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QED effective action in time dependent electric backgrounds

Gerald Dunné& and Theodore Hall
Physics Department, University of Connecticut, Storrs, Connecticut 06269
(Received 9 July 1998; published 14 October 1998

We apply the resolvent technique to the computation of the QED effective action in time dependent electric
field backgrounds. The effective action has both real and imaginary parts, and the imaginary part is related to
the pair production probability in such a background. The resolvent technique has been applied previously to
spatially inhomogeneous magnetic backgrounds, for which the effective action is real. We explain how dis-
persion relations connect these two cases, the magnetic case which is essentially perturbative in nature, and the
electric case where the imaginary part is nonperturbative. Finally, we use a uniform semiclassical approxima-
tion to find an expression for very general time dependence for the background field. This expression is
remarkably similar in form to Schwinger’s classic result for the constant electric background.
[S0556-282198)01622-1

PACS numbsgs): 11.10.Kk, 04.62+v, 12.20.Ds

I. INTRODUCTION rather than as an expression that must still be traced over all
3-momenta, as if4,5,9]. Second, we use this explicit ex-
The effective action is an important tool in quantum elec-pression to make a direct comparison with independent re-
trodynamics QED), and quantum field theory in general. For Sults from the derivative expansion approximatid2,13].
example, for fermions in a static magnetic background, thdhird, we show how the real and imaginary parts of the
effective action yieldgminug the effective energy of the effective action are related by dispersion relations, connect-
fermions in that background; while for fermions in an elec-iNg perturbative and nonperturbative expressions. Finally, we
tric background, the effective action is complex and theShOW how the uniform semiclassical approximai8f] fits
imaginary part gives(half) the probability for fermion- into the _resolvent approach, obf[alnlng_a S|_mple semlclas_smal
antifermion pair productiof,2]. expression for the QED effective action in a general time

The computation of rates for pair production from the dependent, but spatially uniforis field. This expression is

vacuum was initiated by Schwinggt] who studied the con- r(_::markably similar to.Schwmgers proper-time” expres-
, . . sion for the constant field case.
stant field case and found that the rate(éxponentially

. . When the background field has constant field strength
extremely small. Brezin and ltzyksdi3] studied the more . it is possible to obtain an explicit expression for the

realistic case for alternating fieldx(t) = (Esin(wt),0,0) but  exact effective action as an integral representafign The
found negligible frequency dependence and still an unobphysical interpretation of this expression depends upon the
servably low rate for realistic electric fields. Narozhmyid  magnetic or electric character of the background, and this is
Nikishov[4] obtained an expression for both.the spinor QEDyeflected in how we expand the integral representation. In the
and scalar QED effective action, as an integral over 3tase of a constant magnetic background, a simple perturba-
momentum, for a time dependent fieldE(t) tive expansion in powers of B yields

= (EsecH(t/7),0,0). Their approach was based on the well-
known exact solvability of the Dirac and Klein-Gordon B2TL3 .~ B g\ 2n
equations for such a background. This solvable case has also — 2n+2 /_
featured in the strong-field analysis of Cornwall and Tikto- T 27 £ (2n+2)(2n+1)(2n) m?)
poulos [5], the group-theoretic semiclassical approach of

Balantekinet al. [6,7], the properjtime meth_od of Chodos | here theB,, are the Bernoulli numbefg4], andTL? is the
[8], and theSmatrix work of Gavrilov and Gitmai9]. Re-  gnace time volume factor. In the case of a constant electric
cent experimental work involving the SLAC accelerator andsjg|q background, the effective action is complex. The real
intense lasers has given renewed impetus to this subject, prBért has a natural perturbative expansion which is justEq.
viding tantalizing hints that the critical fields required for with B—iE, while the imaginary part is a sum over nonper-
direct vacuum pair production may be within reddi®,11]. turbative tu,nneling amplitudes

In this paper we make several new contributions to this
body of work. First, using the resolvent approach we present

()

an expression for the exact effective action in the time- RS = — E2TL® (=1)"Ban+2 (Z_E) an
dependent backgrouné&(t)=(EsecK(t/7),0,0) that is a ff 272 &1 (2n+2)(2n+1)(2n) | m?
simple integral representation involving a single integral, 2

E2TL3 S 1 m?m
—e T E . 3
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There are two clear motivations for studying the effectivehas been used to obtain exact integral representations for the
action in non-constant background fields. First, knowledge oéffective action in the special nonuniform magnetic back-
the effective action for more general gauge fields is necesground(4). In Sec. IV we then use the resolvent method to
sary for the ultimate quantization of the electromagneticevaluate the exact effective action for a time-dependent, but
field. Second, realistic electromagnetic background fields dgpatially uniform electric field
not have constant field strength, and so we would like to
understand effective energies and pair production rates in - t
more general backgrounds. However, it is, of course, not E(X) (EseCH<;)’O'O)-
possible to evaluate the exact QED effective action for a

completely arbitrary background. Thus we are led naturaliin sec. vV we show how dispersion relations connect the
to approximate expansion techniques. A common approachnagnetic and electric casé and(5). In Sec. VI we review

known as the derivative expansi¢t5-17,12, involves a  the derivative expansion for electric fields and in Sec. VI
formal perturbative expansion about Schwinger's exactlyshow its connection to the exact effective action of Sec. IV.
solvable case of constant field Stl’ength. Unfortunately, th|$n Sec. VIl we use a uniform semi-classical approximation
type of perturbative expansion is difficult to perform beyondto obtain a generafbut semi-classicalexpression for the

first order, and is hard to interpret physically, even forpair production probability in a time-dependent electric

magnetic-type backgrounds. This is even more problematigackground. The final section is devoted to some concluding
for electric-type backgrounds, for which we seeka@nper-  comments.

turbative expansion.

