
PHYSICAL REVIEW D, VOLUME 58, 105027
One-loop Pauli-Villars regularization of supergravity: Canonical gauge kinetic energy

Mary K. Gaillard
Department of Physics and Theoretical Physics Group, Lawrence Berkeley Laboratory, University of California,

Berkeley, California 94720
~Received 29 June 1998; published 27 October 1998!

It is shown that the one-loop coefficients of on-shell operators of standard supergravity with canonical gauge
kinetic energy can be regulated by the introduction of Pauli-Villars chiral and Abelian gauge multiplets, subject
to a condition on the matter representations of the gauge group. Aspects of the anomaly structure of these
theories under global nonlinear symmetries and an anomalous gauge symmetry are discussed.
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I. INTRODUCTION AND PRELIMINARIES

It was shown in@1# that Pauli-Villars~PV! regulation of
the one-loop quadratic divergences of a generalN51 super-
gravity theory is possible. This result was generalized@2# to
the regularization of the one-loop logarithmic divergences
globally supersymmetric theories, including nonlinear sig
models, with canonical kinetic energy for Yang-Mills field
It was further assumed that the theory was free of gauge
mixed gravitational-gauge anomalies. The purpose of
present paper is to generalize further these results.

In Sec. II we give a full PV regularization of a gener
supergravity theory with canonical kinetic energy for t
gauge fields and an anomaly-free gauge group. In Sec. II
consider anomalies under Ka¨hler transformations, and in
Sec. IV we show how the regularization procedure must
modified in the presence of an anomalousU(1) gauge group
factor. Our results are summarized in Sec. V, and some
culational details, as well as corrections to@3,4#, are given in
Appendixes.

We conclude this section with a brief review of the fo
malism used to evaluate the regularized Lagrangian.
one-loop effective actionS1 is obtained from the term qua
dratic in quantum fields when the Lagrangian is expan
about an arbitrary background:

Lquad~F,Q,c!52
1

2
FTZF~D̂F

2 1HF!F

1
1

2
Q̄ZQ~ iD” Q2MQ!Q

1
1

2
c̄Zc~D̂c

21Hc!c1O~c!, ~1.1!

where the column vectorsF, Q, and c represent quantum
bosons, fermions and ghost fields, respectively, andc repre-
sents background fermions that we shall set to zero throu
out this paper. The fermion sectorQ includes a C-odd Ma-
jorana auxiliary fielda that is introduced to implement th
gravitino gauge fixing condition. The full gauge fixing pro
cedure used here is described in detail in@3,4#. The one loop
bosonic action is given by
0556-2821/98/58~10!/105027~24!/$15.00 58 1050
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i

2
Tr ln~D̂F

2 1HF!2
i

2
Tr ln~2 iD” Q1MQ!

1
i

2
S Tr ln~D̂c

21Hc!

5
i

2
S Tr ln~D̂21H !1T2 , ~1.2!

where T2 is the helicity-odd fermion contribution which
contains no quadratic divergences, and the helicity-even c
tribution is given by

D̂Q
2 1HQ[~2 iD” Q1MQ!~ iD” Q1MQ!. ~1.3!

The background field-dependent matricesH(f) and
D̂m(f)5]m1Gm(f) are given in@3,4#, where the one-loop
ultraviolet divergent contributions have been evaluated.

We regulate the theory by including a contribution fro
Pauli-Villars loops, regarded as a parametrization of the
sult of integrating out heavy~e.g., Kaluza-Klein or string!
modes of an underlying finite theory. The signatureh561
of a PV field determines the sign of its contribution to t
supertrace relative to an ordinary particle of the same s
Thush511 (21) for ordinary particles~ghosts!. The con-
tributions from Pauli-Villars fields with negative signatu
could be interpreted as those of ghosts corresponding
heavy fields of higher spin.

Explicitly evaluating Eq.~1.2! with an ultraviolet cutoff
L and a massive Pauli-Villars sector with a squared m
matrix of the form

M PV
2 5HPV~f!1S m2 n

n† m2D [HPV1m21n,

unu2;m2@HPV;H,

gives, withH85H1HPV,
©1998 The American Physical Society27-1
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32p2S152E d4xp2dp2S Tr ln~p21m21H81n!

132p2~S181T2!

532p2~S181T2!2E d4xp2dp2S Tr ln~p21m2!

2E d4xp2dp2S Tr ln@11~p21m2!21~H81n!#.

~1.4!

S18 is a logarithmically divergent contribution that involve

the operatorĜmn5@D̂m ,D̂n#:

32p2S18

5
1

12E d4xp2dp2S Tr
1

~p21m2!
Gmn8

1

~p21m2!
G8mn,

Gmn8 5Gmn1Gmn
PV . ~1.5!

The finiteness of Eq.~1.4! whenL→` requires

S Tr m2n5S Tr H85S Tr ~2m2H81n2!5S Tr nH8

5S Tr H821
1

6
S Tr G8212t28 50, ~1.6!

wheret28 is the coefficient of lnL2/32p2 in T21T2
PV . The

vanishing of S Trm2n is automatically assured by supersym
metry. Once the remaining conditions are satisfied we ob

S152E d4x

64p2S Tr F S 2m2H81n21S Tr H82

1
1

6
S Tr G8212t28 D ln m2G . ~1.7!

II. ANOMALY-FREE SUPERGRAVITY

We consider here a supergravity theory in which t
Yang-Mills fields have canonical kinetic energy. We furth
assume that there are no gauge or mixed gauge-gravitat
anomalies: TrTa5Tr ($Ta ,Tb%Tc)50, whereTa is a genera-
tor of the gauge group.

To regulate chiral multiplet loops, we introduce Pau
Villars chiral supermultipletsZa

I , that transform under gaug
transformations likeZI , YI

a , which transform according to
the conjugate representation, and gauge singletsY0,Z0. Ad-
ditional charged fieldsXb

A andUA
b transform according to the

representationRA
a and its conjugate, respectively, under t

gauge group factorGa , and Vb
A transforms according to a

~pseudo! real representation that is traceless and anom
free. Their gauge couplings satisfy

(
b,A

hb
ACA

a5(
i

Ci
a[CM

a , ~2.1!

where
10502
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Tr~TaTb!R5dabCR
a ~2.2!

for particles transforming according to the representationR

~or R̄), and the subscriptsi ,A, refer to the light fields and to
X,U,V, respectively. For example, if the theory has 2Nf
fundamental representations ofGa ~as in supersymmetric ex
tensions of the standard model!, we can take PV fields in the
fundamental and anti-fundamental representations with
natures that satisfy(bhb

f 5Nf . If there are 2Nf11 funda-
mental representations, one needs an anomaly-free~pseudo!
real representationr for some VA such that Cr

a5(2m
11)Cf

a . If no such representation exists, the theory can
be regulated in this way.

To regulate gravity loops we introduce additional gau
singletsfg, as well asU(1) gauge supermultipletsWa with
signatureha and chiral multipletsZa5eua

with the same
signature andU(1)b chargeqadab , such that the Ka¨hler
potential K(u,ū)5 1

2 na(u1 ū)2 is invariant under
U(1)b : dbua52dbūa5 iqadab . The corresponding D-
term

D~u,ū !5D u
aD a

u , D a
u 52 i(

b
Kbdaub5qana~ua1 ūa!,

~2.3!

vanishes in the background, but (ua1 ūa)/A2 acquires a
squared massma

25(2x)21qa
2na equal to that ofWa, with

which it forms a massive vector supermultiplet, wherex
5g22 is the inverse squared gauge coupling, taken her
be a constant.

Finally, to regulate the Yang-Mills contributions, we in
clude chiral multipletswa

a ,ŵa
a that transform according to th

adjoint representation of the gauge group.
We take the Ka¨hler potential1

KPV5(
g

Feag
fKfgf̄g1

1

2
ng~ug1 ūg!2

1(
A

~ uXg
Au21uUA

g u2!G1(
a,a

~eKwa
a w̄a

a1ŵa
a ŵ̄a

a!

1(
a

~Ka
Z1Ka

Y!1(
Ag

uVg
Au2

Ka
Z5 (

I ,J5 i , j
FKi ̄Za

I Z̄a
J̄ 1

ba

2
$~Ki j 2KiK j !Za

I Za
J 1H.c.%G

1uZa
0 u2,

Ka.3
Y 5F (

I ,J5 i , j
Ki ̄YI

aȲJ̄
a
2aa~YI

aȲa
0Ki1H.c.!

1uY0
au2~11aa

2KiKi !G ,
1This choice is by no means unique, only illustrative.
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Ka<3
Y 5 (

I ,J5 i , j
d i ̄YI

1ȲJ̄
1
1uY0

1u2, Ki5Kim̄Km̄ , ~2.4!

whereKim̄ is the inverse of the metric tensorKim̄ , the su-
perpotential

WPV5(
ab

F(
I

mab
Z Za

I YI
b1mab

0 Za
0Y0

b

1
1

2(a
~mab

w wa
awb

a1mab
ŵ ŵa

a ŵb
a !G1

1

2(g
mg

f~fg!2

1(
Ag

@mg
XUA

gXg
A1mg

V~VA
g !2#

1
1

A2
(
a54

~aaWiZa
I Y0

a1WZa
I YI

a!1
1

2
Z1

I Z1
JWi j

1A2

x (
a55

wa24
a YI

a~TaZ! i1
1

2(a caZa
02W, ~2.5!

and gauge field kinetic functions

f ab5x~dab1dabŵa
a ŵb

b !, f ab5dab, f aa5eabA2xwb
a ,

~2.6!

where the indexa refers to the light gauge degrees of fre
dom. The functionK5K(Z,Z̄) is the Kähler potential for the
light chiral multipletsZi5(Z̄ ı̄)†, W5W(Z) is the superpo-
tential, and

Ki5] iK5
]

]zi K, Kim̄5] i]m̄K, Ki j 5] i] jK, etc.

~2.7!

Properties of the metric tensor forYI ,Y0 , are given in Ap-
pendix A. The matricesmab ,dab ,eab , are nonvanishing
only when they couple fields of the same signature. The
rametersm,n, play the role of effective cutoffs; they ar
constrained so as to eliminate logarithmically diverge
terms of orderm2ln L2 in the integral~1.4!. The parameters
a,b,c,d,e, are of order unity, and are chosen to satisfy

b151, baÞ150,

a[ (
a54

ha
Yaa

2522, a8[(
a54

ha
Yaa

4512,

(
a,b

ha
ŵeab

2 [2e54g22, g[ (
a55

ha
Yaa

2 ,

(
a

ha
Zca

25222(
a

ha
u [222NG8 . ~2.8!

The signatures of the chiral PV multiplets satisfy
10502
a-

t

(
a

ha
w51, (

a
ha

ŵ52, (
a

ha
Z521, ha

U5ha
X ,

ha
Y5ha

Z , ha
w5ha14

Z , h1
Z5h2

Z52h3
Z521.

~2.9!

