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QED effective action in time dependent electric backgrounds

Gerald Dunne* and Theodore Hall†

Physics Department, University of Connecticut, Storrs, Connecticut 06269
~Received 9 July 1998; published 14 October 1998!

We apply the resolvent technique to the computation of the QED effective action in time dependent electric
field backgrounds. The effective action has both real and imaginary parts, and the imaginary part is related to
the pair production probability in such a background. The resolvent technique has been applied previously to
spatially inhomogeneous magnetic backgrounds, for which the effective action is real. We explain how dis-
persion relations connect these two cases, the magnetic case which is essentially perturbative in nature, and the
electric case where the imaginary part is nonperturbative. Finally, we use a uniform semiclassical approxima-
tion to find an expression for very general time dependence for the background field. This expression is
remarkably similar in form to Schwinger’s classic result for the constant electric background.
@S0556-2821~98!01622-1#
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I. INTRODUCTION

The effective action is an important tool in quantum ele
trodynamics~QED!, and quantum field theory in general. F
example, for fermions in a static magnetic background,
effective action yields~minus! the effective energy of the
fermions in that background; while for fermions in an ele
tric background, the effective action is complex and t
imaginary part gives~half! the probability for fermion-
antifermion pair production@1,2#.

The computation of rates for pair production from t
vacuum was initiated by Schwinger@1# who studied the con-
stant field case and found that the rate is~exponentially!
extremely small. Brezin and Itzykson@3# studied the more
realistic case for alternating fieldsEW (t)5„Esin(v0t),0,0… but
found negligible frequency dependence and still an un
servably low rate for realistic electric fields. Narozhnyı˘ and
Nikishov @4# obtained an expression for both the spinor QE
and scalar QED effective action, as an integral over
momentum, for a time dependent fieldEW (t)
5„Esech2(t/t),0,0…. Their approach was based on the we
known exact solvability of the Dirac and Klein-Gordo
equations for such a background. This solvable case has
featured in the strong-field analysis of Cornwall and Tik
poulos @5#, the group-theoretic semiclassical approach
Balantekinet al. @6,7#, the proper-time method of Chodo
@8#, and theS-matrix work of Gavrilov and Gitman@9#. Re-
cent experimental work involving the SLAC accelerator a
intense lasers has given renewed impetus to this subject,
viding tantalizing hints that the critical fields required f
direct vacuum pair production may be within reach@10,11#.

In this paper we make several new contributions to t
body of work. First, using the resolvent approach we pres
an expression for the exact effective action in the tim
dependent backgroundEW (t)5„Esech2(t/t),0,0… that is a
simple integral representation involving a single integr
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rather than as an expression that must still be traced ove
3-momenta, as in@4,5,9#. Second, we use this explicit ex
pression to make a direct comparison with independent
sults from the derivative expansion approximation@12,13#.
Third, we show how the real and imaginary parts of t
effective action are related by dispersion relations, conn
ing perturbative and nonperturbative expressions. Finally,
show how the uniform semiclassical approximation@3,6# fits
into the resolvent approach, obtaining a simple semiclass
expression for the QED effective action in a general tim
dependent, but spatially uniformE field. This expression is
remarkably similar to Schwinger’s ‘‘proper-time’’ expres
sion for the constant field case.

When the background field has constant field stren
Fmn , it is possible to obtain an explicit expression for th
exact effective action as an integral representation@1#. The
physical interpretation of this expression depends upon
magnetic or electric character of the background, and thi
reflected in how we expand the integral representation. In
case of a constant magnetic background, a simple pertu
tive expansion in powers of B yields

Seff5
B2TL3

2p2 (
n51

` B2n12

~2n12!~2n11!~2n!S 2B

m2D 2n

, ~1!

where theBn are the Bernoulli numbers@14#, andTL3 is the
space-time volume factor. In the case of a constant elec
field background, the effective action is complex. The r
part has a natural perturbative expansion which is just Eq.~1!
with B→ iE, while the imaginary part is a sum over nonpe
turbative tunneling amplitudes

Re~Se f f!52
E2TL3

2p2 (
n51

`
~21!nB2n12

~2n12!~2n11!~2n! S 2E

m2D 2n

~2!

Im~Se f f!5
E2TL3

8p3 (
n51

`
1

n2 e2
m2pn

E . ~3!
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GERALD DUNNE AND THEODORE HALL PHYSICAL REVIEW D58 105022
There are two clear motivations for studying the effect
action in non-constant background fields. First, knowledge
the effective action for more general gauge fields is nec
sary for the ultimate quantization of the electromagne
field. Second, realistic electromagnetic background fields
not have constant field strength, and so we would like
understand effective energies and pair production rate
more general backgrounds. However, it is, of course,
possible to evaluate the exact QED effective action fo
completely arbitrary background. Thus we are led natura
to approximate expansion techniques. A common appro
known as the derivative expansion@15–17,12#, involves a
formal perturbative expansion about Schwinger’s exac
solvable case of constant field strength. Unfortunately,
type of perturbative expansion is difficult to perform beyo
first order, and is hard to interpret physically, even
magnetic-type backgrounds. This is even more problem
for electric-type backgrounds, for which we seek anonper-
turbativeexpansion.

A complementary approach is to search for solvable
amples that are more realistic than the constant field c
although still not completely general. A recent work@18# has
found an exact, explicit integral representation for the~311!-
dimensional QED effective action in a static but spatia
inhomogeneous magnetic field of the form

BW ~xW !5X0,0,Bsech2S x

l D C. ~4!

For fermions in this background field, there are three r
evant scales: a magnetic field scaleB, a width parameterl
characterizing the spatial inhomogeneity, and the ferm
massm. It is therefore possible to expand the exact effect
action in terms of two independent dimensionless ratios
these scales, depending on the question of interest. Fo
ample, sincel5` corresponds to the uniform backgroun
case, in order to compare with the derivative expansion
expand the exact Se f f as a series in 1/Bl2. It has been veri-
fied that the first two terms in this series agree precisely w
independent derivative expansion results~there are no inde-
pendent field theoretic calculations of higher order terms
the derivative expansion with which to compare!. Further-
more, these and analogous results in 211 dimensions indi-
cate that the derivative expansion is in fact an asympt
series expansion@19,20#.