A complementary approach is to search for solvable ex-
amples that are more realistic than the constant field case,
although still not completely general. A recent woig] has Integrating over the fermion fields gives the QED effec-
found an exact, explicit integral representation for@e1)-  tive action for fermions in a background electromagnetic
dimensional QED effective action in a static but spatiallyfield
inhomogeneous magnetic field of the form

®

Il. SCHWINGER'S APPROACH

SeiflA]l=—1Inde{ild —m)

- X
B(i)z(O,OBseci?(X)). (4) i
=—§trln(I2)2+m2). (6)
For fermions in this background field, there are three rel-

evant scales: a magnetic field sc&8gea width parametek Here, the covariant derivative B=y*(d,+iA,) with the
characterizing the spatial inhomogeneity, and the fermioryiectric chargee absorbed into the gauge fiel. In the
massm. It is therefore possible to expand the exact effectiveca|culations that follow we are implicitly subtracting off zero
action in terms of two independent dimensionless ratios ofje|d contribution $;{A=0].

these scales, depending on the question of interest. For ex- |n a classic papelrl], Schwinger computed the effective
ample, sincex =0 corresponds to the uniform background action for constant background fields. One expresses the

case, in order to compare with the derivative expansion Weygarithm through an integral representation, the “proper-
expand the exact.$ as a series in B\?. It has been veri-  time” representation:
fied that the first two terms in this series agree precisely with
independent derivative expansion resiittere are no inde- i
pendent field theoretic calculations of higher order terms in Set= — Etrln(Der m?)
the derivative expansion with which to compar€urther-
more, these and analogous results il2dimensions indi- .
cate that the derivative expansion is in fact an asymptotic L xd_str e~ s(D?+m?) 7
series expansiofi9,2q. 2Jo s

Formally, one could change this magnetic-type result to
an electric-type background by an appropriate analytic con€learly, to proceed, we need information concerning the
tinuationB—iE. However, it is not immediately clear how spectrum of the operatd?+m?.
to obtain anonperturbativeexpressior{for example, some- For a constant magnetic background of strength B, we
thing like Eq. (3)] for the imaginary part of the effective chooseA,=(0,0,0By) and the Dirac representation of the
action. For constant background fields a simple dispersiogamma matrices so that the operator becomes diagonal:
relation provides this connection between the magnetic and
electric cases, but for nonconstant fields the dispersion rela- D2+ m?=[ g5~ dx— 37— (9,+iBy)?+m?]1
tions are more complicated. Understanding this connection,

for non-constant backgrounds, is one of the main motivations B 0 0 O
for this paper. 0O -B 0O O
This paper is organized as follows. In Sec. Il we review + (8
briefly the constant field case, using Schwinger’s proper time 0 B 0
method. In Sec. Il we review the resolvent method, which 0O 0O O -B
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The Dirac trace is trivial, and we are left with a harmonic IIl. RESOLVENT METHOD

oscillator system with eigenvalues .
Now consider a class of more general backgrounds—

9 fields pointing in a given direction and depending on only
one space-time coordinate. This is still far from the most
Cgeneral case; nevertheless, this class is sufficiently broad to
study the effects of inhomogeneities, and yet simple enough
to be analytically tractable.
In the magnetic case we choose

m?—k3+k2+2B(n+ :+1).

The remaining traces are straightforward, yielding the exa
effective action for a constant magnetic fi¢ld

BTL®

ff— 8’772

=ds _ o 1 Bs
O?e cotrBs—gs—?. (10

A=(0,0a5(y))—B=(aj(y),0,0) (15)

Here, the 1Bs term is an explicit subtraction ofeﬁ[Q], ~ while in the electric case we choose
while theB</3 term corresponds to a charge renormalization.
,(Al)straightforward expansion of Eq10) yields expansion ,5\:(aE(t),O,O)—>I§=(a’E(t),O,O). (16)

In a constant electric background the calculation is simi- |y the magnetic case there is no time dependence and
lar. ChoosingA,=(0,Ex,,0,0) and using the chiral repre- A —0, so we can perform the energy trace in E). After
sentation for the gamma matrices, we find the oper@®r  ap integration by parts ik, this reduces the evaluation of
+m? diagonalizes: the effective action to a trace of a one-dimensional Green’s

. function, or resolvent
D2+ m?=[ 35— (d+iEt)2— 55— g2+ m?]1

2
iE 0 0 0 [ dko Ko
Seffz_”—J-_E tr , (1)
0 iE 0 0 a 2m =D (Ky,y ko) K
+ . . 11
0 0 —-iE O where the one-dimensional operafr is
0O O 0 -—iE

D.=m?+k;—d;
Once again, the Dirac trace is trivial, and we are left with a 2.
harmonic oscillator with imaginary frequency. Thui? +(k,—ag(y)) +ag(y).
+m? has complex eigenvalues

(18

In the electric case there is no y dependence A0,

M2+ 2iE(n+ 1 t%)+k§+k§. (12 so we can perform thie, trace and obtain
2
The traces can be performed as before, yielding Seff:“_j % tr ky . (19
27T * Di(takX1kZ)+ky

