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On rotational excitations and axial deformations of BPS monopoles and Julia-Zee dyons
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It is shown that Julia-Zee dyons do not admit slowly rotating excitations. This is achieved by investigating
the complete set of stationary excitations which can give rise to nonvanishing angular momentum. The relevant
zero modes are parametrized in a gauge invariant way and analyzed by means of a harmonic decomposition.
Since general arguments show that the solutions to the linearized Bogomol'nyi equations cannot contribute to
the angular momentum, the relevant modes are governed by a set of electric and a set of non-self-dual magnetic
perturbation equations. The absence of axial dipole deformations is also estaljEd&E6-282(198)00122-2

PACS numbsd(s): 11.15.Bt, 14.80.Hv

[. INTRODUCTION 4n-dimensional7,9]. (See alsd10-12 for a generalization
to arbitrary gauge groups and for further referencds

The main question addressed in this article is whethethese studies are dealing with the self-dual sector, an inves-
Julia-Zee dyons admit rotational excitations. The investigatigation of the remaining zero modes seems to be necessary.
tion of this problem was motivated by some surprising re-This is also motivated by the following observations, which
sults which we recently obtained for a class of self-are obtained from general considerations.
gravitating non-Abelian soliton and black hole The solutions to the linearized Bogomol'nyi equations—
configurations. If1] we showed that the Bartnik-McKinnon independently of whether or not they are physically
solutions [2] admit slowly rotating excitations. A two- acceptable—cannot give rise to a nonvanishing angular mo-
parameter family of axisymmetric excitations of the staticmentum. This is true for both BPS monopoles and Julia-Zee
black hole solutions to the Einstein-Yang-Mills system wasdyons.
established as well. In addition to the charged, rotating black The only excitations of BPS monopoles which can con-
holes found in[3], there also exists a branch of uncharged,tribute to the angular momentum arise from perturbations of
rotating black holes, as well as a branch of stationary—buthe time componeny® = 6A;, of the gauge potential; these
not static—black holes with vanishing Komar angular mo-will be called electric modes.
mentum[1]. The only perturbations of Julia-Zee dyons which can con-

On the other hand, the situation was shown to be comtribute to the angular momentum are the electric ones and the
pletely different in the presence of scalar fie[d3. Slowly = non-self-dual magnetic oneéA mode will be calledmag-
rotating generalizations @éelf-gravitating solitonswereex-  netic if &b vanishes, andion-self-dualif it is a solution of
cluded for a relatively large class of theories with non- the linearized field equations, but not of the linearized
Abelian gauge fields coupled to Higgs fields. In particular,Bogomol’nyi equations.
the results obtained if4] apply to the 't Hooft—Polyakov The full problem, including the non-self-dual fluctuations,
monopole and its self-gravitating generalizations. Black  was studied by BaakEL3] in connection with the stability
hole solutions of gauge theories with Higgs fields the situa-analysis of the t' Hooft—Polyakov monopole. In his work,
tion is again different: Rotating excitations of static black Baake mainly focused on thegativefluctuation modes, the
holes generically exist; they are, however, necessarilabsence of which he was able to prove by applying the Ja-
charged. coby criterion. Since we are not aware of any other work

Since we are still lacking a deeper physical understandinglevoted to non-self-dual zero modes, we carry out a system-
of the facts mentioned above, we have been looking for otheaitic, gauge invariant perturbation analysis in order to study
(not gravitating examples which might help to find a clue. the rotational excitations of BPS monopoles and Julia-Zee
On the basis of our previous experience, we originally ex-dyons. The emphasis in the present article is mainly placed
pected statialyon solutions to admit rotational excitations. on the methods. The main result is, unfortunately, negative:
The simplest examples are the Julia-Zee dyons, which ardeither BPS monopoles nor Julia-Zee dyons admit slowly
related to the Bogomol'nyi-Prasad-SommerfieldPS rotating excitations.
monopole by a one-parameter family of hyperbolic rotations A further motivation for studying non-self-dual rotational
in internal space. excitations is provided by a theorem due to Taubb§),

The problem of small fluctuations around BPS monopolesaccording to which not every finite energy solution to the
has been examined some time ago by MottélaAdler[6], field equations in the BPS limit has to satisfy ttrst order
Weinberg[7], and completed in a comprehensive analysis byBogomol'nyi equations. Hence, the existence of physically
Akhoury et al. [8]. The main emphasis was placed on theacceptable excitations orthogonal to the Bogomol'nyi sector
study of normalizable zero modes in tiself-dual sector, is nota priori excluded. However, the results of the present
because these are relevant to the structure of multimonopoigork imply that all non-self-dual axisymmetric finite energy
solutions. The moduli space of $) monopole solutions solutions, if they exist, are necessarilisconnectedrom the
carrying n units of magnetic charge was shown to beJulia-Zee dyons. This is, in fact, a weak version of the origi-
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nal conjecturé¢15] (the general form of which was disproved AW =ddt+A. )
in Taubes’ work[14]). It is, however, likely that configura-
tions with unit winding number and discrete angular mo-
menta exist. This is, for instance, the case for boson starkhe quantitiess and D denote the field strength two-form
[16]. and the gauge covariant derivative with respect to the three-
This paper is organized as follows: In Sec. Il we briefly dimensional magnetic potential:
review the symmetry which connects the PBS monopole so-
lution with the one-parameter family of Julia-Zee dyons. In
Sec. lll we show how to use this symmetry to reduce the F=dA+ALUA, DP=dd+[A®], DH=dH+[AH].
perturbation analysis for Julia-Zee dyons to that for the PBS &)
monopole. The main advantage of this consists in the fact
that, after a hyperbolic rotation, the electric background field For arbitrary Lie algebra valuggHorms a the inner product
vanishes. This implies that—in the rotated system—the eleqy gefined by @, )d®x=Tr{a0*a}, where* is the three-
tric perturbations 5P, do not couple to the magnetic ones. gimensional Hodge dud.
We then show that the non-self-dual magnetic perturbations The perturbation analysis for Julia-Z&¥2) dyons will be
are governed by a system of first order equations for a Onesimpjified considerably by the fact that the dimensionally
form, éB. The latter comprises the perturbations of thereduced actior(1) is invariant under hyperbolic rotations in
Higgs field, 6H, and the perturbation of the three- the (@) plane; that is, the transformation
dimensional gauge potentialA, in a gauge invariant way.
In Sec. IV we present the decomposition of the gauge
invariant perturbationg® and 6B in terms of isospin har- H cosiiy) sinhy)\/H
monics. We also show that the expression for the angular (cp>—’ sinh(y) cosh ) (q))
momentum can be integrated, implying that only the bound-
ary values of the perturbation amplitudes are relevant. The
complete set of perturbation equations is derived in Sec. Vis a symmetry of the actiof).
This consists of an even and an odd parity sector. Each sector In particular, a BPS monopole solutith=H ,,, =0
comprises the electric equations 18P, the magnetic equa- with magnetic chargeP,,,, gives rise to a one-parameter
tions for 6B (governing the non-self-dual modesind the  family of JZ dyons, H=cosh§)Hmen, @ =Sinh(y)Hmon,
inhomogeneous linearized Bogomol'nyi equations #  with magnetic charge®=cosh¢)P,,,,, and electric charge
and 6A in terms of the sourcéB. Q=cosh@)sinh(y)Pmon. This is also seen from the field
In Sec. VI we discuss the odd parity perturbations andequations
present the solutions of the complete set of equations in
closed form. As the odd parity modes cannot contribute to
the angular momentum, we conclude from the solutions that *D*F=[®,D®]-[H,DH], 5
there exist no physically acceptable axial dipdleforma-
tions of Julia-Zee dyons. The more interestiegen parity
modes are discussed in Sec. VII. We show how to use the *D*DH=[®,[®,H]], (6)
explicitly known solutions to reduce theagneticproblem to
a standard Schdinger equation. We also prove that the
electricperturbations are governed by exactly the same equa-
tion. Since the latter has a non-negative potential, we are
able to present a rigorous discussion of all modes. It .tum\slvhich reduce to the monopole equations,*F3=
out that there exist solutionghoth electric and magnejic —[H DH, ] and DxDH, =0, for H=coshg)H
which give rise to finite angular momentum. However, none mon = "mo mon = mon

and ® = sinh(y)Hmon-
of these modes are regular. It is worth recalling that the total energy is not invariant

under the transformatio®). However, for fixed chargeP
andQ, defined by the flux integrals

