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One-loop Pauli-Villars regularization of supergravity: Canonical gauge kinetic energy
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It is shown that the one-loop coefficients of on-shell operators of standard supergravity with canonical gauge
kinetic energy can be regulated by the introduction of Pauli-Villars chiral and Abelian gauge multiplets, subject
to a condition on the matter representations of the gauge group. Aspects of the anomaly structure of these
theories under global nonlinear symmetries and an anomalous gauge symmetry are discussed.
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I. INTRODUCTION AND PRELIMINARIES i . i
S$1=5Tr IN(D§+Hq) = 5Tr (=B +Mo)
It was shown in[1] that Pauli-Villars(PV) regulation of
the one-loop quadratic divergences of a genbrall super- i sy
gravity theory is possible. This result was generaligZfto +5STrin(De+He)
the regularization of the one-loop logarithmic divergences of
globally supersymmetric theories, including nonlinear sigma
models, with canonical kinetic energy for Yang-Mills fields.
It was further assumed that the theory was free of gauge and
mixed gravitational-gauge anomalies. The purpose of the
present paper is to generalize further these results. where T_ is the helicity-odd fermion contribution which
In Sec. Il we give a full PV regularization of a general contains no quadratic divergences, and the helicity-even con-
supergravity theory with canonical kinetic energy for thetribution is given by
gauge fields and an anomaly-free gauge group. In Sec. lll we
consider anomalies under "Kler transformations, and in ) _ _
Sec. IV we show how the regularization procedure must be Dg+He=(—iDe+Mg)(iDg+Me). 1.3
modified in the presence of an anomaldiisl) gauge group

factor. Our results are summarized in Sec. V, and some Cajfhe background field-dependent matriced($) and
culational details, as well as correctiond 84|, are given in 9 P

Appendixes. I5M(¢):&M+ I' ,(¢) are given in[3,4], where the one-loop
We conclude this section with a brief review of the for- Ultraviolet divergent contributions have been evaluated.

malism used to evaluate the regularized Lagrangian. The YWe regulate the theory by including a contribution from
one-loop effective actiors, is obtained from the term qua- Pauli-Villars loops, regarded as a parametrization of the re-

dratic in quantum fields when the Lagrangian is expandedlt of integrating out heavye.g., Kaluza-Klein or string
about an arbitrary background: modes of an underlying finite theory. The signature =1

of a PV field determines the sign of its contribution to the
1 supertrace relative to an ordinary particle of the same spin.
T aTro A2 Thusn=+1 (—1) for ordinary particlegghosts. The con-
Lauad ©,9,0) 2(1) 27 (DytHe)® tributions from Pauli-Villars fields with negative signature
1 could be interpreted as those of ghosts corresponding to
+20Z°%IDa—Ma)® heavy f_|e_lds of h|gh_er spin. _ _
2 (Do 0) Explicitly evaluating Eq.(1.2) with an ultraviolet cutoff
A and a massive Pauli-Villars sector with a squared mass

- . .
+ ECZC(Dg—i— Hoc+O(y), (1.1  Matrix of the form

i .
=5STr IN(D?+H)+T_, (1.2

2

where the column vector®, 0, andc represent quantum 2 _ 4PV a —yPVv, 2
bosons, fermions and ghost fields, respectively, andpre- Mpy=H (¢)+( a MZ) =H"
sents background fermions that we shall set to zero through-

out this paper. The fermion sect@r includes a C-odd Ma-
jorana auxiliary fielde that is introduced to implement the |v|2~ u2>HPY~H,
gravitino gauge fixing condition. The full gauge fixing pro-

cedure used here is described in detafldm. The one loop

bosonic action is given by gives, withH'=H+HPY,
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327, =~ f d*xp?dp®S Tr In(p?+ u?+H' +v)
+327%(S;+T.)

=32r(S}+T_)— f d*xp?dp?S Tr In(p®+ u?)

- f d*xp?dp?S Tr I 1+ (p?+ x?)  Y(H'+v)].
(1.4

S, is a logarithmically divergent contribution that involves
the operatoG,,=[D,,,D,]:

327%S;

1
_ 4y 242 v
B d*xpdp°S Tr G'#Y,

1
G/
(p2+ u?) ~H (p2+ u?)

G,,=G,,+G.). (1.5
The finiteness of Eq1.4) when A —c requires
STru®"=STrH' =STr(2u’H'+v*)=STrvH’
=STrH"?+ %STrG’ZJrth:o, (1.6)

wheret’ is the coefficient of IM%3272 in T_+T"V. The
vanishing of S Tru?" is automatically assured by supersym-
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Tr(T3TP)g= 6,,C3 (2.2

for particles transforming according to the representaRon
(or R), and the subscriptisA, refer to the light fields and to
X,U,V, respectively. For example, if the theory habhl;2
fundamental representations @f (as in supersymmetric ex-
tensions of the standard moglele can take PV fields in the
fundamental and anti-fundamental representations with sig-
natures that satisfiﬁnfgz N;. If there are N;+1 funda-
mental representations, one needs an anomalygissudg
real representatior for some VA such that C2=(2m
+1)C{. If no such representation exists, the theory cannot
be regulated in this way.

To regulate gravity loops we introduce additional gauge
singlets¢?, as well adJ(1) gauge supermultiplet&/* with
signature® and chiral multipletsZ®=e®" with the same
signature andJ(1), chargeq,d,s, such that the Kialer

potential K(6,0)=%v,(6+6)2 is invariant under
U(1)g: 050,=—030,=10,0,5. The corresponding D-
term

D(6,0)=D§D", DIi=—i2 Kd,0°=0q,v,(6°+ 6,
B

2.3

vanishes in the background, but“+ 6%)/\2 acquires a
squared masg?=(2x) 'q2v, equal to that ofW®, with
which it forms a massive vector supermultiplet, where
=g~ 2 is the inverse squared gauge coupling, taken here to

metry. Once the remaining conditions are satisfied we obtai,"5 constant

4

d*x
Sl:_f

WSTr[(zqu'w%st'Z

1
+=STrG'?+2t.

6 . (1.7

In wu?

Il. ANOMALY-FREE SUPERGRAVITY

We consider here a supergravity theory in which the
Yang-Mills fields have canonical kinetic energy. We further

Finally, to regulate the Yang-Mills contributions, we in-

clude chiral multipletsp? , ¢ that transform according to the
adjoint representation of the gauge group.
We take the Khler potentiat

KPVZZ

ok o L —
e PV, + S v, (0,+0,)2
Y

®a)

2 (DGPHURD |+ 2 (e ehert ol

assume that there are no gauge or mixed gauge-gravitational

anomalies: TA2=Tr ({T,,T,}T.) =0, whereT, is a genera-
tor of the gauge group.

To regulate chiral multiplet loops, we introduce Pauli-
Villars chiral supermultipletZ’ , that transform under gauge
transformations likez', Y{*, which transform according to
the conjugate representation, and gauge sind@tg°. Ad-
ditional charged fieldxg and Uﬁ transform according to the

representatiolRa and its conjugate, respectively, under the

gauge group factog,, and V’g transforms according to a

(pseudo real representation that is traceless and anomaly-

free. Their gauge couplings satisfy

(2.1

g 73Ca=> CP=Cj,

where

+ 3 (KEHKD+ S VAP
@ Y

o

b
. 5 (K= KiK))

Ki= X

z Z' ) +H.c}
1,3=0,

[KU—Z'CZ}L
+]22)2,

Y _
a>3"

p)

KUYEYE—a,(YEYOK +H.c)
L3S0

+|Yg|2(1+a§KiKi)},

This choice is by no means unique, only illustrative.
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P —1 ~
Ke=s=, JZ” YRV KI=K™K, (2.4 2 =1l 2 =2 Zom=-1 =
whereK™ is the inverse of the metric tensér,,, the su- n=nt, nt=nt ., ni=ns=—n5=—1.
perpotential (2.9

A. Quadratic divergences

— z I vB 0 OvB A . .

WPV_% Z Mapla YT+ HaplaYo In [1] it was shown how to regulate the quadratic diver-
gences of supergravity that are proportiondl to

1 -] 1
+§§a: (népPaght népPaeh) |+ 52 ny(47)?
Y

7 =
STrH=-10vV—-2M?+ §r+4Kir;D”z'D"zm+ 2D
+E [JURXS+uy(VE)?]

r

- r _
1 V+ M2—Z)+2x1DaDi(Taz)'
+—Z (a,W,Z YS+WZ Y+ = zlz W;; o o
2a= —2Riq(e “A'A™+-D 2 D#Z"™), (2.10
+ \EZ 02 L YHTLZ) '+ EE c,2%%w, (2.5
Xg=s T4 A 25 whereN andNg are the number of chiral and gauge super-
multiplets, respectively, in the light spectrum. In these ex-
pressionsy is the space-time curvatur®;,, is the Ricci

and gauge field kinetic functions

_X(5a +daﬁ‘Pa(P5) fab— 5al3,

= eaﬁ\/—(PB!