1
coEs— —+ —

ETL® (»ds
Es 3/ 13 which involves the resolvent of the operator

— e ms
ff 8 ()S7

. . 2 2 2 24 At
where we have subtracted the same vacuum contribution and D.=m+ do(ky—ag(t))*+k;xiag(t). (20)

charge renormalization terms. . . .
Going from Eqs.(10) to (13), we note poles of the inte- Thus, for both the magnetic and electric backgrounds in

grand have moved onto the contour of integration. This is th&dS: (15),(16) the problem reduces to tracing the diagonal
trademark of background electric fields and the ultimatd©Solvents(17),(19) of a one-dimensional differential opera-
source of the imaginary contribution. Regulating the poled®’- This makes clear the advantage of the resolvent ap-

with the standard principal parts prescriptidd, we separate proach._ For a typical_ backg_round field we usually think _of
out the imaginary and real contributions to the effective accOMPuting the effective action by some sort of summation
tion: over the spectrum of the appropriate Dirac operator. This is

easy for constant fields because the spectrum is disaete

E2TL32 1 , Egs.(9) and(12)]. But for non-constant fields the spectrum

Set=i—=—5 2D, —e ™E will typically have both discrete and continuous parts, which

87" f=1n makes a direct summation extremely difficult. However, for
ETL® (~ds , 1 Es one-dimensional operators, we do not have to use this eigen-
+ ——P J —e M S( cothEs— — — —|. function expansion approach—we can alternatively express
87 0S Es 3 the resolvent as a product of two suitable independent solu-

(14)  fions, divided by their Wronskian. This provides a simple

and direct way to compute the effective action when the

As before, it is straightforward to expand the integral andbackground field has the form as in Eq$5),(16).

arrive at expansioi(2), for the real part of the effective ac- This resolvent approach has been applied successfully to
tion. spatially inhomogeneous magnetic backgrounds
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[19,20,18,12 It has also been used previously by ChodosThe limits on thek, trace can be motivated by the classical
[8] in an analysis of the possibility of spontaneous chiralLorentz interaction of the electron-positron pair after pair
symmetry breaking for QED in time-varying background creation, and can be checked by the requirement that the zero
electric fields. In this paper we present a detailed analysis dield part cancels correctly. Note that the arguments of the
the resolvent approach to the computation of the QED effecpsi functions appearing in the effective acti@®) are com-

tive action in time-dependent electric backgrounds. We firsplex. Thus we must be careful to use the correct integral
check the resolvent approach by computing the effective aaepresentation of thes function in the analysis. A convenient
tion for a constant electric field. The constant electric fieldrepresentation for a complex argument is giveidm] as

case follows the constant magnetic case very closely. Choos-

ing ag(t)=Et, the eigenfunctions of the operat®0) are ,
- . . L . 1 welB 1 1 1
parabolic cylinder functions. Taking independent solutions 2)=logz— — — tfl——— 4+ _|e 2
with the appropriate behavior &=+, we obtain the z Jo e
Green'’s function
~7<p<qi —|7+p|<am=(7 )
Gt re-vl g (\F(Et k)) 2 2’ 2 2 P
0 amie "\ VE X (24
<D | - \/E(Et’ —k )) (21) Expression23) is the same as Eq13), and the calculation
Y E ) proceeds exactly as before. But for the constant field case the

) 2 L2 L L2\ 1 resolvent method is unnecessarily complicated. The advan-
where we have definee= (m"+ky+k;)/(2IE) £5+3. The  t3qe5 of the resolvent method will become evident when ap-
trace of the diagonal Green’s function can be perforfdéd,  pjied to more complicated background fields, as is done in
yielding psi functions, where/(u)=I""(u)/I'(u) is the loga-  the remainder of this paper.
rithmic derivative of the gamma functidd4]. Thus the ef-

fective action is
IV. EXACTLY SOLVABLE CASE

iL® ET > ”
Sefi=— mf dkxf kid k,d k> f dxpG(Xg,X0) In this section we apply the resolvent method to a back-
0 —o r Joe ground gauge field*= (0,Ertanh¢/7),0,0). This gauge field

EL3T )) corresponds to a single pulsed electric field in the x-direction

» 1 v v L . . .
=_ Wﬁxkid“vd“zz (,/,(E_ 5) +,/,< -5 E,(t)=Esech(t/7). The electric field is spatially uniform

but time-dependent; it vanishes &t +«, peaks att=0,
(220 and has a temporal width that is arbitrary. This field con-
tains the constant field as a special case when we take

3 . ) i
_ EL ;I' f d_g’em%( COE s— i + E_S _ (23) —. The resolvent expressidd9) for the effective action
87 Jo S Es 3 gives
L3 k2
Seff:| mj d3k tr Y . (25)

2
t
- ) +IC+ K2+ mziiEsecH(—)
T T

t
a§+(kx— Ertanl‘(

The k, momentum trace runs over-(,) since we consider an infinite interaction time.
To determine the effective action we need the resolvent, which is constructed from solutions to the ordinary differential

equation

t\ |2 . t
kX—Ertam‘(—)) tlEsecﬁ(—”dFO. (26)
T T

To+ M2+ Ko+ kS +

This can be converted, by the substitutips 3[ 1+ tanh¢/7)], to a hypergeometric equation, with independent solutions

i i
qﬁlzy“(l—y)'BZFl(g(a—i-ﬂiZEr),g(a+,8+ 172E7);1+irajy

¢2=y”‘(1—y)ﬁ2F1(g(a+ﬂi2ET),g(a-l—ﬁ-f- 1= 2ET);1+iTB;1—y), (27)
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where we have defined ( i i )
i 1+297 +¢(§Q+)
1 t 3
y:—(l—l—tanl‘(—)) _ L Ef 3 f”d_S -Q.s -Q_s _E
2 T —34W2dkos(e +S+e )cotss,
(29

a=(M?+K;+kZ+ (E7+k,)?)"
where we have definef , =(7/2) (a+B+2E7) and () _
=(112)(a+ B—2ET).