*D*D®=[H,[D,H]], (7)

II. BPS MONOPOLES AND JULIA-ZEE DYONS

We consider stationary solutions to the @Y Yang-
Mills-Higgs (YMH) equations with gauge potentiaf* and

Higgs tripletH in the BPS limit(i.e., without Higgs self- p:f Tr{H F}, Q:f Tr{H*D®}, 8
interaction). The dimensionally reduced YMH action be-
comes

1 over the two-sphere at infinity, the energy assumes its global
S=3 f {(F,F)+(DH,DH)—(D®,D®)—[®,H]? %, minimum for the corresponding JZ dyon solution. This is
1) seen as follows: Using the field equations to expRessidQ
as volume integrals of TPHOF} and T{DHO*D®}, re-
where ® and A parametrize the electric and the magneticspectively, the total energy may be expressed as follows
components of the gauge potential, [17,18:
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1 By virtue of the field equation(5) and the relations
E=§f{(F)2+(DH)2+(D<I>)2+[H,<I>]2}d3x TrH{®[®,DP]}=0 and T{®[H,DH]}=Tr{[®,H]DH]},
we also find(after integrating by paris

1 1
— _ 2
=3 f [(D<1> tanh(y)DH) Tip==5(+d T{O*F}), . (13

2
+(* F— 1 DH| +[H q)]z] Px This shows that both the electric and the magnetic perturba-
cosHf(y) ' tions of JZ dyons contribute to the angular momentum, since
. 1
* cosity) (@ Sin(») +P), ) 8Ty = 5 (+d TH{o0* F+ % 5F}),, .

wherey is arbitrary and F)? is a shorthand forg,F), etc.  (Note that the second term is absent if the electric back-
From this one finds the boun@ssuming, without loss of ground field vanishes, implying that only electric perturba-

generality, thaQ andP are non-negative tions give rise to the angular momentum of a BPS mono-
pole) Since the dyon perturbations can be obtained from the
E= Q2+ P2=cost(y)Pmon: (10  monopole perturbations, we express the angular momentum

in terms of the latter, usingd=sinh(y)H,, and 6®

where equality holds if and only i, H, and® are subject = SiNN() Hmont COSh() &Pon. With
to the first order equation ®/sinh(y)=DH/cosh)=+*F,

— el : mg
which is exactly the Bogomol'nyi equation, 6Ty =costiy) 8Ty, +sinh(y) 6Ty, (14
one finds
*F=DH yon, (11
1

written in terms of the rotated fields =cosh§)Hpo, and STh=— 5 (*d THOP o F}), (15
® =sinh(y)Hon-

Ill. LINEAR PERTURBATIONS OF DYONS Ty =~ 5(*d TH{Hmor* F}),,. (16)

|'f-'”:je tr))er';lr,l]rbat_lon an::[aly5|s ft?]r :htethsl rr:c_mopolte 'Z St!m'lt is worthwhile noticing that both contributions T, are
g('p'e dy N tcwcurr:s fmf[:he a f. eectrlcb ri_er urba IOnseparately gauge invariant. This is obvious for the electric
mon OES NOt couple to the magnetic perturba 10htnon art, since this is proportional to the perturbation of a field
and 6Anon- This is an immediate consequence of the fac

; s . hich ish the back d, . Th
that the BPS background configuration is nonelecthig,, is Iiru\éan:%restr?: niagicet?éougannag;ﬂynmon thee Zﬁr;riity
=0. ’

* i -
Since the electric background field does not vanish for J TriHmort P} vanishes as well for a PBS background con

. . - i tion. *F=DH t this.In fact, defining th
dyons, the electric and the magnetic perturbations arég:t?olrcr):B(L:ciording tom"” 0 see this.In fact, defining the

coupled in this case. However, the linearity of the symmetry
(4) implies that all linear perturbations of JZ dyons can be B=DH o~ *F, (17
obtained from the linear perturbations of the BPS monopole

after a hyperbolic rotation with parameter sigf¥ Q/P. Itis,  the magnetic contributiofiL6) to the angular momentum can
therefore, sufficient to consider the perturbation analysis obe cast into the simple form

the BPS monopole. Before doing so, we compute the various

contributions to the angular momentum. 1
g STIO=— > (x TH{SBOHF}),, (18)

A. Angular momentum o . . ) . o
~which is manifestly gauge invariant, since, by definiti@n,
The total angular momenturtalong the symmetry axis  yanishes for the BPS background configuration.

of a stationary YMH configuration is The above expressions imply the following facts: First,
the perturbation analysis for JZ dyons reduces to the pertur-
J:f deSX, (12 bation analysis for BPS monopoles. Second, the eleatrit

the magnetic perturbations of a BPS background contribute

to the dyon angular momentum. Third, only then-self-
where the relevant component of the stress-energy tensor ||, modes. that is. the magnetic perturbations wiB¥: 0

terms of the three-dimensional quantities is given by contribute to the dyon angular momentum.
L The last statement reveals a fundamental difference be-
- . tween the perturbation theory of BPS monopoles and JZ dy-
Tro= 2 TH{{®,HIDH=*(DOL*F)j, . ons: Although the perturbation equations for JZ dyons can be
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reduced to the ones for the BPS monopole, the physical coralready argued above that only the nontrivial solutidias
tents are quite different: While only electric perturbations+ 0 to Eq.(22) can contribute to the angular momenti{see
can give rise to the angular momentum of a monopole conkg. (18)].

figuration, magnetic perturbations need to be taken into ac- In order to find the general magnetic perturbations, one
count as well in the dyon case. Moreover, it is not sufficientproceeds in two steps: First, one has to solve the sy&2ém

to consider perturbations within the Bogomol’'nyi sector,for 6B. OncedB is known, it remains to solve the inhomo-
since the latter cannot contribute to the angular momenturgeneous linearized Bogomol'nyi equati¢23) for SA and

of a dyon. S6H. This is achieved by using Green’s method, also taking
advantage of the explicitly known solutions to the homoge-
B. Linear perturbations of the BPS monopole neous equationsiB=0, derived in[6] and[8].

. . , Since the background BPS configuration has vanisBing
Since the perturbation analysis of the JZ dyons can bg e magnetic perturbatiodB is manifestly gauge invariant.

reduced to the one for the BPS monopole, we shall NOWrhis is also verified by using the general behavior of the

‘f‘ocus”o.n the latter. In the following we omit the subscript perturbationsSA and 6H under gauge transformations gen-
mon” indicating the monopole fields, that is, we writgH erated by a Lie algebra valued scalar figtd

for SHpon €tc. Suppose that there i@t least a one-

parameter family of continuous deformations of the BPS SA— SA+Dy, SH—SH+[H,x]. (24)
monopole background,F=DH, ®=0. Then the tangent to

this satisfies the linearized field equations. In order to linearyence SDH— SDH+[DH, x], and 6F — SF+[F,x], im-

ize Egs.(5) and (6), it is very convenient to introduce the plying that 8B— 6B +[B, x]= &B.

one-form fieldB defined in Eq(17). Oge may then write the The second equation in E(R2) is a consistency condition
first field equation in the form B=D"H—D*F=[H,*DH  { the first one: Indeed, applying D on the first equation and
—F]—-[®,*D®], whereas the second field equation be'using D’sB=[F,sB] on the left-hand sidgLHS), and
comes DB=D*DH—-DF=x[®,[®,H]]. Hence, Eqs(5)  [pH sB]=[*DH,sB]=[F,sB] on the right-hand side
and (6) assume the form (RHS), yields the necessary conditiffl, Dx 5B]=0.