A. Quadratic divergences

In @1# it was shown how to regulate the quadratic dive
gences of supergravity that are proportional to2

S Tr H5210V22M21
7

2
r 14Kim̄D mziD mz̄m̄12D

1NG

r

2
12NS V̂1M22

r

4D12x21DaDi~Taz! i

22Rim̄~e2KĀiAm̄1D mziD mz̄m̄!, ~2.10!

whereN andNG are the number of chiral and gauge sup
multiplets, respectively, in the light spectrum. In these e
pressions,r is the space-time curvature,Rim̄ is the Ricci
tensor associated with the Ka¨hler metricKim̄ , V5V̂1D is
the classical scalar potential withV̂5e2KAiĀ

i23M2, D
5(2x)21D aDa , Da5Ki(Taz) i , and M25e2KAĀ is the
field-dependent squared gravitino mass, with

A5eKW5Ā†, Ai5DiA, Āi5Kim̄Ām̄ , etc.,
~2.11!

whereDi is the scalar field reparametrization covariant d
rivative.

In evaluating the effective one-loop action we set to ze
all background Pauli-Villars fields; then the contribution
these fields to S TrH is

S Tr HPV52(
P

haF1

x
D aDP~Taz!P

2RPim̄
P

~ĀiAm̄e2K1D mziD mz̄m̄!G
12(

P
hP~V̂1M2!2S (

P
hP2(

a
ha

u D r

2
,

~2.12!

where P refers to all PV chiral multiplets, includingua.
From Eq.~2.1! we obtain, for the relevant elements of th
scalar reparametrization connectionG and Riemann tensorR
~see Appendix A!,

2See Appendix D for corrections with respect to@3,4#. Our con-
ventions and notations are defined in the Appendixes of these
pers.
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DI~Taza!J5Di~Taz! j , DI~Tay1!J52~Ta! j
i ,

~RZa!Jkm̄
I

5Rjkm̄
i , ~RY1!Jkm̄

I
50,

DI~Taya!J52D j~Taz! i2aa
2K j~Taz! i , DJ~Taya!052aa~Taz! j ,

D0~Taya! I5aa@K jDi~Taz! j2Kim̄~Taz̄!m̄1aa
2KiDa#, D0~Taya!05aa

2Da ,

~RYa!Jkm̄
I

52Rikm̄
j

2aa
2dk

j Kim̄ , ~RYa!0km̄
0

5aa
2Kkm̄ , ~RYa!Jkm̄

0
50,

~Ra
Ya!0km̄

J
5aa@KiRjkm̄

i
1aa

2~KkK jm̄1K jKkm̄!#, a.3,

DC~Taf!D5~Ta!D
C1dD

CaCDa , RDkm̄
C

5dD
CaCKkm̄ , fC,DÞZ,Y, ~2.13!

whereaw51, aŵ5au50. Using these relations with Eqs.~2.9! we obtain an overall contribution from heavy PV modes

S Tr HPV52
r

2
~N82NG8 !22a~Kim̄D mziD mz̄m̄22D!22x21DaDi~Taz! i

12V̂~N82a!12M2~N823a!12Rim̄~e2KĀiAm̄1D nziD mz̄m̄!,

a5(
C

hCaC , N85(
P

hP , NG8 5(
g

hg
u . ~2.14!
n

than

ten-
re a
With Eq. ~2.10! the finiteness condition S TrH850 imposes
the constraints

N8572N, NG8 52NG , a52. ~2.15!

The vanishing of S Tr (m2H81n2) in Eq. ~1.6! further
constrains the parametersm andn. If, for example, we set3

mab
P 5ma

Pdab , qa51, ma
PÞu5ba

Pm, ng
u5(bg

u)2umu2, the
finiteness constraint requires

(
a51

3

ha
Z~ba

Z!25 (
a54

ha
Z~aaba

Z!2

5N (
a54

ha
Z~ba

Z!21 (
C,aC50

hC~bC!250,

(
C

hC~bC!250 for fixed aCÞ0, CÞZI ,YI .

~2.16!

As explained in @1# the O(m2) contribution to S01S1
5*d4x(L01L1) takes the form

L0~gmn
0 ,K !1L15L0~gmn ,K1dK !, gmn5gmn

0 ~11e!,

e52(
P

lP

32p2 e2KAPQĀPQ5Tr(
P

lL2

32p2 z8,

3The result is unchanged if the parametersm→m(z), n

→n(z,z̄) depend on the light fields@1#.
10502
dK5(
P

lP

32p2 ~e2KAPQĀPQ24KP!5Tr(
P

lL2

32p2 z,

KP5dPug
Kugūg

PV (
d

ddugddūg5qg
2ng , ~2.17!

where@5#

lPQ5dPQlP , zPQ5dPQzP ,

lP52(
a

ha
P~ba

P!2ln ba
P ,

zPÞu5zPÞu8 51, zu524, zu850,

~L2!P
Q5eKKQR̄KT̄SmPSm̄ T̄R̄ , PÞ0,

Llaug

2 5dagumuu2. ~2.18!

L2 plays the role of the~matrix-valued! effective cutoff. As
emphasized previously@1#, if there are three or more terms i
the sum overa, the sign oflP is indeterminate@5#.

In the following we require only on-shell invariance,4 and
so the quadratic divergences impose one less constraint

4The off-shell divergences are prescription dependent; the ex
sion of this regularization procedure beyond one loop may requi
choice of prescription in which they can also be made finite.
7-4
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in Eq. ~2.15!. That is, we perform a Weyl transformation
write the one-loop corrected Lagrangian as

Le f f5Ltree~gR!2
L2

32p2S Tr H82

2eS r

2
1D mziD mz̄m̄Kim̄22VD

1OS ln L2

32p2 D1OF S \

16p2D 2G1finite terms,

gmn
R 5~11e!gmn , e5

L2

32p2 ~N1N82NG2NG8 27!,

~2.19!

and we do not requiree to vanish. Then the finiteness con
ditions reduce to

N853a112N, NG8 5a222NG . ~2.20!

In this case, the third finiteness condition in Eq.~1.6! be-
comes

S Tr ~2m2H81n2!52 S Tr ~mG
2 2mx

2!

3S 1

2
r 1Kim̄D mziD mz̄m̄22VD50. ~2.21!
10502
The supertrace on the right hand side vanishes identic
because the supertraces of the squared mass matricesmPV

2

vanish separately in the chiral (mx
2) and U(1) gauge (mG

2 )
PV sectors.

B. Logarithmic divergences

From the results of@3,4#, if L(g,K) is the standard La-
grangian@6,7# for N51 supergravity coupled to matter wit
space-time metricgmn , Kähler potentialK, and gauge ki-
netic function f ab(Z)5dab , the logarithmically divergent
part of the one loop corrected Lagrangian is

Le f f5L~gR ,KR!1
ln L2

32p2 ~XABLALB1XALA!1Ag
ln L2

32p2 L,

L5L01L11L21L31NLx1NGLg ,

LA5
]L
]fA

, ~2.22!

wherefA is any light field, and5
L053Cadab~W ab1H.c.!2
20

3
V̂21

10

3
V̂M215M41

88

3
DM2

1
47x

6
@2xWabW̄ab2~Frm

a 2 i F̃ rm
a !~Fa

rn1 i F̃ a
rn!D nziD mz̄m̄Kim̄#

2
7i

3
D mziD nz̄m̄Kim̄D aFa

mn1
1

3
~25V̂110M2!Kim̄D mz̄m̄D mzi1

20

3
~W ab1W̄ab!DaDb111DKim̄D rziD rz̄m̄

2
14

3
DV̂115D mzjD mziD nz̄m̄D nz̄n̄Kin̄K jm̄2

20

3
~D mz̄m̄D mziKim̄!21

20

3
D mz̄m̄D mziD nz̄n̄D nzjKin̄K jm̄ , ~2.23!

Lx52
x

6
~Frm

a 2 i F̃ rm
a !~Fa

rn1 i F̃ a
rn!D nziD mz̄m̄Kim̄1

1

3
@x2WabW̄ab2D~Kim̄D rziD rz̄m̄12V̂14M2!#

1
1

3
~V̂12M2!Kim̄D mz̄m̄D mzi2

i

3
D mzjD nz̄m̄Kim̄D aFa

mn1
2

3
V̂M21M41

1

3
D mzjD mziD nz̄m̄D nz̄n̄Kin̄K jm̄ , ~2.24!

L152@W abDi~Tbz! jD j~Taz! i1H.c.#1
2

x
D mziD mz̄m̄Rim̄j

k DaDk~Taz̄! j1
2

x
D ae2KR ni

k j AkĀ
nD j~Taz! i

12iF mn
a D j~Taz! iRim̄k

j D mzkD nz̄m̄1D mzjD mz̄m̄Rjm̄i
k DnzlD nz̄n̄Rln̄k

i
1D mzjD nz̄m̄Rim̄j

k D mzlD nz̄n̄Rkn̄l
i

2D mzjD nz̄m̄Rim̄j
k D nzlD mz̄n̄Rkn̄l

i
12e2KD mziD mz̄m̄Rim̄j

k
R n k

l j Al Ā
n1e22KAiĀ

kR nk
mi R mq

np ApĀq, ~2.25!

5See Appendix D for corrections with respect to@3,4#.
7-5
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L25
2

3x
Di~Taz! iDa~DmzjD mz̄m̄K jm̄1V̂13M2!1

2i

3
DmziD nz̄m̄Rim̄D aFa

mn

1
2

3
Di~Taz! i@~W ab1W̄ab!Db1 ixFmn

a Km̄jD mzjD nz̄m̄#

1
4

3
De2KRj

i AiĀ
j2

2

3
D mziD mz̄m̄@e2KRn

kAkĀ
nKim̄1Rim̄~V̂13M2!#2

2

3
D mziD nz̄m̄Kim̄Rjn̄~D mzjD nz̄n̄2D nzjD mz̄n̄!

2
2

3
e22KRn

mAmĀnAjĀ
j2

2

3
D rziD rz̄m̄Kim̄D mzjD mz̄n̄Rjn̄1

4

3
DD mziD mz̄m̄Rim̄ , ~2.26!

L35D mzjD mziR j i
k l D nz̄n̄D nz̄m̄Rn̄km̄l1e2K$D mziD mzj@Aikl Ā

nR n j
kl 2R j i

kl ~AmklĀ
m2AklĀ!#1H.c.%

1
e2K

x
Da@~Taz! iRi l

j kĀlAjk1H.c.#1e22K~R ni
jk AjkĀnAĀi1H.c.!1e2K~2D mziD mz̄m̄1e2KĀiAm̄!Rjm̄k

l
R in

jk AlĀ
n

2@~D mziD mz̄m̄1e2KĀiAm̄!Di~e2KRlm̄j
k

AkĀ
jl !1H.c.#, ~2.27!