Equation(29) is the exact effective action for this time-
dependent background gauge field. Notice the close similar-
The boundary conditions are a particle of enesgraveling ity to Schwinger’s expressiof23) for the constant back-
forward in time and a particle of energy g traveling back- ground electric field. It is straightforward to check that
ward in time. taking 7— reduces Eq(29) to the constant field result

The diagonal resolvent is G(t,t)= ¢1(t)pa(t)/  (23).

W[ 1, b,], whereW[ ¢4, ¢,] is the Wronskian. The trace The effective action(29) has both real and imaginary

over time once again yields psi functiofigst as in the mag- parts. As described before for the constant field case, we

netic cases treated [19,20)): regulate the integral using the principal part prescription to
obtain the imaginary part

B=(M?+ K+ kS + (ET—ky )22 (28

L3r (= Kod%k 1
Seff:_mz fﬁw 2 ;+E IM(Setf) = —?',f dk >, ( e "y e
iT iT
x(¢ 1+ = (a+BF2E7) | +y §(a+ﬁi2E7))) ————J d3kin((1—e~"+)(1—e” ™))
2
Am4 | 4k, ok, and real part of the exact effective action
1
Re(Set1) = f f —(e"“+5+e—'Q S)(cotrs— —)
113 1 LS (-1 2 |+t
_ - - 3 n+2 3
64773f d k (277)32 (2n+2)(2n+1) d k(m) ’ 3

where we have asymptotically expanded the integral everinverse powers of), . The first term can be regulated and
absorbed by renormalization. In the second termktigegrals can be done to yield the integral representation

+(E—>—E)), (32

U_

20373 = dt (t—Er2 v
eny_ _ 2.2 2\32q—1
Re(S3D 372 fo e (m?72—v%)%%sin (Tm

where we have defined_ = (t>— 2tE7%)Y2. This integral may be expanded as

1\
2E 72 ) k21
r¢2k+1nr

L3Tm4§ 1

8mr32i=o I'(j+1)

(2k+J)F(2k+]—2)

" 2E 2k+j
(= 1) Boki o e

Regif=— (33)

2k+J+

We now compare these results to previous analyses. Thie borne out. But in an electric background we are more
real part of the effective action is exactly the same as thénterested in the imaginary part, which does not have this
effective action for the magnetic séchackground casgsee  type of perturbative expansion. Rather, it has the nonpertur-
Eqgs.(10) and(18) in [18]), with the replacemenB8—iE and  bative form(30). This explains how it is possible to obtain
AT—7L. Thus, our naive expectation that this simple ana-both a perturbative and a nonperturbative expression, for the
lytic continuation from a magnetic to an electric backgroundreal and imaginary parts respectively, from the exact effec-
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tive action(29). Balantekinet al.[7] have also computed this field. This effective action has both real and imaginary parts.
imaginary part of the effective action for a sécelectric ~ Given the real or imaginary part of the effective action there
field. Our result(30) agrees with their expressidsee Eq. exist dispersion relations which relate the two. Here, we ex-
(3.29 of [7]), once theirs is symmetrized 8— —E, as it  ploit the cuts in the electron self-energy function to analyti-
must be to satisfy Furry’s theorem. This difference is notcally continue it to the entire complex plane. We shall show
important for the imaginary part, but it is crucial for the that there exist simple dispersion relations between the real
consistency of the dispersion relations which relate the readnd imaginary parts of the effective action, both at the per-
and imaginary parts, as we show in the next section. turbative level and also at the level of the general expression
(29).
V. DISPERSION RELATIONS A. Perturbative dispersion relations

In the previous section we found an expression for the Expand the imaginary patB80) of the effective action in
exact effective action for a particular background electricpowers ofE?

3 o]
[ ZEL_E E PBk(e " 4 g N7 34
M(Sei)=5 753 2 5| dke e (34

1321
- - 3

2 3.3
e—27TnT /M2+k)2<+ E7e—2'n'n'r\//.¢2+k§( 4n27727_4_ M

( 2+k2)3/2
X
+E4 _27Tn7\/M_ 2n4 4 8 2n3773,u27-7+ n27T2,lL47'6
3 (uP+kd)¥ 2(pPHK)3
v’ 5anu?k?7° 35
AP+ AP+
Consider first theE? term. Doing the angular integrals we obtain
L3 &1 S r(m?+k?sir? 9)
[Imseff]EzszznZl ﬁf d3ke=2mnTvmtk anr( ZHWT—W
L® 4E27273 L (= 7 3k%m?+ 2k*
- —2mnrVm?+k?2 2
i3 3 Ldke A i) (36)
With the substitutiorg=2/m?+k? this becomes
L3 E27T S / 2,172 2 2
[IMSe 2= 2 olqé“*q Ng?—4m?)M4 3nmrq— 2<q +2m?)
|_3 E277 f ( 4m2)1’2( 2m2)
= dqePesch—— — —
qq 9 9
L3 “ TqT
=—g4E27r4r4J dgofesct —— ImII(g?). (37
47 0 2