DB—[H,*B]=—[®,*Dd], (19
IV. HARMONIC ANALYSIS

and Since the unperturbed BPS solution is spherically sym-

metric, we perform a multipole decomposition and rewrite
the electric perturbation equatiof®1) and the magnetic

) . o . ) ones(22), (23) as systems of ordinary differential equations
respectively. The linearization of the field equatiof,  ith respect to the radial coordinate. Using these equations,
(19), (20) is completely trivial, since both the electric fiell  \ye show that the angular momentum integral can be com-
and the magnetic one-for=DH —*F vanish for a BPS pyted exactly. Hence, the total angular momentum arising
background. Hence, the linearized field equations involverom electric and magnetic perturbations is determined by
only the gauge invariant perturbatiod® and 6B: One im-  the asymptotic behavior of the gauge invariant amplitudes
mediately finds the results 5P and 5B’ respective'y.

D*B=*[d,[®,H]], (20

electric perturbations: BDS®=*[H,[ 6P ,H]], o1 A, Is0spin harmonics
The basic fieldH,®d,A, the auxiliary fieldB, and their

magnetic perturbations: &B=[H,x5B], D*sB=0, perturbations, are functions and one-forms with values in the
(22) Lie algebra s(2) of the gauge group SQ). Let us start by

considering such functions on the two-sph&fe A conve-

where 8B is obtained from the definitiofl7), that is, nient basis, reducing the natural representation of2gUs
obtained by taking the inner product of the vector spherical
5B=D&H—*DSA—[H, 5A]. (23 harmonicsYj,, with the basisr=o/(2i) of su?2) (whereo

are the Pauli matrices

(Here and in the following all quantities without a5 refer L RV
to background fields. Before we consider the harmonic Com(¥@)=7You(¥e). (25)

analysis of Eqs(21)—(23), we note the following: . . L
The linearization of the Bogomol'nyi equatidil), 6B The 1S0SpIn harmonchéJM have total zimg_u!ar momentud
—0, has been studied extensively in the literature. The soly@"d fixed parity ¢ 1)". Instead of thery, it is also usual to

. . )\ . _ _
tions to SB=0 are, however, only a subset of the generalconsider the basi¥{) (withh=0,£1). For x=0 and A
magnetic perturbations. The full magnetic perturbations aré=1 these vector harmonics are transverse, while they are
governed by the second order equations & and SH, longitudinal forA = — 1 (with respect to the radial unit direc-
which are equivalent to the first order equati@@®) for 5B tion r). The transverse harmonic&}) and Y{%) are also
and the inhomogeneous equati@3). In particular, we have called electric and magnetic multipoles, respectively. They
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are obtained by applying certain differential operators on the

ordinary spherical harmonic¥,y, while the longitudinal
harmonics are given by{,")=rY,,, (see, e.g.[19] or [20]).
The formulas for thé{% can readily be translated into the
corresponding formulas for the isospin harmon(c%\,)lzq-
-Y§\) (with A=0,+1). One finds

C\(]K/Il): 7 Yims
C(J(l)v)l: | —(dr, v;dYJM>.
VJ(J+1)
= e (dry ¥ ), (26)
VI(J+1)

wherer, = 7-r. Here(, ) and* denote the inner product and
the Hodge dual with respect to the standard metricSdn
(Also note that the spherical components of thebey the
relations d,=rydd+ 7, sindde and [7y,7,]=17,; see
Appendix A) In terms of the isospin harmonics, the well-
known relations between the vector harmonig, and Y
become

1
J+1_ (1) (=1)

= ———[VaC{—I+1ch1,
JM 2J+1[ JM JM ]
CiM:Cfl(l)\Bh

1

It = ———=[ 3+ 1C)+ ICh1. 27
JM 2J+1[ JM JM ]

By construction, the isospin harmoni€s,,,Cjy" are eigen-
functions of the spherical Laplaciad,=*d*d, and of the
parity operatorp:

AcCly=-L(L+1)CY,, (28)

PCy=(~1)"Chy, (29
whereL=J, J*=1. (The exterior derivatives of the isospin
harmonicsC3,, andC3,,* and theirS? duals are particularly
convenient for analyzing perturbations of Lie algebra value
one-forms[21,4]. For the general theory of monopole har-
monics we refer t¢22].)

B. Perturbation amplitudes

PHYSICAL REVIEW D 58 105021

X=7K, where K=cosd,
V2Y=(d7, ,dK)= — 74sin 3,

V2Z=—(dr, ,*dK)=7,sin ¥, (30)
whereX andY span the even parity sector, whifehas odd
parity. The s(2) valued electric perturbation functiofd

can, therefore, be expanded &® = 6"+ §°% with

1
SPHE= — (b X+ .Y),

SPodd= %(?{52). (32

[The factor 1v is introduced for convenience; see, e.g., Egs.
(45), (46). Throughout this article, all amplitudes furnished
with a tilde refer to the odd parity sector, which is relevant
for deformations. A similar expansion holds fosH; how-
ever, unlikes®, sH is not gauge invariant; see Sec. V C and
Appendix D.

Turning to Lie algebra valued one-forms, we note that the
exterior derivatives of the basis functioks Y, andZ can be
expressed in terms of the derivatives ff and K= cos
Y7 o. [This is a peculiarity of thd=1 harmonics, for which
dC{% = (v2dY +dX)/v3=0.] One finds

dX=—v2dY =7, dK +Kdr,,

*v2dZ=7,dK —Kdr, . (32)
As the parity operation commutes with the exterior differen-
tiations and anticommutes with the Hodge dual, one can ex-
pand the s(2) valued magnetic perturbation one-fo#B as
6B = 6B®*"+ §B°% with

1
SBe= —(b_X+b, Y)dr + B, 7,dK+ B,Kdr,,
r

1 - _ ~ A
SBodd— —Z(bZ)dl’ + B1* 7, dK + BoxKdr, , (33

-

whereb, b.. , 8;,, andB; , depend on the radial coordinate
r. (Again, a similar formula holds fofA. In contrast toSB,

SA is not gauge invariant, implying that not all coefficients
in the expansion ofA correspond to physical degrees of

Jreedom; see Sec. V C and Appendiy.D

At this point we also recall that the background gauge
potential and Higgs field are parametrized in terms of two
radial functionsw(r) andh(r) (see Appendix A

A=[1-w(r)]*d7,

H=h(r)r, . (39

Since rotational modes are our primary concern in this

article, we now focus on the sectde=1. For theC(l)b) (A
=0,+1) we use(with some change of normalizatipthe
letters X, Y, and Z. A convenient basis ofl=1 isospin
harmonics then is

Since 7, is an eigenfunction of the spherical Laplacian,
d*dr, = —27,dQ, the background field strength beconfes
—dwOxd7, +(Ww?—1)7,dQ. The BPS equations,F
=+*DH, thus read
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w’ =wh, r2h’=w?-1, (35) decomposition, as given in the next section. Considering the
. _ magnetic part, one uses the first two equations in(&9). to
with the globally regular solution obtain 2(1-w?)B8;=b’ +v2wb’ , which enables one to

eliminate 3, in Eq. (42). Also taking advantage of the back-
_ r _ _ (36) ground equatior(35), one then ha§r?h’g,—w’b, /vV2]=
sinh(r)’ sinh(r) —[b_+v2wb,]'/2. A similar, but more complicated ma-
: nipulation uses the second order equati#s to write the
For later use we also note that the second order equation Qe ric contribution(41) in the desired form; see Appendix
h can be integrated, which yields the useful relation F. The two contributiong38) and (39) to the angular mo-
oh mentum finally become

h'=h2—T—1. (37)

coshr)

