions. We choose to assign a positive sig
all the QJ and a negative sign forQN2J[QJ for 1<J<@N/2#.

FIG. 1. An isolated SU(2) nexus~circle! and unit-flux vortices
~lines!, with field strengths reversing at the nexus.
10502
of

-
e-

s

-

x

in-
l

-
,

as
of
lly
f

y
o

the
s

whose fluxes add to zero at the nexus core. However,
U(1) nexuses are marginally stable to decay into sim
loops, which is not so for the quasi-Abelian nexuses.

It will be evident that the essentially Abelian nexuses
find in this section are in some sense composites of mo
polelike excitations. However, it will turn out to be impos
sible to separate the nexuses into their fundamental p
since each part is a monopole with a thick vortex carry
the flux into the central monopole region, but a naked Di
string is needed to carry the flux out. In a nexus all the
naked Dirac strings cancel because of the condition that
total flux is zero; they do not cancel for the pieces fro
which the nexus is made.

A. U„1… nexuses?

We ask whether there is a nexus in a U(1) gauge gro
such as electromagnetism, but with a mass term; the phys
analogue would be a superconductor. It should be appa
that all the vortex fluxes must add to zero at the nexus
else there will be monopole fields which are either singu
at short distances or are long-range or both. However,
future use it is worth detailing the explicit forms of the di
ficulties encountered with nonzero total flux. We first gi
the well-known form of the solution~2! for an Abelian cen-
ter vortex lying along thez axis, in standard cylindrical-
coordinate notation:

Ai~x!5
QJ

i
f̂ iFMK1~Mr!2

1

r G . ~6!

s
to

FIG. 2. An isolated SU(3) nexus-vortex combination.

FIG. 3. SU(2) nexuses in a closed vortex.
8-3
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JOHN M. CORNWALL PHYSICAL REVIEW D58 105028
HereK1(Mr) is the Hankel function of imaginary argumen
which falls off exponentially at large argument but behav
as 1/Mr nearr50. This term comes from theDM propaga-
tor in Eq. ~2!, while the 1/r term comes fromD0; this latter
term is a long-range pure-gauge term, obviously singula
r50. TheK1 term just cancels the explicit 1/r term. This is
what we meant earlier when we said that the center vo
has an extended part with a Dirac string just cancelling
explicit Dirac string. If this did not happen there would be
field strength proportional tod(x)d(y), which yields a qua-
dratically divergent action. Clearly this cancellation occu
for any closed-loop integral in Eq.~2!, sinceDM behaves as
D0 at short distances.

Now consider terminating the string integral in Eq.~2! at
some convenient point, say the origin. Then theDM part of
Eq. ~2! gives a thick vortex along the negativez axis plus a
massive monopole whose~isotropic! field strength goes a
1/r 2 at the origin but decays exponentially at infinity. TheD0
part gives the original Dirac monopole, with its string ca
celling that of the massive term as before, but also wit
long-rangemonopole with field strength;1/r 2 at both short
and long distances. The short-distance part of this fi
strength is cancelled by that of the massive term, but
long-distance part survives. This does not happen in Q
where all field strengths~but not all gauge potentials! are
short ranged, so it would seem that theD0 part of Eq.~2!
must have an integral over a closed loop. But then if
terminate the massive part of Eq.~2! at some point, its short

FIG. 4. Possible configurations for SU(3) nexuses and vortice
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distance field behavior of 1/r 2 is uncompensated, and lead
to a badly divergent action. Moreover, there is now a nak
Dirac string coming from the long-range part of Eq.~2!. All
of this is unacceptable.

Of course, the way to cure these problems is to make s
that the sum of vortex fluxes is zero, whenever seve
strings terminate at a common point. The gauge potentia
of the form

Ai~x!5
2p

i
e i jk] j

3(
A

FqAE
G~A!

dzk@DM~x2z!2D0~x2z!#G , ~7!

where the sum of the U(1) fluxesqA is zero, and theGA are
string paths which meet at the origin, as in Fig. 5. Each p
integral runs from 0 to infinity. All thelong-rangemonopole
fields from theD0 terms cancel, because they are isotro
and string independent, the short-range parts of these te
cancels the 1/r 2 field strengths from the massive terms at t
origin, for the same reason, and the Dirac strings all can
between the short-range and long-range terms, just as fo
center vortex.