This expression agrees with the result of ltzykson and Zubesion relations we will need to consider an integral gfs
[22], wherell(g?) is the one-loop self-energy. They reduced — . Since the electron self-energy does not go to zero as
the problem to a one-dimensional Lippman-Schwinger equag?, we need to add a linear convergence factor. The conver-
tion and expanded perturbatively to find tBé order term.  gence factor gives a residue at the origin which will ulti-

Along the real axis, there is a cut in thé complex plane mately be absorbed by renormalization. This results in a
from (—o,—2m] and from[2m,>). To derive the disper- once-subtracted dispersion relation as follows.
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Apply Cauchy’s integral theorem to a functié(z) satis-

L3
fying these properties. Let the contour be from of,) [ReStile2= _§4E27T j dCIQZCSCH)'—
along the real axis and close with an arc of infinite radius in
the upper half plane: x Re(I1(q?)—I1(0))
fa 1 jg f(&)dé L2 AnEt G T(j+2) 1
z  2mi JeE(é-2) S 4m° 32792 (S1jT(j+2) (2m)d
f(0) 1 » f(x")dx’ o o qmT
= P : I+2cscR
77 T3 f,wx’(x’—z) (39 xf_ocdqq cscﬁ
Now let the point z go to the real axis—x+ie; E2L3 i 1)IT(j+2) 12
3/2 <~ 5 2J+2 mr
f(x) f(0) 1 (= f(x)dx jir\j+5
(_):(_)_,___pf # (39) 2
X X i )X (X' —X)

(44)

Take the real and imaginary parts of H§9) and assume This agrees with thé&=1 term of Eq.(33), the real part of
that f(z) satisfies the Schwarz reflection principf¢éz*) the full effective action to ordeE?2.

=f*(2): A similar analysis can be done for tH&* contribution.
Doing the angular integrals in the* piece from Eq.(35)
* Imf(x")dx’ gives

X
Re(f(x)—f(0))= ;PJ

- X' (X" —X) L3 A5
[lmseff]E4 2 f k2dke—2'ﬂn7‘\/m 24 k2

B 2x2nf°clmf(x’)dx’

T ! ' 12 2 (40)
0 X'(Xx"=x%) s 53 2N°m°7T2(2k%+3m?)
X| 2n°m°r°—
(m2+ k2)3/2
X (= Ref(x")dx’
|m(f(x)—f(0))=—;F’fm—x,(x,_x) na7(15m®*+20m2k?+ 8k*)
" 0(m?+ K27

2x_ [=Imf(x")dx’

—-p| —— . @ 4
T o X (' 2—x) (41) 3m )

+ 4(m2+ k2)7/2 ' (45)
From the imaginary part of the electron self-energy in Eq.
(37) ginaty’p 9 the substitutiorg=2/m?+k? leads to
3,25
1 m?2\ 112 m?2 _ L fw 2 42\102
ImH(k)=E(1—kT) (1+ _kz_)®(k2_4m2)' [IMSeriles= 1= 3 n§=:1 Zmdqq(q 4m°)
(42) 4n?272(q%+ 2m?
Xen"qf( nm33— T ((3], )
we can obtain the real part. q
8nwr(q*+2m?g?+6m*)  48m*
2k2 1 (= dK + 5 7
Re(T1 (k) ~T1(0))= dl 5 g
77 24w 2mk’(k'2—k2) (46)
2\ 172 2
1— Aﬂ) 1+ Zi) Integrate by parts in thes] 2" and 4" terms and collect
k'?2 k'?2 terms:
1 © F(] +2) k 2j [Imse ] - L_3 8’773E4m476
_ 32773/2]21 = | 5m fflE 473 3
JF(i t3
> 7TqT
43 XJ’O dqq“cscf‘?TG)(q2—4m2)
This is the kernel for thé&? order real part of the effective 1 _ 4m?) =32 _ 10m?
- Xg|l=—5 . (47
action: q q q
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The dispersion relation for thHe* term is derived in the same 1\2it8
way except that no subtraction is needed. X Baj+a| 1 (49
2 (= x'dx , Thus, the dispersion relations have enabled us to deduce the
Ref(x)=—P o sz_lemf(x ) E* term of the real part33) of the effective action, begin-
ning with theE* term in the imaginary part.
ox = dx’ Using dispersion relations we have shown how it is pos-
Imf(x)=— _pj ——Ref(x). (48)  sible to go from a tunneling like expression to an asymptotic
7™ Jo x'“—x expansion at the first two orders Ef. Recall that the real

) ) ) _ ) _ ) part for the exact effective action with a sédbackground
With the dispersion relationgl8) we can immediately write  glectric field(33) is an asymptotic expansion two dimen-

down the complementary part of the effective action at ordegjonless scales Bf? and (E/m?)2. Following steps similar

: to those taken above, we can find similar dispersion relations
for the other expansion scaleEl?. These relations have
L® 8m3E*m*s® (= mqT 2 . P
- - been derived and are presented 12].
[ReSiles=— 73 3 J'O dqofcsch > p d1a]
B. All-orders dispersion relations
« kdk 1 4m?|~*2  10m? P _ _
P 1- e i The above approach could be continued to higher orders
2mK™—( in E2, but the integrals become more difficult. Instead, we
% i . . look for a dispersion relation connecting the full exact ex-
3449 _1\]
—— 2L7E T ( i D TG+Hr(+2) pressions for the real pai32) and the imaginary pafB0) of
72 =T+l rerg+d) the effective action. Begin with the imaginary p&30):
|
ImS, :L_3 E i EJ d3k[e 7T~ 2ET+ Vel + (Ertky)?+ \/,u2+(Er—kx)2)+(EH -B)] (50)
™47 2&n '
|
Make the following substitution to unravel the exponents A dispersion relation can be derived for the complex vari-
ablez_ . We regard the factor (& 1/z%)%? as the imaginary
2t=2E 72+ rym?+E?7?+ k®+ 2E rkcosd part of an analytic function defined along the whole real axis.
—— 5 Care must be taken since the function does not go to zero
+7ym’+E*r* +k*— 2E rkcos. (51)  along the arc ag_—; SO we must insert a convergence