(2.6

tensor associated with the Klar metricK;;, V=V+D is
the classical scalar potential witi=e XA,A—3M2, D
=(2x) " 'D?D,, D,=K;(T,2)", and M?=e KAA is the

field-dependent squared gravitino mass, with
where the indexa refers to_the light gauge degrees of free-

dom. The functiorK=K(Z,Z) is the Kaler potential for the A=ekw=AT A=D|A, Al= K'mA;, etc.,
light chiral multipletsz'=(z')", W=W(Z) is the superpo- (211
tential, and
whereD; is the scalar field reparametrization covariant de-
J rivative.
Ki=d¢iK= E‘FK’ Kim=0didmK, K;j=d;9jK, etc. In evaluating the effective one-loop action we set to zero
2.7) all background Pauli-Villars fields; then the contribution of

these fields to S TH is
Properties of the metric tensor fof,Y,, are given in Ap-
pendix A. The matricesu,gz,d.5.,6,5, are nonvanishing
only when they couple fields of the same signature. The pa-
rametersu,v, play the role of effective cutoffs; they are
constrained so as to eliminate logarithmically divergent
terms of orderw?In A? in the integral(1.4). The parameters
a,b,c,d,e, are of order unity, and are chosen to satisfy

1
STrHPV= 2; na[;DaD p(Ta2)?

P Aiama—K P
—Rpia(AlAme +’DMZI'DP'Zm)

+2 np(V+M2)—(E np— 2 ni)%,
P P a
(2.12

b;=1, b,x1=0,

a=3 lai=-2  a=3 qla=r

a=4 where P refers to all PV chiral multiplets, including®.
From Eq.(2.1) we obtain, for the relevant elements of the
scalar reparametrization connectibrand Riemann tensd®

(see Appendix A

g Enaal

E 7’ aﬁ_ze 49-2,

S fci--2-3 g=-2-N. (29

2See Appendix D for corrections with respect[&4]. Our con-
ventions and notations are defined in the Appendixes of these pa-

The signatures of the chiral PV multiplets satisfy pers.
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Di(Taz)’=Di(Ta2)!, Dy(Tay1)’=—(Ta);.

(R )JKE_RJkE' (RY)Jk =0,

Di(Taya)’=—Dj(Ta2)' —a2K((Ta2)!, Dy(Taya)’=—a,(Ta2),

Do(TaYe) =au[K;Di(Ta2) —Kin(T,2) ™+ 82K D,],  Do(Tay,)°=2a2Ds,

(R™))y= ~Rim— aadlKim,  (R™@)gm=aZKim, (R')]=0,

(RI) o= KiR i+ @2(KiKjm+ KKy 1, @>3,

Dc(Ta)®=(Ta)g+ d5acDa,  Rpm=d5acKim, ¢“P#ZY, (2.13

wherea®=1, a‘AD: o
r
STr Hp\/: - E(N,_

+2V(N'—a)+2M3(N’

a=2 Ticac,
C

With Eq. (2.10 the finiteness condition S TH' =0 imposes
the constraints
N'=7-N, Ng=—-Ng, a=2. (2.15

The vanishing of S Trg&?H’+v?) in Eq. (1.6) further
constrains the parametegsand v. If, for example we sét
Pap=Mqdap, Ua=1, g  '=Bom, vi=(B3?|ul> the
finiteness constraint requires

3

2 ﬁ)Z—E na(a,Be)?

2 770(,30) =0,

C,a®=0

= '\';4 na(BL)?+

for fixed ac#0, C#Z'Y,.
(2.16

As explained in[1] the O(x?) contribution to Sy+S;
= [d*x(Lo+ L,) takes the form

; 7c(Bc)?=0

£O(gzy1K)+£l:EO(ng1K+5K)1 gﬂvzgiy(l+6)y

2

N — AA
= — e Q_— ’
€ ; 35.2€ “ApcA Tr}P: 3220

3The result is unchanged if the parametets— u(z), v
—v(z,z) depend on the light field&l].

NE; 7P, Né:Ey ).

?=0. Using these relations with Eq&.9) we obtain an overall contribution from heavy PV modes:
Ng) —2a(KimD 2D 2"~ 2D) — 2x *D,D;(T%2)'

—3a)+2R (e KAA™+D 7 DHz™),

(2.14
[
K= —ZKP (e KApAPR—4Kp) =Tr>, —Z)‘Azg
P 327 PQ P P 32
Ko= 800, Kipyip 20 95073507 = 0w, (217
where[5]
ApQ=0pohp, {po=dpalp,
Np=22 n5(BH)%n B,
{pro={p:o=1, (o=—4 (=0,
(A)8=e KK Supgutr, P#0,
Aiaﬂy:b‘ay“l’ﬂlz' (218)

A? plays the role of thématrix-valued effective cutoff. As
emphasized previousf], if there are three or more terms in
the sum over, the sign of\p is indeterminatg5].

In the following we require only on-shell invarianéand
so the quadratic divergences impose one less constraint than

“The off-shell divergences are prescription dependent; the exten-
sion of this regularization procedure beyond one loop may require a
choice of prescription in which they can also be made finite.
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in Eqg. (2.15. That is, we perform a Weyl transformation to The supertrace on the right hand side vanishes identically

write the one-loop corrected Lagrangian as because the supertraces of the squared mass mafifses
A2 vanish separately in the chirak{) andU(1) gauge )
Leti=Lyee97) — 3525 TrH 12 PV sectors.
r =
—€ 3 + pﬂz'pﬂmeia— 2V B. Logarithmic divergences
) ) From the results of3,4], if £(g,K) is the standard La-
In A : _ ' !
- grangian[6,7] for N=1 supergravity coupled to matter with
+0| 32,2) 1O/ | 16,2 *finite terms, space-time metrig,,, Kahler potentialK, and gauge ki-

netic function f,,(Z) = 6,,, the logarithmically divergent

2 part of the one loop corrected Lagrangian is

R _ _ ’ ’
gMV—(1+e)gM,,, G—W(N'FN —Ng—Ng—7), , ,
(2.19 In A® g A In A
- Lett=L(r Kr) + 557 (X*PLALe+ X La)+ Vo555 L,
and we do not require to vanish. Then the finiteness con-
ditions reduce to

N/:3a+1_N, NIG:a_Z_NG (22® L:L0+L1+L2+L3+NLX+NGLQ,

In this case, the third finiteness condition in Ed.6) be-
comes oL

= 2.2
£a= (2.22

STr(2u?H' +1%)=2 STr(ug—u?)

1 N
X| 5r+KipD ,z2D#*z"-2V|=0. (2.21

2 where ¢” is any light field, andl

X 20., 10. . 88
Lo=3C65,,( W™+ H.c) = 5 V2+ ZUM?+5M*+ —DM

47x _ - - =
+ T[2x1/\4,,1bwab— (F&,—iF5 )(FE"+iFg"D,2 D 2" K]

7 = 1. — .20 _ =
- §D#z'szmKi,;DaFgV+ 3(25v+ 10M?)KinD ,z"D*72' + g(wa% W) D,Dy,+ 11DK D , 2 D z™

14 | . R 20 — . 20 = =
—EDV‘F 15D ,Z2D*2'D ,z"D" “Kinﬂ(j;—g(D#sz“z'Kig)er gDﬂsz“z'D,,z“DVzJKmﬂ(jnﬁ, (2.23

X ~ ~ L= 1 — L= .
L= =g (Fou—IFR)(FY+IF)D 2D 2 K+ 3 [X*WaphV*° = D(KinD ;2 DPZ"+ 2V +4M?)]

1. _ i = 2. 1 = =
+3(VE 2M?)KnD ,2"D 47— §73le7)Vmem:Dalzgu §V|\/|2+ M4+ §DMZJD“Z'DVZ""D "Z"KinKm, (2.29

| . 2 =
L1=—[W*Di(Ty2)'D;(Te2) + H.c]+ D, 2D 2R},

DaD k(TaZ)J + ;D ae_ : er{ iAkAnDj (TaZ)I
+20F,D,(Ta2) R D#2D 2™+ D 2 DRI D, 2D 7R + D 2D RIS D2 D TR 5

~D,2D 7R, D'ZDZR,; +2e KD 2 DHZRE R AAT+e KA ARTLRTE AAT, (2.25

5See Appendix D for corrections with respect{&4].
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2 . = . 2=
Lo= 3, Di(Ta2) Da(D, 2 D27 K+ V + 3M?)+ 3D.2D 2" RmD*F5”

N

+ 2Di(Ta2) [(W+ W) Dy +ixF2 Ko D2 D 2]

w

4 2 2
+3De‘KRAA'—§DMz Dﬂzm[e—KR"AkA“Klm R,m(v+3M2)]——D ZD me,mR—(D"zJD 2~ DV DHEZY

- 2 = R 4 g
e 2RTALAA Al - §D,,z'Dpmem:D#zJDﬂz”Rjn—+ 3PP WZDFZR, (2.26

L3=D,2D*ZR"\ D DR +e KD (2 DPD[ A ARN = R (Api A — A A) ]+ H.c}
—-K
e . ; . — — : — — = . —
+ =D (TR, “AlAj +H.c]+e 2(RIEAATAA T+ H.c)+e *(2D ,Z D#z™+ e KAIA™) R}r;kRJiknA.A“
~[(D,ZD¥Z"+e KAA™ Di(e KRS AA) +H.cl, (2.27)

1 ) L= = = = ) 1 = _
Lg= §Kingn12D#z'D“zJDysz "z"+D,zD*72"D ,2"D"2Z) — §(DMZ'D“mei,;)2+x2WabWab