1
w(r)= h(r)=r—

53°0— — g[(l_wz—zrhm_+r2h¢',+fzwrh¢+]6°,

C. Integration of angular momentum 43)
We now show that the total angular momentufd

=cosh) 8J%'+ sinh(y) 8J™ can be expressed in terms of the -

values of the gauge invariant perturbatiois and 6B at the 8IM=— —[b_+v2wb, 5. (44)

origin and at infinity. According to Eqg15) and (18), the 3

electric and the magnetic perturbations give rise to

1 V. PERTURBATION EQUATIONS
83%=— f (xd Tr{60e* F}) d®x (38 , ,
2 Using the expansion&1) and (33), as well as the tools

developed in Appendixes B and C, it is now straightforward
to write down the system of perturbation equations. This
1 consists of Eq(21) for the electric perturbationd®, Egs.
SJmo— _ J (x Tr{ 8B+ F}) ., (390 (22 for the magnetic perturbation88, and the inhomoge-
2 neous BPS Eq€23) for sH and 5A.

and

respectively. Here we have already used the fact that only the
even parity sector contributes to the total angular momen- A. Electric perturbations

tum. In order to express the above integrands in terms of the . the electric perturbatior(@1), governed by Eq(21)

radial amplitudess.., b., and B ,, we first note that the .4 finds the differential equations
background field strength can be written in the simple form
((ﬁ'l) 1 (2(w2+1) —2vV2w >(¢_

T2 —2vaw (W24 1+412h?) ¢+) 49

Voo

*F=w'd7r,+h’7dr. (40

Taking advantage of the trace formulas{Xr,}=—K/2,

THY7}=Tr{Z7};=0, and T{Xd7}=0, THYdn} in the even parity sector, and
=+ Tr{Zd7}=—dK/(2v2), it is now not difficult to com-

pute the above integrands from the expansi@is and(33).

One finds @' = riz(w2+ 1+r%h?) (46)
even gy | r2(we\|.
*d T{od F}_? rh ¢—_‘72 r *dK, in the odd parity sector. Here we have used Egl) to
) (41 compute the LHS of Eq(21), and[7,,X]=0, [7,,Y]=
—-Z, [7,Z]=Y to obtain the RHS:[H,[6P,H]]
1 1 =h2r ¢, Y+¢2).
*Tr{ B F}= — | r?h’ B, — —w'b, [*dK.
2r o)

(42) B. Magnetic perturbations: 6B equations

. In order to determine the magnetic perturbatids we
With K=cos® we havexdK = —sin* 9de, which shows first write the decompositiofB3) in the form
that the above formulas yield thecomponents appearing in
the integrands of Eq€38) and(39). It is an interesting fact
that the above brackets can be written as radial derivatives.
This enables one to perform the angular momentum integrals
and to expressJ® and 8J™%in terms of the values afdee" . _
and 5B®'*" at the origin and at infinity. In order to see this, Where the one-forni is tangential toS”. In terms ofb and

one has to use the perturbation equations in the harmoni8, the magnetic perturbation equatidi2?) assume the form

1 R
5B=bdr +B, (47)
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[H b]=;<|5§ C. Magnetic perturbations: Inhomogeneous BPS equations
In order to write out the inhomogeneous Bogomol'nyi
B’ =r‘2I5b—[H,; 1‘3], equations(23), we need the harmonic decomposition of the
fields sH and SA. The fact that the latter are not gauge
b'=—+D*B. (48)  Invariant enables us to get rid of certain amplitudes. In Ap-

pendix D it is shown that—up to a pure gauge—the har-
Here we have used the fact that the unperturbed gauge pgionic decompositions ofH and A assume the form
tential has no radial component, implying the decomposition
D=dr 4, + D for the covariant derivativésee Appendix &
Taking advantage of the formulas given in Appendix C, it is
now not hard to obtain the sets of differential equations for
the radial functions parametrizingB®'e" and 6B°%. One

SHEYe= X+ 7.,

SHOY="7, (53

' and
finds
even_ & %
b.=2(B1+WBy), bl=—v2(wB;+p,), oA ap 1K+ az*Kdr,
w L OA%Y="y, 7.dK + a,Kdr, (54)
r’pg/=b_——b,, r3B,+hBy)=wb_——b,, - -
Fr Vi (Ba+hBz) vz respectively. The radial functiong. , y, a;,, anda;, ; are
gauge invariant, up to a one-dimensional set of residual
hb, =v2(B,—Wp;) (49 gauge transformations in the even parity sector,
for the even parity sector, and y_—vy_, vy,—vy,+hcs,
b’ =v2(WB;—Ba), w

a1—>a1+ _Cg,
V2

2B="B, r2(BythB)=- b

tv2 i i 2 ! c (55)

a,— ap,— —Cgz,

~ ~ _ _ _ 2 2 V2 3

0=pB1+WBy, hb=v2(WB;+pB,) (50 . . _ _

and a two-dimensional set of residual gauge transformations

for the odd parity sector. We note that both sectors contaiin the odd parity sector,

constraint equations, reflecting the fact that the second equa-

tion in Eq.(22) is an integrability condition for the first one. y—y—hc,,

At this point we also note the following, somewhat sur-

prising fact: The scalar magnetic amplitudes andb satisfy

the same set of second order equati@s, (46) as the elec- ay— g+ Cy— ﬂcz,
tric amplitudesg.. and ¢,
(b,,) 1 (2(w?+1) —2V2w (b) ~ = 1 56)
- ar— T WC;— —Co,
b, ) =2\ —2vaw  (w2+1+r2n?)/\b, )" (51 2y 17 5%
1 ~ wherec,, ¢,, andcg are arbitrary constants parametrizing
b"= —2(w2+ 1+r2h?)b. (520  the residual gauge freedo®ee Appendix I In terms of the

-

gauge invariant source terms , b, 8;,, andB; ,, and the
(almos} gauge invariant amplitudes introduced above, the

This follows from the arguments given in Appendix B, and is h i ized B v ion3
also verified directly from the above equations. Using the/NNOMOgENeoUs finearized Bogomornyl equati¢as) even-

~ tually become
odd parity equations(50) we have, for instanceb” y

=v2(W' B+ wWpB;— Bs)=[h?+r2(w?+1)]b, where we r2y" +2(a;+Way)=b_,
have used the Bogomol'nyi equatiort85) for the back-
ground fieldsh andw. r2y! IV2—(Way+ap)=b_ IV2,
We also point out that not all solutions to the second order
equationg51) and (52) satisfy the first order equatior49) arty_ —wy, V2=,
and(50). In fact, it is not hard to see that the solution spaces
defined by Egs.(49 and (50) are three- and one- ay—ha,+wy_—y, IV2=p,, (57)
dimensional, respectively, rather than four- and two-
dimensional. in the even parity sector, and
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12y IV2+(a,—wWay;)=blv2, fact, sincey=0 is a residual gauge mode of Eq58), the
B B B differential equation foty will be of second, rather than third
—a1twWylvV2=, order. Moreover, using the second residual gauge mode, one
eventually ends up with a first order equation. First, one
— @y +ha,—yIVi=B,, (58)  easily finds, from Eqs(58),
in the sector with odd parity. (r%y")' =h(r?y") = (w?+1)y=—hb, (61)

For the vanishing RHS, the above equations are the lin- - -
earized Bogomol'nyi equations, which have been studied invherev2(wB,—Bz)=b’ was used on the RHS. Now using
the literature. Using the background equati@8), it is easy  the second residual gauge mog&"9%h, the homogeneous
to verify that the residual gauge mode =0, y,=v2h, part of the above equation can be cast into the following first
a1=W, a,=—1 satisfies the homogeneous equatitdid,  order equation for{/h)’:
while the residual gauge modes=v2h, a;=w, a,=1 and

~ ~ ~ 2.2 [Z\']!
v=0, a;=1, a,=Ww are solutions to the homogeneous equa- h°r Z) ~0
tions (58). w \h '
VI. ODD PARITY MODES with the solution}m hfw/(rh)?. The integration can be per-