factor. There is a dispersion relation giving the real part in
Solve Eq.(5) for K, terms of the imaginary part of a function with these charac-

teristics:
. \/(I—ETZ)Z(tz—mZTZ—ZtETZ)
B t(t—2E7%) —E2r*sinfg

(52

222 (=Imf(k)dk
Relf(z.) - f(O)= [ T

o k(k®—27%) >4

substitute into Eq(50), and do the angular integration

With Eq. (54) we can obtain the real part of the effective

[ d I
ms..—— S 7 dte—2mt action:
Sert 477321 nfETzﬂW dt
L3m°mdr (= dt
2 en_ __
x | dosing(k3(E)+Kk3(—E)) ReSii=——3 fo R
0
3 24 1 32
L® 47“m*r (= dt .
T 47 3 fo 2mt_ | X ZSdizzsz'w<1 K* dk+(z z,)
© St w ) k-2 T
dz_ 3/2
X(G)(Z—_l)zeiﬁ(l__z +(Z—_’Z+))1 miL37 (= dt dZ
7 S 2 —,F.(1,1;2,7%)
(53 157% Jo g2mt—1\ " dt & BTt
where we have definezl = (1/m7) (t2— 2tE %) 2 +(z—>z+)>. (55)
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In the last equation, we recognize the hypergeometric funcdimensional electric field$12] and we may immediately
tion ,F,, which has another representation in terms of §in generalize to 31 dimensions by making the substitution

[14]: m?—m?+ kf and tracing over the additional momentum
[18]. We obtain the zeroth and first orders of the derivative

mAL3r dt 222 expansion for a spatially homogeneous electric field 413

ReS5 = — f — dimensions:
0 e 7Tt_1 m
o m
(t—ETZ)( 2 8v2_ 2m7- 1- v2 |32 f f . 5| (EscotEs—1)
T W 4
SZ
U_ 2( _— m
xsinl%)+(E_>—E) . (56) +(doE) 8E4)(EscolEs) _ (58)

Regulating thes integral as before with the principal parts
prescription, we easily separate the real and imaginary parts
of the zeroth order derivative expansion term

We drop terms independent of (Bince these cancel against
the vacuum subtractigrand get

2|_3 = dt [t-E7 g2 =
2.2 2\32 1
Regii= 2.3 fo e 1| v_ (m*7*=v-) |m[Seff]o—f d* Xg3 Z e mmE (59
S R =ds e M’
xsin o HE E))’ &7 Re[seff]O:Jd“fo — —(EscoEs—1).
0 S 87°s
where v_=(t?—2tE7?)'? and v = (t>+2tE7) Y2 This (60)

expression for the real renormalized effective action is eXyye perform an asymptotic expansion of the integral aver
actly the same as obtained by a direct computatid®. apd we obtain

Thus the dispersion relations enable us to compute the rea
part, given the imaginary part. The reverse direction works - | o
similarly. RS/ ]y jd W E (—=1)"Ban+2 /ZE

ft1o " 2n(2n+1)(2n+2)\ m?/
VI. DERIVATIVE EXPANSION IN (3+1)-DIMENSIONAL (61

ELECTRIC FIELD

where B, is the v'" Bernoulli number. Equation&9) and
Schwinger solved the effective action exactly for constan{61) are the same as the corresponding equations for the

background fields. To solve for more realistic fields one mustonstant field result3) and (2), with the constant fieldE

use some perturbative expansion such as the derivative ereplaced by the time dependent figidt).

pansion. In the derivative expansion the fields are assumed to Now consider first derivative term in E¢68). Separating

vary very slowly. We rewrite the trace in E() as a super- out the imaginary component is complicated by the fact that

symmetric quantum-mechanical path integral, expand théhe triple derivative introduces fourth order poles along the

gauge field in a Taylor series about the constant case, andal axis, while in the zeroth order term the poles are of first

interpret the successive coefficients as successively increasrder. The exact effective action, containing both imaginary

ing n-body interaction terms. This has been done(f5t1)-  and real components, for the first order derivative term is

2
[Sertli=5 f f S 4i(mws )2(&0E) 8E4(SECO1SE—1)/H

1 ERT, [»ds e ™S  48n22E%s(n?m?+ S2E2
=- zfd“x(O)EJ— : (" +SED (62)
64 0o S E4( nﬂ') (Es+mn)
S—_

In this expression we clearly see the presence of the fourth order poles along the real axis. Regulating using the principal parts
prescription, we get the imaginary part which is just a sum of 1/2 the residues:
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2
m's 48n?m?s(n’m?+ s°E?)

doE
S = - [ @5

sl

_nmPx

=1

Jd4 (ﬂoE) 2

6477 =1 (7-rn)3

S

(6E3+6E’m?nar+3Em*n2#2+m®n

) "

(Es+an)?

mn
soE

373). (63

As before we asymptotically expand the integral in powersof the first order derivative terrt64) in the expansion of the

of E/m? and we find

— 1)n82n+2/ 2E 2n+2
2n—-1 \m?

m@ (9gE)? <
Rqseff]1=64ﬂ_2f dx E4 2

n=1

(64)

Note that in the spirit of the derivative expansion approxi-
mation, E meansE(t) in the expressiong58)—(64). In the
next section we will specialize to the séalectric field and
compare with the exact resu9) for the effective action.