Lg5
1

3
Kim̄K jn̄~2D mziD mzjD nz̄m̄D nz̄n̄1D mziD mz̄n̄D nz̄m̄D nzj !2

1

3
~D mziD mz̄m̄Kim̄!21x2WabW̄ab

1
1

3
~Wab1W̄ab!D aD b2

1

3
V̂21

1

3
~V̂1D!D mziD mz̄m̄Kim̄2

i

3
D mziD nz̄m̄Kim̄D aFa

mn

2
2

3
V̂D2

x

2
Kim̄DnziD mz̄m̄~Frm

a 1 i F̃ rm
a !~Fa

rn2 i F̃ a
rn!, ~2.28!
i
pe
a

i-
whereF25Fmn
a Fa

mn with Fmn
a the Yang-Mills field strength,

Wab5
1

4
~Fa•Fb2 i F̃ a•Fb!2

1

2x
DaDb , ~2.29!

and

eKDi~e2KRjm̄k
l

AlĀ
jk!5~DiRjm̄k

l
!AlĀ

jk1Rjm̄k
l

Ail Ā
jk

12Rim̄j
k

AkĀ
j1Rjm̄k

l
R in

jk AlĀ
n.

~2.30!

The renormalized Ka¨hler potential is

KR5K1
lnL2

32p2 @e2KAi j Ā
i j 22V̂210M224K a

a212D#,

K b
a5

1

x
~Taz! i~Tbz̄!m̄Kim̄ . ~2.31!

The second term in the expression~2.24! for Le f f does not
contribute to the S-matrix. Since we are only interested
on-shell finiteness, we can drop it. We have also drop
total derivatives, including the Gauss-Bonnet term which c
readily be extracted from the results of@3,4#:
10502
n
d
n

L e f f{Ag
lnL2

32p2

1

48
~411N23NG!

3~r mnrsr mnrs24r mnr mn1r 2!,
~2.32!

in agreement with other calculations@8#. We similarly drop
total derivatives in the logarithmically divergent PV contr
butions.

The Pauli-Villars contribution to Eq.~2.24! is, after an
appropriate additional space-time metric redefinition,

LPV5Ag
lnL2

32p2FNG8 Lg1N8Lx1(
P

hP~L1
P1L2

P!

1L3
Z1LW1eLeG1DK8L,

K85
lnL2

32p2 e2K(
P,Q

hPAPQĀPQ, ~2.33!

where
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1

Ag
DFL5DFL52FV̂1~e2KĀiAm̄1D mziD mz̄m̄!] i]m̄F

2H ] iFFe2KĀiA1
1

2x
Da~Taz! i G1H.c.J ~2.34!

is the shift in L/Ag due to a shiftF(z,z̄) in the Kähler
potential, and@see Appendix B and Eq.~B38!#

LW5x2WabW̄ab@2e21~d22e!2#,
10502
Le52iD mzjD nz̄m̄Kim̄D aFa
mn14D~3M21V̂!

24x2WabW̄ab1x~Frm
a 2 i F̃ rm

a !

3~Fa
rn1 i F̃ a

rn!D nziD mz̄m̄Kim̄

12DD mziD mz̄m̄Kim̄24DDL ~2.35!

are the contributions from the gauge kinetic terms given
Eqs. ~2.6!, obtained by a straightforward generalization
the results of@4# to the case of a nondiagonal gauge kine
function f ab ~see Appendix B!.
To evaluateK8 andL3 we need the additional PV matrix elements~see Appendix A!:

R
Im̄Jn̄

Z1 5Rim̄jn̄1Kim̄K jn̄1Kim̄K jn̄ , AIJ
Z15Ai j , ĀZ1

IJ 5Āi j ,

AIa
Ya ,wa245eKA2

x
~Taz! i , ĀYa ,wa24

Ia 5A2

x
@~Taz̄!m̄Kim̄1aa

2KiD a#,

A2AIJ
Za ,Ya5Ad i

j , A2ĀZa ,Ya

IJ 5d j
i Ā1aa

2eKK jWĀi , a.3,

A2ĀZa ,Ya

I0 5aaĀi , A2AI0
Za ,Ya5aaeKWi , a.3,

Aab
u 5dabnaA, Āu

ab5dabna
21Ā,

Aab
Z0

5dabcaA, ĀZ0
ab

5dabcaĀ, ~2.36!

where we have not includedm-dependent terms that are already contained in Eqs.~2.17!. Then, using Eqs.~2.8! and~2.9! we
obtain

K852
ln L2

32p2 @e2KAi j Ā
i j 12V̂12M224K a

a24~e11!D#. ~2.37!

L3 is determined by the expressions

R
Im̄Jn̄

Z1 ~RZ1! k l
I J 5Rim̄jn̄R k l

i j 14Rkm̄ln̄12~Kkm̄Kln̄1Klm̄Kkn̄!,

AIJ
Z1ĀZ1

IJ 5Ai j Ā
i j , R

Im̄Jn̄

Z1 ĀZ1

IJ 5Rim̄jn̄Āi j 12Ām̄n̄ , ~2.38!

giving

L3
Z52L314D V̂L18DM2L2

2

Ag
e2K~AiĀL i1H.c.!24D mzjD mziD nz̄m̄D nz̄n̄~Kin̄K jm̄1Rim̄jn̄!

24M2~2V̂13M2!24e2K~2D mziD mz̄m̄1e2KĀiAm̄!Rim̄n
l

AlĀ
n28DM2, ~2.39!

where relations among operators given in Appendix B of@4# were used.L2
P is obtained directly from Eqs.~2.13!:

(
P

hPL2
P52L22

2

3
aLa ,

La5~V̂13M2!224D~Kim̄D rziD rz̄m̄1V̂13M2!12~V̂13M2!Kim̄D mz̄m̄D mziKim̄1~D mz̄m̄D mziKim̄!2

1D mziD nz̄n̄Kin̄K jm̄~D mzjD nz̄m̄2D mz̄m̄D nzj !22iD mzjD nz̄m̄Kim̄D aFa
mn2~W ab1W̄ab!DaDb . ~2.40!
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To evaluateL1
P we need

DI~Taza!JDJ~Tbza! I5Di~Taz! jD j~Tbz! i ,

DI~Tay1!JDJ~Tby1! I52dabCM
a ,

~RZa!Jkm̄
I

~RZa! I l n̄
J

5Rjkm̄
i

Riln̄
j ,

~RZa! Ikm̄
J

DJ~Tbza! I5Rjkm̄
i

D j~Tbz! i ,

DP~Taya!QDQ~Tbya!P5D j~Taz! iDi~Tbz! j1aa
2x~Kab1Kba!,

~RYa!Qkm̄
P

~RYa!Pln̄
Q

5Rikm̄
j

Rjln̄
i

22aa
2Rln̄km̄1aa

4~Kkm̄Kln̄1Kkn̄Klm̄!,

~RYa!Qkm̄
P

DQ~Tbya!P5Rikm̄
j

Di~Tbz! j1aa
2Dk~Tbz! jK jm̄ , a.3,

DC~Taf!DDD~Tbf!C5CC
a 1dD

CaC
2DaDb , RDkm̄

C
RCln̄

D
5dD

CaC
2 Kkm̄Kln̄ ,

RDkm̄
C

DD~Tbf!C5dD
CaC

2 Kkm̄Db , fC,DÞZ,Y. ~2.41!

Then using the constraints~2.8! and the results given in Appendix B of@3#, we obtain~see Appendix A!

(
P

hPL1
P52L123Cadab~W ab1H.c.!1a8La1L1

Y , a85(
C

hCaC
2 ,

L1
Y54@DM2L1M2~2V̂13M212D!#18DDL2

2

xAg
@Da~Taz! iLi1 iD mz̄m̄~Taz! iKim̄L a

m1H.c.#

14D mzjD mziD nz̄m̄D nz̄n̄~Rim̄jn̄1Kin̄K jm̄!14e2K~2D mziD mz̄m̄1e2KĀiAm̄!Rim̄n
l

AlĀ
n. ~2.42!

Adding the above, we get, for the total PV contribution,

LPV5
ln L2

32p2 ~XPV
ABLALB1XPV

A LA!1Ag
ln L2

32p2 LPV1DKPVL,

KPV5K81
ln L2

32p2 @4V̂112M218D#52~KR2K !,

LPV5NG8 Lg1N8Lx2L12L22L31LW1eLe1S a82
2

3
a DLa . ~2.43!

The renormalization of the Ka¨hler potential is seen to be finite. Setting

2e21~d22e!252e, ~2.44!

and using the constraints~2.20!, we obtain, for the remaining contributions,

L1LPV52~61a2a8!@V̂21D mz̄m̄D mziD nz̄n̄D nzj~Kim̄K jn̄2Kin̄K jm̄!#1~22a13a8!~2V̂M213M4

12M2Kim̄D mz̄m̄D mziKim̄!12~41a8!V̂Kim̄D mz̄m̄D mziKim̄

1~141a1a8!D mzjD mziD nz̄m̄D nz̄n̄Kin̄K jm̄14~71a23a813e!DM2

1~61a2a8!~W ab1W̄ab!DaDb12~71a2e!xFxWabW̄ab2
1

2
~Frm

a 2 i F̃ rm
a !~Fa

rn1 i F̃ a
rn!D nziD mz̄m̄Kim̄G

22~11a82e!~2DV̂1 iD mzjD nz̄m̄Kim̄D aFa
mn!12~51a22a81e!DKim̄D rziD rz̄m̄. ~2.45!
105027-8
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Finiteness is achieved by imposing

a5210, a8524, e523. ~2.46!

Once all the infinities have been removed, the Lagrang
takes the form~1.7!, with the matrix-valued effective cutoff a
function of the scalar fields. In particular, the terms of ord
ln m are given by Eqs.~2.22! with ln L2 replaced by the
matrix (PhPln (mP

2).

III. KA¨ HLER ANOMALIES

Classically, supergravity theories are invariant Ka¨hler
transformations that redefine the Ka¨hler potential and the
superpotential in terms of a holomorphic functionH(z),

K→K1H1H̄, W→eHW, ~3.1!

and that shifts the fermion axialU(1) current:

Gm5
i

4
~D mziKi2D mz̄m̄Km̄!→Gm2

1

2
]mIm H. ~3.2!

This invariance is anomalous at the quantum level due to
conformal and chiral anomalies. Consider for example
one-loop correction to the Yang-Mills term:

L 1
Y M52

1

16p2S 1

4
Fa

mnFmn
a 2

1

2x
DaD aD

3(
P

hPCP
a ln~LP

2bP
2 !1•••

52
1

16p2S 1

4
Fa

mnFmn
a 2

1

2x
DaD aD

3@3CG
a ln~eK/3mw

2rw!2CM
a ln~eKmZ

2rZ!#1•••,

~3.3!

in the notation of Eqs.~2.16!, where the ellipses represe
operators of higher dimension, and@5#

ln rw5 (
a,P5w,ŵ

haln~ba
P!2, ln rZ5 (

a,P5Z,X,V
haln~ba

P!2.

~3.4!