1 _ 1.0 1. R
+§(Wab+wab)papb— §v2+ §(V+D)DMZ'D“mei,; p 4p 7K, wDAFLY

3 M
2. X om/-a a pv__iEpv
—§VD—§K—DZD“Z (F2 +iF2 )(Fr—iFey), (2.29
|
whereF?=F% FA4” with F3, the Yang-Mills field strength, InA2

1
Letr> VO35 75(41+N=3Ng)

1
ab 4(F Fb |F Fb) D Db! (229

X(FEPOE = ATHYT A T2),
and (2.32

eXD; (e-KR AATK) = (DR )AAJk+R Ay A _ _ _ o
in agreement with other calculatiofi8]. We similarly drop

+2Rin?AkA’+ R! mkRJk AA". total derivatives in the logarithmically divergent PV contri-
: ] butions.
(2.30 The Pauli-Villars contribution to Eq(2.24) is, after an

) N o appropriate additional space-time metric redefinition,
The renormalized Kaler potential is

Kr=K+ M[e’KA--NJ—2\A/—1OM2—4ICa—12D] InAZl : P, P
RTE T 32p2t N a— Pv=Og5 2 NeLg t N'Ly+ 2 7p(LT+LE)
:_(Taz) (sz)mK|m (23]) +L§+ Lw+ELe +AK"C1
The second term in the expressith24) for L.¢; does not r— InA? PQ
X expre eff , K'= 3 7€ E 77PAPQA (2.33
contribute to the S-matrix. Since we are only interested in ™

on-shell finiteness, we can drop it. We have also dropped
total derivatives, including the Gauss-Bonnet term which can
readily be extracted from the results [&4]: where

105027-6
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1 "= = L.=2iD ziDV?EKir;DaFgV+4D(3M2+\7)
—ApL=AgL=—FV+ (e “A'A"+D ,Z'D*z™) g0 F
Vg — AWV X(F2, —iF2))

1 x(Fg”+iFg”)sz'D/‘mem7
—{ 9,F| e XA At a(Taz) +H.c. (2.39 R
+2DD , 2 D2 K — 4A pL (2.39
is the shift in £/\/g due to a shiftF(z,z) in the Kéler are the contributions from the gauge kinetic terms given in
potential, andsee Appendix B and EdB38)] Egs. (2.6), obtained by a straightforward generalization of
o the results of4] to the case of a nondiagonal gauge kinetic
Lyy=Xx2Wo W[ 2e?+ (d—2e)?], function f,,, (see Appendix B

To evaluateK’ andL; we need the additional PV matrix elemefisge Appendix A

Z1 _ o z
RI Jn—R,mJn+K|mKJn+K|me, A

2 o
A Fai=el \[ (T2, AR \[;[<Taz>mKim+aiKiDa].

2AfYe=nsl, 2A7 ¢ =ojA+ale K WA, >3,

1=A4

. Al _pAdj
1J ij Azl—A )

V2AZO Y :aaﬁr \/EAIZOavYa:aaeKWi y o> 3,
— NeB_ caB.,—1a
Als=SapraA,  AGP=5"Pu A,
0 — o J—
AZo=8,4C,A,  ASh=0%C A, (2.36

where we have not included-dependent terms that are already contained in E9%7). Then, using Eq92.8) and(2.9) we
obtain
| 2

K'=— o5—z[e A Al +20+2M? - 4K 5~ 4(e+ 1)D]. (2.37)

L5 is determined by the expressions

—(Rzl)lk 1=RimjnR "1+ AR+ 2(KinK i+ KK i),

ImJ
VAWN Alj Al — _Adj N—
AulAZJl:AiJ-A", RImJ?AZJl RiminA+2A0, (2.38
giving
z . 2 K AR iy BT M von — R =
L3=—L3+4AVL+8AM2L—\/—§e (AJAL'+H.c)-4D ,2D*2D ,z"D "2 (KizKjm+ Rimjn)
—4AM2(2V+3M?)—4e K(2D 2D 7™+ e KAIAMR - AA"-8DM?, (2.39

where relations among operators given in Appendix B4dfwere usedL} is obtained directly from Eqg2.13:
b 2
E nply=—L—zeal,,
5 3

Lo=(V+3M2)2=4D(K 7D ,2 DPZ™+V+3M2) + 2(V+ BM2)KmD 2" D2 K i+ (D, 2"D 2K i)

+ DD ZK K (D 2D 2"~ D 7D ,2) —2iD , 2D , 7K DL’ — (W34 W) D, D . (2.40

105027-7
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To evaluateL? we need

D(Taza)’Dy(Tpzo)'=Di(Ta2)'Dj(Ty2)',

Di(Tay1)’Dy(Tpy1)'=— 8avCiur »

(R%) e RE) =Ry Rl

jkm" tiln ?
J
(Rza)”(EDJ(sza)I: ka (sz)l
Dp(TaYa)°Do(ToYa)"=D;(Ta2) ' Di(Tpz)) + @2X(Kap+ Koa),
P _
(RY®) g R g = Ry Ry 282 Rinin T 24 (KK i+ KiaKi),

(R") gD o(Toy )P =RDi(To2) + 2D Tp2) Kjmy, >3,

C -
Dc(Ta¢)PDp(Tph) S =Ca+ 85a2DaDy, Ry rRom= 05 a2KimKim,
RS, Dp(Tp$)C= 502K Dy, ¢SP#ZY. (2.41)

Then using the constraint®.8) and the results given in Appendix B f8], we obtain(see Appendix A

; 7°LY=—L,—3C%6,,(Wa®+H.c)+a’L,+L7, a'=; nca’,

2 . = .
[Da(T?2) Li+iD ,z™(T%2) KL £+ H.c]

x\g

+4D ,ZD*2D 7D 2R+ KinKm) + 4~ K(2D 2D #z™+ e KAIAMR - AA™. (2.42

mn

LY=4[Ap2L+M3(2V+3M2+2D)]+8A L —

Adding the above, we get, for the total PV contribution,

InA% o A In A2
Lpy= W(XPVEA»CB"" XpvLa) + \/EWLPV‘F AgpvL,

In A% .
KPV=K'+ EZ[4v+ 12M?+8D]= — (Kgr—K),

2
LPV: N(’BLQ—’_ N’ LX_ Ll_ L2_ L3+ Lw+eLe+ 01' - §CY) La . (243)
The renormalization of the Kder potential is seen to be finite. Setting
2e’+(d—2e)%=2e, (2.44

and using the constraint.20, we obtain, for the remaining contributions,
L+Lpy=—(6+a—a')[V2+D ,Z"D 2D ,2"D 2 (KK n— KinK;m) ]+ (2— a+3a’)(2UM2+3M*

+2M2K, =D "D 7K, o)+ 2(4+ a' YK, -D , 2" D 7K~

im uZ im uZ

+(14+a+a')DMzJDMziDEﬂDV?‘Kim(j,;+4(7+a—sa'+3e)DM2
+(6+ a—a’)(WAP+ WAL D, Dy + 2(7+ a— €)X| xWa, WA — (Fa —iF2 ) (FE"+iFL" D, 2 DHZ K iy
—2(1+a’ —€)(2DV+iD 2D , 7" KwD3FL") + 2(5+ a—2a’' +€)DKnD ,2 D 7™, (2.49
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- 1
S LiM=—— —F4"FS ,— 5-D.D?|(CE—Cfy)

Finiteness is achieved by imposing ImH/1
872 (4 2X
(3.6

a=—-10, a'=—4, e=-3. (2.46

Once all the infinities have been removed, the Lagrangian . . . . .
takes the forn{1.7), with the matrix-valued effective cutoff a combines with Eq(3.9) to give the superfield expression
function of the scalar fields. In particular, the terms of order 1
In u are given by Eqs(2.22 with In A? replaced by the oLiM=— WJ d*
matrix =p7°In (ud). m

E

0grWaWa(Ce—Ch). (3.7

The field dependence of the effective cutoffs was in fact
. KA HLER ANOMALIES determined if 15] by imposing the supersymmetric relation
] ] ) ) o between the chiral and conformal anomalies associated with
Classically, supergravity theories are invarianthka  kanler transformations; this in turn restricts théHer po-
transformations that redefine the Mer potential and the (ential for charged PV fields.
superpotential in terms of a holomorphic functibifz), Sigma-models coupled to supergravity are invariant under
a group of nonlinear transformatiozs— f(Z) that effect a
o Kahler transformation of the forng3.1), (3.2). This is in
K—K+H+H, W—elw, (3.2 general a classical invariance, and an interesting question is
under what circumstances this invariance, which we will re-
fer to as modular invariance, can be respected at the quantum
and that shifts the fermion axi&l (1) current: level. If modular invariance is broken at the quantum level,
the resulting chiral and conformal modular anomalies must
form a supermultiplet. We consider some examples below.