Note that this is not useful as a model for SU(2) nexus
since with two fluxesq152q2 the fields do not correspon
to Fig. 1, but rather one field points into and the other out
the nexus. This just gives the usual center vortex with
nexus, at least if the strings joining at the nexus lie alon
common axis, say thez axis. The SU(2) nexus is truly non
Abelian, and will be discussed in Sec. IV.

There is another more useful interpretation of the gau
potential ~7!, in which the strings form closed loops, som
segments of which lie along a common line. Examples
triple nexuses, corresponding to SU(3), aregiven in Fig. 6,
which may be considered as possible realizations of Fig
In Fig. 6~a!, if the strings labeled 1,2 have incoming fluxe
q1 ,q2 , respectively, which we will take to be positive, the
the double string has incoming flux2q12q2 and automati-
cally respects the condition of zero flux sum. However,
configuration of Fig. 6~a! is manifestly unstable into deca
into its constituent loops, because the action of the dou

.

FIG. 5. An isolated SU(N) vortex-nexus combination, with up
to N vortices meeting at the nexus; the sum of fluxes must van
~mod N).
8-4
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NEXUS SOLITONS IN THE CENTER VORTEX PICTURE . . . PHYSICAL REVIEW D 58 105028
string, proportional to (q11q2)2, is larger than the sum o
the actions for strings 1 and 2.

In Fig. 6~b!, if the string fluxesqi are chosen to add to
zero, then the triple string down the middle is a phant
string, with no energy, because its flux is zero. This confi
ration is not unstable to decay into its constituent loo
which would require supplying the energy needed to sepa
the phantom loop into three real loops. However, it is no
useful description of true SU(3) nexuses, because these
have the same action~per unit length! along each of its three
vortices. In a U(1) group where theqi are three real num
bers, it is impossible to find three real nonzero numb
whose sum is zero and whose squares are all equal.
conclude that a U(1) description of nexuses is not possi
and turn to quasi-Abelian nexuses.

B. Quasi-Abelian nexuses

The only interesting SU(2) case is the non-Abelian c
of the next section, so we start with SU(3). We use theform
~7!

Ai~x!5
2p

i (
a51

3 FTaae i jk

3E
G~a!

dzk@DM~x2z!2D0~x2z!#G , ~8!

whereT11,T22,T33 are defined in the Eq.~29! below; these

FIG. 6. Depiction of SU(3) vortex strings as closed Dir
strings. The double string in~a! is physical, but not in~b!, since it
carries no flux or energy. In~a! the double string is unstable t
separation for the Abelian nexus.
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matrices, whose sum is zero, are just the flux matricesQi of
Eq. ~4! for SU(3) but with different names. They obey

exp~2p iTaa!5exp~2p i /3! ~no sum ona). ~9!

The stringsGa in Eq. ~8! correspond to the numbered string
in Fig. 6~b!. As in Sec. III A the triple string in this figure is
a phantom string, with no Dirac string or thick vortex, so
contributes nothing to the action.

We will compute the action of the nexus, that is, the to
action associated with Eq.~8! minus the action associate
with the vortices. Only the special case where the nontriv
part of stringa runs along the positive coordinate axisa all
the way to infinity will be given explicitly. In evaluating the
action from Eq.~1! observe that the TruDiUu2 term is the
same as TruAi2U] iU

21u2[TruA i u2, and that this form in-
volves only the short-rangeDM part of Ai ; the D0 part
comes fromU] iU

21. This mass part of the action contain
the short-distance logarithmic divergence mentioned ear
but it occurs only in the thick vortices and not in the nexu
which has finite action.

Taking the traces in the action~1! yields the action

I 5I ~12!1I ~13!1I ~23! , ~10!

where

I ~ab!5
1

3g2E d3x$@BW ~a!2BW ~b!#21M2@AW ~a!2AW ~b!#2%

~11!

and

Bi
~a!5M2E d3q

~2p!2

eiqW •xW

~q~a!2 i e!~q21M2!
S d i ~a!2

qiq~a!

q2 D ,

~12!

A i
~a!5E d3q

~2p!2
t

eiqW •xWe i j ~a!q
j

~q~a!2 i e!~q21M2!
. ~13!

In these equations,q(a) and similar forms means the appro
priate component along the axisa of the chosen string; e.g.
q(a)5qW •ê(a), where êa is the unit vector along the string
direction~assumed to be straight!. In our case, with the string
along the axes, one can drop the parentheses and interpr
a as ordinary spatial indices. Thei e serves as a cutoff for the
integration out to infinite distance along an axis, that is, o
can think of the integration along an axis being stopped a
distanceL5e21. The total action in Eq.~10! has a part
diverging ase21; we will define the nexus action as this tot
action minus the divergent part.