Under Eqs.~3.1! the quantum correction~3.3! changes by

dL 1
Y M52

Re H

8p2 S 1

4
Fa

mnFmn
a 2

1

2x
DaD aDH~z!~CG

a 2CM
a !

1H.c. . ~3.5!

Gauginos and chiral fermions have Ka¨hler U(1) weights11
and21, respectively; so the corresponding chiral anoma
10502
n

r

e
e

dxL 1
Y M52

Im H

8p2 S 1

4
Fa

mnF̃mn
a 2

1

2x
DaD aD ~CG

a 2CM
a !

~3.6!

combines with Eq.~3.5! to give the superfield expression

dL 1
Y M52

1

8p2E d4u
E

8R
Wa

aWa
a~CG

a 2CM
a !. ~3.7!

The field dependence of the effective cutoffs was in f
determined in@15# by imposing the supersymmetric relatio
between the chiral and conformal anomalies associated
Kähler transformations; this in turn restricts the Ka¨hler po-
tential for charged PV fields.

Sigma-models coupled to supergravity are invariant un
a group of nonlinear transformationsZ→ f (Z) that effect a
Kähler transformation of the form~3.1!, ~3.2!. This is in
general a classical invariance, and an interesting questio
under what circumstances this invariance, which we will
fer to as modular invariance, can be respected at the quan
level. If modular invariance is broken at the quantum lev
the resulting chiral and conformal modular anomalies m
form a supermultiplet. We consider some examples belo

A. Nonlinear sigma-models

Consider first an ungauged supergravity theory with
superpotential and with a Ka¨hler metric typically of the form

K5 (
A51

m

KA, KA52
1

kA
lnS 11h(

i 51

nA

uzA
i u2D ,

kA52hukAu, ~3.8!

which is classically invariant under the infinitesimal nonli
ear transformations

dzA
i 5bA

i 1hzA
i (

j
b̄A

̄ zA
j , dKA5FA1F̄A,

FA5(
j

b̄A
̄ zA

j , ~3.9!

where h51(2)1 for a ~non!compact symmetry group
Then the derivatives of the metric satisfy

K jk
A 5kAK j

AKk
A , G jk

Ai5kA~d j
AiKk

A1dk
AiK j

A!,

Rjkm̄
Ai

5kA~d j
AiKkm̄

A
1dk

AiK jm̄
A

!,

d j
Ai5H d j

i if Ki
AÞ0,

0 if Ki
A50. ~3.10!

To regulate the theory, we need only include a subse
the chiral supermultiplets in Eqs.~2.4!. We take the Ka¨hler
potential
7-9
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KPV5(
g

expS (
A

ag
AKAfgf̄gD 1(

A,a
KA,a

Z 1KA,a
Y ,

KA,a
Z 5 (

I ,J5 i , j
FKi ̄

A
ZA,a

I Z̄A,a
J̄ 1

ba

2
~Ki

AK j
AZA,a

I ZA,a
J 1H.c.!G ,

KA,a
Y 5expS (

B
aAa

B K D (
I ,J5 i , j

KA
i ̄YI

A,aȲJ̄
A,a ,

hA,a
Z 5hA,a

Y [ha
A , ~3.11!

and the superpotential

WPV5 (
I ,A,ab

mA,ab
Z ZA,a

I YI
A,b1(

ab
mab

f fgwb, ~3.12!

wheremab50 if haÞhb .
Then Eqs.~2.10! and ~2.12! reduce to

S Tr H52(
A
D mziD mz̄m̄Kim̄

A
@22kA~nA11!#1

r

2
~7

2N!,

S Tr HPV522(
A

aAD mziD mz̄m̄Kim̄
A

2
r

2
N8,

N5(
A

nA , N85(
g

hg12nA(
a,A

ha
A ,

aA5(
a

ha
faa

A1(
B

ha
BaBa

A . ~3.13!

Cancellation of the on-shell quadratic divergences requir

N1N852aA12kA~nA11!13, ~3.14!

and additional constraints on the parameters provide a
cellation of all one-loop ultraviolet divergences.

The PV Kähler potential ~3.11! is invariant under the
Kähler transformation~3.8!, provided the PV superfield
transform as

dZA
I 5

]dzA
i

zA
j ZA

J 5hS ZA
I FA1zA

i (
j

b̄A
̄ ZA

J D ,

dfa52(
A

aa
AFAfa,

dYI
A52hS YI

AFA1b̄A
ı̄ (

j
zA

j YJ
AD 2YI

A(
B

aA
BFB.

~3.15!

To obtain a fully invariant PV potential requires

aBa
A 51, mab

f 50 if aa
f1ab

fÞ1, ~3.16!
10502
n-

in which case the superpotential~3.12! transforms under Eqs
~3.8! asdWPV52WPV(AFA, and the effective cutoffsLPQ

2

are constant. However, in this case

aA5
1

2
N8, HPV52N8SDmziD mz̄m̄Kim̄1

r

2D ,

~3.17!

which is removed by the Weyl transformation~2.19!. Thus
chiral supermultiplets with modular invariant masses do
contribute to quadratic divergences, nor do massive Abe
gauge multiplets. Since modular invariance of their mas
requiresau50, u-loops contribute only to the space-tim
curvature term and exactly cancel the corresponding ga
loop contributions. Therefore, modular invariant regulariz
tion cannot be achieved unless the massless theory is fre
quadratic divergences. This requires a constraint on the t
massless spectrum. If it includesNG gauge supermultiplets
and Nq additional chiral supermultipletsfa with modular
weightsqa

A , that is, with Kähler potential

K~fa,f̄a!5(
a

ufau2expS (
A

qa
AKAD , ~3.18!

the constraint reads

2(
a

qa
A2Nq2N1NG131kA~nA11!50. ~3.19!

If this constraint is satisfied, the Ka¨hler potential is not renor-
malized, and the classical Bagger-Witten~BW! quantization
condition@9,10#, which relates the pion decay constant to t
Planck mass in a compacts-model, is preserved at the quan
tum level. If this is not the case, one can still preserve
BW condition by imposing, in addition to Eqs.~2.16!, the
additional constraints@see Eqs.~2.17! and~2.18!# on the PV
masses:

(
ab

habab
2 ln~bab!50 for fixed aa1abÞ1.

~3.20!

If the group of modular transformations is noncompact
subgroup of the modular transformations~3.9! may be a clas-
sical invariance of the Lagrangian in the presence of a su
potential and of gauge interactions for a subset of theZi . An
example is the Lagrangian for the ‘‘untwisted sector’’
light fields in a class of orbifold compactifications of th
heterotic string. The Ka¨hler potential is~neglecting the dila-
ton!

K5(
I 51

3

GI , GI52 lnS TI1T̄I2 (
A51

n21

uF I
Au2D .

~3.21!

It is invariant under anSL(2,R) group of modular transfor-
mations that leaveK invariant, and the derivatives ofK sat-
isfy Eqs.~3.10! with KA→GI , kA→kI51. The superpoten-
tial has the form

W5 (
IJK,ABC

cABCue IJKuF I
AFJ

BFK
C . ~3.22!
7-10



to
-
o

i
n

th
he

o

s

te

r-
ve

th
a

ou
l
iv

n

he

ts

ONE-LOOP PAULI-VILLARS REGULARIZATION OF . . . PHYSICAL REVIEW D58 105027
This model has the property that

AIA,JB50 if I 5J, Rim̄jn̄Ai j 50, ~3.23!

where the indicesi , j , . . . run over all chiral fieldszi , and
the logarithmically divergent contributions~2.22!–~2.28!
simplify considerably. However, the ansatz~3.11! is insuffi-
cient to cancel logarithmic divergent terms proportional
Di(T

az) jD j (Taz) i andDi(T
az) jRikm̄

j , suggesting that modu
lar invariant regularization is not possible for any choice
spectrum, although invariance of theO(m2) term can always
be imposed by conditions analogous to Eq.~3.20!.

B. String-derived supergravity

If the underlying theory is a superstring theory, there
generally invariance under a discrete group of modular tra
formations on the light superfields under whichK→K

1F(z)1F̄( z̄), W→e2F(z)W, which cannot be broken by
perturbative quantum corrections@11#. For example, in the
class of orbifold compactifications mentioned above
Kähler potential, including twisted sector fields, takes t
SL(2,R) invariant form

K5(
I 51

3

gI1 f FexpS (
I

qA
I D uFAu2G

5(
I 51

3

gI1expS (
I

qA
I D uFAu21O~ uFAu4!,

gI52 ln~TI1T̄I !, ~3.24!

which reduces to Eq.~3.21! when the twisted fields are set t
zero. The general PV Ka¨hler potential of Eqs.~2.4! is modu-
lar invariant if the fieldZa

I has the same modular weight a
Zi andwC has modular weightaC . The superpotential~2.5!
can be made invariant under the discreteSL(2,Z) subgroup
of SL(2,R) modular transformations, by an appropria
TI-dependence of the PV masses:ma→ma(TI)

5ma) I@h(TI)#pa
I
, where h(T) is the Dedekind function.

This modification of the effective cutoffs could be inte
preted as threshold effects arising from the integration o
heavy modes.

On the other hand, it is known that at least some of
modular invariance is restored by a universal Green-Schw
counterterm; this is in particular the case for the anomal
Yang-Mills coupling @12–15#. To study the conforma
anomalies arising from the noninvariance of the effect
cutoffs, consider the helicity-even part6 of the one-loop ac-
tion, given by

S15
i

2
S Tr ln@D21H~M PV!#, ~3.25!

6The chiral anomaly can be obtained by a resummation@16# of the
derivative expansion of the helicity-odd contributionT2 , which
gives the standard results for the terms condsidered here.
10502
f
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whereM PV is the PV mass matrix. Under a transformatio
on the PV fields, represented here by a column vectorXi ,
which leaves the tree Lagrangian, as well as the PV Ka¨hler
potential, invariant,

S X̄ı̄

Xi D→giS X̄ı̄

Xi D , Mi
PV5S 0 mi

m̄i 0 D , M PV→M PV8

„D21H~0!…i→gi„D
21H~0!…igi

21 , ~3.26!

because all the operators in the determinant exceptM PV are
covariant, and the PV contribution to Eq.~3.25! changes by

~S1!PV→
i

2(i
h iS Tr ln$gi@Di

21Hi~gi
21M PV8 gi !#gi

21%

5
i

2(i
h iS Tr ln@Di

21Hi~gi
21M PV8 gi !#, ~3.27!

whereh i is the signature, and the last equality holds if t
integrals are finite. The PV Ka¨hler potentialKPV5kim̄XiXm̄

is invariant providedkim̄→gi
21kim̄ḡm

21 , kim̄→gik
im̄ḡm . If

the PV mass is introduced via a superpotential termW
{m i j X

iXj , m5const, the PV mass is

mi
m̄5eK/2K jm̄m i j , m8 i

m̄5e~K82K !/2ḡmK jm̄gjK jn̄mi
n̄ .
~3.28!