Formally, one could change this magnetic-type result
an electric-type background by an appropriate analytic c
tinuationB→ iE. However, it is not immediately clear how
to obtain anonperturbativeexpression@for example, some-
thing like Eq. ~3!# for the imaginary part of the effective
action. For constant background fields a simple dispers
relation provides this connection between the magnetic
electric cases, but for nonconstant fields the dispersion r
tions are more complicated. Understanding this connect
for non-constant backgrounds, is one of the main motivati
for this paper.

This paper is organized as follows. In Sec. II we revie
briefly the constant field case, using Schwinger’s proper t
method. In Sec. III we review the resolvent method, wh
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has been used to obtain exact integral representations fo
effective action in the special nonuniform magnetic bac
ground~4!. In Sec. IV we then use the resolvent method
evaluate the exact effective action for a time-dependent,
spatially uniform electric field

EW ~xW !5XEsech2S t

t D ,0,0C. ~5!

In Sec. V we show how dispersion relations connect
magnetic and electric cases~4! and~5!. In Sec. VI we review
the derivative expansion for electric fields and in Sec. V
show its connection to the exact effective action of Sec.
In Sec. VIII we use a uniform semi-classical approximati
to obtain a general~but semi-classical! expression for the
pair production probability in a time-dependent elect
background. The final section is devoted to some conclud
comments.

II. SCHWINGER’S APPROACH

Integrating over the fermion fields gives the QED effe
tive action for fermions in a background electromagne
field

Se f f@A#52 i ln det~ iD” 2m!

52
i

2
tr ln~D” 21m2!. ~6!

Here, the covariant derivative isD” 5gm(]m1 iAm) with the
electric chargee absorbed into the gauge fieldA. In the
calculations that follow we are implicitly subtracting off zer
field contribution Se f f@A50#.

In a classic paper@1#, Schwinger computed the effectiv
action for constant background fields. One expresses
logarithm through an integral representation, the ‘‘prop
time’’ representation:

Se f f52
i

2
tr ln~D” 21m2!

5
i

2E0

`ds

s
tr e2s~D” 21m2!. ~7!

Clearly, to proceed, we need information concerning
spectrum of the operatorD” 21m2.

For a constant magnetic background of strength B,
chooseAm5(0,0,0,By) and the Dirac representation of th
gamma matrices so that the operator becomes diagonal:

D” 21m25@]0
22]x

22]y
22~]z1 iBy!21m2#1

1S B 0 0 0

0 2B 0 0

0 0 B 0

0 0 0 2B

D . ~8!
2-2
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QED EFFECTIVE ACTION IN TIME DEPENDENT . . . PHYSICAL REVIEW D 58 105022
The Dirac trace is trivial, and we are left with a harmon
oscillator system with eigenvalues

m22k0
21kx

212B~n1 1
2 6 1

2 !. ~9!

The remaining traces are straightforward, yielding the ex
effective action for a constant magnetic field@1#

Se f f5
BTL3

8p2 E
0

`ds

s2 e2m2sS cothBs2
1

Bs
2

Bs

3 D . ~10!

Here, the 1/Bs term is an explicit subtraction of Se f f@0#,
while theBs/3 term corresponds to a charge renormalizati
A straightforward expansion of Eq.~10! yields expansion
~1!.

In a constant electric background the calculation is si
lar. ChoosingAm5(0,Ex0,0,0) and using the chiral repre
sentation for the gamma matrices, we find the operatorD” 2

1m2 diagonalizes:

D” 21m25@]0
22~]x1 iEt !22]y

22]z
21m2#1

1S iE 0 0 0

0 iE 0 0

0 0 2 iE 0

0 0 0 2 iE

D . ~11!

Once again, the Dirac trace is trivial, and we are left with
harmonic oscillator with imaginary frequency. ThusD” 2

1m2 has complex eigenvalues

m212iE~n1 1
2 6 1

2 !1ky
21kz

2. ~12!

The traces can be performed as before, yielding

Se f f5
ETL3

8p2 E
0

`ds

s2 e2m2sS cotEs2
1

Es
1

Es

3 D , ~13!

where we have subtracted the same vacuum contribution
charge renormalization terms.

Going from Eqs.~10! to ~13!, we note poles of the inte
grand have moved onto the contour of integration. This is
trademark of background electric fields and the ultim
source of the imaginary contribution. Regulating the po
with the standard principal parts prescription@1#, we separate
out the imaginary and real contributions to the effective
tion:

Se f f5 i
E2TL3

8p2 (
n51

`
1

n2 e2 m2pn/E

1
ETL3

8p2 PE
0

`ds

s2 e2m2sS cothEs2
1

Es
2

Es

3 D .

~14!

As before, it is straightforward to expand the integral a
arrive at expansion~2!, for the real part of the effective ac
tion.
10502
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III. RESOLVENT METHOD

Now consider a class of more general background
fields pointing in a given direction and depending on on
one space-time coordinate. This is still far from the mo
general case; nevertheless, this class is sufficiently broa
study the effects of inhomogeneities, and yet simple eno
to be analytically tractable.

In the magnetic case we choose

AW 5„0,0,aB~y!…→BW 5„aB8 ~y!,0,0… ~15!

while in the electric case we choose

AW 5„aE~ t !,0,0…→EW 5„aE8 ~ t !,0,0…. ~16!

In the magnetic case there is no time dependence
A050, so we can perform the energy trace in Eq.~6!. After
an integration by parts ink0, this reduces the evaluation o
the effective action to a trace of a one-dimensional Gree
function, or resolvent

Se f f52 iL E dk0

2p (
6

tr
k0

2

D6~kx ,y,kz!2k0
2

, ~17!

where the one-dimensional operatorD6 is

D65m21kx
22]y

2

1„kz2aB~y!…26aB8 ~y!. ~18!

In the electric case there is no y dependence andAy50,
so we can perform theky trace and obtain

Se f f5 iL E dky

2p (
6

tr
ky

2

D6~ t,kx ,kz!1ky
2

~19!

which involves the resolvent of the operator

D65m21]0
2
„kx2aE~ t !…21kz

26 iaE8 ~ t !. ~20!