i . = 1
FMZZ(DMZIKi_DMZmK@—)FM— 5d,mH. (3.2

2 A. Nonlinear sigma-models

Consider first an ungauged supergravity theory with no

This invariance is _anomalous _at the quqntum level due to thguperpotential and with a léer metric typically of the form
conformal and chiral anomalies. Consider for example the

one-loop correction to the Yang-Mills term:

m n
1 A
_ A A_ 2
LYM_ 1 EF,U«VFa _ 1DDa K—AZ:lK , K ———kAIn 1+772:l | Z,| )
! 16m2\ 4 @ “ur 2x7@
ka=— n|Kal, (3.9

x; npCRIN(ARBR) + - - -

which is classically invariant under the infinitesimal nonlin-

= Epqua - ip pa ear transformations
16m?l4" 2 " mr 2x7 R
X[3CEIn(ePutp,) — ChIn(e uzpz) T+ - -, 824 =Bat 722, Bizh.  OKA=FALFA
(3.3
in the notation of Eqs(2.16), where the ellipses represent FA=Y Bhzh, (3.9
i

operators of higher dimension, aff]

where n=+(—)1 for a (noncompact symmetry group.
In p,= > ) 7n(BY)2,  Inpy= PEZXV nn(BH)2 Then the derivatives of the metric satisfy

a,P=9¢,¢

(3.4 KA=KaKMKR,  TH=Ka(SMKR+ S0 KP),
Under Eqgs(3.1) the quantum correctiofB8.3) changes by Rﬁ(ia: Ka( 5{“K’k*a+ 5{3%%),
ReH 1 1 8 ifKA£O
5£YM:__ _FMVFaV__D Da H Z) Ca_ a) ) i i y
LT g ate e P G 5'=Y0 ifkAr=o. (3.10
+H.c.. (3.5

To regulate the theory, we need only include a subset of
Gauginos and chiral fermions havélidar U(1) weights+1  the chiral supermultiplets in Eq$2.4). We take the Khler
and — 1, respectively; so the corresponding chiral anomaly potential

105027-9
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z Y
+2 KE HKY .,
Aa

KPVZE}, eX[{; aﬁKA¢'}’gy

Ki,a K ZA aZA a

:LE

J=i,j

“(Kf\Kf\zg,azﬂ\w H.c) |,

> K YA yEe,
=3

KX,a:eXF(E aAa )
B

Naa= Tha=Ta» (3.11)

and the superpotential
WPv:I AEB Mi,aﬁz,lf-\,aY'lA'ﬁ"_zﬁ Mfﬂd’y(P’B- (3.12

whereu ;=0 if 7,# 74.
Then Egs(2.10 and(2.12) reduce to

. — r
STrH =2§ D, 2 DK 2—Ka(na+ 1)1+ 5(7

-N),

r
—N’,

i Zmy A
S Tervz—Zg apD 2 D*ZK o~ 5

A
777+ ZHAE 77a,

+2 nBak,. (3.13

an=2 mha
Cancellation of the on-shell quadratic divergences requires

and additional constraints on the parameters provide a can-

cellation of all one-loop ultraviolet divergences.

The PV Kaler potential (3.11) is invariant under the
Kahler transformation(3.8), provided the PV superfields
transform as

I &5ziA J I i 2 >d
0Zp=——Zp=7 ZAFA+ZA; BAZA |,
A
3¢==2, ayFhe,
A
L TN EN B
T B

(3.19

To obtain a fully invariant PV potential requires

ap,=1, wuis=0 if al+af#1, (3.16

PHYSICAL REVIEW D 58 105027

in which case the superpotenti8l12) transforms under Egs.
(3.8) as SWpy= —Wp\ S 4FA, and the effective cutoffd 2,
are constant. However, in this case

1

—N’,

= r
5 Hpy=—N'| D,2D*2"Ki+ 5

5]
(3.19

which is removed by the Weyl transformati¢®.19. Thus
chiral supermultiplets with modular invariant masses do not
contribute to quadratic divergences, nor do massive Abelian
gauge multiplets Since modular invariance of their masses
requiresa’=0, #-loops contribute only to the space-time
curvature term and exactly cancel the corresponding gauge
loop contributions. Therefore, modular invariant regulariza-
tion cannot be achieved unless the massless theory is free of
quadratic divergences. This requires a constraint on the total
massless spectrum. If it includé&; gauge supermultiplets
and N, additional chiral supermultipletg“ with modular
we|ghtsq that is, with Kaler potential

K(¢% ¢ = 2 |¢“|2exp(2 qAKA) (3.18

the constraint reads

If this constraint is satisfied, the Kker potential is not renor-
malized, and the classical Bagger-WittBW) quantization
condition[9,10], which relates the pion decay constant to the
Planck mass in a compaetmodel, is preserved at the quan-
tum level. If this is not the case, one can still preserve the
BW condition by imposing, in addition to Eq$2.16), the
additional constraintgsee Eqs(2.17) and(2.18] on the PV
masses:

QZB NaBopN(Bap)=0 forfixed a,+ag#1.
(3.20

If the group of modular transformations is noncompact, a
subgroup of the modular transformatiaids9) may be a clas-
sical invariance of the Lagrangian in the presence of a super-
potential and of gauge interactions for a subset ofzheAn
example is the Lagrangian for the “untwisted sector” of
light fields in a class of orbifold compactifications of the
heterotic string. The Kaer potential is(neglecting the dila-
ton)

=—In

3 n—-1
-3 o TS 00
=1 A=1

(3.2)

It is invariant under arSL(2,R) group of modular transfor-
mations that leav& invariant, and the derivatives ¢f sat-
isfy Egs.(3.10 with KA—G', ky—k,=1. The superpoten-
tial has the form

WE

AgB, C
i CABc| €13k PT PP

(3.22

105027-10
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This model has the property that whereMpy, is the PV mass matrix. Under a transformation
J— on the PV fields, represented here by a column vextor
Aiae=0 if 1=, RM"A;=0, (3.23  which leaves the tree Lagrangian, as well as the P¥l&a

o ] ] ) potential, invariant,
where the indices,j, ... run over all chiral fieldg', and

the logarithmically divergent contribution$2.22—(2.28
simplify considerably. However, the ansd®&11) is insuffi-
cient to cancel logarithmic divergent terms proportional to
Di(T%2)'Dj(T,2)" andD;(T?2)!R), -, suggesting that modu-
lar invariant regularization is not possible for any choice of
spectrum, although invariance of tg ) term can always (D?+H(0))—gi(D?>+H(0))g; *, (3.20
be imposed by conditions analogous to E$20.

X 0 m
—0;

Xi i m O » Mpy—Mgpy

) ] ) because all the operators in the determinant exiveg} are
B. String-derived supergravity covariant, and the PV contribution to E@.25 changes by
If the underlying theory is a superstring theory, there is
generally invariance under a discrete group of modular trans-

i
formations on the light superfields under whidt—K (S1)py— EE 7S Trin{gi[DZ+H;(g, *Mpygi)1g; 1}
+F(2)+F(2), W—e F@W, which cannot be broken by '
perturbative quantum correctiof$l]. For example, in the i ) P
class of orbifold compactifications mentioned above the =§Z 7S TrInNDi+Hi(gi "Mpygi)],  (3.27)
Kahler potential, including twisted sector fields, takes the

SL(2,R) invariant form
where 7; is the signature, and the last equality holds if the

K= i Lt exd S gl @A integrals are finite. The PV Kder potentialk p,= kimX'X™
= = da is invariant providedkim—g; *kimgmt, K™—gikMgpy,. If
3 the PV mass is introduced via a superpotential taim

.. | J = i
=3 g'+ex;<2 qk)|®A|2+O(|¢>A|4), 5 uijX'X!, u=const, the PV mass is
=1 [
_ m,a: eK/ZKjaM_, , m/Ez e(K',K)IZE KJngK_m;
g|=—|n(T|+T|), (324) ! 4 : m I I(328)

which reduces to Eq3.21) when the twisted fields are set to . . & o
zero. The general PV Keer potential of Eqs(2.4) is modu- If. the transformation is Abeliang;=e®, and the metric is
lar invariant if the fieldZ', has the same modular weight as diag0nal.Kin>dim, we just get
Z' and ¢ has modular weightrc . The superpotentigR.5) _
can be made invariant under the discr8ig2,Z) subgroup P (K —K)/24 ot e B et 0
of SL(2R) modular transformations, by an appropriate mi=e UM T g )
T,-dependence of the PV massesu,— u(T))

=,U,al_[|[77(T|)]pir, where 7(T) is the Dedekind function.