If the transformation is Abelian,gi5ef i, and the metric is
diagonal,Kim̄}d im̄ , we just get

m8 i
m̄5e~K82K !/21f̄m1f imi

m̄ , gi5S ef̄ i 0

0 ef i
D ,

gi
21Migi5e~K82K !/2S 0 e2f imi

e2f̄ im̄i 0 D , ~3.29!

if, e.g., m i j }d i j .
If, following Sec. II, we introduce regulatorsXA,XA8 for

FA with signature-weighted average modular weigh
2qI

A , andXa for the gauge fields with average weightsqI
a

51/3, and the superpotential term

WPV5(
A

mAXAXA81(
a

maXaXa ,

mi5expS K/22(
I

qI
i gI Dm i , ~3.30!

under a modular transformation we have
7-11
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gi5S expS 2(
I

qI
i F̄ I D 0

0 expS 2(
I

qI
i FI D D , mi85expS (

I
~122qI

i !Re FI Dmi ,

gi
21Mi8gi5S 0 expS 22i(

I
qI

i Im FI Dmi8

expS 2i(
I

qI
i Im FIm̄i8D 0

D , ~3.31!
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the contribution~3.3! shifts by

2
1

64p2 dH Fa
2F3Caln~ uma

2u!2(
A

Ca
Aln~ umA

2 u!G J 1•••

52
1

32p2(
I

Re FIFa
2FCa2(

A
Ca

A~122qA
I !G1•••,

~3.32!

and the conformal anomaly matches the chiral anomaly a
ing from the axial currents

Am
l 5Gm5

i

4
~D mziKi2H.c.!,

~Am
F!B

A52Gm1
i

2
~DmziGBi

A 2H.c.!, ~3.33!

for gauginos and charged chiral fermions, respectively. T
Casimirs and modular weights satisfy the sum rules

Ca2(
A

~122qA
I !CA

a5CE8
2ba

I . ~3.34!

For orbifolds such asZ3 andZ7 that contain noN52 super-
symmetric twisted sector@17#, ba

I 50, the anomaly~3.32! is
completely cancelled by a Green-Schwarz term. For ot
models the residual anomaly is cancelled by string-lo
threshold effects@12# that can be incorporated in the prese
formalism by making thewa masses moduli-dependent:

ma
w→)

I
@h~TI !#

ba
I
ma

w . ~3.35!

Note that since the masses are not modular invariant, a
tional conditions, analogous to Eqs.~3.20!, must be imposed
to make the quadratically divergent terms anomaly free. P
sibilities for cancelling the remaining modular anomali
will be studied elsewhere.

IV. ANOMALOUS U„1…

In this section we include an anomalousU(1)X gauge
factor Tr TX ,Tr TX

3Þ0. To regulate a nonanomalous gau
10502
s-

e

er
p
t

di-

s-

theory we introduced heavy vector-like pairs of states w
gauge invariant masses. Explicitly, under a gauge tra
formation XA→gAXA, XA8→gA

21XA , X̄Ā→gA
21X̄Ā, X̄Ā

8

→gAX̄Ā , M 85gMg21, i.e., the mass matrix~3.26! is co-
variant, and no anomaly is introduced by the regularizat
procedure.

However, the quadratically divergent piece contains
term

2x21DaDi~Taz! i52x21Da@Tr Ta1G i j
i ~Taz! j #. ~4.1!

If Tr TaÞ0, one cannot regulate the quadratic divergenc7

without introducing a mass term for PV statesXi with the
same U(1)X chargeqi . As a consequence the effective cuto
is noninvariant, which gives the conformal anomaly count
part to the chiral anomaly.

Thus, in addition to the PV regulators introduced in S
II, we introduce chiral fieldsXi with signaturesh i that carry
only U(1)X chargeqi :

K→K1ki , ki5 f i~Zj ,Z̄m̄!uXi u21OuXi u4,

W→W1m i~Xi !2. ~4.2!

Their contribution to the chiralU(1)X anomaly vanishes; the
explicit breaking through the mass terms cancels their c
tribution to the true anomaly.

We have been working with the covariant superspace
malism of @7#, in which the vector potential8 Am is intro-
duced as the lowest component of an anti-Hermitian o
form superfield, and matter superfieldsF are defined to be
covariantly chiral:

DḃF50, xa5D aFu, ~4.3!

where the covariant derivativeDM contains the gauge con
nectionAM , and M is a coordinate index in superspac
Under a gauge transformation,

7In the context of renormalizable theories one can use dimensi
regularization or reduction and the quadratic divergence never
pears.

8iAm→ iam5Amu in the notation of@7#.
7-12
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AM→AM2g21DMg, FA→gqX
A
FA, g215g†.

~4.4!

The chiral Yang-Mills superfieldWa is obtained as a com
ponent of the two-formFMN , which is the Yang-Mills field
strength in superspace. The authors of@7# point out that one
can introduce the commonly used Yang-Mills superfield p
tential VX such that

Wa52
1

4
~D̄22R!DaVX , ~4.5!

whereR is an element of the supervielbein andD̄22R is the
chiral projection, but this field does not appear in the co
struction of the action which is invariant under an addition
gauge transformation

VX→VX85VX1
1

2
~L1L̄ !, ~4.6!

which is independent of Eqs.~4.4!. Since the gauge invarian
superpotential is invariant under the complex extension
the gauge group, there is no conflict between Eqs.~4.4! and
holomorphicity of the superpotential.

However, the superpotential~4.2! changes by a nonholo
mophic function underU(1)X if Xi→gqiXi . Therefore holo-
morphicity requiresXi→e2qiLXi , L holomorphic, under a
U(1)X gauge transformation. To preserve gauge invaria
of the Kähler potential, we takeXi chiral in the ordinary
sense; that is, we defineDMXi5DMXi , whereDM contains
no gauge connection, and modify the Ka¨hler potential~4.2!
to read

K→K1kie2qiVX. ~4.7!

As shown in Appendix C, one obtains the standard Lagra
ian when this expression is evaluated in the Wess-Zum
~WZ! gauge. This choice is not justified unless the full theo
is gauge invariant. In fact, we are interested in the spe
case in which theU(1)X anomaly satisfies the ‘‘universa
ity’’ condition

1

3
Tr TX

35Tr ~TXTa
2!5

1

24
Tr TX58p2dX , ~4.8!

and — in string derived supergravity — is cancelled by
Green-Schwarz term@18#. Thus provided this term is in
cluded and evaluated in the WZ gauge, there is no amb
ity.

Including the fieldsXi we get a quadratically divergen
contribution

S Tr H{2g2dXS (
A

qA
X1(

i
h iqi D , ~4.9!

where the first term is the light field contribution anddX

5(AKAqA
XfA, fA5FAu. Finiteness requires
10502
-

-
l

f

e

g-
o

y
al

u-

(
i

h iqi52Tr TX52192p2dX , (
i

h iqimi
250.

~4.10!

Once all the infinities are cancelled one gets a finite con
bution that grows withm2. Settingm i5b im, we get a con-
tribution of the form~2.17! with now

dK5(
i

h imi
2ln b i , mi

25b i
2eKKi ı̄

22um i u2. ~4.11!

Taking, for example, the modular invariant form

ki5eK/2uXi u2, dK5
m2

32p2(
i

h ib i
2ln b ie

24qiVX,

~4.12!

the correction to the bosonic Lagrangian is@see Eq.~2.34!
and Appendix C#

DL5Ag
m2

32p2F 1

16
D a~D̄22R!Da2V̂GdKU

5Ag
m2

32p2(
i

h ib i
2ln b i@2g2qi~dX2qiAmAm!2V̂#.

~4.13!

Note that a mass term is induced for the anomalous,U(1)X
gauge bosonAm . Thus if the full quantum theory is no
anomalous, we must impose

(
i

h iqi
2b i

2ln b i50. ~4.14!

The logarithmically divergent contribution fromXi contains
a term

LX{2
1

64p2(
i

h i lnumi u2qi
2FX

21•••. ~4.15!

Under U(1)X , Eq. ~4.6!, umi u2→e22qi (L1L̄)umi u2; so the
quantum Lagrangian changes by

dL X{
1

32p2(
i

h i~l1l* !qi
3FX

21•••, ~4.16!

wherel5Lu. The light fermion contribution gives the chira
anomaly

dLX5
idX

2
~ ln gu!(

a
FaF̃a1•••. ~4.17!

For Fa5FX , the anomalies~4.16!,~4.17! form a supermul-
tiplet if we take

g5e~21/2!~L2L̄!, (
i

h iqi
358p2dX . ~4.18!
7-13
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To make the full anomaly determined by Eq.~4.8! super-
symmetric, we must include PV fields with bothU(1)X and
the nonanomalous gauge charges. This can be accompl
by assigning thesame U(1)X chargeqA to the previously
introduced PV fieldsXA,XA8 , defining the superspace deriv
tive asDM5DMX1TaAM

a , AaÞAX, and setting

uXAu2→e2qAVXuXAu2, uXAu2→e2qAVXuXAu2,

in the Kähler potential. The generalization of the Lagrangi
of Appendix C to this case is tedious but straightforwa
Once supersymmetry of the anomaly is imposed, with
appropriate constraints on the PVU(1)X charges, the full
anomaly is cancelled by a Green-Schwarz term that gives
variation of the Lagrangian under theU(1)X transformation
~4.6!:

dLGS
X 52

dX

4 E E

R
LTr~W aWa!1H.c.

52
dX

2 S Re l(
a

FaFa1Im l(
a

FaF̃aD 1•••.

~4.19!

This mechanism introduces a D-term with a well-defined
efficient that has been used in many applications to phen
enology. Note that there is also a D-term in Eq.~4.13!, which
may be removed by an additional condition on theb i . One
needs further information on the underlying theory to det
mine whether or not this term is present.

V. CONCLUDING REMARKS

We have shown that on-shell one-loop Pauli-Villars reg
larization is possible for supergravity theories with canoni
kinetic energy for gauge superfields. The resulting Lagra
ian depends on the PV massesm that play the role of effec-
tive cutoffs. It remains an open question as to whether
regularization remains possible at higher order without
addition of higher derivative terms. However, since the c
ral anomalies of the effective field theory are complet
determined at one loop order, and their partner confor
anomalies are thereby fixed by supersymmetry — thro
constraints on the Pauli-Villars massess — at the same o
one loop calculations are sufficient to study the field the
anomalies.

We found that nonlinear sigma-model symmetries can
preserved at the quantum level only for ungauged theo
with restricted particle spectra, such that there are no q
dratic divergences. It is nevertheless possible to impose
variance of theO(m2) correction, thereby preserving th
Bagger-Witten condition at the quantum level. Similarly, t
O(m2) correction to an anomalousU(1) gauge symmetry
may be made gauge invariant. There is also anO(m2) D-
term that does not automatically vanish when gauge inv
ance is imposed; further information on the underlyi
theory is needed to fix this term.