Straightforward calculation gives the total energy of t
nexus as

I 5
2pM

g2
. ~14!

This is a remarkably small value, about one-tenth of the
ergy @17# of the QCD sphaleron. But unlike the sphalero
8-5
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JOHN M. CORNWALL PHYSICAL REVIEW D58 105028
this quasi-Abelian nexus carries no topological charge, a
easily checked. We will see, when we consider fully no
Abelian configurations next, that forming topological char
costs a considerable amount of energy. The energy o
nexus depends on the orientation of the strings, and the v
in Eq. ~14! is neither the smallest nor the largest energy
the orientations vary, but it is characteristic. Clearly, it
possible for the whole collection of vortices plux nexus
annihilate itself, by choosing the strings to coincide eve
where, but it is also possible to go to zero nexus energ
another way. Imagine taking strings 1 and 2 of Fig. 6~b! to
lie along the negativez axis, while string 3 lies along the
positivez axis as we started with. The configuration is ge
metrically like that of Figs. 1 or 3 now. However, sinc
T111T2252T33, one of the strings is reversed and this co
figuration turns out to be an ordinary center vortex with
nexus at all.

IV. NON-ABELIAN NEXUSES

The only interesting nexus in SU(2) gauge theory is no
quasi-Abelian one, which is just like the SU(3) nexus d
scribed above with strings 1 and 2 coinciding. It is a tru
non-Abelian object, roughly describable as a deformation
the SU(2) sphaleron mentioned above@17#. There are also
SU(3) non-Abelian counterparts. In both cases there is
analytic solution, and it would be tedious to find good n
merical solutions, since one must solve several nonlin
partial differential equations simultaneously@compare to the
SU(2) sphaleron, which is described by a single nonlin
ordinary differential equation#. So we will content ourselves
with some simple variational estimates for the nexus ene
in SU(2); for SU(3)@and by a simple extension SU(N)# we
stop at setting up the~nontrivial! gauge kinematics for the
nexus. The primary reason, aside from the complexity
going further, is that it is clear that the non-Abelian nexus
have considerably higher energy than the quasi-Abelian n
uses and are not likely to play an important role.

A. SU„2… non-Abelian nexus

Although the nexus has cylindrical symmetry only, it
useful to think of this nexus in relation to the usual Witt
spherically symmetric static ansatz

iA j5
1

2
@~F21!Xj* 1c.c.#1 r̂ j J• r̂ B1 ; ~15!

Xj5e jakJar̂ k1 i ~Jj2 r̂ j J• r̂ !. ~16!

HereJk5sk/2 are the SU(2) generators andF,B1 are func-
tions of r . As usualF[F11 iF2 is a complex scalar field
coupled to a U(1) gauge potentialBg whoser component is
B1 .

We can motivate further developments by referring
some well-known results on the Wu-Yang monopole, wh
is recovered atF,B150 in Eq. ~15!. This monopole, be-
cause of a singularity at the origin, is not physically intere
ing, but it is mathematically simple. As is well known th
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monopole can be transformed, by asingular gauge transfor-
mation, to an Abelian form with a Dirac string:

Aj85UAjU
211U] jU

215
i

r
J3f̂ j~12cosu!, ~17!

U5exp~ iuJ•f̂ !; UJ• r̂ U215J3 . ~18!

This form is essentially the original Dirac monopole, with
string along the negativez axis. The string flux is twice the
minimum flux @corresponding toJ52 in the notation of Eq.
~3!#, so it contributes nothing to Wilson loops.

By a second singular gauge transformation withV
5exp(ifJ3) we can shift half this flux to the positivez axis
@which replaces 12cosu by 2cosu in Eq. ~17!#. At this
point the magnetic fields associated with the vortex cores
point as desired~see Fig. 1!. We can now, if we wish, make
another gauge transformation withU21 to restore spherica
symmetry as much as possible.

The combination of these three gauge transformatio
namely,

U21eifJ3U5eifJ• r̂[W, ~19!

when applied to the Wu-Yang configuration, leads to a
formed kinematical ansatz which we give below in Eq.~21!.
Within this new ansatz we can describe the conventio
QCD sphaleron@17,18# and deformations which describ
thick vortices emerging from it.