Thus, for both the magnetic and electric backgrounds
Eqs. ~15!,~16! the problem reduces to tracing the diagon
resolvents~17!,~19! of a one-dimensional differential opera
tor. This makes clear the advantage of the resolvent
proach. For a typical background field we usually think
computing the effective action by some sort of summat
over the spectrum of the appropriate Dirac operator. Thi
easy for constant fields because the spectrum is discrete@see
Eqs. ~9! and ~12!#. But for non-constant fields the spectru
will typically have both discrete and continuous parts, whi
makes a direct summation extremely difficult. However,
one-dimensional operators, we do not have to use this eig
function expansion approach—we can alternatively expr
the resolvent as a product of two suitable independent s
tions, divided by their Wronskian. This provides a simp
and direct way to compute the effective action when
background field has the form as in Eqs.~15!,~16!.

This resolvent approach has been applied successful
spatially inhomogeneous magnetic backgroun
2-3
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GERALD DUNNE AND THEODORE HALL PHYSICAL REVIEW D58 105022
@19,20,18,12#. It has also been used previously by Chod
@8# in an analysis of the possibility of spontaneous chi
symmetry breaking for QED in time-varying backgroun
electric fields. In this paper we present a detailed analysi
the resolvent approach to the computation of the QED ef
tive action in time-dependent electric backgrounds. We fi
check the resolvent approach by computing the effective
tion for a constant electric field. The constant electric fie
case follows the constant magnetic case very closely. Ch
ing aE(t)5Et, the eigenfunctions of the operator~20! are
parabolic cylinder functions. Taking independent solutio
with the appropriate behavior att56`, we obtain the
Green’s function

G~ t,t8!52
G@2n#

A4p iE
DnSA2i

E
~Et2kx! D

3DnS 2A2i

E
~Et82kx! D , ~21!

where we have definedn5 (m21ky
21kz

2)/(2iE) 6 1
2 1 1

2 . The
trace of the diagonal Green’s function can be performed@14#,
yielding psi functions, wherec(u)5G8(u)/G(u) is the loga-
rithmic derivative of the gamma function@14#. Thus the ef-
fective action is

Se f f52
iL 3

4p3E
0

ET

dkxE
2`

`

ky
2dkydkz(

6
E

2`

`

dx0G~x0 ,x0!

52
EL3T

4p3 E
2`

`

ky
2dkydkz(

6
XcS 1

2
2

n

2D1cS 2
n

2D C
~22!

5
EL3T

8p2 E
0

`ds

s2 e2m2sS cotEs2
1

Es
1

Es

3 D . ~23!
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The limits on thekx trace can be motivated by the classic
Lorentz interaction of the electron-positron pair after p
creation, and can be checked by the requirement that the
field part cancels correctly. Note that the arguments of
psi functions appearing in the effective action~22! are com-
plex. Thus we must be careful to use the correct integ
representation of thec function in the analysis. A convenien
representation for a complex argument is given in@21# as

c~z!5 logz2
1

2z
2E

0

`eib

dtS 1

et21
2

1

t
1

1

2De2zt

2
p

2
,b,

p

2
; 2S p

2
1b D,argz,S p

2
1b D .

~24!

Expression~23! is the same as Eq.~13!, and the calculation
proceeds exactly as before. But for the constant field case
resolvent method is unnecessarily complicated. The adv
tages of the resolvent method will become evident when
plied to more complicated background fields, as is done
the remainder of this paper.

IV. EXACTLY SOLVABLE CASE

In this section we apply the resolvent method to a ba
ground gauge fieldAm5„0,Ettanh(t/t),0,0…. This gauge field
corresponds to a single pulsed electric field in the x-direct
Ex(t)5Esech2(t/t). The electric field is spatially uniform
but time-dependent; it vanishes att56`, peaks att50,
and has a temporal widtht that is arbitrary. This field con-
tains the constant field as a special case when we takt
→`. The resolvent expression~19! for the effective action
gives
erential
Se f f5 i
L3

4p3E d3k tr
ky

2

]0
21Xkx2EttanhS t

t D C2

1ky
21kz

21m26 iEsech2S t
t D

. ~25!

The kx momentum trace runs over (2`,`) since we consider an infinite interaction time.
To determine the effective action we need the resolvent, which is constructed from solutions to the ordinary diff

equation

F]0
21m21ky

21kz
21Xkx2EttanhS t

t D C2

6 iEsech2S t

t D Gf50. ~26!

This can be converted, by the substitutiony5 1
2 @11tanh(t/t)#, to a hypergeometric equation, with independent solutions

f15ya~12y!b
2F1S i t

2
~a1b62Et!,

i t

2
~a1b1172Et!;11 i ta;yD

f25ya~12y!b
2F1S i t

2
~a1b62Et!,

i t

2
~a1b1172Et!;11 i tb;12yD , ~27!
2-4
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where we have defined

y5
1

2
X11tanhS t

t D C
a5„m21ky

21kz
21~Et1kx!

2
…

1/2

b5„m21ky
21kz

21~Et2kx!
2
…

1/2. ~28!

The boundary conditions are a particle of energya traveling
forward in time and a particle of energy2b traveling back-
ward in time.

The diagonal resolvent is G(t,t)5 f1(t)f2(t)/
W@f1 ,f2#, whereW@f1 ,f2# is the Wronskian. The trace
over time once again yields psi functions~just as in the mag-
netic cases treated in@19,20#!:

Se f f52
L3t

4p3(
6

E
2`

` ky
2d3k

4 S 1

a
1

1

b D
3XcS 11

i t

2
~a1b72Et! D1cS i t

2
~a1b62Et! D C

52
L3

4p3(
6

E
2`

` ky
2d3k

4k'

]V~6 !

]k'
T
th

a
nd

10502
3XcS 11
i

2
V7D1cS i

2
V6D C

5
L3

4p3

1

2E d3kE
0

`ds

s
~e2V1s1e2V2s!S cots2

1

sD ,

~29!

where we have definedV15(t/2) (a1b12Et) and V2

5(t/2)(a1b22Et).
Equation~29! is the exact effective action for this time

dependent background gauge field. Notice the close sim
ity to Schwinger’s expression~23! for the constant back-
ground electric field. It is straightforward to check th
taking t→` reduces Eq.~29! to the constant field resul
~23!.

The effective action~29! has both real and imaginar
parts. As described before for the constant field case,
regulate the integral using the principal part prescription
obtain the imaginary part

Im~Se f f!5
1

2

L3

4p3E d3k(
n51

`
1

n
~e2npV11e2npV2!

