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On rotational excitations and axial deformations of BPS monopoles and Julia-Zee dyons
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~Received 8 June 1998; published 13 October 1998!

It is shown that Julia-Zee dyons do not admit slowly rotating excitations. This is achieved by investigating
the complete set of stationary excitations which can give rise to nonvanishing angular momentum. The relevant
zero modes are parametrized in a gauge invariant way and analyzed by means of a harmonic decomposition.
Since general arguments show that the solutions to the linearized Bogomol’nyi equations cannot contribute to
the angular momentum, the relevant modes are governed by a set of electric and a set of non-self-dual magnetic
perturbation equations. The absence of axial dipole deformations is also established.@S0556-2821~98!00122-2#

PACS number~s!: 11.15.Bt, 14.80.Hv
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I. INTRODUCTION

The main question addressed in this article is whet
Julia-Zee dyons admit rotational excitations. The investi
tion of this problem was motivated by some surprising
sults which we recently obtained for a class of se
gravitating non-Abelian soliton and black ho
configurations. In@1# we showed that the Bartnik-McKinno
solutions @2# admit slowly rotating excitations. A two
parameter family of axisymmetric excitations of the sta
black hole solutions to the Einstein-Yang-Mills system w
established as well. In addition to the charged, rotating bl
holes found in@3#, there also exists a branch of uncharge
rotating black holes, as well as a branch of stationary—
not static—black holes with vanishing Komar angular m
mentum@1#.

On the other hand, the situation was shown to be co
pletely different in the presence of scalar fields@4#. Slowly
rotating generalizations of~self-gravitating! solitonswereex-
cluded for a relatively large class of theories with no
Abelian gauge fields coupled to Higgs fields. In particul
the results obtained in@4# apply to the ’t Hooft–Polyakov
monopole and its self-gravitating generalizations. Forblack
hole solutions of gauge theories with Higgs fields the situ
tion is again different: Rotating excitations of static bla
holes generically exist; they are, however, necessa
charged.

Since we are still lacking a deeper physical understand
of the facts mentioned above, we have been looking for o
~not gravitating! examples which might help to find a clue
On the basis of our previous experience, we originally
pected staticdyon solutions to admit rotational excitations
The simplest examples are the Julia-Zee dyons, which
related to the Bogomol’nyi-Prasad-Sommerfield~BPS!
monopole by a one-parameter family of hyperbolic rotatio
in internal space.

The problem of small fluctuations around BPS monopo
has been examined some time ago by Mottola@5#, Adler @6#,
Weinberg@7#, and completed in a comprehensive analysis
Akhoury et al. @8#. The main emphasis was placed on t
study of normalizable zero modes in theself-dual sector,
because these are relevant to the structure of multimono
solutions. The moduli space of SU~2! monopole solutions
carrying n units of magnetic charge was shown to
0556-2821/98/58~10!/105021~16!/$15.00 58 1050
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4n-dimensional@7,9#. ~See also@10–12# for a generalization
to arbitrary gauge groups and for further references.! As
these studies are dealing with the self-dual sector, an in
tigation of the remaining zero modes seems to be necess
This is also motivated by the following observations, whi
are obtained from general considerations.

The solutions to the linearized Bogomol’nyi equations
independently of whether or not they are physica
acceptable—cannot give rise to a nonvanishing angular
mentum. This is true for both BPS monopoles and Julia-Z
dyons.

The only excitations of BPS monopoles which can co
tribute to the angular momentum arise from perturbations
the time component,dF[dAt , of the gauge potential; thes
will be calledelectric modes.

The only perturbations of Julia-Zee dyons which can co
tribute to the angular momentum are the electric ones and
non-self-dual magnetic ones.~A mode will be calledmag-
netic, if dF vanishes, andnon-self-dual, if it is a solution of
the linearized field equations, but not of the lineariz
Bogomol’nyi equations.!

The full problem, including the non-self-dual fluctuation
was studied by Baake@13# in connection with the stability
analysis of the t’ Hooft–Polyakov monopole. In his wor
Baake mainly focused on thenegativefluctuation modes, the
absence of which he was able to prove by applying the
coby criterion. Since we are not aware of any other wo
devoted to non-self-dual zero modes, we carry out a syst
atic, gauge invariant perturbation analysis in order to stu
the rotational excitations of BPS monopoles and Julia-Z
dyons. The emphasis in the present article is mainly pla
on the methods. The main result is, unfortunately, negat
Neither BPS monopoles nor Julia-Zee dyons admit slow
rotating excitations.

A further motivation for studying non-self-dual rotation
excitations is provided by a theorem due to Taubes@14#,
according to which not every finite energy solution to t
field equations in the BPS limit has to satisfy thefirst order
Bogomol’nyi equations. Hence, the existence of physica
acceptable excitations orthogonal to the Bogomol’nyi sec
is not a priori excluded. However, the results of the prese
work imply that all non-self-dual axisymmetric finite energ
solutions, if they exist, are necessarilydisconnectedfrom the
Julia-Zee dyons. This is, in fact, a weak version of the ori
©1998 The American Physical Society21-1
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M. HEUSLER, N. STRAUMANN, AND M. VOLKOV PHYSICAL REVIEW D58 105021
nal conjecture@15# ~the general form of which was disprove
in Taubes’ work@14#!. It is, however, likely that configura
tions with unit winding number and discrete angular m
menta exist. This is, for instance, the case for boson s
@16#.