In string-derived supergravity a discrete subgroup of
sigma-model symmetry is preserved to all orders in per
10502
ed

.
e
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y
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bation theory; a study of the anomaly structure provides
formation on the type of counterterms that must be includ
to cancel the field theory anomalies. In these theories
gauge kinetic energy term is noncanonical, and is gover
by couplings to a universal dilaton. The full loop correctio
including the dilaton, and a more detailed study of sup
gravity theories, based on orbifold compactifications of t
heterotic string, will be presented elsewhere.
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APPENDIX A: THE METRIC TENSOR FOR Y

The metric tensor derived fromKa.3
Y in Eqs.~2.4! is the

inverse of that derived from the Ka¨hler potential

k5F (
I ,J5 i , j

Ya
I Ȳa

J̄ ~Ki ̄1aa
2KiK ̄!

1aa~Ya
I Ȳa

0Ki1H.c.!1uYa
0 u2G . ~A1!

It is straightforward to evaluate the derivatives of the met
kPQ̄ , P,Q5YI ,Y0 . Denoting bygQi

P ,r Qim̄
P the correspond-

ing elements of the affine connection and Riemann ten
respectively, we have

~Ta!YI

YJ52~Ta! j
i , DYI

~TaY!J52D j~Taz! i ,

~GY!Pi
Q 52gQi

P , ~RY!Pim̄
Q

52r Qim̄
P , ~A2!

giving the results listed in Eqs.~2.13! and~2.42!. In addition
we have

APQ
Y 5eKWPQ ,

ĀY
PQ5eKKY

PP8̄KY
PQ8̄ĀP8̄Q8̄5eKkPP8̄kQQ8̄ĀP8̄Q8̄ ,

APw
Y 5eKWPw , ĀPw5eKKPQ̄Kww̄ĀQ̄w̄5kPQ̄ĀQ̄w̄ , ~A3!

giving the results listed in Eq.~2.37!.

APPENDIX B: NONDIAGONAL GAUGE KINETIC
FUNCTION

Here we sketch the generalization of@4# to the case of a
nondiagonal gauge kinetic function involving Pauli-Villa
fields. Although in this paper we assume a canonical kine
energy term for the light gauge fields, we give the resu
7-14
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here for the case of a universal dilaton. The case relevan
Sec. II of this paper is recovered by settings5 const. With
an arbitrary kinetic functionf ab(Z), the Lagrangian for the
auxiliary fieldsDa of the Yang-Mills supermultiplets take
the form @7#, upon solving forDa ,

LD5
1

2
~Re f !abDaDb2DaD̃a52

1

2
@~Re f !21#abD̃aD̃b ,

D̃a5D a1
i

2
~ f i

abl̄bLx i2H.c.!, f i
ab5] i f

ab. ~B1!

Writing f ab5 f adab1eab, we may expand ine to obtain

LD52
1

2
~Re f a!21S dab2

Re eab

Re f b

1(
c

Re eacRe ecb

Re f bRe f c
D D̃aD̃b1•••. ~B2!

Here we introduce Pauli-Villars Abelian multiplets,Wa
0 , and

take gauge kinetic functions of the form

f AB5dAB~xA1 iyA!1eAB,

f ab5dabs1
d

2
wawb, f ab

0 5dab ,

f a
a05eawa, KPV5ek(

a
uwau2, ek5

1

2x
.

~B3!

In addition to scalar curvature terms,

Rbss̄
a

5Kss̄db
a , ~B4!

we have, for fixeda,

Dsf wb
a0

52Gswb
wc

f wc
a0

52ksdb
ae5

1

2x
db

ae. ~B5!

The relevant part of the tree Lagrangian@6,7# is ~setting all
background fermions to zero!

1

Ag
L~wa,Bm

a !5ekD mwaD mw̄a

2
d

16
@wawb~Fmn

b Fa
mn2 i F̃ a

mnFmn
b !1H.c.#

2
1

4
Fmn

a Fa
mn2

ea

4
@wa~Fmn

a Fa
mn2 i F̃ a

mnFmn
a !

1H.c.#1
i

2
l̄aD” la1 iek~ x̄L

aD” xL
a1x̄R

aD” xR
a !

2V2eaF i l̄R
aS 1

2x
Da1

1

4
smnFa

mnDxL
a1H.c.G ,
10502
to
V52

1

8x2DaDb@d~wawb1w̄aw̄b!2e2~wa1w̄a!~wb1w̄b!#.

~B6!

Following the procedure described in@19#, we introduce
off-diagonal connections in the bosonic sector so as to
the quantum Lagrangian in the form

LBose1Lgh52
1

2
FTZF~D̂F

2 1HF!F1
1

2
c̄Zgh~D̂gh

2 1Hgh!c,

D̂m
F5Dm1Vm , ~Vm!Ar,Bs52ermsn

]nyAB

2x
,

~Vm!An,i5~Vm! i ,An5@~Vm! ı̄ ,An#*

5
1

4AxAxB

f i
AB~FBmn2 i F̃Bmn!

5
e

4
~Fbmn2 i F̃ bmn!, for i 5wb, A5Am

0 .

~B7!

This introduces corresponding shifts in the background fie
dependent ‘‘squared mass’’ matrices:

MF
2→HF5MF

2 2VmVm, Mgh
2 →Hgh5Mgh

2 2BmBm.
~B8!

We have the following relations among derivatives of t
kinetic function:

f a5Daf 5e, f a52xe, f sa5DsDaf 5
e

2x
,

f s̄a5Ds̄f a50, Rss̄b
a

f aXss̄52
e

4x2 Xss̄,

Dme25DmS f a
ba f̄ ba

a

2x
D

5
1

2x
@]ms~Dsf a

ba! f̄ ba
a 1H.c.#2

e2

2x2 ]mx50.

~B9!

In evaluating the matrix elements needed for PV lo
contributions, we set background PV fields to zero and sh
explicitly only the terms involving the parameterse and d.
The remainder of this appendix closely parallels Appendix
of @4#.

1. Matrix elements

The elements ofHIJ , I ,J5wa, are

HIJ5V̂IJ1RIJ1DIJ1v IJ2~VmVm! IJ ,

v im̄5vm̄i5~VmVm! im̄5~VmVm!m̄i50,
7-15
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~VmVm!wawb5
e2

8
~Fa

mnFmn
b 7 i F̃ a

mnFmn
b !,

vwawb5
d

8
~Fa

mnFmn
b 7 i F̃ a

mnFmn
b !, ~B10!

where

D a
b5

e2

2x
DaD b1

1

x
Dc~Tc!a

b , Dab5
1

4x2 ~e22d!DaDb .

~B11!

The additional nonvanishing elements ofZFHF are
2Nam,bn andSam,a with

Nam,bn52
x

2
eaebS Fmr

a Fan
r2

1

4
gmnFrs

a Fa
rsD1dabr mn ,

Sam,a
0 5

ea

4
D nFanm1

ea

8x
Fanm

7 ]nS s

s̄
D ,

5
ea

4 F D̂nFanm2
1

2x
Fanm

7 ]nS ŝ

s
D G , a5H wa,

w̄a,

D̂nFanm5D nFanm1
]nx

x
Fanm1

]ny

x
F̃anm . ~B12!

Finally we need

Ĝmn5~Gz1Gg1Ggz!mn ,

~Gmn
z !b

a5
]ms̄]ns2]ms̄]ns

4x2
db

a6 iF mn
c ~Tc!b

a , a,b

5H wa,b,

w̄a,b,

~Gmn
z !a

b5
e2x

4
~FamrFn

b r7 i F̃ amrFn
b r!2~m↔n!,

a,b5H wa,w̄b,

w̄a,wb,

~Gmn
gz !ar,a5~Gmn

gz !a,ar

5
ea

4
DmFanr

7 1
ea

8x
]mS s

s̄
D Fanr

7 2~m↔n!,

a5H wa,

w̄a,
10502
~Gmn
g !ar,bs5dabr srmn

1
x

4
eaeb@FamrFns

a 1F̃amrF̃ns
a 2~m↔n!#.

~B13!

The matrix elements ofMQ are given by

M0
050,

Ma
05ma1Ma

mnsmn ,

M0
a5

1

2
e2k~ma2Ma

mnsmn!,

mwa[ma5
ie

2x
Da5mw̄a

* [m̄a* ,

Ma
mn52

ie

8
~Fa

mn7 i F̃ a
mn!, a5H wa,

w̄a,
~B14!

with covariant derivatives as defined in@3,4#:

Drma5~Drma!* 52 i
]rs̄

4x2
eDa

1
ie

2x
@K jm̄~Taz̄!m̄D rzj1H.c.#,

D rMa
mn52~D rM̄a

mn!*

52
ie

8 SDr1
]rs

2x D ~Fa
mn2 i F̃ a

mn!. ~B15!

The matrix elements ofGmn
Q are ~see Appendix D!

~Gmn
6 !0056Ĝmn1Zmn , Ĝmn5Gmn2

i

2
Fmn

a Da ,

~Gmn
x !b

a5~Gmn
z !b

a1db
a~Zmn6Ĝmn!, a,b5H wa,wb,

w̄a,w̄b.
~B16!

As in @4#, we double the quantum fermions degrees
freedom and represent them as 8-component Dirac spin
In the following Tr denotes the full trace of fermion mas
and field strength (Gmn5@Dm ,Dn#) which are 8n138n2
matrices, whereni is the number of intrinsic fermion degree
of freedom. The explicit calculation given below is for ju
one nonvanishingea: ni5NG(1) for xa(la).

2. Chiral multiplet supertrace

Defining

1

2
S Tr Hx

25H j
i Hi

j1Hi j H
i j 2

1

8
Tr ~HQ

IJHIJ
Q !,
7-16
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hm̄i
x

5~m̄m!m̄i , ~B17!

we have

1

8
Tr ~H1

x!25Tr hx
21

e4

32
DaD bFmn

a Fb
mn , ~hx!a

b5
e2

4x
DaD b,

Ha
b5~hx!a

b1da
bS V̂1M22Ml

22
]ms]ms̄

4x2 D
1

e2

4x
DaD b1

1

x
Dc~Tc!a

b ,

Hab5
1

2
~d2e2!Wab . ~B18!

Thus

1

8
Tr ~H1

x!25Tr hx
21

e4

16
@~W ab1W̄ab!DaDb14D 2#,

Tr ~H2
x!250,

1

8
Tr H3

x5O~NG!,

1

8
Tr ~H3

x!25
1

2
Tr~TaTb!Fmn

a Fb
mn1O~NG!,
10502
1

4
Tr H3

xH1
x52T3

x1
r

2
Tr hx, ~B19!

where

Tr hx5
e2

2
D,

T3
x5

ie2

4
D mzjD nz̄m̄Kim̄D aFa

mn2
ie2

8x2D aFa
mn]ms]ns̄

1
e2

4
DaDb~W ab1W̄ab!1e2D 2, ~B20!

and the chiral fermion contributions to the helicity-odd o
eratorT2 ~see@4#! are

Tx5T3
x1T4

x1Tr
x ,

Tr
x52

e2

12
xS r n

mFa
nrFmr

a 2
1

4
rF a

mnFmn
a D ,

T4
x5

e4x2

384
@~Fmn

a Fb
mn!21~Fmn

a F̃b
mn!2#2

e4

32
DaD bFmn

a Fb
mn .