The first step in implementing the new ansatz is to de
mine the appropriate pure-gauge behavior of the nex
vortex combination at large distances~by which we mean
that bothr andz are large!. We compose this from the gaug
W in Eq. ~19! above, appropriate to represent the strin
pointing into the nexus of Fig. 1, and a pure-gauge fo
appropriate to a spherical configuration, such as a sphale
So we take the behavior at long distance of the gauge po
tial to be

Aj→Z] jZ
21, Z5ei @b~r !1f#J• r̂ . ~20!

We now wish to apply these considerations to deform
usual QCD sphaleron@17,18#. This object is spherically sym
metric, has short-ranged field strengths, and a CS numbe
1/2. It corresponds to choosingb(r ) in Eq. ~20! to bep. The
deformation we use is to be thought of as an ansatz for
termining approximately the nexus mass by a variatio
principle; the ansatz is not necessarily one which fully e
presses the kinematics of the nexus.5 So we write

iA j5
1

2
@~F21!Xj* 1c.c.#1f̂ j J• r̂ B1 . ~21!

5It is easy to write a cylindrically symmetric ansatz which is k
nematically self-consistent. This leads to coupled nonlinear pa
differential equations for nine scalar components, which we h
not studied in detail.
8-6
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Note that in the last term on the right, the unit vectorr̂ has
been replaced by the unit vectorf̂. Furthermore, the func
tions F i now depend not just onr , but on the cylindrical
coordinatesr, z, f, and the functionB1 is taken to be

B15
1

r
2MK1~Mr!, ~22!

that is, the vortex factor which multipliesf̂ in the center
vortex taken by itself@Eq. ~6!#. Of course, this choice forB1
has cancellation of Dirac strings in its two parts, just as
the usual vortex. There is a difference with the vortex in E
~6!, however, in Eqs.~21!, ~22! the SU(2) matrices enter a
J• r̂ , instead ofJ3 as in Eq.~6!. This has the effect, as on
readily checks, of giving Dirac-string singular field strengt
proportional toJ3 but with oppositesign on either side of the
nexus, as schematized in Fig. 1. In the vortex, of course,
field strengths have the same sign ofJ3 wherever one goes
on the vortex. Although this changes nothing about
asymptotic Wilson loop, which is indifferent to the sign
J3 , it is a gauge-invariant distinction. There is noregular

gauge transformation which changesJ3 to J• r̂ ; the gauge
transformation which does the job, in Eq.~18!, is certainly
singular.

The next step is to choose simple variational forms for
functionsF i , which satisfy the appropriate boundary cond
tions at large distances from the nexus and vortex as
pressed in Eq.~20!, with b5p, and lead to vanishing gaug
potential at the origin. We will do this in analogy to suc
forms for the QCD sphaleron@18#. The necessaryf depen-
dence leads to

F15F~r,z!1G~r,z!cosf,
~23!

F25G~r,z!sinf.

The boundary conditions mentioned above lead to

r,z→`: F→0, G→21,
~24!

r,z→0: F→11, G→0.

Simple functions obeying these boundary conditions are

F5
l2

l21r 2
, G5

2rr

l21rr
. ~25!

Herel is a variational parameter.6 The appearance ofr in G
is required to prevent singularities from derivatives off.

It only remains to calculate the energy or action from E
~1!, and to drop the vortex terms. The total energy has th
terms: The first term depends only onF1,2 @Eq. ~23!#; the
second term depends only on the vortex wave functionB1
@Eq. ~22!#, and the third term is a cross term depending on

6For the QCD sphaleron, the choiceB150, F5(l22r 2)(l2

1r 2) gives a sphaleron mass only 1/2% larger than the true m
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three functions. We drop the vortex term, and the result
energy is the nexus energyEn . TheG2 part in Eq.~1! of the
first term of the energy scales as 1/l, but the third~cross!
term depends in a complicated way on bothM andl if we
use literally the expression~22! for B1 , where the mass scal
is M . However, it turns out to make little difference if w
replaceM in Eq. ~22! by the variational parameter 1/l, in
which case theG2 part of the cross term also scales as 1/l.
For simplicity, we make this replacement. The nexus ene
En is defined as the total energy less the vortex energy,
after inserting Eqs.~21!, ~22!, ~23!, ~25! in the energy func-
tional and doing the integrals we find:

En51.911
p2

lg2
12.197

p2M2l

g2
; ~26!

the M2l term comes from the mass term of the energ
Equation ~26! has a minimum atl50.933/M , of value
3.22(4pM /g2). This energy for the nexus is rather small
than the conventional QCD sphaleron@17#, which is about
5.44(4pM /g2), and larger than that of the quasi-Abelia
nexus, which is@see Eq.~14!# 2pM /g2.