VIl. DERIVATIVE EXPANSION IN AN EXACTLY
SOLVABLE CASE

For the electric field

t
E,(t)= Esecﬁ( ;) (65)

the exact effective action is ER9), with explicit real and
imaginary parts in Eq9.33) and (30), respectively. In order
to compare with the derivative expansion results in E58),
(61), (63) and(64), we still need to perform theintegrals in
these expressions, witB(t) = Esech(t/7).

A. Comparison of the real part

Insert the electric field65) into the real part of the zero
order derivative expansion effective acti@0) and do thet
integral using the formuld3.512.2 from Gradshteyn and
Rhyzhik[14],

ntl r v—u
fwsinh“x 3 2 2 66
o costx v+1 ' (66
2T
and we obtain
L3m* I'(2n—2)I'(2n)
Re Settlo=— 3,22 1
rezn+10ry|2n+ ¢ 5
2E 2n
><<—1>”82n(W) . (67)

This is precisely the leading term, as an expansion Evd/
of the exact effective actio(83). Similarly, for the real part

of the effective action, doing theintegral yields

L3
8 3/2

T (2n+1)T(2n—1)

R Setfl1= Z

F(2n+1)F(2n+ 3)

2 2n
X(_l)nlgzmz(W) : (68)
This is precisely the next-to-leading term in expans(88)
of the exact result.

This agreement is as expected for the fi¢b), each
order in the derivative expansion introduces an extra factor
of 1/72. These results provide strong evidence that expansion
(33) of the exact result is an all-orders derivative expansion,
as in the magnetic ca$&9,2(. However, as in the magnetic
case, we note that this is an asymptotic expansion.

B. Comparison of the imaginary part

For the imaginary piece we follow a different approach to
make the comparison. Inserting thgt) =secl(t/7) into
the zero-order and first-order expressi¢hd) and(63) leads
to the probability integral, which cannot be computed explic-
itly. Instead, we expand the imaginary part of the exact ef-
fective action(30) in inverse powers of, and transform the
momentum integrals into a form which can be compared
directly with the derivative expansion answ¢bg) and(63).

Recall the imaginary part30) of the exact effective ac-
tion

Im(S, ):L_Blj d3k§ E(e—nﬂ!2++e—nw£),)
W= 4032 “in '
(69)
where(), and()_ are defined as
Q,=7(a+B+2E7) Q_=71(a+B—-2E7) (70

anda and B are defined in Eq28). We can ignore thé) ,
term in the derivative expansiorm;—o, since it is sup-
pressed by an exponential facter*E” relative to the()_
piece. Make the transformation

2t=1] —2E7+ Ju2+ (ET+k2)?
+ 2+ (ET—ky)?]

(72)

105022-10



QED EFFECTIVE ACTION IN TIME DEPENDEN . .. PHYSICAL REVIEW D 58 105022

and solve fork, Similarly, perform the integrals ovég, andk, in the next-
to-leading order term in Eq76):

(t+ °E) Jt?— u??+ 2t °E

k,= 72
S (72 1wt
IM[Sets]1= 87TTE2 773n
The integral is now
J - ><(6E3+6E2m2n7722+3Em4n21722
L ©
IM(Setf) = 5—3 >, J dk,dk, f e 2™k (1), (73 +m®n3732%). (80)

27 h=1 tg

where the lower limit on the integration isy=— r2E To compare with the first order derivative expansion result

+ 7Ju?+E?72. Make another transformation to the coordi- (63), we make the same substitutiar- cosh(/7) to obtain
natez

1 (0B’ 1 nm?
1 dt 17 |m[5eff]1— d*x EZ nE P
z= —\t?+ 2t E FERN P = (74
KT Nzt T°E X (6E3+ 6E2m2nm+ 3E3m*n2 72+ m®n372),
and the integral becomes (81
_ 3 ) where hereE meansE(t)=EsecH(t/7). This is the same
IM(Setr) = 272 r1§=:1 dk,dkzu result we obtained for the first derivative term of the imagi-
nary part of the effective actiof63). As with the real part of
* 7~ 2mn(— 2E+ W22+ 2ED) the effective action, successive terms in inverse powers of
Xf dzyz°-1le e from Eq.(76) correspond to increasing orders of the deriva-
tive expansion.
(75
which can be expanded in inverse powersrof VIIl. EXACT SEMI-CLASSICAL ACTION FOR MORE
GENERAL FIELDS
Seff)— 2 f dk,dku? As discussed in Sec. Ill, the resolvent method is a useful
technique for evaluating the exact effective action when the

Dirac operator can be reduced to an effectively one-

®© n71'22,1,e2 n7TZ ,u, . . . .
x| dzvZZ—1e — €& | 1+ + dimensional operator. In this section we show how a gener-
L 4E°T alized WKB expansion can then be used to obtain an exact
(76) semi-classical effective action for background electric fields
with more general time dependence than tlagt)
Complete the integral ovés, andk, in the leading term =Esecfi(t/7) example considered in the previous two sec-
tions.
L37E2 ° nwm Assume the background gauge field has only one compo-
Im[Seff]Ozﬁ 2 ?f T 5—°¢ (77) nent in the x-directiomA ,=(0,a(t),0,0). According to Eq.
1 17227 -1 (19), we seek the Green’s functions
3.2 ® 2 2 . , N , ,
IS . L LU — (W25 pP+ G2 *ihe (DG (L) =8(t—t"),
8w =1 n? 2" 7 E ) 82