20im.
This modification of the effective cutoffs could be inter- g_lM_g_:e(K’K)IZ( _ € m,) (3.29
preted as threshold effects arising from the integration over =~ '~ e?’m; 0 /'

heavy modes.
On the other hand, it is known that at least some of th £
modular invariance is restored by a universal Green-Schwarz

counterterm; this is in particular the case for the anomaloua)A with signature-weiahted average modular weidhts
Yang-Mills coupling [12-15. To study the conformal 9 9 9 9

—g® a i - -
anomalies arising from the noninvariance of the effective gi’, andX® for the gauge fields with average weiglfs

cutoffs, consider the helicity-even phudf the one-loop ac- ~ 1/3, and the superpotential term
tion, given by

e.g.,,uijM5ij .
If, following Sec. Il, we introduce regulator¥”, X, for

WPV:EA MAXAXA‘F; maX¥Xa,

i
$=5STr IND2+H(Mpy)], (3.2
m; =exp< K2—2> qid' ) Mis (3.30
5The chiral anomaly can be obtained by a resumm3tishof the !
derivative expansion of the helicity-odd contributidn , which
gives the standard results for the terms condsidered here. under a modular transformation we have

105027-11
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, mi’=eXp<2 (1-2q))ReF' |m;,
0 exp(—2 q}F') I

0 ex;{ —2i>, qlim F')mi’
|
g ‘M{gi= : (33

ex;{ZiE giim F'ﬁ’) 0

the contribution(3.3) shifts by theory we introduced heavy vector-like pairs of states with
gauge invariant masses. Explicitly, under a gauge trans-

}+... formation  XA—gaX", Xa—0a'Xa, XP—gaXP, X;
—gaXa, M'=gMg}, i.e., the mass matrix3.26 is co-

1
- Wﬁ{ Fi[scalmlmil)—; cain(Imz))

1 variant, and no anomaly is introduced by the regularization
:_WE Re F'Fg[ca—E CA(1—-2gh) [+, procedure. . _ _ _
! A However, the quadratically divergent piece contains the
(3.3 term
and the conformal anomaly matches the chiral anomaly aris- 2x 1D,Di(T3z)'=2x"1D,[ Tr T2+ Fij(Taz)j]. 4.0

ing from the axial currents
If Tr T,#0, one cannot regulate the quadratic divergehces
without introducing a mass term for PV stat&s with the
same 1)y chargeq'. As a consequence the effective cutoff
is noninvariant, which gives the conformal anomaly counter-
DA [ A part to the chiral anomaly.
(A)e=—T,+5(D,zTg—H.c), (3.33 Thus, in addition to the PV regulators introduced in Sec.
I, we introduce chiral field' with signaturesy; that carry
for gauginos and charged chiral fermions, respectively. Th@nly U(1)x chargeq;:
Casimirs and modular weights satisfy the sum rules

N _ —
A=T,=

y

(D ,Z'K;—H.c),

KoK+k, Kk=fi(zl,zM|Xi]2+0|Xi[4,
a__ _ | a_ N i X
C ;u 20,)Ca=Cg,— b. (3.34 W W wf(X)2, (4.2)

For orbifolds such aZ; andZ-, that contain ndN=2 super-  Their contribution to the chirdll (1)yx anomaly vanishes; the
symmetric twisted sectdi7], b, =0, the anomaly3.32 is  explicit breaking through the mass terms cancels their con-
completely cancelled by a Green-Schwarz term. For othelfibution to the true anomaly.

models the residual anomaly is cancelled by string-loop We have been working with the covariant superspace for-
threshold effect§12] that can be incorporated in the presentmalism of [7], in which the vector potentidlA,, is intro-

formalism by making thQDa masses modu”_dependent: duced as the lowest component of an anti-Hermitian one-
form superfield, and matter superfieldsare defined to be

covariantly chiral:

ug—T1 [n(T) oot (3.39 g
' Db=0, x*=D*d|, 4.3

Note that since the masses are not modular invariant, addi- . — .
tional conditions, analogous to E(8.20, must be imposed whe_re the covariant _denvanv@M contains th_e gauge con-
to make the quadratically divergent terms anomaly free. Podlection Ay, and M is a coordinate index in superspace.
sibilities for cancelling the remaining modular anomaliesUNder & gauge transformation,
will be studied elsewhere.

IV. ANOMALOUS U(1) "In the context of renormalizable theories one can use dimensional
. ) ) regularization or reduction and the quadratic divergence never ap-
In this section we include an anomaloUq1)yx gauge pears.

factor TrTy,Tr Tf’a& 0. To regulate a nonanomalous gauge 8iAﬂ—>iam=Am| in the notation of 7].
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a1 A ydad A -1_ 4t
Au—Au=g "Dug,  PToghRT, g ¥ 4a 3 0= -Tr =122, 3 nqni=0.

(4.10
The chiral Yang-Mills superfiel®V* is obtained as a com-
ponent of the two-forn¥,,, which is the Yang-Mills field Once all the infinities are cancelled one gets a finite contri-
strength in superspace. The author§fpoint out that one  bution that grows withu?. Settingu;= 81, we get a con-
can introduce the commonly used Yang-Mills superfield po-ribution of the form(2.17) with now
tential Vy such that
-2

1 OK=2 mmiin By, mi= B ml® (41D

W,=— Z(DZ— R)D,Vy, (4.5
Taking, for example, the modular invariant form

whereR is an element of the supervielbein afd— R is the 2
chiral_projection, b_ut this_ fiel_d _does_ not appear in thg_con- ki:eK/2|xi|2, SK= FZ 7li,3i2|n Bie~4aivVx,
struction of the action which is invariant under an additional T
gauge transformation (4.12

1 o the correction to the bosonic Lagrangian[see Eq.(2.39
Vy—Vy=Vy+ §(A+A)’ (4.6) and Appendix ¢

2
ue 1 — N
which is independent of Eq&.4). Since the gauge invariant AL= \/5—32772 67 «(D*~ R)Da—V} 5K’
superpotential is invariant under the complex extension of

the gauge group, there is no conflict between E4gl) and u? A

holomorphicity of the superpotential. = QWZ 787N Bi[ 29%G;(dx— ;A ,A*) —V].
However, the superpotentiéd.2) changes by a nonholo-

mophic function undet) (1)y if X'—g%X'. Therefore holo- (4.13

morphicity requiresX' —e~9%*X', A holomorphic, under a o

U(1)y gauge transformation. To preserve gauge invarianc&l0té that a mass term is induced for the anomalal(d,)x
of the Kihler potential, we takeX' chiral in the ordinary ~9auge bosom, . Thus if the full quantum theory is not
sense; that is, we defi@X'=D,,X', whereD,, contains anomalous, we must impose

no gauge connection, and modify theder potential(4.2)

to read > 79?B%In Bi=0. (4.19

|
K—K+k'e2diVx, (4. .
The logarithmically divergent contribution frodd' contains
As shown in Appendix C, one obtains the standard Lagrang@ t&rm
ian when this expression is evaluated in the Wess-Zumino 1
(W2Z) gauge. This choice is not justified unless the full theory Lo — Inlml2a2E2+ . . . 41
is gauge invariant. In fact, we are interested in the special % 647722 miin[mil*a7Fx (4.19
case in which thdJ(1)yx anomaly satisfies the “universal- -
ity” condition Under U(1)yx, Eq. (4.6), [m|?—e 24+ Mm|2; so the
quantum Lagrangian changes by
1 1
3T T3=Tr (Tng):2—4Tr Ty=87258y, (4.9 1 i
5LX932—WZZ 2NN PFZ+ -, (416
and — in string derived supergravity — is cancelled by a
Green-Schwarz termil8]. Thus provided this term is in- wherex=A|. The light fermion contribution gives the chiral
cluded and evaluated in the WZ gauge, there is no ambiguanomaly
ity.

Including the fieldsX' we get a quadratically divergent i Ox ~
contribution OLx=—(In 9|)§ FeFat- - (4.17
2 X - For F2=Fy, the anomalie$4.16),(4.17) form a supermul-
STrHs2g dx( EA: qA+§i: n.q.), (4.9 tiplet if we take

where the first term is the light field contribution anlg —e(~12(A=A) 9P=8m2s 41
=3 Kaqxp?, ¢”=®dA|. Finiteness requires g ' Z i X 4.18
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To make the full anomaly determined by Eg.8) super-  bation theory; a study of the anomaly structure provides in-
symmetric, we must include PV fields with bath(1)x and  formation on the type of counterterms that must be included
the nonanomalous gauge charges. This can be accomplishix cancel the field theory anomalies. In these theories the
by assigning thesame W1)y chargeq, to the previously gauge kinetic energy term is noncanonical, and is governed
introduced PV fieldé(A,XA, defining the superspace deriva- by couplings to a universal dilaton. The full loop corrections

tive asDy=DyX+T,AZ | A= AX and setting including the dilaton, and a more detailed study of super-
gravity theories, based on orbifold compactifications of the
|XA|2—e2aVX|XA|2,  |Xal?—e?9aYX| X ,|?, heterotic string, will be presented elsewhere.
in the Kéhler potential. The generalization of the Lagrangian ACKNOWLEDGMENTS

of Appendix C to this case is tedious but straightforward.
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_ ﬁ( ReAS FoF +im S FoE, |+ ... APPENDIX A: THE METRIC TENSOR FOR Y
2 a a a a .

The metric tensor derived fromd) . , in Egs.(2.4) is the
(4.19 inverse of that derived from the Kéer potential

This mechanism introduces a D-term with a well-defined co- (<3 2

efficient that has been used in many applications to phenom- k= | le Y YKt agKiKy)

enology. Note that there is also a D-term in E413), which o

may be removed by an additional condition on e One | =D 02

needs further information on the underlying theory to deter- +8,(Y, Y Ki+H.c)+[Yo[). (A1)
mine whether or not this term is present.