~B21!

Then we obtain
S Tr Hx5e2D1O~NG!,

1

2
STrHx

252T3
x2~Wab1W̄ab!FTr~TbTa!1

e4

16
DaDbG2

e2

4
rD1

e4

2
D 212e2~V̂1M22Ml

2!D2
e2

2x2D]ms̄]ms

1~d2e2!2x2WabW̄ab2
ie2

2 S ]ms]ns̄

2x2
2D mzjD nz̄m̄K jm̄DD aFa

mn

1
e2

2
DaDb~W ab1W̄ab!12e2D 21O~NG!. ~B22!

Finally we have
~Gmn

z !wa
w̄b

~Gz
mn!w̄b

wa

50, ~B23!

and so

1

12
S Tr Ĝmn

x Ĝx
mn52Tr

x1
e2x

24 S r n
mFmr

a Fa
nr2

r

4
Fmn

a Fa
mnD1

e4

384
@~Fmn

a Fb
mn!21~Fmn

a F̃b
mn!2#1O~NG!. ~B24!

3. Mixed chiral-gauge supertrace

For the Bose sector we haveHF
xg52S, and, using~B.17! of @4#,

Tr S25
e2x

4
~D̂nFa

mn!21
e2

16x
Fa

1nmFrm
2a]rs]ns̄2

e2

8
~Fnm

2a]ns1H.c.!D̂rFa
rm

5
e2

4x
$g21/2L a

m2 iK im̄@D mz̄m̄~Taz! i2D mzi~Taz̄!m̄#%21
e2

16x
Fa

1nmFrm
2a]rs]ns̄

2
e2

8x
~Fnm

2a]ns1H.c.!$g21/2L a
m2 i @Kim̄D mz̄m̄~Taz! i2H.c.#%. ~B25!
7-17
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To evaluate the fermion matrix elements we use Eqs.~3.36! and ~C.24!–~C.27! of the second paper in@4#:

1

8
Tr ~H1

xg!250,

2
1

8
Tr ~H2

xg!252~Dmm̄!0
a~D mm!a

028~D mM̄mn!0
a~D rM rn!a

0 , ~B26!

with

8~D mM̄mn!0
a~D rM rn!a

05
1

2
Tr S2,

2~Dmm̄!0
a~D mm!a

05
e2

4x2 ~]mx]mx1]my]my!D1
e2

2x
$Kin̄K jm̄D mzj~Taz̄!m̄@~Taz! iD mz̄n̄1~Taz̄! n̄D mzi #1H.c.%

2
e2

2x2 ]mxD aK jm̄@~Taz! jD mz̄m̄1~Taz̄!m̄D mzj # ~B27!

and

Txg5t3
xg52

16

3
~D sM̄sm!0

a~DrM rm!a
052

1

3
Tr S2. ~B28!

In addition we have

Tr~ĜF
xg!254~Gmn

gz !0r,a~Gmn
gz !a,0r5

1

2
Tr ~ĜQ

xg!2564~DmM̄ nr!0
a~D mM nr2D nMmr!a

0524 Tr S2. ~B29!

Using the classical equations of motion~B.17! of the second paper in@4#, we obtain

Lxg5
1

2
S Tr Hxg

2 1Txg1
1

12
S Tr Ĝxg

2 52
2e2

Ag
DDL2

e2

2gx
LamL am1

e2

2xAg
~Fnm

a ]nx1F̃nm
a ]ny!L a

m

1
e2

xAg
$ iL am@Kim̄D mz̄m̄~Taz! i2H.c.#1D a~Taz! ILI%12e2D@2M212Ml

212 Re~MM̄l!1V̂#

1
5e2

4x2D]ms]ms̄2
e2

8x
~Fnm2 i F̃ nm!~Frm1 i F̃ rm!]ns]rs̄2

e2

2x2 @~]mx12i ]my!K jm̄~Taz! jD mz̄m̄1H.c.#D a

2
ie2

2x
~Fnm

a ]nx1F̃nm
a ]ny!@K jm̄~Taz! jD mz̄m̄2H.c.#

52
2e2

Ag
DDL2

e2

2gx
LamL am1

e2

2xAg
S Fnm

a ]nx1F̃nm
a ]ny2

]my

x
D aDL a

m

1
e2

xAg
@ iL am

„Kim̄D mz̄m̄~Taz! i2H.c.…1D a~Taz! ILI #12e2D@2M212Ml
212Re~MM̄l!1V̂#1

e2

x2 ]mx]nyFmn
a D a

1
5e2

4x2D]ms]ms̄2
e2

8x
~Fnm2 i F̃ nm!~Frm1 i F̃ rm!]ns]rs̄2

e2

2x2 @~ ixFnm
2a]ns1]msD a!K jm̄~Taz! jD mz̄m̄1H.c.#, ~B30!

where in the last expression~C.76! of the second paper in@4# was used with Eq.~B9! above.
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4. Yang-Mills supertrace

For the bosonic contributions, we haveHF
g 52N; we write Nab5Nab8 1dabn, and evaluate here onlyNab8 →N00:

Tr N5NG8 n,

Tr N25NG8 n22e2xS r n
mFmr

a Fa
nr2

1

4
rF mn

a Fa
mnD1

x2e4

16
@~Fmn

a Fb
mn!21~Fmn

a F̃b
mn!2#, ~B31!

and, writing (Ĝmn
g )b

a5(Ĝmn8 )b
a1ĝmndb

a , we have

Tr~ĜF
g !25NG8 ĝ21

xe2

2
~4r m

n Fa
mrFnr

a 2r n
mFmr

a Fa
nr!2

x2e4

8
@~Fmn

a Fb
mn!21~Fmn

a F̃b
mn!2#, ~B32!

where we dropped total derivatives and used~B.12!–~B.14! of the second paper in@4#, as well as the Yang-Mills Bianch
identity. For the fermions we obtain

1

8
Tr H1

g5
NG8

4
Tr h11

e2

2
D,

1

8
Tr ~H1

g!25
e4

4
D 21

e4

32
Fmn

a Fb
mnDaD b,

2
1

8
Tr ~H2

g!250,
1

8
Tr H3

g5
NG8

4
r ,

1

8
Tr ~H3

g!25
NG8

4
Tr h3

2 ,

1

4
Tr ~H1H3!g5

NG8

2
Tr ~h1h3!g1

e2

4
rD2

ie2

4
DmzjD nz̄m̄Kim̄D aFa

mn2
e2

4
DaDb~W ab1W̄ab!2e2D 2,

1

2
Tr Ĝg

25NG8 Tr ĝ21xe2S r n
mFmr

a Fa
nr2

r

4
Fmn

a Fa
mnD2

x2e4

16
@~Fmn

a Fb
mn!21~Fmn

a F̃b
mn!2#. ~B33!

The nonvanishing contributions toTg5T3
g1T4

g1Tr
g are

T3
g5

ie2

4
D mzjD nz̄m̄Kim̄D aFa

mn1
e2

4
DaDb~W ab1W̄ab!1e2D 21NG8 t3 ,

T4
g5T4

x , Tr
g5Tr

x . ~B34!

For the supertraces we obtain@using ~B.17!–~B.20! of @4##

S Tr Hg5NG8 S Tr hg2e2D,

1

2
S Tr Hg

25
1

2
NG8 S Tr hg

21
e4

2 Fx2W abW̄ab1
3

8
DaDb~W ab1W̄ab!G2T3

g2
xe2

2 S r n
mFmr

a Fa
nr2

1

4
rF mn

a Fa
mnD2

e2

4
rD

1
ie2

2
K jm̄D mzjD nz̄m̄D aFa

mn1
e2

2
DaDb~W ab1W̄ab!12e2D 2,

1

12
S Tr Ĝg

25
1

12
NG8 S Tr ĝ22

1

12
S Tr Ĝx

22T4
g2T4

x2Tr
g2Tr

x2
e4

8
@4D 21DaDb~W ab1W̄ab!#. ~B35!

The space-time curvature dependent terms in the supertraces evaluated above give a contributionLr of the form~2.23! of
@3# with
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Hmn5Hmn
g 2

ln L2

32p2 e2xS Fmr
a Fan

r2
1

4
gmnxFrs

a Fa
rsD ,

e05e0
g2

ln L2

32p2 e2D,

a5ag, b5bg. ~B36!

The metric redefinition in~2.24! and ~2.25! of @3# gives a correction

D rL5
ln L2

32p2 D rL,

D rL5D rg1e2~D mziD mz̄m̄Kim̄22V!D1e2xS Frm
a Fa

rnD nziD mz̄m̄Kim̄2
1

4
Frs

a Fa
rsDmziD mz̄m̄Kim̄D

22e2Fx2W abW̄ab1
1

2
~W ab1W̄ab!DaDb1D 2G . ~B37!

The result for constantx, given in Eqs.~2.35! of Sec. II, is obtained by settingMl50, y50, s5x5g22 constant in the
above equations. In Sec. II the fieldsŵa

a are taken to be canonically normalized. Combining the above results and evalu

L12Lr1D rL2DKL2DxL2L AXA2LAL BXAB yields the results given in Eqs.~2.35!, with wa→A2xŵa
a and

e2→(
bg

hg
ŵegb

2 [2e, e4→ (
abgd

hg
ŵea

beb
geg

ded
a[4e2,

~d2e!2→(
bg

hg
ŵS dgb2(

a
egaeabD 2

[~d22e!2. ~B38!

APPENDIX C: LAGRANGIAN WITH A VECTOR POTENTIAL SUPERFIELD

In this appendix we follow the notation of@7#: Greek letters are used for two-component spinorial indices, Roman lette
tangent space and coordinate indices, and the metric is (2111), i.e. the negative of the one used elsewhere in the text.
include the chiral fieldsXx5$Xi ,Za%, where theXi are PV regulator fields charged only under an anomalousU(1)X , andZa

are the physical, light fields of the effective low energy theory.
Defining, in analogy with the chiral superfieldXa52 1

8 (D̄228R)DaK introduced in@7#,

Xa852
1

8
~D̄228R!Da~kie2qiVX!, xa52

1

8
~D̄228R!D aki , ~C1!

the PV Lagrangian gets contributions~in the WZ gauge!

L PV
i {2

1

4
D aXa8U1 i

2
c̄ms̄mX8U1H.c.

52
1

4
D axaU1 i

2
c̄ms̄mxU1 1

2
kiqi c̄ms̄mlX2 iA2

2
c̄ms̄nsmx̄ x̄kx̄

i
am

2
1

2
qi

2kiamam1 iqiamDmzxkx
i 1

1

2
qik

iDX1qiA2xxlXkx
i 1

1

2
qiamkxȳ

i
x̄ ȳsmxx1H.c.