52
1

2

L3

4p3E d3kln„~12e2pV1!~12e2pV2!…

~30!

and real part of the exact effective action
d

Re~Se f f!5
1

2

iL 3

4p3E d3kE
0

`ds

s
~e2 iV1s1e2 iV2s!Xcoths2

1

s
C

5
1

6

L3

4p3E d3k
1

V1
1

L3

~2p!3 (
n51

`
~21!nB2n12

~2n12!~2n11!
E d3kS 2

V1
D 2n11

, ~31!

where we have asymptotically expanded the integral overs in inverse powers ofV1 . The first term can be regulated an
absorbed by renormalization. In the second term thek integrals can be done to yield the integral representation

Re~Se f f
ren!52

2L3t3

3p2 E
0

` dt

e2pt21
Xt2Et2

v2
~m2t22v2

2 !3/2sin21S v2

tmD1~E→2E!C, ~32!

where we have definedv25(t222tEt2)1/2. This integral may be expanded as

ReSe f f
ren52

L3tm4

8p3/2 (
j 50

`
1

G~ j 11! S 1

2Et2D j

(
k51

`
G~2k1 j !G~2k1 j 22!

G~2k11!GS 2k1 j 1
1

2D ~21!k1 jB2k12 j S 2E

m2D 2k1 j

. ~33!
re
his
tur-
n
the

ec-
We now compare these results to previous analyses.
real part of the effective action is exactly the same as
effective action for the magnetic sech2 background case@see
Eqs.~10! and~18! in @18#!, with the replacementsB→ iE and
lT→tL. Thus, our naive expectation that this simple an
lytic continuation from a magnetic to an electric backgrou
he
e

-

is borne out. But in an electric background we are mo
interested in the imaginary part, which does not have t
type of perturbative expansion. Rather, it has the nonper
bative form~30!. This explains how it is possible to obtai
both a perturbative and a nonperturbative expression, for
real and imaginary parts respectively, from the exact eff
2-5
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GERALD DUNNE AND THEODORE HALL PHYSICAL REVIEW D58 105022
tive action~29!. Balantekinet al. @7# have also computed thi
imaginary part of the effective action for a sech2 electric
field. Our result~30! agrees with their expression@see Eq.
~3.29! of @7#!, once theirs is symmetrized inE→2E, as it
must be to satisfy Furry’s theorem. This difference is n
important for the imaginary part, but it is crucial for th
consistency of the dispersion relations which relate the
and imaginary parts, as we show in the next section.

V. DISPERSION RELATIONS

In the previous section we found an expression for
exact effective action for a particular background elec
b
ed
u

10502
t

al

e
c

field. This effective action has both real and imaginary pa
Given the real or imaginary part of the effective action the
exist dispersion relations which relate the two. Here, we
ploit the cuts in the electron self-energy function to analy
cally continue it to the entire complex plane. We shall sh
that there exist simple dispersion relations between the
and imaginary parts of the effective action, both at the p
turbative level and also at the level of the general express
~29!.

A. Perturbative dispersion relations

Expand the imaginary part~30! of the effective action in
powers ofE2
Im~Se f f!5
1

2

L3

4p3 (
n50

`
1

nE d3k~e2npV11e2npV2! ~34!

5
L3

4p3 (
n51

`
1

nE d3kFe22pntAm21kx
2
1

E2

2
e22pntAm21kx

2S 4n2p2t42
2npm3t3

~m21kx
2!3/2D

1E4e22pntAm21kx
2S 2n4p4t8

3
2

2n3p3m2t7

~m21kx
2!3/2

1
n2p2m4t6

2~m21kx
2!3

1
pnn2t5

4~m21kx
2!5/2

2
5pnm2ki

2t5

4~m21kx
2!7/2D 1 . . . G . ~35!

Consider first theE2 term. Doing the angular integrals we obtain

@ ImSe f f#E25
L3

4p3 E2(
n51

`
1

2nE d3ke22pntAm21k2
2pntS 2npt2

t~m21k2sin2u!

~m21k2!3/2 D
5

L3

4p3

4E2p2t3

3 (
n51

` E
0

`

dke22pntAm21k2S 6pnk2t2
3k2m212k4

~m21k2!3/2 D . ~36!

With the substitutionq52Am21k2 this becomes

@ ImSe f f#E25
L3

4p3

E2p2t3

3 (
n51

` E
2m

`

dqenpq/l~q224m2!1/2S 3nptq2
2

q2 ~q212m2! D
5

L3

4p3

E2p3t4

6 E
2m

`

dqq2csch2
pqt

2 S 12
4m2

q2 D 1/2S 11
2m2

q2 D
5

L3

4p34E2p4t4E
0

`

dqq2csch2
pqt

2
ImP~q2!. ~37!
as
ver-
ti-

a

This expression agrees with the result of Itzykson and Zu
@22#, whereP(q2) is the one-loop self-energy. They reduc
the problem to a one-dimensional Lippman-Schwinger eq
tion and expanded perturbatively to find theE2 order term.

Along the real axis, there is a cut in theq2 complex plane
from (2`,22m# and from@2m,`). To derive the disper-
er

a-

sion relations we will need to consider an integral asq2

→`. Since the electron self-energy does not go to zero
q2, we need to add a linear convergence factor. The con
gence factor gives a residue at the origin which will ul
mately be absorbed by renormalization. This results in
once-subtracted dispersion relation as follows.
2-6
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Apply Cauchy’s integral theorem to a functionf (z) satis-
fying these properties. Let the contour be from (2`,`)
along the real axis and close with an arc of infinite radius
the upper half plane:

f ~z!

z
5

1

2p i RC
f ~j!dj

j~j2z!

5
f ~0!

2z
1

1

2p i
PE

2`

` f ~x8!dx8

x8~x82z!
. ~38!

Now let the point z go to the real axisz→x1 i«;

f ~x!

x
5

f ~0!

x
1

1

p i
PE

2`

` f ~x8!dx8

x8~x82x!
. ~39!

Take the real and imaginary parts of Eq.~39! and assume
that f (z) satisfies the Schwarz reflection principlef (z* )
5 f * (z):

Re„f ~x!2 f ~0!…5
x

p
PE

2`

` Imf ~x8!dx8

x8~x82x!

5
2x2

p
PE

0

` Imf ~x8!dx8

x8~x822x2!
~40!

Im„f ~x!2 f ~0!…52
x

p
PE

2`

` Ref ~x8!dx8

x8~x82x!

52
2x

p
PE

0

` Imf ~x8!dx8

x8~x822x2!
. ~41!