(78

2 2

whereW is the confluent hypergeometric function defined pwhere®=m?+ki+k;, andé=a(t) k..
6.52) of [21]. Gavrilov and Gitmari9] have found, by other In the uniform semiclassical approximati¢é], one be-
methods, the zeroth order term for this field configuratlonglns by looking for solutiong(t) =K(t)U(S(t)). The famil-
and obtain precisely Eq78). In order to compare with the lar WKB approxmagc()t? of quantum mechanics consists of
zeroth order derivative expansion res(86) we substitute e choicey(t)=Ke™". Instead, a uniform semiclassical
z=cosh{/7) in Eq. (77) to obtain apprommatlon is obte}lned by choosnllgto be a parabolic

cylinder function. DefindJ to satisfy

Em (79 LU
— 2= = (S+inh)U(S)=QU(S) (83)

ms).= [ G Y S 3

where E(t)=EsecH(t/7). This is precisely the imaginary
part of the zeroth order term of the derivative expangil).  to which independent solutions are
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D,| =—S(t) |, (84)  we can integrate Eq86) and find the quantity) [6]:

NG
where 7 goes as the sign op’, andv=3(p—1—iQ/#%). f dtyu?+ ¢3(t) = f dt—\/Q+

Now takeK=(S") Y2 Then the general differential equa-
tion (82) becomes a differential equation relatiKgand S: J, o O

s 2T,

1+i ) tor ¢(tg)=ipm and ¢(t§)=—iu. Using the turning points,
(

o1 7K (7S Q+ingh+S?
K otz | o) (@Finh+S) (889
+(uP+ ¢?) xihid' =0, (89 Given the wavefunctions, we can express the Green’s
function as
Expand S(t) =~ Sy(t) +%S;(t) and collect the zeroth order
terms in#: I'(-») 1 1+i
Dt =— e " _D,| ——9S(t
w0 =+ 2] . (86)
1+i_ |

The WKB expansion is a good approximation when the ze- XDyl — Vi S() |- (89)

roth order term outsizes the first order term [15,/S,|. At

pointst” whereSy(t')—0 the approximation does not work The resolvent approach then gives the effective action as
unless we requir&, (t')—0 as well. Then apply L’Apital’s
rule L3 .
Surmigos | KeksS, 23 [ dui k),
S| 0+ -

1> 2 == % (87) (90)

Sl |Sh pot ¢ N , L
where we explicitly summed signs of the electric field to
and we see the generalized WKB will be an appropriate exsatisfy Furry’s theorem.

172
S|

_| 1|

pansion if the turning points of the numera®y(ty) =iQ Now make the semiclassical approximation by replacing
andSy(ty)=—i+Q are the same as those of the denomina-S(t) by Sy(t). The semiclassical Green’s function is
|
Gr(m St 1) I'(—=v) |7-r 1 9Q 2 sp, 1+i s wlo 1+i M) 1)
K. ' 1 = - e 1
. wr kR R G

where we have used the identltyee Eq(86)] that 15 = (1/2k,) (#Q/dk,) S;. Thet integral in the trace of the diagonal
resolvent can be converted to an integral 08gr giving

S =— Lgf kod3k ! (m(w iQ + 1+i9)
eff™ “ 2k, dk, 2

L3 1
_ f 3kf e UE)S L o~ Q(-F) S) cots— E (92)

This expression is the exa@iut semiclassicaleffective ac-  the uniform semiclassical approximation is actually exact in
tion for an electric background field that is spatially uniform, this case is due to the supersymmetry underlying the uniform
but has general time dependeng&t). The functionQ) is  semiclassical approximation in this system. In general cases
given by Eq.(88). It is interesting to note how similar this that are not exactly solvable, the express{®8) still gives
general expression is to Schwinger’s exact expres€l@  the semiclassical answer. For example, a periodic back-
for the constant background field case. ground gauge field ,= (0,(E/ wo) cos(wqt),0,0) is not an ex-

In the exactly solvable case studied in the previous twaactly solvable case. However, the expressi®8) immedi-
sections¢(t) = E7tanh(/7). In this case the integr&B8) for  ately gives the semiclassical result of Brezin and ltzyKsin
Q can be done exactly and we arrive at the exact expressidisee Eq.(44) of their papef for the imaginary part of the
(29) derived before with the resolvent method. The fact thateffective action in an alternating electric field.
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IX. CONCLUSIONS showed how the uniform semiclassical approach of Bal-
gntekin et al. is incorporated into the resolvent approach,

compute the exact QED effective action for the time d(_:‘penyielding a simple semiclassical expression that encodes both
the real and imaginary parts of the effective action. The chal-

dent electric field backgrouni(t) = (Esecf(t/),0,0). The lenge now is to use these results for the effective action to

result is a simple integral representation involving a single . . . ! ; . .
) ; . . , . obtain realistic estimates of pair production rates in electric
integral, just as in Schwinger's proper-time result for the

constant electric field case. We then used this exact result {ﬁelds with practically attainable strength and time depen-
investigate the dispersion relations relating the real an ence

imaginary parts of the effective action. This explains the

connection between the nonperturbative form of the imagi-

nary part, and the perturbative form of the real part. It is this ACKNOWLEDGMENTS
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