52
1

4
D axaU1 i

2
c̄ms̄mxU1 1

2
di c̄ms̄mlX2 iA2

2
c̄ms̄nsmx̄ x̄Kix̄

8 ~TXx! iam2
1

2
~TXx! i~TXx̄! ı̄Ki ı̄

8 amam

1 iamDmzx~TXx̄! ı̄Kx ı̄
8 1

1

2
diDX1A2xxlX~TXx̄! ı̄Kx ı̄

8 1
1

2
qiamkxȳ

i
x̄ ȳsmxx1H.c., ~C2!

whereK85K1ki and the last equality follows because
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qik
i5~TXx! iKi85di , qikx̄

i
5~TXz! iKix̄

8 , qi
2ki5~TXx! i~TXx̄! ı̄Ki ı̄

8 . ~C3!

The first two terms are the contributions toD̃M of @7# quadratic inXi without the gauge connections forXi , and

ki
i5

]ki

xi , ka
i 5

]ki

za , etc., xi5Xi u, aÞ i , x,y5 i ,a. ~C4!

The remaining terms covariantize]mxi and give the correctc,lX ,DX terms. All fermion derivatives include the Ka¨hler U(1)
connection that has a piece

Aau{
1

16
s̄ ḃa@Da ,Dḃ#~kie2qiVX!u5

1

16
s̄ ḃa@Da ,Dḃ#ki u1

i

2
qik

iva{
1

4
Ki8~]a1 iqiaa!xi2H.c. ~C5!

In other wordsAa includes the gauge connection forU(1)X . The fully covariant derivative for the fermions contains t
additional gauge connection terms

Dmxx{ iam@~TXx!x1~TXz!yGyz8
xxz#,

DmxX
i { iamqi~xX

i 1xiG ia8
ixa!1O~X3!5 iamqiS xX

i 1
ka ı̄

i

ki ı̄
i xaD 1O~X3!,

Dmxa{ iamqix
iG ib8

axb1O~X4!5 iamqiK
ab̄S kb̄b

i
2

kb̄i
i

kb ı̄
i

kı̄ i
i D xb1O~X4!, ~C6!

where we used the fact that

K8a ı̄52Kab̄
kb̄i

i

kı̄ i
i 1O~X3!. ~C7!

So the fully covariant kinetic energy term contains the terms

2
i

2
~Dmxx!x ȳKxȳ

8 1H.c.{qiamkxȳ
i

x̄ ȳsmxx1H.c.1O~X4!, ~C8!

which is just the last term in Eq.~C2!. Thus we get the standard form of the tree Lagrangian, and loop corrections fromXi are
also of standard form. Converting to the notation used previously~e.g., amam→2AmAm), we obtain the results
~4.9!,~4.13!,~4.15! given in Sec. IV, where we used the classical equation of motionDX52g2dX . The right hand side~RHS!
of Eq. ~4.13! is given by the RHS of Eq.~C2! with fermion fields set to zero andki→m25const.

APPENDIX D: ERRATA

Here we list corrections to@3# and the second paper in@4#.
~1! The term1 1

8 (gmrr ns1gnrr ms1gmsr nr1gnsr mr) is missing from the expression forXmn,rs in ~2.22! and~B3! of @3#.
As a consequence~B6! should read

Tr X5220V12r , Tr X2540V2224rV122r mnr mn22r 21total derivative,

and the following replacements should be made in~B20!:

N11

12
r 2→

N27

12
r 2, 25Vr→213Vr, r mnr mn→8r mnr mn.

The first three equations in~B22! should read
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a522
ln L2

32p2 , b5
N189

6

ln L2

32p2 ,

e052
ln L2

32p2 H e2KS Ai j Ā
i j 2

2

3
Rj

i AiĀ
j D1

2N168

3
V̂1

2N116

3
Mc

2 J ,

and ~B23! ~as well as footnote 23 of@4#! should read

1

Ag
D rL5

ln L2

32p2F H 22e2KS AkiĀ
ik2

2

3
Rn

kAkĀ
nD2

3N195

3
V̂2

4N132

3
Mc

2 J V̂

1FKim̄H N155

3
V̂1e2KS AkiĀ

ik2
2

3
Rn

kAkĀ
nD1

2N116

3
Mc

2 J 1
4

3
Rim̄V̂GD rziD rz̄m̄

2H 2

3
~Rim̄116Kim̄!DrziD rz̄m̄gmn2

N1113

6
~D mziD nz̄m̄1DnziD mz̄m̄!Kim̄JD mzjD mz̄n̄Kin̄G .

In addition, in Eq.~C.55! of @4#, the replacements

xFmn
a Fa

mnr→5xFmn
a Fa

mnr , 12r n
mxFmr

a Fa
nr→212r n

mxFmr
a Fa

nr

should be made in the expression for TrX2, and the replacements

2
3x

4
rF mn

a Fa
mn→1

5x

4
rF mn

a Fa
mn , 12r n

mxFmr
a Fa

nr→25r n
mxFmr

a Fa
nr , 25rD→213rD,

should be made in the second equation of~C.62!.
~2! In ~3.33! the expression forT3 is missing a term

T3→T32
i

3p2 r n
mTr~M̃mrM̄ nr2 M̃̄mrM nr!.

The last line of TrRR5 in ~3.35! has the wrong sign, and the last term in the second line of the RHS of~3.36! should be

multiplied by 22/3. As a consequence,1
8→2 1

12 in T3
x , ~C.35!, and inT3

g , ~C.59!;
7
8
→ 13

12 in the fourth line of~C.62!. In

addition 1
4→ 1

6 in the second line of S TrĜg1G
2 in ~C.62!. Including these and the above corrections, the first two equation

~C.63! should read

Hmn5Hmn
0 1Hmn

g 2x~101x2r ir
i !

ln L2

32p2 S Fmr
a Fan

r2
1

4
gmnFrs

a Fa
rsD ,

e05~e0!01e0
g2

ln L2

32p2 H 70

3
D12x2r ir

iD1
2

3x
DaDi~Taz! i J ,

and ~C.64! should read

D rL5~D rL!01D rgL1
ln L2

32p2 H N299

3
D 22

2N1194

3
DV̂2

4N132

3
DMc

21~D mziD mz̄m̄Kim̄22V!

3F2x2r ir
iD1

2

3x
DaDi~Taz! i G22De2KS Ai j Ā

i j 2
2

3
Rj

i AiĀ
j D1

1

3
DD mziD mz̄m̄@4Rim̄2~N257!Kim̄#

1S N129

6
2x2r ir

i D @2x2W abW̄ab1~W ab1W̄ab!DaDb12D 2#1S N171

3
2x2r ir

i D x

4
Frs

a Fa
rsD mziD mz̄m̄Kim̄

2S N171

3
2x2r ir

i D xFrm
a Fa

rnD nziD mz̄m̄Kim̄J .
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~3! The sign of the last term in the expression forD21HGh in ~2.12! of @3# and in ~C.14! of @4# is incorrect. As a
consequence,218GmnGmn in footnote 22 of@4# and 26GmnGmn in ~B18! of @3# should both be replaced by22GmnGmn in
~C.61!.

~4! In the expressions for@Dm ,Dn# for fermions,Gmn→Gmn2( i /2)Fmn
a Da . As a consequence of this and the above ite

the coefficient224 should be replaced by12 in Tr HGh
2 , Eq. ~C.61! of @4#, and the coefficient ofDaD bFmn

a Fb
mn should be

1
2 instead of 2 in the same equation. In addition the final results~4.6!–~4.8! and~5.2! of @4# are modified by the addition of the
terms

2
1

3
~N171NG!F iD aFa

mnDmziKim̄D nz̄m̄1
1

2
DaDb~W ab1W̄ab!12D 2G

1
2

3F iD aFa
mnD mziRim̄D nz̄m̄1Di~Taz! i HDb~W ab1W̄ab!1

2

x
DDaJ G

from contributions proportional to@Dm ,Dn#2 from fermion loops and
1
r6

Tr GGh
2 , the term

12x2r jr j@DaDb~W ab1W̄ab!14D 2#

from 2 1
4 Tr H1

xH3
x1tx2 1

4 Tr H1
gH3

g1Tg , Eqs.~C34!,~C35!,~C59! of @3#, and an identical contribution from and an addition
term

22@DaDb~W ab1W̄ab!14D 2#

from 2 1
4 Tr (H1H3)g1G . In addition the contribution ofRmn was neglected in the calculation of 2tx ; this gives an additiona

contribution

iD mzk@xD nz̄m̄rm̄jk1r jk~]nx2 i ]ny!#@xr jD aFa
mn12~Taz! j~Fa

mn2 i F̃ a
mn!#2r jr j]mx]nyD aFa

mn1H.c.,

which does not contribute to~2.22!, and only the last term contributes when the string dilaton is present.
~5! The coefficient ofD mziD nz̄m̄Kim̄Rjn̄(D mzjD nz̄n̄2D nzjD mz̄n̄) in footnotes 6, 13 and 21 and the coefficient of

1

3
DmziD nz̄m̄Kim̄(

a
~Na11!K jn̄

a
~D mzjD nz̄n̄2D nzjD mz̄n̄!
fo

on

ca
c

t.
in footnote 8 of@4# should be multiplied by22.
~6! The last term in brackets in the expression

Tr (H3
x)2 in ~C.33! of @4# should be multiplied by12 , and the

last term in~C.38! should be multiplied by22, with corre-
sponding changes in~C.36! and the final results.

~7! There are errors in the coefficients of the expressi
following 2T4

xg in the second equality for18 Tr (H1
xg)2, Eq.

~C.41!, and in similar terms in the other traces. For the
nonical gauge kinetic energy case considered here the
rections to amount to the changes22DV̂26DM2 in ~C.41!,
228DM2 in the expressions for12 S Tr Hx

2 , Eq. ~C.36!,
18DM2 and 28DM2 in 1

8 Tr (H1
xG)2, and 1

2 STr(H1
xG)2,

respectively, Eqs. ~C.50!, ~C.51!, and 14DM2 in
1
8 Tr (H1

g1G)2, Eq. ~C.58!.
10502
r

s

-
or-

~8! The following are misprints in@4#:
The second line of~B.20! should be multiplied byx21.
Tr (ĜQ

xg)2 should be multiplied by1
2 in the first line of

~C.46!; the sign of the last term in footnote 23 is incorrec
The terms quartic in the field strength in~C.52!–~C.58!

should be multiplied byx2.
(N15)/r 2→5/r 2 in ~C.58!.
The termsMl

2(]my]my/x2) in ~C.67!,~C.70! should be
multiplied by 4.

Mc
2→Mc

4 in the second line of~C.71!, and there should
be a1 sign in front of the third from last line.

In addition, a factorD mz̄m̄D mzi is missing from the coef-
ficient of 2Kim̄(V̂12Mc

2) in the expression for14 TruDmM uu2

in ~B12! of @3#.
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