From the imaginary part of the electron self-energy in E
~37!,

ImP~k!5
1

24pS 12
4m2

k2 D 1/2S 11
2m2

k2 DQ~k224m2!,

~42!

we can obtain the real part.

Re„P~k!2P~0!…5
2k2

p

1

24p
PE

2m

` dk8

k8~k822k2!

3S 12
4m2

k82 D 1/2S 11
2m2

k82 D
5

1

32p3/2(j 51

`
G~ j 12!

j GS j 1
5

2D S k

2mD 2 j

.

~43!

This is the kernel for theE2 order real part of the effective
action:
10502
n

.

@ReSe f f#E25
L3

4p34E2p4t4E
0

`

dqq2csch2
pqt

2

3Re„P~q2!2P~0!…

5
L2

4p3

4p4E2t4

32p3/2 (
j 51

`
G~ j 12!

j G~ j 12!

1

~2m!2 j

3E
2`

`

dqq2 j 12csch2
qpt

2

5
E2L3t

4p3/2 (
j 51

`
~21! jG~ j 12!

j GS j 1
5

2D B2 j 12S 1

mt D 2 j

.

~44!

This agrees with thek51 term of Eq.~33!, the real part of
the full effective action to orderE2.

A similar analysis can be done for theE4 contribution.
Doing the angular integrals in theE4 piece from Eq.~35!
gives

@ ImSe f f#E45
L3

4p3

4p2t5

3 (
n51

` E
0

`

k2dke22pntAm21k2

3S 2n3p3t32
2n2p2t2~2k213m2!

~m21k2!3/2

1
npt~15m4120m2k218k4!

10~m21k2!3

1
3m4

4~m21k2!7/2D . ~45!

The substitutionq52Am21k2 leads to

@ ImSe f f#E45
L3

4p3

p2t5

3 (
n51

` E
2m

`

dqq~q224m2!1/2

3e2npqtS n3p3t32
4n2p2t2~q212m2!

q3

1
8npt~q412m2q216m4!

5q6 1
48m4

q7 D .

~46!

Integrate by parts in the 1st, 2nd and 4th terms and collect
terms:

@ ImSe f f#E452
L3

4p3

8p3E4m4t6

3

3E
0

`

dqq4csch2
pqt

2
Q~q224m2!

3
1

q8 S 12
4m2

q2 D 23/2S 32
10m2

q2 D . ~47!
2-7
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The dispersion relation for theE4 term is derived in the sam
way except that no subtraction is needed.

Ref ~x!5
2

p
PE

0

` x8dx8

x822x2
Imf ~x8! ,

Imf ~x!52
2x

p
PE

0

` dx8

x822x2
Ref ~x8!. ~48!

With the dispersion relations~48! we can immediately write
down the complementary part of the effective action at or
E4:

@ReSe f f#E452
L3

4p3

8p3E4m4t6

3 E
0

`

dqq4csch2
pqt

2

2

p

3PE
2m

` kdk

k22q2

1

k8 S 12
4m2

k2 D 23/2S 32
10m2

k2 D
52

2L3E4m4t9

p3/2 (
j 50

`
~21! j

G~ j 11!

G~ j 14!G~ j 12!

G~5!G~ j 1 9
2 !
10502
r

3B2 j 14S 1

mt D 2 j 18

. ~49!

Thus, the dispersion relations have enabled us to deduce
E4 term of the real part~33! of the effective action, begin-
ning with theE4 term in the imaginary part.

Using dispersion relations we have shown how it is p
sible to go from a tunneling like expression to an asympto
expansion at the first two orders inE2. Recall that the real
part for the exact effective action with a sech2 background
electric field~33! is an asymptotic expansion intwo dimen-
sionless scales 1/Et2 and (E/m2)2. Following steps similar
to those taken above, we can find similar dispersion relati
for the other expansion scale 1/Et2. These relations have
been derived and are presented in@12#.

B. All-orders dispersion relations

The above approach could be continued to higher ord
in E2, but the integrals become more difficult. Instead, w
look for a dispersion relation connecting the full exact e
pressions for the real part~32! and the imaginary part~30! of
the effective action. Begin with the imaginary part~30!:
ImSe f f5
L3

4p3

1

2 (
n51

`
1

nE d3k@e2npt~22Et1Am21~Et1kx!21Am21~Et2kx!2!1~E→2E!#. ~50!
ri-

is.
ero
e
in

ac-

e

Make the following substitution to unravel the exponents

2t52Et21tAm21E2t21k212Etkcosu

1tAm21E2t21k222Etkcosu. ~51!

Solve Eq.~51! for k,

k5lA~ t2Et2!2~ t22m2t222tEt2!

t~ t22Et2!2E2t4sin2u
, ~52!

substitute into Eq.~50!, and do the angular integration

ImSe f f5
L3

4p3(
n51

`
p

nEEt21Am2t21E2t4

`

dte22pnt
d

dt

3E
0

2p

dusinu„k3~E!1k3~2E!…

52
L3

4p3

4p2m4t

3 E
0

` dt

e2pt21

3XQ~z221!z2
3 dz2

dt S 12
1

z2
2 D 3/2

1~z2→z1!C,
~53!

where we have definedz25(1/mt) (t222tEt2)1/2.
A dispersion relation can be derived for the complex va
ablez2 . We regard the factor (12 1/z2

2 )3/2 as the imaginary
part of an analytic function defined along the whole real ax
Care must be taken since the function does not go to z
along the arc asz2→`; so we must insert a convergenc
factor. There is a dispersion relation giving the real part
terms of the imaginary part of a function with these char
teristics:

Re„f ~z2!2 f ~0!…5
2z2

2

p
PE

0

` Imf ~k!dk

k~k22z2
2 !

~54!

With Eq. ~54! we can obtain the real part of the effectiv
action:

ReSe f f
ren52

L3p2m4t

3p E
0

` dt

e2pt21

3S z2
3 dz2

dt

2z2
2

p
PE

1

`S 12
1

k2D 3/2

dk

k~k22z2
2 !

1~z2→z1!D
52

m4L3t

15p2 E
0

` dt

e2pt21
S z2

4
dz2

2

dt 2F1~1,1; 7
2 ,z2

2 !