_ _ formed by using the relatiopw/(r2h)]" =w/(rh)?2, follow-
We shall now solve the perturbation equations. We starfng from the background equati¢@7). Hence, the only non-

with the odd parity sector, for which all solutions can be gauge mode of the homogeneous equati@as is
obtained in closed form. We emphasize, however, that this
sector is of minor importance, since the odd parity modes ~ w ~ - w
cannot contribute to the angular momentum. In Sec. VI A we YO=—, Vial®"=h——, Via)"=—. (62
compute the magnetic amplitude&B°% which we use in r r r
Sec. V|dBd as source terms to obtain the perturbat@F_l§dd [In order to verify that this solves the homogeneous part of
and 6A°%. In osdgc' VI C we finally compute the electric per- gqs (58), one uses again the first order equatidf) for the
turbations 5P background fielch.] We may finally use the two solutions
_ _ Y°M and 399 h to solve the inhomogeneous equation
A. Solutions to the 6B equations (61) with source ternf= — hb= ~hw—wY):

In order to compute the source teréB°® we have to
solve Egs.(50) for the amplitU(_jetJ e.;md,Blyz defined in ~Eq. ;’mh:f dr zz(ﬂ(l)’;/gauge_'_ M(zﬁ’hom)a 63)
(33). Using the last two equations in EO) to expresss; r

and B, in terms of b, the first equation becomes’/b : _ ~hom _ ~gaug
= h(w+w™3)/(w—w"), which is trivial to solve, since the W1 #@=y"TW and pe =W, where W
numerator is the derivative of the denominator. Hence, the Y**" 1y’ —y"*™(y%*9}" is the Wronskian of the two

only solution to Eqgs(50) is homogeneous solutions. A short computation yieMbs
=w/r?, and hences(;y=1, u(zy= —r?h/w. We thus end up
~ 1 ~ ~ h with
b—W—w, v2B,=h, Viﬁz—_w- (59

Inserting this back into the expansidB3), and using the
background equatiof35) for h’ and the formula(C1) for
Dz, yield the simple result This shows that the physical modes describing magnetic
perturbations witll=1 and odd parity form a two-parameter
family. In particular, the perturbations of the Higgs field be-
come

_ W[ r2hhh' r?h o hi
yh=— f——dr—— —dr|. (64
r w W W W

oddzi
5B~ D(h2). (60)

B. Solutions to the inhomogeneous BPS equations SHCU= (Cry ™ Coy™). (65
Now that the source terms for the linearized Bogomol'nyi[The arbitrary constan€, reflects the fact that the source
equations(58) are known, we can proceed and solve thetermsdB are themselves solutions to a homogeneous set of

inhomogeneous problem. Since the homogeneous equatiorguations, implying that the inhomogeneity in E1) is
admit three solutions, two of which are the residual gaugenly fixed up to a multiplicative constaftSince the self-
modesy=v2h, a;=w, a,=1 andy=0, a;=1, a,=w, we  dual solutiony™™ diverges like 7> near the origin, while
need to find the remaining solution of the homogeneoushe non-self-dual pary™" diverges likef€'/r at infinity, we
problem and a solution of the inhomogeneous equationgonclude that there exist no small magnetic perturbations of
This is achieved by deriving a third order equationforln  BPS monopoles and JZ dyons with odd parity.
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C. Solutions to the &P equations h' w2+ 1
E”—ZFE’—Z 2 2=0. (71)

The electric perturbationg with odd parity are governed

by Eq.(46). Since the magnetic amplitudiefulfills the same o , . -
second order equation, we immediately conclude from thé&onsidering the quantity/h, we obtain a Schidinger
solution (59) that equation with potentiaP(r),

N 1 w?+1 (h71)"

(j,(l):w—W (66) (2/h)"=P(r)(X/h), where P(r)=2 " +

solves Eq.(46). [In fact, using v=w™ 1)’ =h(wxw™1), (72

one has Ww—w 1)"=h’'(w+w 1) +h¥(w—w-1)=[(w? Having solved this equation, one obtains the magnetic am-
+1)/r?+h?](w—w~1).] The second solution is given by plitudeb_ from the definition of% and the first equation in
P@=3W[[HM] 2dr. The integral can be carried out, and Ed: (49). In order to findo., one uses the last equation in Eq.

yields (49 and solves Eqg.70) for B, and B3,. This yields
~ 1 1 h >/
2)_— il B b_=| —dr,
10 ; w+ w) e (67) h
[Using the background equatiof®&5) it is not hard to verify 1 1 1 1\,
that this is indeed the second solution to Ef).] The elec- V2b, = wt ol (hb_ %)= Sa{ w27 (73)

tric perturbations with odd parity are, therefore,
1 The formulas forB, and B, in terms of3 are not given
odd_~ (. %D 1 C. 52 here, sinceéB can be expressed in terms bf and b,
oP r (Coo Ca™), 68 alone. This is seen as follows: Using the relatid€4), the
. o _ terms tangential t&? in the expansiori33) for 5B%*"can be
which remains finite for —c only if C;=C,. However, as ritten in the form
(M +$@)/r diverges like 172 in the vicinity of the origin,
we conclude that there exist no small electric perturbations P17 dK+ BoKdr,
of BPS monopoles and JZ dyons with odd parity.

[(WBy— B1)DX+V2(B,—Wp1)DY]

2_
VII. EVEN PARITY MODES w1
; i 1 N N
A. Solutions to the 8B equations =71 1[(hb,—E)DX+(hb+)DY],

In order to solve Eq949), we first note that the equation

for b’ is a consequence of the remaining ones. Eliminating,here we have used the last equation in E§) and the
b, by using the last equation in EG19), we obtain a system yefinition (70) to get rid of 8, and 8,. Now using Eq.(73)
of three first order equations ftr_, 8;, andg,. Itisthen 5. 1, e haveS’=hb’ , and thus bb_—3)'=h'b_
straightforward to decouple these equations, which yields &hich enables us to write the term proportional¢dn Eq.
third order equation fob_ . Sinceb_ enters this equation (33) as r2b_dr=(w?—1)"th’b_dr=(w?—1)"td(hb
only via its derivatives, one concludes that =const is a N - N

solution. In fact, one easily verifies th@ny constant timgs —2). Hence, the terms proportional ¥ and DX combine

to an exact covariant derivative, which finally yields the re-

1 h sult
b®=2, bO=va|w+ | pO=-h - )
(69) 5B ——{D(hb_—%)X]+b,D[NY]}. (74
W —
solves Eqgs(49). In order to find the remaining two solutions,
it is convenient to define the quantities This shows that all three magnetic modes with even parity
_ are obtained from Eq$72), (73), and(74). In particular, the
S=hb_+(B8:—WBy), trivial solution3.(Y=0 of Eq.(72) gives rise to the solution
_ 69), which yields
A=h"H(Bytwpy). (79 (09 whichy
Since and A vanish for the solutior{69), it is possible to SBeven(0) — D(hX)+ i W E D(hY)
derive a system of two first order equations for these quan- wi—1 ol w ’
tities. Using the three equations for., B;, and B,, one (75)

finds after some manipulationss’'=2h?A and A’
=h?r2(w?+ 1)~ 13, which also yields the following second  The two nontrivial solutions of Eq(72) are not (yet)
order equation foi:: known in closed form. However, their qualitative behavior
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can be discussed rigorously: The potent4l) is positive B. Solutions to the inhomogeneous BPS equations
definite for aII- finite values of. [llr), fact, u§ing the back- We now discuss the inhomogeneous linearized
ground equations to computé (%)", one finds from Eq. gogomolnyi equations(57). These can be written as a
(72) fourth order equation for either of the four variables
Y+ ,a1,, parametrizingsH®'*" and SA®'®" Since y_ van-
1 (h"\2 [1 n'\? ishes for the residual gauge mode of the systém, the
P(r)= 2 ety (7€) equation fory_ is only of third, rather than fourth order. One