B. SU„3… non-Abelian nexus

We wish to find for SU(N) with N.2 the kind of nearly
spherically-symmetric nexuses discussed above for SU(2).
In particular, we desire to construct a nexus withN center
vortices, each of unit flux, meeting at the nexus. It is cle
from the properties of theQi matrices@Eq. ~4!# that this
requires an embedding of SU(2) other than the stand
ones, such asl1/2,l2/2,l3/2 in SU(3); these standard em
beddings cannot span the entire Cartan subalgebra, as th
of Qi does. Aside from the standard embedding of SU(2)
a subalgebra of SU(N), there is always another embeddin
called the principal embedding@22#7 which does span the
entire Lie algebra of SU(N). The kinematics of this sort o
embedding have already been used in Ref.@16# for SU(3).
Here we briefly review the principal embedding and the f
mation of a spherically symmetric Cartan subalgebra,
stop short of a full-scale calculation of the properties of t
resultant nexus. The reason for not carrying out the full c
culation is that the rotation generators we must use
SU(3) are in theJ51 representation of SU(2), and their
trace is four times as large as theJ51/2 generators used in
the standard embedding of a unitary group in the rotat
group SU(2). As a result, the nexus energy is about fo
times as large as the conventional QCD sphaleron ene
and is so large as to appear to be unimportant. Similarly,
CS number is four times as large, and has the value 2.

In the principal embedding, the Lie algebra of the fund
mentalN3N representation of SU(N) can be formed from
representations of SU(2) with spinJ5(N21)/2 as follows.
Let Ja be the generators of SU(2) with this spin, and for
further elements of the Lie algebra of SU(N) via

s.7I thank S. Ferrara for furnishing this reference.
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MabJaJb , MabcJaJbJc ,... , ~27!

where theM tensors form a complete set of~numerical! sym-
metric and traceless tensors and the series terminates atM
with N21 indices. Clearly the set~27! plus theJa form a Lie
algebra with N221 elements. One forms a sphericall
symmetric version of the Cartan subalgebra by choosin
subset of the tensorsMabc • • • as the appropriate symmetr
and traceless combinations of the unit vectorr̂ a , e.g.,

Mab5 r̂ ar̂ b2
1

3
dab . ~28!

A spherically symmetric Cartan subalgebra then
J• r̂ , Mabr̂ ar̂ b , . . . .

Now we specialize to SU(3). Forthis group the principal
embedding is the familiar ‘‘nuclear physics’’ decompositio
into O(3) plus a quadrupole tensor. In this group one h
$J1 ,J2 ,J3%5$l7 ,2l5 ,l2% in terms of the Gell-Mann matri-
ces and we normalize the symmetric and traceless qua
pole generators as

Tab[
1

2
$Ja ,Jb%2

2

3
Idab ; (

a
Taa50. ~29!

The diagonal elements span the Cartan subalgebra. Ex
itly,

T115diag~22/3,1/3,1/3!,T225diag~1/3,22/3,1/3!,

T335diag~1/3,1/3,22/3!. ~30!

The Lie algebra takes the form

@Ja ,Tbc#5 i eabdTdc1 i eacdTbd , ~31!

@Tab ,Tcd#5
i

4
Je~eacedbd1ebcedad1eadedbc1ebdedac!.

~32!

The Tab are normalized according to

TrTabTcd5
1

2S dacdbd1dbcdad2
2

3
dabdcdD . ~33!

The spherical basis for the Cartan subalgebra isJ• r̂ and

Q[ r̂ ar̂ bTab . ~34!

The most general spherically-symmetric form of the gau
potentialAi for SU(3) can be read off from the kinemat
structure of the pure-gauge potential

Ai~rW !5V] iV
21, V5expi @a~r !Q1b~r !J• r̂ #. ~35!

This yields

iA j5B1r̂ jQ1C1r̂ j J• r̂ 1
1

2
@~F21!Xj* 1c.c.#, ~36!
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whereF is acomplex doubletscalar andXj is the kinematic
complex doublet

S Jj2 r̂ j J• r̂ 1 i e jklJkr̂ l

K j1 i e jklKkr̂ l
D ~37!

and

Ki5r ] iQ52~Tiar̂ a2 r̂ iQ!. ~38!

Here the functionsB1 ,C1 ,F are all functions ofr . This is,
of course, the same basis as used by Corriganet al. @16#, but
in a different notation. It can be extended to time-depend
functions by addingA4 as a linear combination

iA45B2Q1C2J• r̂ . ~39!