1~z2→z1! D . ~55!
2-8
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In the last equation, we recognize the hypergeometric fu
tion 2F1, which has another representation in terms of sin21

@14#:

ReSe f f
ren52

m4L3t

p2 E
0

` dt

e2pt21

2l2

m2

3F ~ t2Et2!X2 2

3
1

8v2
2

9m2t2 1
2mt

3v2
S 12

v2
2

t2m2D 3/2

3sin21
v2

tm
C1~E→2E!G . ~56!

We drop terms independent of E~since these cancel again
the vacuum subtraction! and get

ReSe f f
ren52

2L3

3p2t3E
0

` dt

e2pt21
S t2Et2

v2
~m2t22v2

2 !3/2

3sin21
v2

tm
1~E→2E! D , ~57!

where v25(t222tEt2)1/2 and v15(t212tEt2)1/2. This
expression for the real renormalized effective action is
actly the same as obtained by a direct computation~32!.
Thus the dispersion relations enable us to compute the
part, given the imaginary part. The reverse direction wo
similarly.

VI. DERIVATIVE EXPANSION IN „311…-DIMENSIONAL
ELECTRIC FIELD

Schwinger solved the effective action exactly for const
background fields. To solve for more realistic fields one m
use some perturbative expansion such as the derivative
pansion. In the derivative expansion the fields are assume
vary very slowly. We rewrite the trace in Eq.~7! as a super-
symmetric quantum-mechanical path integral, expand
gauge field in a Taylor series about the constant case,
interpret the successive coefficients as successively incr
ing n-body interaction terms. This has been done for~211!-
10502
c-

-

al
s

t
t
x-
to

e
nd
as-

dimensional electric fields@12# and we may immediately
generalize to 311 dimensions by making the substitutio
m2→m21kz

2 and tracing over the additional momentu
@18#. We obtain the zeroth and first orders of the derivat
expansion for a spatially homogeneous electric field in 311
dimensions:

S5
i

2E d4xE
0

`ds

s

e2m2s

4i ~ps!2F ~EscotEs21!

1~]0E!2S s2

8E4D ~EscotEs!-G . ~58!

Regulating thes integral as before with the principal par
prescription, we easily separate the real and imaginary p
of the zeroth order derivative expansion term

Im@Se f f#05E d4x
E2

8p3 (
n51

`
1

n2 e2 m2pn/E ~59!

Re@Se f f#05E d4xPE
0

` ds

s

e2m2s

8p2s2
~EscotEs21!.

~60!

We perform an asymptotic expansion of the integral oves
and we obtain

Re@Se f f#052E d4x
E2

2p2(
n51

`
~21!nB2n12

2n~2n11!~2n12!S 2E

m2D 2n

,

~61!

whereBn is the n th Bernoulli number. Equations~59! and
~61! are the same as the corresponding equations for
constant field result~3! and ~2!, with the constant fieldE
replaced by the time dependent fieldE(t).

Now consider first derivative term in Eq.~58!. Separating
out the imaginary component is complicated by the fact t
the triple derivative introduces fourth order poles along
real axis, while in the zeroth order term the poles are of fi
order. The exact effective action, containing both imagin
and real components, for the first order derivative term is
ipal parts
@Se f f#15
i

2E d4xE
0

` ds

s

e2m2s

4i ~ps!2
~]0E!2

s2

8E4 ~sEcotsE21!-

52
1

64p2E d4x
~]0E!2

E4 (
n51

` E
0

` ds

s

e2m2s

E4S s2
np

E D 4

48n2p2E4s~n2p21s2E2!

~Es1pn!4 . ~62!

In this expression we clearly see the presence of the fourth order poles along the real axis. Regulating using the princ
prescription, we get the imaginary part which is just a sum of 1/2 the residues:
2-9
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Im@Se f f#152
1

64p2E d4x
~]0E!2

E4 (
n51

`
p

3!
S e2m2s

s

48n2p2s~n2p21s2E2!

~Es1pn!4 D -U
s→

pn
E

5
1

64pE d4x
~]0E!2

E4 (
n51

`
e2

nm2p
E

~pn!3
~6E316E2m2np13Em4n2p21m6n3p3!. ~63!
er

xi

tor
ion

on,
c

to

ic-
ef-

red
As before we asymptotically expand the integral in pow
of E/m2 and we find

Re@Se f f#15
m6

64p2E d4x
~]0E!2

E4 (
n51

`
~21!nB2n12

2n21 S 2E

m2D 2n12

.

~64!

Note that in the spirit of the derivative expansion appro
mation, E meansE(t) in the expressions~58!–~64!. In the
next section we will specialize to the sech2 electric field and
compare with the exact result~29! for the effective action.

VII. DERIVATIVE EXPANSION IN AN EXACTLY
SOLVABLE CASE

For the electric field

E1~ t !5Esech2S t

t D ~65!

the exact effective action is Eq.~29!, with explicit real and
imaginary parts in Eqs.~33! and ~30!, respectively. In order
to compare with the derivative expansion results in Eqs.~59!,
~61!, ~63! and~64!, we still need to perform thet integrals in
these expressions, withE(t)5Esech2(t/t).

A. Comparison of the real part

Insert the electric field~65! into the real part of the zero
order derivative expansion effective action~60! and do thet
integral using the formula~3.512.2! from Gradshteyn and
Rhyzhik @14#,

E
0

`sinhmx

coshnx
dx5

GS m11

2 DGS n2m

2 D
2GS n11

2 D , ~66!

and we obtain

Re@Se f f#052
tL3m4

8p3/2 (
n51

`
G~2n22!G~2n!

G~2n11!GS 2n1
1

2D
3~21!nB2nS 2E

m2D 2n

. ~67!

This is precisely the leading term, as an expansion in 1/Et2,
of the exact effective action~33!. Similarly, for the real part
10502
s

-

of the first order derivative term~64! in the expansion of the
of the effective action, doing thet integral yields

Re@Se f f#15
L3m2

8p3/2t
(
n51

`
G~2n11!G~2n21!

G~2n11!GS 2n1
3

2D
3~21!nB2n12S 2E

m2D 2n

. ~68!

This is precisely the next-to-leading term in expansion~33!
of the exact result.

This agreement is as expected for the field~65!, each
order in the derivative expansion introduces an extra fac
of 1/t2. These results provide strong evidence that expans
~33! of the exact result is an all-orders derivative expansi
as in the magnetic case@19,20#. However, as in the magneti
case, we note that this is an asymptotic expansion.