finds

which is manifestly non-negative, and vanishes only for  (r2y’)"—2h(r?y" )’ —2(1+2w?)y’ +4h(1—w?)y_
—.] As h'/h=1/r —2r/15+ O(r®) in the vicinity of the

origin, we haveP(r)=6/r2+ (1), implying that the funda- =I[ 5B, (80)
mental solutions behave Iik&M/he1/r? and 3)/herd,
For r—o one hasP(r)=22+O(1/k3%), which yields
3>W/hocl/r and 3@/hocr?. The monotonicity property of
>/h, following from the positivity of the potential76), en-
ables one to conclude that the solution which diverges at the

origin remains finite at infinity, and vice verspAlso we 7] 5BeYe =
have used global existence, following from the linearity of 1-w?
Eqg. (72) and from the finiteness of the potential fo0.] ] .
Sinceh behaves liker near the origin and approaches the  The solutions to the homogeneous problem, that is, the

constant value- 1 at infinity, the two nontrivial solutions of ~Solutions to the linearized Bogomol'nyi equations are known
Eqg. (72) behave as follows: in closed form{5,6,8. In fact, they can be expressed in terms

of the quantitiesw and h. Using the background relations
(35, it is not difficult—and not particularly pleasant

where the inhomogeneity is an expression in termis.oand
B12. Using Egs.(49) for these amplitudes, it is possible to
expressZ[ 6BV in terms ofb, andb_ alone:

2w

[w(hb_) +vZ(hb,)']. (81

2Weerh 3 @erd, - for r—0, 77 either—to verify that the three solutions of the homogeneous
Eqg. (80) are
and
(1) _ ' — 1 2
SWar=1 3@ar2, for r—o, (79) y==h'=5Ww=1),

In Sec. IV C we have shown that the angular momentum 1
can be expressed as a boundary integral. The relevant quan- y?= < [wi=(rh—1)],
tity appearing in Eq.(44) is the difference of If_ r
+v2wb_ ) between infinity and zero. For the soluti@{®
this quantity remains finite at infinity, whereas it diverges
logarithmically at the origin(Note that the leading power,
1/r?, cancels in the above combinatip@n the other hand,
(b(g)+ v2wb, ) remains bounded at theéorigin for the solution
3,1%) whereas it obviously diverges like at infinity. Hence, L .
neither of the two nontrivial solutions to EZ2) gives rise  °€cOmes unbounded at infinity. Henecvgr; neity€ nor y*
to a finite angular momentum. The fact that we are able t&IVes rise to small per'gllj)rbanons oH="™
decide this without solving the inhomogeneous equations The third solution,y™”, does give rise to an acceptable
(57) for 8H and A follows from the observation that the Physical mode. The latter corresponds to a translation along
angular momentum depends on the magnetic perturbatiori§€ z axis. This is seen by differentiating the background
only via the fieldsB. Moreover, only the boundary values of field H=rh with respect to d,=cosdd,—r " sin 97,
the gauge invariant quantityB are needed to obtain the Which yields 9,;H=h"X+r"*hv2Y, and hencey_=h'.
magnetic Contribution to the total angu'ar momentum. [Note that the coefficient in front of is not the amplltude
Surprisingly enough, the third solution, given in closed ¥+ introduced in Eq(53), since the latter was defined in a
form in Eq. (69), does give rise to a finite angular momen- gauge wheresA is tangential toS?; see Eq(54). The only
tum, although the amplitudie, diverges at infinity. By vir- quantity which is not affected by the corresponding gauge
tue of Eq.(44) we have transformation isy_ ; see also Appendix .
The remaining two physical zero modes in the sedtor
- o =1 correspond to translations along th@ndy axes. They
8JM=— —[b_+v2wb, |5=—". (79 do not occur in the above calculation, since, for reasons of
3 3 symmetry, we have restricted the harmonic decompositions
to the magnetic quantum numblkgr=0.
In order to decide whether this is an acceptable perturbation, We recall that none of the above solutions to the linear-
we have to compute the physical fieldsl and 5A. ized BPS equations can contribute to the angular momentum,

Y =w2+2(rh—1). (82)
Concerning these solutions of the homogeneous linearized

PBS equations, we note the following.
The amplitudey? is not finite at the origin, whiley!®
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since only the fieldB, describing the non-self-dual pertur- §’=h¢’ 87)

bations, enters the expressi(i8).

It remains to find the solutions to the inhomogeneous
equation(80). Since all solutions to the homogeneous prob-

one eventually finds the equation

lem are known, we can apply standard methods to obtain the h' w2+ 1 - w2

particular solutiom™. For given inhomogeneit§ one has 3'-2- 3 —2—5— Y= —ksh' —ke2—>—, (89)

. 7
h k
Y= vi’f Moz dr,

where the three quantitigs, are obtained from the homo-

geneous solutions™® by

8ijk'}’(—l>('}’(—”)l

o= P
emn Y (YD) ()"

A rather lengthy computation yields the valte24w?/r# for

the Wronskian in the denominator, and then

1
M<l)=z(1+r2+sinhz(r)),

1( 2
M= | Sinh(rjcosir) —r—=r*],

(89

h

(83)  wherek, andk; are integration constants. The homogeneous

part of this equation coincides with the corresponding mag-
netic equation71).

The particular solution forky=0 is 3=k, with
S©=1. This yields¢$®=const, which coincides with the
magnetic solution(69). The two solutions to the homoge-
neous problemX®) and (), say, coincide with the two
remaining magnetic solutions obtained from the homoge-
neous equatior(71). The additional solutiony =kz> (),
which is not present in the magnetic case, is the particular
solution forky=0. Again, this can be given in closed form
by introducing the quantitg=3./h?. Using again the back-
ground equatior{37) for h, a short computation shows that
the LHS of Eq.(88) assumes the formh?)’+2h’S.
Hence, the desired solution 8= —k,/2, that is, ()=
—h?/2. By virtue of Eq.(87) this yields ¢®oh.

1 We thus conclude that the four electric perturbations with
HE)~ 7 10 89 even parity are given by

In the previous section we have argued that only the solution 0)_ 0)_ 1
(69) of the equationg49) for 6B°'°" gives rise to a finite ¢T'=2, $=v2| Wt wl’ (89)
angular momentum. Hence, it remains to comwﬂ@ for
the source term given bp®=2 andb®=v2(w+w™1). Va2
Using the expressiof81), we immediately have ¢¥=2h ¢>(3>—W(rh)’, (90)

sBeven0) 1= _ 4| p2 2w?+1 86 (1,2

1 J=—4{ h*+ — (86) ¢<1»2>=fdr (512)

. - h ,
The solutiony'ﬂh is now obtained from Eq€83), (84), (85),
and (86). An expansion in powers af reveals thaty™ di- 1 r3(¢pt2y”
verges like 17 in the vicinity of the origin. Sincey® di- PtP=—||w+ _) pt?— —} (91)

. - V2 w 2w

verges like 173, while ¥ and y® are well behaved for

—0, there is no combination of™"

with a homogeneous

where 32 are the two nontrivial solutions ta>”

solution (82) which remains bounded at the origin. Hence, =, P ~
we conclude that there exist no bounded magnetic perturba= 2(n'/h)X’ —2r"%(w"+1)%=0. The angular momentum
tions 8H, 8A, which give rise to finite angular momentum. 1S obtained from Eq(43) and the above solutions. One finds