It is straightforward to evaluate the derivatives of the metric

V. CONCLUDING REMARKS keg, P,Q=Y,,Y,. Denoting byygi ,rgia the correspond-
ing elements of the affine connection and Riemann tensor,

We have shown that on-shell one-loop Pauli-Villars regu- .
respectively, we have

larization is possible for supergravity theories with canonical

kinetic energy for gauge superfields. The resulting Lagrang-

ian depends on the PV massgedhat play the role of effec-

tive cutoffs. It remains an open question as to whether PV

regularization remains possible at higher order without the (I8=—7oi (RY)SE: _rgﬁ*

addition of higher derivative terms. However, since the chi-

ral anomalies of the effective field theory are completelygiving the results listed in Eq$2.13 and(2.42. In addition

determined at one loop order, and their partner conformajve have

anomalies are thereby fixed by supersymmetry — through

constraints on the Pauli-Villars massess — at the same ordeé\g(f e“Wpq,

one loop calculations are sufficient to study the field theory -

anoma”es. . ) ) K‘;Q: eKK$P’K$Q’Aw,: eKkPFkQW
We found that nonlinear sigma-model symmetries can be

reserved at the quantum level only for ungauged theoriegy _ _k APo_ KK PQU OO A —— o —A—

\F/Jvith restricted pagicle spectra, sucr)( that thgeregare no qua?i‘P*"_e We,, A= KK Ag,=kpoAgy"

dratic divergences. It is nevertheless possible to impose in-

variance of theO(u?) correction, thereby preserving the giving the results listed in Eq2.37.

Bagger-Witten condition at the quantum level. Similarly, the

O(u?) correction to an anomaloud(1) gauge symmetry

may be made gauge invariant. There is alsoQ{u?) D-

term that does not automatically vanish when gauge invari-

ance is imposed; further information on the underlying Here we sketch the generalization[df to the case of a

theory is needed to fix this term. nondiagonal gauge kinetic function involving Pauli-Villars
In string-derived supergravity a discrete subgroup of thdields. Although in this paper we assume a canonical kinetic

sigma-model symmetry is preserved to all orders in perturenergy term for the light gauge fields, we give the results

(Tay’= (T, Dy,(TaY);=—D;(Ta2),

(A2)

(A3)

APPENDIX B: NONDIAGONAL GAUGE KINETIC
FUNCTION
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here for the case of a universal dilaton. The case relevant to 1

Sec. Il of this paper is recovered by settisig const. With
an arbitrary kinetic functiorf,,(Z), the Lagrangian for the

auxiliary fieldsD, of the Yang-Mills supermultiplets takes

the form[7], upon solving forD,,

c =}(Ref)abD Dy—D 'I5a=—l[(Ref)‘1]abf) D
D™ o a~'b a 2 a~b>

- i
DazDa+§(ff‘b)\bLX'—H.c.), fab= g,fab, (B1)

Writing f2P=f,5%°+ 3P, we may expand i to obtain

Re 2P
Refy,

1
EDz—E(Refa)‘l( 50—

Re €2°Re P\ _

+§ Rebeefc )Dan_F”. (BZ)

Here we introduce Pauli-Villars Abelian multiplet& , and
take gauge kinetic functions of the form

FAB= 5A8(xp+iy,) + €P,

d
b_ cab, b 0 _
fab= 525+ §¢a¢ v fap=0ap,

1
fa%=e,0? Kpy= e |eff? e=o_.
Y 2X
(B3)
In addition to scalar curvature terms,
Rpee=Kssh, (B4)
we have, for fixedy,
a0 __ ¢ ca0 _ 1
Dsf o= —T &b jc= —ksdpe= ﬂﬁﬁe. (B5)

The relevant part of the tree Lagrangig$)7] is (setting all
background fermions to zero

1 _
—=L(¢%B%)=e"D*¢%D ,¢?

Vg

d b/Eb Fuv_iEuvpeb
el 6P (FE Far—IF RS )+ He]

7 ZVFZ“V [ a(Fa Fiv— IFgVFZV)
i
+H.C.]+E)\“D)\a-l—iek()(fll))(l_-l—)(RD)(R)

-V—e,

1 1 A
8l 5 Dat 70w FL" | xiHHC,

V= o 2DaDp (9% + ¢7¢") — (07 + o%) (@"+ ¢")].
(B6)
Following the procedure described [ih9], we introduce

off-diagonal connections in the bosonic sector so as to cast
the quantum Lagrangian in the form

1 ~ 1 .
Looset Lan=— 5 PTZe(DG+Ha) P+ 56Zgn( D+ Hgne,
- 9"Yns
D _ —
D/_L_D,u._l—v;u (V,u,)Ap,BO'_ _ep/.m'vT1
(V,LL)AV,i:(V/.L)i,AV:[(V/.L)T,AV]*
4mfAB(fB;LV IFB[.LV)
e = . b 0
:Z(Fb,uv_”:b#”)’ for i=¢°, A=A,.

(B7)

This introduces corresponding shifts in the background field-
dependent “squared mass” matrices:
Mi—He=M5—V, V-,

MZ—Hgh=Mg,—B,B~

(B8)

We have the following relations among derivatives of the
kinetic function:

e
f,=D,f=e, f3=2xe, fsa=DSDaf=ﬂ,
fgaz Dgfaz 0, Sgafaxss— - EXSS
foef3
2 a 'ba
Dﬂe _DM(T)
e2

x=0.

1 —
= 5 [3,8(Df2) 5, +H.el= 573,

(B9)

In evaluating the matrix elements needed for PV loop
contributions, we set background PV fields to zero and show
explicitly only the terms involving the parametezsandd.

The remainder of this appendix closely parallels Appendix C
of [4].

1. Matrix elements
The elements oH,;, |,J=¢?, are
Hi;=Vi3+ R+ Dyy+v;— (V. V),

=V VH)im=(V, V¥)mi =0,

Vim=Umi
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(V,VH) gago= %Z(FQ‘VFZVI iFLFLL), (Gl ap po= et o
420l F o o+ Fay PO~ (0],
U pagh (F‘”Fb FiFLF),), (B10) (B13)
The matrix elements dilg are given by
where

M3=0,

1
—_ — c = 2_
Da—ZXDD + DC(T )2, Dab 22 (& "D DaDy. M=m,+M~4a,
(B11)

1
— Ak mv
The additional nonvanishing elements &4Hg are M5 2e (Ma=Mg’o,

—Ngu gy @NdS,, o With
ie T
X . 1 . Mga=My=5-Da=M_z=M; ,
NaM,Bv:_Eeaeﬁ(FMpFayp_ ZngFp(,Fg + Sup v
v ie V— T U (Pa,
. s M= — g (FA"FiFE"), a= p (B14)
D™ 4D Farst g Fins? ( ) | o |
with covariant derivatives as defined [i8,4]:
@? —
S pop, - Tl ,a=i— oS
4 avu ™ oy Favud ( ) [(pa, D,My=(D,My)* = —i LzeDa1
4x
. , "X 3"y~ e _—= J.
DY Fav#—'D Fav,u TFa,,Iu‘F TFaV/-L' (812) + Z[ij(TaZ) DpZ +H.C.],
Finally we need D M4'=—(D M4")*
ie 3,8 v
GMV:(GZ+GQ+GQZ);LVI :—§ D,ﬂ‘g (FE"—=IFLY). (B15)
4,59,5—0,59,5 _ The matrix elements o& ), are(see Appendix D
(CLlb=—"—(z  %=iFL(To}, ab |
. . i
[ ()Da,b’ (G,LLV)OO ir ,uV! F,u,vzr,u,v_ EFZVDaY
- “ab
P, ) . @2, 0",
) (G )b (G )b+ %(Zﬂvirﬂv)! a:b: ;a gb
e°x - v
(Gh)a= 7 (Fau Py FiF o, Fo ") = (uew), (B16)
As in [4], we double the quantum fermions degrees of
a b freedom and represent them as 8-component Dirac spinors.
ab={_ A In the following Tr denotes the full trace of fermion mass
a P and field strength ¢,,=[D,,D,]) which are &,X8n,
matrices, wher@; is the number of intrinsic fermion degrees
(G92) (G ) of freedom. The explicit calculation given below is for just
priapa dap one nonvanishing®: n;=Ng(1) for y2(\%).
s
4 Dquvp 8x n )F;}p (nev), 2. Chiral multiplet supertrace
Defining
¢ 1
a=| ES TrH2=H{H/+H;; H'J—gTr(H'@iHS),
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hi=(mm)m;, (B17)
we have

2

€
()3=75DaD",

d,Sd*s
4x2

1
g Tr(HD?=Tr hi+ —D DR FL”,

32

HE=(h*)2+ 88l V+M2—M2—

62 b 1 c\b
+&DaD +;DC(T )a:

1
Hap= E(d_ez)wab- (B18)

Thus

2

PHYSICAL REVIEW D58 105027

1
—TrHYHY=—-T}+ Lrr e, (B19)
4 2
where
2
Tr hX= ,
X iez j i a uv iez apuv —
Ti=7D,2D 2"KinD*FL" — o5DF4"d,50,5
2
e _
+ ZDan(l/\/f"b+ Wab) +e?2D2, (B20)

and the chiral fermion contributions to the helicity-odd op-
eratorT_ (see[4]) are