B. Comparison of the imaginary part

For the imaginary piece we follow a different approach
make the comparison. Inserting theE(t)5sech2(t/t) into
the zero-order and first-order expressions~59! and~63! leads
to the probability integral, which cannot be computed expl
itly. Instead, we expand the imaginary part of the exact
fective action~30! in inverse powers oft, and transform the
momentum integrals into a form which can be compa
directly with the derivative expansion answers~59! and~63!.

Recall the imaginary part~30! of the exact effective ac-
tion

Im~Se f f!5
L3

4p3

1

2E d3k(
n51

`
1

n
~e2npV11e2npV2!,

~69!

whereV1 andV2 are defined as

V15t~a1b12Et! V25t~a1b22Et! ~70!

anda andb are defined in Eq.~28!. We can ignore theV1

term in the derivative expansion,t→`, since it is sup-
pressed by an exponential factore24Et relative to theV2

piece. Make the transformation

2t5t@22Et1Am21~Et1kx
2!2

1Am21~Et2kx!
2] ~71!
2-10
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and solve forkx

kx5
~ t1t2E!At22m2t212tt2E

t1/2tAt12t2E
. ~72!

The integral is now

Im~Se f f!5
L3

2p2 (
n51

` E dkydkzE
t0

`

e22pntkx~ t !, ~73!

where the lower limit on the integration ist052t2E
1tAm21E2t2. Make another transformation to the coord
natez

z5
1

mt
At212tt2E

dt

dz
5

tzm2

Am2z21t2E2
~74!

and the integral becomes

Im~Se f f!5
L3t

2p2 (
n51

` E dkydkzm
2

3E
1

`

dzAz221e22pn~2t2E1tAm2z21t2E2!

~75!

which can be expanded in inverse powers oft:

Im~Se f f!5
L3t

2p2 (
n51

` E dkydkzm
2

3E
1

`

dzAz221e2
npz2m2

E S 11
npz4m4

4E3t2 1 . . . D .

~76!

Complete the integral overky andkz in the leading term

Im@Se f f#05
L3tE2

4p3 (
n51

`
1

n2E
1

` dz

z4Az221
e2

npm2

E z2
~77!

5
L3tE2

8p3 (
n51

`
1

n2 e2
npm2

E CS 1

2
,21,

npm2

E D ,

~78!

whereC is the confluent hypergeometric function defined
6.5~2! of @21#. Gavrilov and Gitman@9# have found, by other
methods, the zeroth order term for this field configurat
and obtain precisely Eq.~78!. In order to compare with the
zeroth order derivative expansion result~59! we substitute
z5cosh(t/t) in Eq. ~77! to obtain

Im~Se f f!t5E d4x
E2~ t !

8p3 (
n51

`
1

n2 e2
npm2

E~ t ! , ~79!

where E(t)5Esech2(t/t). This is precisely the imaginary
part of the zeroth order term of the derivative expansion~59!.
10502
n

Similarly, perform the integrals overky andkz in the next-
to-leading order term in Eq.~76!:

Im@Se f f#15
L3

8ptE2 (
n51

`
1

p3n3E
1

`

dzAz221

z4 e2
npm2

E z2

3~6E316E2m2npz213Em4n2p2z4

1m6n3p3z6!. ~80!

To compare with the first order derivative expansion res
~63!, we make the same substitutionz5cosh(t/t) to obtain

Im@Se f f#15
1

64pE d4x
~]0E!2

E4 (
n51

`
1

n3p3 e2
npm2

E

3~6E316E2m2np13E3m4n2p21m6n3p2!,

~81!

where hereE meansE(t)5Esech2(t/t). This is the same
result we obtained for the first derivative term of the ima
nary part of the effective action~63!. As with the real part of
the effective action, successive terms in inverse powerst
from Eq. ~76! correspond to increasing orders of the deriv
tive expansion.

VIII. EXACT SEMI-CLASSICAL ACTION FOR MORE
GENERAL FIELDS

As discussed in Sec. III, the resolvent method is a use
technique for evaluating the exact effective action when
Dirac operator can be reduced to an effectively on
dimensional operator. In this section we show how a gen
alized WKB expansion can then be used to obtain an ex
semi-classical effective action for background electric fie
with more general time dependence than theE(t)
5Esech2(t/t) example considered in the previous two se
tions.

Assume the background gauge field has only one com
nent in the x-directionAm5„0,a(t),0,0…. According to Eq.
~19!, we seek the Green’s functions

2„\2]0
21m21f2~ t !6 i\f8~ t !…G k'

6 ~ t,t8!5d~ t2t8!,

~82!

wherem25m21ky
21kz

2 , andf5a(t)2kx .
In the uniform semiclassical approximation@6#, one be-

gins by looking for solutionsc(t)5K(t)U„S(t)…. The famil-
iar WKB approximation of quantum mechanics consists
the choicec(t)5KeiS(t). Instead, a uniform semiclassica
approximation is obtained by choosingU to be a parabolic
cylinder function. DefineU to satisfy

2\2
]2U

]S2 2~S21 ih\!U~S!5VU~S! ~83!

to which independent solutions are
2-11
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DnS 6
11 i

A\
S~ t !D , ~84!

whereh goes as the sign off8, andn5 1
2 (h212 iV/\).

Now takeK5(S8)21/2. Then the general differential equa
tion ~82! becomes a differential equation relatingK andS:

\2
1

K

]2K

]t2 2S ]2S

]t2 D ~V1 ih\1S2!

1~m21f2!6 i\f850. ~85!

Expand S(t)'S0(t)1\S1(t) and collect the zeroth orde
terms in\:

m21f2~ t !5~V1S0
2!S ]S0

]t D 2

. ~86!

The WKB expansion is a good approximation when the
roth order term outsizes the first order term 1@uS1 /S0u. At
points t8 whereS0(t8)→0 the approximation does not wor
unless we requireS1(t8)→0 as well. Then apply L’Hoˆpital’s
rule

1@US1

S0
U5US18

S08
U5uS18uUS V1S0

2

m21f2D 1/2U ~87!

and we see the generalized WKB will be an appropriate
pansion if the turning points of the numeratorS0(t0)5 iAV
andS0(t0* )52 iAV are the same as those of the denomi
s

w

si
ha

10502
-

x-

-

tor f(t0)5 im and f(t0* )52 im. Using the turning points,
we can integrate Eq.~86! and find the quantityV @6#:

E
t0

t0* dtAm21f2~ t !5E
t0

t0* dt
dS0

dt
AV1S0

2

5E
iAV

2 iAV
dS0AV1S0

252
iVp

2
.