C. Solutions to the &® equations

2
570 = ?ﬂ[rZh’(l—rh)]ooc,

It remains to discuss the electric perturbations with even
parity. The latter are governed by E¢45) for ¢_ and ¢ . o
We have already argued that three solutions of these equa-  53¢3) = ——[rh(h—rh")]3,
tions coincide with the magnetic solutiomd” , b, and 3
b(?), discussed in Sec. VII A. In order to find the remaining ,
solution, it is convenient to write the systddb) in the form 53812 = _ z[rzh(h—(rh _ 1)¢(1,2)+(¢(1,2)),
of a second order equation with two inhomogeneities. The 3 h - -

manipulations by which this can be achieved are discussed in

oo

o r
Appendix E. Introducing the quantiy in the same way as - E(d)(_l’z))”” . (92)

in the magnetic casksee Eq(73)],

0
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It is easy to see that the only combinationgdf’ and¢(®)  the methods developed in this article. Whether the main
which gives rise to finite angular momentum is their sum.result—the fact that there exist no rotational excitations of
However, since the amplitudes enteriddp are ¢, /r and  Julia-Zee dyons and BPS monopoles—generalizes to more
¢_Ir [see EQq.(31)], the perturbations® obtained from general background configurations is an open problem. In
»©@+ ¢ diverges at the origin like 1/ particular, the effect of a Higgs potential and the coupling to
gravity need to be investigated for the excitations of Julia-

The behavi S (1) qi in Egs.(7 d(78) impli
e behavior o™ given in Egs.(77) and(78) implies = ° dyons.

that ™M= O(1/r2) asr—0, andpV=O(1/r) asr—. Us-

ing this in the above expression shows that the angular mo-

mentum is again finitd,6J%Y| <. As above, the perturba-

tion &P is, however, not bounded at the origin. The appropriate way to treat axial perturbations in gauge
The solutiong® diverges liker? asr—cc. However, the theories is by using the isospin harmonics introduced in Sec.

leading order terms in the expression &1°?) cancel, and |V A. It is, therefore, suited to write the background fields in

so do the next-to-leading order terms. Hence, & and  terms of the spherical &) basisr, ,y,7,,, defined by

53%3) 53¢ diverges only with the first power af, im-

plying that there exist linear combinations ¢f?) with ¢® n=71, dr,=7ydd+ 7 sin ddeg, (A1)

(or ¢®) which give rise to finite angular momentum. Since

¢%r is not bounded at the origin, whilg‘®/r is bounded, wherer=r/r is the radial unit direction, and= o/(2i). The

only linear combinations of® with ¢‘®) need to be con- commutation relations of the Pauli matrices imphy , 7]

APPENDIX A: BPS BACKGROUND

sidered. However, the latter give rise to perturbatidds =7, (and cyclig, from which one obtains the formulas
which are not bounded at infinityNote that$'?/r behaves i A
like e'/r, whereasp®/r grows likee'.) [7,dr]=—*dr, [d7 ,*d7]=0, (A2)
We therefore conclude that all electric perturbations of
BPS monopoles and JZ dyons which give rise to finite angu- [dr, ,dr,]=[*d7, *dr,]=27,0dQ, (A3)
lar momentum are either unbounded at the origin or at infin-
ity. where* denotes the Hodge dual with respect to the standard
metric of the two-spher&?. It is helpful to recall that the
VIIl. CONCLUSIONS radial unit directiorr is a vector valued eigenfunction of the

In this article we have presented a gauge invariant apgpherlcal Laplacian with eigenvalue 2, implying

proach to the stationary perturbations of Julia-Zee dyons and
BPS monopoles. Restricting our attention to axisymmetric
perturbations, we have found three sets of modes in each
parity sector.

Electric perturbations: These are manifestly gauge invari
ant, since the electric background field vanishes after a hy- -
perbolic rotation. There exist even parity perturbations with A=[1-w(r)]*dr, (A5)
finite angular momentum; however, these are either not well .
behaved at the origin or at infinity. The same is true of thesince*dr,=r~?(rx 7)-dr. Using the commutation relations
odd parity perturbations, which give rise to axial deforma-(A3), the gauge covariant derivatives of, dr,, andidq-r

d*dr, = —27,dQ. (A4)

In terms of r,, the “Witten ansatz” for the spherically
symmetric connection one-form assumes the simple form

tions. become
Non-self-dual magnetic perturbations: These are perturba-
tions which satisfy the linearized field equations, but are not Dr,=wdr,, Ddr,=0, (AB)
at the same time subject to the linearized Bogomol'nyi equa-
tions. As the corresponding background field vanishes, the D*dr, = — 2wr,dQ). (A7)

non-self-dual magnetic perturbations are also gauge invari-

ant. As in the electric case, there exist even parity perturbarhe Bogomol'nyi equations;F=DH, can easily be written
tions with finite angular momentum. However, neither these, ;i by using EQ(A7), the ansatH=h(r)r,, and the for-

nor the odd parity modes are well behaved. - _ _ 2

Self-dual magnetic perturbations: These have been invesrdr-;rlﬂgz;o(g;:j ;ggr)e_d_ug\?bn*edii)nagr/r for the three-
tigated before and are known to be physically not acceptable, 9 '
apart from the translational modes. Moreover, general con- w2—1
siderations show that self-dual modes cannot contribute to *F=w'dr, +
the angular momentum. The fact that all solutions to the
linearized BPS equations are known in closed form is, how-
ever, very useful to reconstruct the physical fietd and DH=hwdr,+h'rdr, (A9)
SA for the non-self-dual modes.

In conclusion, we would like to emphasize that the distin-which yields the well-known first order equatiof35) for
guished properties of the BPS background are very critical tov(r) andh(r).

" T.dr, (A8)
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APPENDIX B: THE 2 +1 DECOMPOSITION APPENDIX C: HARMONIC ANALYSIS

The axial perturbation equations for a static, spherically By virtue of the above decompositions, the task of writing
symmetric s() valued function involve the three- out the perturbation equations reduces to the problem of
dimensional gauge covariant Laplacian with respect to theomputing the gauge covariant derivativeoDsu2) valued
gauge potentialA5). As the latter is tangential t8°, the  functions and one-forms ov&?. We have already argued in
three-dimensional gauge covariant derivative operator is  gec. |V A that thel=1 sector is spanned by the three scalar

. harmonics X, Y, and Z, defined in terms ofr, and K
D=dr0d,+D, (B1) =cosd [see Eq.(30)], and the four one-forms Xi=
—v2dY, *dX, dz, and*dZ [see Eq.(32)]. Instead of the
latter, it is very convenient to use the linear combinations
7,0K,Kd7, and their duals. The entire harmonic decomposi-
tion is then obtained from the formulas

where
D=d-+[A,-], with d=dd0dy+deld,. (B2)
For an arbitrary Lie algebra valued functiébrwe thus have

DX= r,dK +wKdr,

f
*D*xD| —
r

1

r

P+ — *D*D|f, (B3) v2DY = —wr,dK — Kd7,,

r

where the factor t/is introduced for conveniencéere we V2DZ=wr,*dK —K*d7, (C1)

have usedtdr=r2dQ and *Df=—dr0*Df.) The above _ o _
formula enables us to immediately write down the 2 de-  for the covariant derivatives of the scalar basis, and the re-
composition of the electric perturbation equati@l). With  lations

f=rdéd this becomes .
*D(7,dK)=wv2Z,

1
2. T ZARR - _ ~a
It *D*D)(ré@) [H,[H,ré®]]. (B4) B(Kdr) = —vaz,
The 2+1 decomposition of thefirst orde) magnetic ¥D(r,*dK)=wv2Y —2X,
equationg22) with respect to the ansatz
1 *D(K*dr,)=v2Y —2wX (C2)
8B=—bdr+B (B5)

r for the covariant derivatives of the basis one-forrfiBhe

equation for X and Eqgs(C2) are immediate consequences
X ) : of Eq. (A7), while the derivations of the expressions fov D
su2) valued one-form tangential t8°, andb is an sy2)

valued scalar field.We owe the proof of the assertion that and [ reguwe sll|ghtly more worﬁ.ﬂ “a

is subject to the same second order equation as the scalarAS an illustration we compute D*D(r 5), where we
electric perturbations®. In order to see this, one applies use the expansiofi3l) to write ré®=¢_X+ ¢, Y+ $Z.
¥D* on the second, and, on the third equation if48). A For the first term we find, for instance,

short calculation yields

was given in Sec. V B; see Eq#18). [Here B denotes an

*D*D(p_X)=¢p_*D[ 7% dK +WK*d7, ]