Under a gauge transformation given byV of Eq. ~35!, one
finds that

f→e2 i ~b1s1a!f , ~40!

while Bg ,Cg(g51,2) are changed by gradients ofa,b as
Abelian gauge fields would be. So the interpretation, sim
to that of the corresponding Witten spherical ansatz
SU(2), isthat of a complexd52 scalar field with two U(1)
gauge symmetries as indicated by Eq.~40!, with B,C the
corresponding gauge potentials.

Next we deform the spherically-symmetric ansatz as
did for SU(2), byconstructing an SU(3) equivalent of Eq
~19!. This requires first a specification of some angular fun
tions whose gradient gives the long-range pure-gauge pa
the vortices@the D0 term in Eq.~2!#. The necessary gener
alization uses what is known, in the older electromagne
literature, as the magnetic potentialF. Corresponding to any
closed curveG, the magnetic potential is defined as

FG5
1

2
e i jkE

S
ds i j ]k

1

uxW2zWu
, ~41!

where the surfaceS has the curveG as its boundary. The
gradient ofF gives theD0 term in Eq.~2!, with a 2p jump
giving the Dirac-string singular magnetic field whenever t
surfaceS is pierced by a closed loop linked toG.

We choose three curves, much as shown in Fig. 6~b!,
which has, as it must, two SU(3) nexuses joined by th
thick vortices. There is also a line along which all the thr
strings 1, 2, and 3 coincide, allowing for closure of the
three curves. To construct a single SU(3) nexus in isolat
imagine that one of the two nexuses in the figure is taken
infinity.

At large distances from the nexus and its attached vo
ces, the gauge potential must approach a pure gauge@cf. Eq.
~20! for SU(2)#. We choose this gauge to be

Ai→R] iR
21, ~42!
8-8
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R5expH i FQS F32
1

2
F12

1

2
F2D1

1

2
J• r̂ ~F22F1!G J .

~43!

One easily sees that along the line where the three str
coincide there is no 2p jump in the exponent ofR, and no
Dirac string. On the other hand, the jump associated with
string taken by itself leads to a unit-flux Dirac string. F
example, the 2p jump around string 1 leads to a flux facto
expressed in

R→exp$2 ip@Q1J• r̂ #%5exp
2p i

3
. ~44!

If the strings are chosen to lie along the positive coordin
axes, as in the quasi-Abelian SU(3) vortex discussed ab
the matrixR is unitarily equivalent to the same matrix wit
the coefficients of theFa replaced byTaa ; this is the analog
of the construction of the gauge matrixW for SU(2) in Eq.
~19!.

V. SUMMARY AND CONCLUSIONS

In SU(N) we have partially~fully, for the quasi-Abelian
case! constructed some new solitons for the center-vor
picture, solitons which have up toN thick vortices extending
from them, with total magnetic flux of zero~mod N). These
solitons can be thought of as composed ofN monopoles of
unit flux. Such monopoles are unacceptable in isolation
they would come with singular naked Dirac strings, but
the nexus these Dirac strings cancel. ForN>3 these solitons,
if entropically favored, would lead to a vortex vacuum ana
l
w

,’’

m
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gous to a branched-polymer gel. There is, however, no ef
from this branching on the fundamental properties of the a
law for Wilson loops. Some of the nexuses carry CS num
~or topological charge in four dimensions!. In fact, vortices
themselves carry CS number or topological charge, qu
tized in units of 1/N. Such quantization is quite natural from
the point of view of solving the U(1) problem@23#, but is
not natural from the viewpoint of periodicity of theu angle
in units of 2p. However, these requirements can be rec
ciled, and we will discuss this in the center-vortex picture
a later publication.

Even though the nexuses may not play a large dynam
role in QCD ~at least atu50), it is worthwhile looking for
them on the lattice, supplied with appropriate boundary c
ditions, as a test of the underlying properties of center vo
ces. It might be worthwhile to list here some of the oth
properties of the center vortex picture which are accessibl
lattice calculations and other tests. First, the baryo
Wilson-loop area law is predicted@24# to be aD-law, not aY
law. Second, the fundamental premise of the center-vo
picture is that confinement comes from a nontrivial gro
center. There are certain exceptional groups~the simplest is
G2) which have only a trivial center, and it would be inte
esting to simulate them on the lattice to see if they confi
And third, there are tests yet to be devised which probe
interaction of vortices and theu angle.
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