~88!

Given the wavefunctions, we can express the Gree
function as

Gk'

6~h!~ t,t8!52
G~2n!

2Ap
e2 ip/4

1

S8
DnS 11 i

A\
S~ t !D

3DnS 2
11 i

A\
S~ t8!D . ~89!

The resolvent approach then gives the effective action a

Se f f5 i
L3

4p3E ky
2d3k

1

2(6E
2 (

6~h!
E

2`

`

dx0Gk'

6~h!~ t,t !,

~90!

where we explicitly summed signs of the electric field
satisfy Furry’s theorem.

Now make the semiclassical approximation by replac
S(t) by S0(t). The semiclassical Green’s function is
l

Gk'

6~h!,sc~ t,t8!52
G~2n!

4Ap
e2

ip
4

1

k'

]V

]k'

S08DnS 11 i

A\
S0~ t !D DnS 2

11 i

A\
S0~ t8!D , ~91!

where we have used the identity@see Eq.~86!# that 1/S08 5 (1/2k') (]V/]k') S08 . The t integral in the trace of the diagona
resolvent can be converted to an integral overS0, giving

Se f f
sc 52

L3

~2p!3E
2`

`

ky
2d3k(

6E

1

2k'

]V

]k'

XCS i

2
V D1CS 11

i

2
V D C

5
L3

~2p!3

1

2E d3kE
0

`ds

s
~e2V~E!s1e2V~2E!s!S cots2

1

sD . ~92!
in
rm
ses

ck-
This expression is the exact~but semiclassical! effective ac-
tion for an electric background field that is spatially uniform
but has general time dependencef8(t). The functionV is
given by Eq.~88!. It is interesting to note how similar thi
general expression is to Schwinger’s exact expression~13!
for the constant background field case.

In the exactly solvable case studied in the previous t
sectionsf(t)5Et tanh(t/t). In this case the integral~88! for
V can be done exactly and we arrive at the exact expres
~29! derived before with the resolvent method. The fact t
,

o

on
t

the uniform semiclassical approximation is actually exact
this case is due to the supersymmetry underlying the unifo
semiclassical approximation in this system. In general ca
that are not exactly solvable, the expression~92! still gives
the semiclassical answer. For example, a periodic ba
ground gauge fieldAm5„0,(E/v0)cos(v0t),0,0… is not an ex-
actly solvable case. However, the expression~92! immedi-
ately gives the semiclassical result of Brezin and Itzykson@3#
@see Eq.~44! of their paper# for the imaginary part of the
effective action in an alternating electric field.
2-12
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IX. CONCLUSIONS

In conclusion, we have used the resolvent approach
compute the exact QED effective action for the time dep
dent electric field backgroundEW (t)5„Esech2(t/t),0,0…. The
result is a simple integral representation involving a sin
integral, just as in Schwinger’s proper-time result for t
constant electric field case. We then used this exact resu
investigate the dispersion relations relating the real
imaginary parts of the effective action. This explains t
connection between the nonperturbative form of the ima
nary part, and the perturbative form of the real part. It is t
perturbative real part that should be compared with res
for magnetic backgrounds. In addition, we made
asymptotic expansion of the exact answer in powers
1/Et2, and showed that the first two terms agree with~inde-
pendent! results from the derivative expansion. Finally, w
.

am
ic

10502
to
-

e

to
d

i-
s
ts
n
f

showed how the uniform semiclassical approach of B
antekin et al. is incorporated into the resolvent approac
yielding a simple semiclassical expression that encodes
the real and imaginary parts of the effective action. The ch
lenge now is to use these results for the effective action
obtain realistic estimates of pair production rates in elec
fields with practically attainable strength and time depe
dence.

ACKNOWLEDGMENTS

This work was supported by the Department of Ener
Grant No. DE-FG02-92ER40716.00, and the University
Connecticut Research Foundation. We also thank C
Bender and Alain Comtet for helpful comments and sugg
tions.
8,

@1# J. Schwinger, Phys. Rev.82, 664 ~1951!.
@2# M. Stone, Phys. Rev. D14, 3568~1976!.
@3# E. Brezin and C. Itzykson, Phys. Rev. D2, 1191~1970!.
@4# N. Narozhnyiˇ and A. Nikishov, Sov. J. Nucl. Phys.11, 596

~1970!.
@5# J. Cornwall and G. Tiktopoulos, Phys. Rev. D39, 334 ~1989!.
@6# A. Balantekin, S. Fricke, and P. Hatchell, Phys. Rev. D38, 935

~1988!.
@7# A. Balantekin, J. Seger, and S. Fricke, Int. J. Mod. Phys. A6,

695 ~1991!.
@8# A. Chodos, inProceedings of the Gu¨rsey Memorial Confer-

ence on Strings and Symmetries, Istanbul, 1994, edited by G
Aktas et al., Lecture Notes in Physics Vol. 447~Springer-
Verlag, 1995!.

@9# S. Gavrilov and D. Gitman, Phys. Rev. D53, 7162~1996!.
@10# D. Burke, Phys. Rev. Lett.79, 1626~1997!.
@11# A. Melissinos, Proceedings of the 15th Advanced ICFA Be

Dynamics Workshop on Quantum Aspects of Beam Phys
 s,

Monterey, California, 1998.
@12# T. Hall, Ph.D. thesis, University of Connecticut, 199

hep-ph/9805507.
@13# V. Gusynin and I. Shovkovy, hep-th/9804143 v3~unpub-

lished!.
@14# I. Gradshteyn and I. Rhyzhik,Table of Integrals Series and

Products~Academic, New York, 1980!.
@15# I. Aitchison and C. Fraser, Phys. Rev. D31, 2605~1985!.
@16# D. Cangemi, E. D’Hoker, and G. Dunne, Phys. Rev. D51,

2513 ~1995!.
@17# V. Gusynin and I. Shovkovy, Can. J. Phys.74, 282 ~1996!.
@18# G. Dunne and T. Hall, Phys. Lett. B419, 322 ~1998!.
@19# D. Cangemi, E. D’Hoker, and G. Dunne, Phys. Rev. D52,

3163 ~1995!.
@20# G. Dunne, Int. J. Mod. Phys. A12, 1143~1997!.
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