TX=TY+Ty+TY,

1Tr(H{)ZzTr h2-+ —[ (W4 W) D, D, +4D?] e? 1
! _ v, a veca
8 X 16 T¥=— X FoFarFL,— 7 TFAFLL |,
Tr(H3)*=0, §TrHX ONe), TX:—4X2[(Fa F’”)2+(F Fer)2]— —D DbFa JFEY.
47 384~ wv b 32
1 , 1 b (B21)
=Tr(HY)?= -Tr(T,T®)F2 F£'+O(Ng), :
g 1M (H3)™=3Tr(TaTHF,,Fo (No) Then we obtain
STrH,=e?’D+0(Ng),
1 2 X V¥ bra L & e? & 2 a2 ar2 e =
SSTH == T= (Wapt Wap)| THT T?) + 7gDaDp | = 71 D+ 5D+ 2eX(V+ M? = M}) D= 5-5Dd*sd,,s
+(d—e?)2x2W, Wab—— 7u59,5 -D,2D,7" MK | papsy
2 2X Jm a
e? _
+ ?Dan(Waan WAP) +2e?D 2+ O(Ng). (B22)
Finally we have
G )*(GE) 4 =0 B23
( :U’V)(Pa( v )(Pb_ 1 ( )
and so
e?x e’ ) )
V__ a 14 a 14 14 a 14
—S TrwaGﬁ(‘ T’H-ﬂ ’V‘FM,F P— ZFWF” +3—84[(F F&™) +(F F” )]+ O(Ng).- (B24)
3. Mixed chiral-gauge supertrace
For the Bose sector we hav&{?=—S, and, usingB.17) of [4],
2 62X ~ V2 e2 +v e2 —aqv ~
Tr S ZT(DVFQ‘ )+ 16xF *F, apsa s —(Fwﬁ s+H.c)D,Fo¥
e? - _ R o2
= 20 LA IKin[ DHZN(To2) = DHZ/(Ta2) "} + 15, Fa "F 00750 S
e? — A
~ax Fra 29's+H.c){g V2L —i[KimD#2™(Taz)' —H.c]}. (B25)
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To evaluate the fermion matrix elements we use Eg86 and (C.24—(C.27 of the second paper i#]:

1 X9)2
§Tr(H1 )*=0,

1 _ _
— g Tr(H3%)2=2(D,m)5(D*m)a—8(D ,M*)5(D*M,,)q. (B26)
with
8(D M“)3(DM,,)0= =T S
( “ )O( pv)a_z r ’
_ e? e? = R _—
2(Dﬂm)3(D”m)2=m(o7Mx&/‘x+ d,yo'y)D+ g{Kinﬂ(ng“zJ(Taz)m[(Taz)'DMz”nL (T%2)"D ,z'1+H.c}
e? R _—
— ﬁaﬂxDaKj,q(Taz)JDﬂszr(Taz)mDMz'] (B27)
and
g X9 16 iVE a 0 1 2
TO=t§9= — =(DM,,)5(D,M?#)5= = 3Tr &, (B28)
In addition we have
. 1. _
Tr(G?{,g)2=4(G%)op,a(G%)a‘°”=§Tr(G{S)Q)2= 64D,M,,)(D*M*P—D*MH) 0= —4 Tr . (B29)

Using the classical equations of moti¢B.17) of the second paper i#], we obtain

o2 o2 2
S ApL— o—La L2+
Jg 7T 29X 2x\/g

1 1 A ~
T 2 T T GZ F v E "L
L 25 Myt Txo 12S Mg ( aua X Evlu‘? YLy

14

e? = . — .
+—\/_{iﬁa”[KinjD#zm(Taz)'—H.c.]+Da(Taz)'£|}+2e2D[2M2+2Mf+2 RgMM,)+V]
XVg

2 2 2
e — e ~ ~ — e _ =
+ 25 2DuSs— o (FY—iF ") (F , +iF ) 0,505~ o3[ (3*%+2i 0*Y)K;(Ta2)' D , 2"+ H.c]D?

‘2
ie - =
—E(Fiﬂa"erFiﬂa”y)[ani(Taz)JDMzm—H.c.]
262 ez a, ? a qv Ta v &My a
= T ApL— oL L+ Fa,0"x-+ 3,0y — —=D3| 4

Jg 2gx 2x+/g

e? — . -
+—\/_[iﬁa”(KinjD#zm(Taz)'—H.c.)+Da(Taz)'£|]+ZeZD[2M2+2Mf+2Re(MMx)+V]+X—za”xﬁVny‘wDa

XV

5e? e? e?

+ 4 2DIusIs— g (FHH—iF ") (F,, +iF ,)0,89°s— o3[ (ixF, 29"s+d,SD*)K;n(T,2) D¥Z"+ H.el,  (B30)

where in the last expressid.76 of the second paper ] was used with Eq(B9) above.
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4. Yang-Mills supertrace

For the bosonic contributions, we hait, = —N; we write Nog= N;B+ dqpN, and evaluate here onry;ﬁ Noo:

Tr N=Ngn,
1 2et -
Tr N?2=Ngn?—e?x rﬁfFf‘wFV”——rFa Fav +—[(Fa FEM)2+(F5,FEN, (B31)
and, writing G9,)5=(G/,)§+0,.,95, we have
2 2,4
Tr(G$)?=N¢ 2+—(4r FLPFS —r4F3 Froy— SO [(F3 R (F2 )2 (B32)
c9Y 2 v /.Lp 8 uv' b pv' b '

where we dropped total derivatives and u$BdlL2)—(B.14) of the second paper if¢], as well as the Yang-Mills Bianchi
identity. For the fermions we obtain

L1t Hg= NéT h +eZD Lt (Hg 2—e4D +e4Fa F&"D.D",
g " Hi= 7 Trhot 5D, gTr(HD ™= 7P+ 55k,
1 Ng 1 NG
— 9\2 _ g__"> _ Q2__>2 2
8Tr(H2) 0, 8Tr H3 2 r, 8Tr (H3) 2 Tr h3,

1 Ne e’ ie? —m apuv e? ab yraby _ A2792
ZTr (H1H3)g: TTI' (hlh3)g+ ZTD— TD;/.Z]DVZ KimD F’LaL _ZDan(W +W? )—e“D

1 R . X2 4
ST G2=NgTr g2+x€?| r4Fa Fr— ZF;VFW ——[(Fa FEv)2+(F2 FEY)2). (B33
The nonvanishing contributions ®=T3+ T4+ T? are
g i62 j —m auv 82 ab_, yamb 212 ’
T§= D ,2D 2" KgDF4"+ 7DDy W+ W) +*D*+ Nts,
TI=T§, TI=T). (B39

For the supertraces we obtdmsing (B.17)—(B.20) of [4]]
S TrHI9=NGS Trh9—e?D

e?

1 2 1 2 2 abyp), 3 ab b g Xe2 pEa cvp 1 a Cuv 2
58 TrHZ=NGS TrhZ+ — xX2WaWa+ =D D( W+ NR) | - Tg— —| riFe Fiv— ZrF2 F ——rD
iez j TmpaE sy 62 ab_ yr @b 212
+ 5 KD 2D, Z" D3R4+ —D Dy W2+ W20) +26°D?,
2_ 1 1 ~2 g X g X e4 2 ab yarab
—S TrG GSTI’g —1—28TI'GX—T4—T4—T,.—Tr—§[4'D + D Dp(W3+ W29, (B35

The space-time curvature dependent terms in the supertraces evaluated above give a cordrilofitiba form (2.23 of
[3] with
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2
1
_ 2 o
HM,,—H%V— 35,28% FipFaV”— Zgwaf}gFg ,

2
€= €3— %GZD,
a=a¥, B:lgg_ (836)
The metric redefinition if2.24) and(2.25 of [3] gives a correction
A L= MA L
32m2 7

1 ) -
ZF3 Fe7D, 2 D42 Ky

AL=Ag+€%(D 2 DHZ K —2V) D+ e2x( FouF8'D 2D 2 K= 7 F},

. (B37)

— 1 _
—2e2| X2W3PW, p+ z(Wab+ W) D, Dy + D?
The result for constant, given in Egs.(2.35 of Sec. II, is obtained by settin§l, =0, y=0, s=x=g~ 2 constant in the
above equations. In Sec. Il the fiel{zb% are taken to be canonically normalized. Combining the above results and evaluating

L1— Lo+ A L= AL~ AL~ L XA— LAL gXAP yields the results given in Eq&2.35), with ¢®— \2x¢? and

2 a2 _ 4 ©aBaYadal a2
-2 niel=2e, €' X plefejelei=4e?,
By aByd

“ 2
(d—e)2—>% 7% dyﬁ—g eweaﬁ) =(d—2e)2. (B39)

APPENDIX C: LAGRANGIAN WITH A VECTOR POTENTIAL SUPERFIELD

In this appendix we follow the notation f7]: Greek letters are used for two-component spinorial indices, Roman letters for
tangent space and coordinate indices, and the metrie s ¢ +), i.e. the negative of the one used elsewhere in the text. We
include the chiral fieldX*={X',z%}, where theX' are PV regulator fields charged only under an anomalb{lk)y, andz?
are the physical, light fields of the effective low energy theory.

Defining, in analogy with the chiral superfiek],= — §(52—8R)DQK introduced in[7],

1 ) 1 )
Xo= = g(D*=BR)D, (K€1), x,=—=(D*~8R)D kK, (€D

the PV Lagrangian gets contributiofis the WZ gaugge

. 1 [P
IPVB _ZDaXa +§1,0m0'mx, +H.c.
1 @ i__m 1i T m ; 2__n moxpd
:_ZD Xg +§me0' X +§kqil/lm0' Nx—i Ez,bmo a"x*kam

1, 1 1 P —
— 5 ark'aga™+igianD 2%, + 5 gk Dx+q; V2N kKl > ik oMY+ H.c.