T+ = ;ﬁ;ﬁ)b=—;[(IﬁH—;A’),B]—[H,;ﬁB]. =[2v2wY-2(W?*+1)]¢_ .

r

A similar computation for the second and third term gives

The 2+ 1 decomposition of the Bogomol'nyi equation give
positi g yi equation giv Sthe result

DH=*A’, implying that the first commutator on the RHS
vanishes. By virtue of the first equation in E48), the sec-
ond commutator becomds$1,[H,b]], which yields the re-
sult

*D*D(réd)=[—2(W?+1)p_+2vV2we, |X

+[2V2wep_ — (W2+ 1), ]Y
1.,
gi+ — *D*D

b=—[H,[H,b]]. (B6) ~[(W3+1)9]Z, (C3)

-

Hence, the equatio(B4) for the scalar electric perturbation, Which, together with the 21 decomposition formul&B4)
r o®, coincides with the second order equati@®6) for the  and[H,[H,(r6®)]=— (¢, Y+ ¢Z), yields the desired per-
scalar part of the magnetic perturbatidr=r?(dr,B). turbation equation$45) and (46).
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with ;according to Eq(D5). Hence, after a gauge transfor-

In this Appendix we show that there exists a gauge formation with y, the general perturbation®1) and (D2) as-
which the perturbation$H and A assume the expansions sume the formg53) and (54), respectively, where the coef-
(53) and (54), respectively. We also establish that the coef-ficients are related as follows:
ficients are gauge invariant, up to the residual gauge trans-

formations given in Eqs(55) and (56). For simplicity, we

focus on the even parity sector; the manipulations for the odd

y =y vy w,

parity sector are completely analogous. The general expan-

sions for sH®®"and SA®V®"are
SHEYe=y_X+1y.Y, (DY)

SASVE= o Zdr + ay 7% AK + K * d, | (D2)

— W — — 1 _
al=a1—5 J aqdr, a2=a2+5 j agdr. (D7)

It is clear from the above reasoning, and not hard to verify,
that the amplitudes without bars are gauge invariant, up to
residual gauge transformations with

where the bars have been introduced to tell the amplitudes

apart from the ones introduced in Eq4S3) and (54). Under
a gauge transformation with an(&u valued functiony one
has

SH—SH+[H,x],

SA— 5A+ Dy, (D3)
where, as usuaH is the background Higgs field and D the
covariant derivative with respect to the background potenti
A. The strategy is to writeSH and SA as sums of a pure
gauge and arialmos) gauge invariant part. FofA this is

achieved by a partial integration of the radial part, and by

using the expression&C1) for the covariant derivatives of
the isospin basis. The radial part 8£°'®"can be written as

z f agdr

where we have used the fact thaZ ®DZ. (Recall that D

agZdr=D

- DZJ agdr,

=dr0s, + D, and that the isospin harmonics are defined over

S%.) Now using the expressiofC1) for DZ brings SASVe"
into the desired form:

_ J— W J— ~
OA®Y®'= —Dy+| ay— — f aodr | 7,*dK

X 1 3 0 r

+_+1 J_d K*d (D4)
o — aodr |K*d7,,
2 \/i 0 r

where

Y=-2 f agdr. (D5)

In order to separate a pure gauge term fréH'®", we use
[7,,Z]=Y andH=hr, to write

5Heven:_[|_|,;]+77x+ Y, (D6)

?+—hf agdr

XOZC]_X+ C2Y+ CSZ, (D8)
wherec,, ¢, andcy are arbitrary constants. Since only the
last term is relevant to the even parity sector, we have
D xS =cy(wr*dK—Kxdr,)/v2 and [H,x&®"=cshY.
Using this in the transformation lawB3) for the even parity
perturbations(53) and (54), we conclude thaty_ is gauge
invariant, whiley, , «; anda, transform according to Egs.
(55) under the residual gauge transformations. A completely

aftnalogous reasoning establishes the transformation(B&ys

for the odd parity sector.

APPENDIX E: EVEN PARITY ELECTRIC
PERTURBATIONS

In this Appendix we briefly show how the two coupled
second order equatiori45) for ¢_ and¢, can be translated
into the inhomogeneous second order equatif) for 3,

defined byi’thS’,. The procedure involves two integra-
tions. The first integration is achieved by the observation that
Eqgs.(45) can be cast into the form

VI = -2 (Vi — o), ED
w
Prp— ¢ =222 5(V2¢ —pd.), (E2

where we have introduced the shorthangw+ 1Awv. Since

the RHS of the above equations are equal, and since both
LHS are exact derivatives[¢” u— ¢, u"=[u(d./
©)'1'], an integration yields the following first order rela-
tion betweeng_ and ¢, :

B ¢ —ks
we

&) (E3)

3|
V2 \ M
whereks is an integration constant. We now solve Eg2)

for ¢, /u, perform a derivative, and use the result on the
LHS of Eqg. (E3). This yields the following second order
equation forg’ :
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r2g” \’ ) 2,
I YA N AT

which shows that_ = const is a solution of the systefial),
(E2).

Our aim is to integrate EqE4) once more. In order to see
that this is possible, we introduce the variaBleccording to
definition (87), and note that the term in front ofp(_ —k3)
can be written in the forni(w?—1)/(w?+1)]'/h. Hence,
with

Si=he' W
=h¢_, a= 277 (E5)
Eq. (E4) assumes the form
a (3] 5 _a (¥ .
Win) | 2h - hin k) (O

It is not hard to perform the differentiations and to rewrite
this third order equation foE in the form

&

a

h

a
h

i///+ -2 2”.}.

a Ii”
h'

"z‘f}

—[25'—ksa']=0,

where each of the three pairs is manifestly an exact deriva-

PHYSICAL REVIEW D 58 105021

homogeneous part of EGE7). The four independent solu-
tions (89)—(91) to the original system(45) are finally ob-
tained from Eq.(87).

APPENDIX F: ELECTRIC CONTRIBUTION
TO THE ANGULAR MOMENTUM

In Sec. IV C we have argued that the total angular mo-
mentum can be expressed in terms of the perturbation ampli-
tudes at the origin and at infinity. While we have established
this result for the magnetic contributi@8®9), we still owe the
proof of the formula43) for the electric par{38). In order to
show that the bracket in the integrand in E4fl) is an exact
radial derivative, we first perform a partial integration in
both terms, which yields
rh'¢_——

(W’du
%

r
—h(r¢_) +v2whe, .

!

r2

! r
) :{rh(ﬁ—_ﬁw b
(FD

In order to show that the last two terms on the RHS combine
to an exact derivative, we use the first perturbation equation
in Eq. (45) to expresse, in terms of ¢_ and ¢” . Also
using the background equations ferandh, we then have

—h(r¢_) +v2wheo

2
—¢" —rh¢" +w?hep_

tive. Integrating the above expression and multiplying the

result withh’/a eventually yields

!

~ h' -~ h' -

where k, is a further integration constant. Sinca

2
r2 "

:—(7¢_ WA= 141h]$L+[2wh+ () 1
r2h ' ) '

:{_(T(ﬁ +(we=1+rh)¢_

=r2h’/(w?+1), this is the desired inhomogeneous secondJsing this on the RHS of EqF1) gives the desired formula,

order equatior{88). We recall that the four parameter family
of solutions to Eq(E7) is

S=> k3, (E9)

where the sum runs from 0 to 3, and wh&&)=1, 3®
=—h?/2, and> 12 are the two(nontrivial) solutions to the

r2
rh'p_— —
"

W',
r

|

e
——E[(l—w —2rh)¢_

+r2h¢’ +v2wrhe ],
(F2)
which was used in Sec. IV C to establish the res48).
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