1 T T /A N
== 7D %a| t Ewmamx + Edl Ym0 Ny — i \[Ewma”amXXKi;(Txx)'am— E(Txx)'(Txx) 'K apa™
; MoX/ T Wi’ 1 i X D! 1 iy _mox
+ianD"Z(Tyx) 'K+ Ed Dx+ V2X Ax(Txx) 'K+ Eqiamkxyj( o"x*+H.c., (C2

whereK’=K+k' and the last equality follows because
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ki =(Tx0'K] =d',  aik=(Tx2) K, a2ki=(Txx) (Tox) 'K - (3

The first two terms are the contributionsfb\,l of [7] quadratic inX' without the gauge connections fif, and

i oK' i ok! i yi ; ;
ki=—, kaz?, etc., x'=X!, a#i, xy=i,a. (C4

The remaining terms covariantizex' and give the correap, Ay ,Dy terms. All fermion derivatives include the Ker U (1)
connection that has a piece

1_,éa (i a2V 1_'5a LY 1., : i
Aa|31—60' [D..Dsl(K'e 'X)|=1—6cr [Da,Dﬁ]k|+§qikvaa ZKi(é’a-Hqiaa)X—H.C. (CH

In other wordsA, includes the gauge connection foi(1)y. The fully covariant derivative for the fermions contains the
additional gauge connection terms

DoX*3 ianl (Txx)*+ (Tx2) T 5?1,

. o K-
Dimxx 3 iamdi (xx+ X Tipx®) +O(X%) = iamqi( Xx+ k—{a_'xa +0(X3),
i
gl )
Drnx®s iamaiX T x+O(X") = iamqua% Ky~ —— | x°+0(X%), (o)
1
where we used the fact that
_ k-
K'a!= —Kabk—i+0(x3). (C7)
1
So the fully covariant kinetic energy term contains the terms
i — L
- E(Dmx") XVK)’(7+ H.c.s qiamk'xyxyamxu H.c.+O(X?%), (C9

which is just the last term in EC2). Thus we get the standard form of the tree Lagrangian, and loop correctionifrare
also of standard form. Converting to the notation used previously., a,a™— —A,A*), we obtain the results
(4.9,(4.13,(4.19 given in Sec. IV, where we used the classical equation of mddigs — g2dy. The right hand sidéRHS)
of Eq. (4.13 is given by the RHS of Eq(C2) with fermion fields set to zero arkl— 2= const.

APPENDIX D: ERRATA

Here we list corrections tf3] and the second paper jd].
(1) The term+ é(gﬂprwﬁ— 9upl wot Guol vpt 9uel 4p) IS Missing from the expression fot,, ,, in (2.22 and(B3) of [3].
As a consequencé6) should read

Tr X=—20V+2r, TrX?=40V2—24rV+22r , r**—2r%+total derivative,
and the following replacements should be mad¢éBa0):

N+1 ) N—7 ) v v
Tr_)Tr’ —5Vr——13Vr, s —>8rWr .

The first three equations ifB22) should read
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B 2|n A2 _ N+891In A2
a=—242 BT o
In A2 2N+68. 2N+16

60:_

2 .
_K 2
32772((3 (A”A”—gR}AiA‘ + 3 V+ 3 M¢],

and (B23) (as well as footnote 23 d#]) should read

1 In A2 il = 2 =) BN+95. 4N+32 ).
\/_gArEZW —2e AiA —§RnAkA - 3 V— 3 M¢ \
JN+55. - — 2 — | 2N+16 .| 4 . =
+| Kim Tv+e AA —anAkA +t—3 M3, +§Rin7V D ,z'D*z

2 — iy pom, N+113 iy om iy Sy — iy o —
- §(Rim+16Kim)DpzDPz gW—T(DMzsz +D,zD ,z2")Kim D*ZD#Z K.

In addition, in Eq.(C.59 of [4], the replacements
fong‘Vr—>5fong”r, + 2r’V‘foLPF§’J—> — 1Z§,‘XFZPF§”
should be made in the expression forX?; and the replacements

3x
4

5x

a
rFleg“’—H- 2

rE8,FAY,  +2r4xFS FiP— —5rixFs FiP,  —5rD——13D,

should be made in the second equationf©62).
(2) In (3.33 the expression foll 5 is missing a term

i IR
To—Ta gzl LTH(M , M"P= M, M ™).

The last line of TrRR5 in (3.35 has the wrong sign, and the last term in the second line of the RHS.26) should be
7
multiplied by —2/3. As a consequencg— — i in T}, (C.39, and inT§, (C.59; g%% in the fourth line of(C.62. In

addition— % in the second line of S T@S+G in (C.62. Including these and the above corrections, the first two equations of
(C.63 should read

I 2

4o g 2 i nA a p 1 a po
H;LV_HMV+HMV_X(10+X Pip )32,”_2 F,u,pFaV_ ZgvapoFa ’

In A%(70 2 .
60: (60)0+ 68_ W{ ?D‘}' 2X2pip|D+ 3_XDaDi(TaZ)I] ,

and(C.64 should read

In A’(N-99 _ 2N+194 . 4N+32 L
- DV— DMZ+(D 2 D#2"Kim—2V)

ArEZ(ArL‘,)OJFArg,C"F 32’7th 3 D 3 3

1 g
+ DD 7 D2 4Ry~ (N—57)K;r]

2 .
2x2pip' D+ —D,D;(T?2)! 3

X
3x

3

— 2 . _
— 22>e—*<(AijA'J — zRIAA

N+29 2 2v4)abyr; ab_ Jrab 2 N+71 ., |X_a po iy pomye —
+ 6 Xpip [2XWEW,p+ WP+ WA D, D+ 2D %]+ —X°pip ZFP,,F61 D ,2D*2"Kin
N+71 2 i a ppv i ,u,_a _
- 3 —Xpip | XF, ,F3"D ,Z2D*Z K
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(3) The sign of the last term in the expression @f+Hgy, in (2.12 of [3] and in (C.14 of [4] is incorrect. As a
consequence;- 18", I'*” in footnote 22 off4] and —6I",,I'*” in (B18) of [3] should both be replaced by 2", I'*" in
(C.6D).

(4) In the expressions fdD , ,D,] for fermions,I",, (|/2)Fa D,. As a consequence of this and the above item,
the coefficient—24 should be replaced by2 in Tr HGh, Eq (C.6) of [4] and the coefficient oD, DbFa JFEY should be
1 instead of 2 in the same equation. In addition the final re$dl8—(4.8) and(5.2) of [4] are modified by the addltlon of the
terms

1 , — 1 _
= 3(N+7+Ng)| iD*FL"D, 2 KinD 2"+ SDDp(W P+ W) + 22)2}

L2 2
+3/iD*FL"D,ZRiwD 2 2"+ Dy(T,2) Dy(W2P+ W)+ - DD, H

1
from contributions proportional tpD , ,D,]? from fermion loops andrETr Géh, the term

+2x%p! [ DaDy( W3+ WAP) +4D2]

from —3Tr H{Hi+t,—2Tr H{HI+T,, Egs.(C34),(C35),(C59 of [3], and an identical contribution from and an additional
term

— 2[ DDy ( WP+ W) +4D?]
from — 2Tr (H;H3)%" €. In addition the contribution oR,, was neglected in the calculation of,2 this gives an additional
contribution

iD,Z[xD V?apgijr pik(3,x—13,y) [XpI D3FL"+2(T 2)}(FA"—iF4")]—plp;d xd,yD3FL +H.c.,

which does not contribute t®.22), and only the last term contributes when the string dilaton is present.
(5) The coefficient ofD ,2D ,z"KzRin(D#ZD*2"—~ D "2 D*#z") in footnotes 6, 13 and 21 and the coefficient of

1
3D zZD z”‘KImE (N,+1)K: —(DMZJD Z"—D zJD”z“)

in footnote 8 of[4] should be multiplied by-2. (8) The following are misprints if4]:

(6) The last term in brackets in the expression for The second line ofB.20) should be multiplied by~
Tr (HX)? in (C.33 of [4] should be multiplied by, and the Tr(GY)? should be multiplied bys in the first line of
last term in(C.38 should be multiplied by-2, with corre-  (C.46); the sign of the last term in footnote 23 is incorrect.

1

sponding changes ifC.36) and the final results. The terms quartic in the field strength {€£.52—(C.58
(7) There are errors in the coefficients of the expressionshould be multlphed by?.
following —T9 in the second equality fof Tr (HY%)2, Eq. (N+5)/r?=5/r?in (C.58.

(C.41), and in similar terms in the other traces. For the ca- The termsMZ(d,yd*y/x?) in (C.67,(C.70 should be
nonical gauge kinetic energy case considered here the comultiplied by 4.

rections to amount to the change2DV—6DM? in (C.41), M7~ My, in the second line ofC.71), and there should
—28DM?2 in the expressions fokS Tr H2 Eq. (C.3p, Dbe a+ sign in front of the third _from last line.

+8DM? and —8DM? in 3Tr (HXG)2 and 1STr(HY®)?, In addition, a facto ,z"D*#Z' is missing from the coef-
respectively, Egs. (C.50, (C.51), and +4DM2 in ficient of 2K, (V+ 2Mf,,) in the expression foﬁTr|DﬂM ol?
$Tr(H$*®)2, Eq.(C.59. in (B12) of [3].
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