This paper is organized as follows: In Sec. II we brie
review the symmetry which connects the PBS monopole
lution with the one-parameter family of Julia-Zee dyons.
Sec. III we show how to use this symmetry to reduce
perturbation analysis for Julia-Zee dyons to that for the P
monopole. The main advantage of this consists in the
that, after a hyperbolic rotation, the electric background fi
vanishes. This implies that—in the rotated system—the e
tric perturbations,dF, do not couple to the magnetic one
We then show that the non-self-dual magnetic perturbati
are governed by a system of first order equations for a o
form, dB. The latter comprises the perturbations of t
Higgs field, dH, and the perturbation of the three
dimensional gauge potential,dA, in a gauge invariant way.

In Sec. IV we present the decomposition of the gau
invariant perturbationsdF and dB in terms of isospin har-
monics. We also show that the expression for the ang
momentum can be integrated, implying that only the bou
ary values of the perturbation amplitudes are relevant.
complete set of perturbation equations is derived in Sec
This consists of an even and an odd parity sector. Each se
comprises the electric equations fordF, the magnetic equa
tions for dB ~governing the non-self-dual modes!, and the
inhomogeneous linearized Bogomol’nyi equations fordH
anddA in terms of the sourcedB.

In Sec. VI we discuss the odd parity perturbations a
present the solutions of the complete set of equations
closed form. As the odd parity modes cannot contribute
the angular momentum, we conclude from the solutions
there exist no physically acceptable axial dipoledeforma-
tions of Julia-Zee dyons. The more interestingevenparity
modes are discussed in Sec. VII. We show how to use
explicitly known solutions to reduce themagneticproblem to
a standard Schro¨dinger equation. We also prove that th
electricperturbations are governed by exactly the same eq
tion. Since the latter has a non-negative potential, we
able to present a rigorous discussion of all modes. It tu
out that there exist solutions~both electric and magnetic!
which give rise to finite angular momentum. However, no
of these modes are regular.

II. BPS MONOPOLES AND JULIA-ZEE DYONS

We consider stationary solutions to the SU~2! Yang-
Mills-Higgs ~YMH ! equations with gauge potentialA(4) and
Higgs triplet H in the BPS limit ~i.e., without Higgs self-
interaction!. The dimensionally reduced YMH action be
comes

S5
1

2 E $~F,F !1~DH,DH !2~DF,DF!2@F,H#2%d3x,

~1!

where F and A parametrize the electric and the magne
components of the gauge potential,
10502
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A~4!5Fdt1A. ~2!

The quantitiesF and D denote the field strength two-form
and the gauge covariant derivative with respect to the th
dimensional magnetic potentialA:

F5dA1A∧A, DF5dF1@A,F#, DH5dH1@A,H#.
~3!

@For arbitrary Lie algebra valuedp-formsa the inner product
is defined by (a,a)d3x5Tr$a∧* a%, where* is the three-
dimensional Hodge dual.#

The perturbation analysis for Julia-Zee~JZ! dyons will be
simplified considerably by the fact that the dimensiona
reduced action~1! is invariant under hyperbolic rotations i
the (H,F) plane; that is, the transformation

S H
F D→S cosh~g! sinh~g!

sinh~g! cosh~g!
D S H

F D ~4!

is a symmetry of the action~1!.
In particular, a BPS monopole solutionH5Hmon, F50

with magnetic chargePmon gives rise to a one-paramete
family of JZ dyons, H5cosh(g)Hmon, F5sinh(g)Hmon,
with magnetic chargeP5cosh(g)Pmon and electric charge
Q5cosh(g)sinh(g)Pmon. This is also seen from the field
equations

* D* F5@F,DF#2@H,DH#, ~5!

* D* DH5@F,@F,H##, ~6!

* D* DF5@H,@F,H##, ~7!

which reduce to the monopole equations, D* F5
2* @Hmon,DHmon# and D* DHmon50, for H5cosh(g)Hmon
andF5sinh(g)Hmon.

It is worth recalling that the total energy is not invaria
under the transformation~4!. However, for fixed chargesP
andQ, defined by the flux integrals

P5E Tr$H F%, Q5E Tr$H* DF%, ~8!

over the two-sphere at infinity, the energy assumes its glo
minimum for the corresponding JZ dyon solution. This
seen as follows: Using the field equations to expressP andQ
as volume integrals of Tr$DH∧F% and Tr$DH∧* DF%, re-
spectively, the total energy may be expressed as follo
@17,18#:
1-2
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E5
1

2 E $~F !21~DH !21~DF!21@H,F#2%d3x

5
1

2 E H „DF2tanh~g!DH…

2

1S * F2
1

cosh2~g!
DH D 2

1@H,F#2J d3x

1
1

cosh~g!
„Q sinh~g!1P…, ~9!

whereg is arbitrary and (F)2 is a shorthand for (F,F), etc.
From this one finds the bound~assuming, without loss o
generality, thatQ andP are non-negative!

E>AQ21P25cosh2~g!Pmon, ~10!

where equality holds if and only ifA, H, andF are subject
to the first order equation DF/sinh(g)5DH/cosh(g)5*F,
which is exactly the Bogomol’nyi equation,

* F5DHmon, ~11!

written in terms of the rotated fieldsH5cosh(g)Hmon and
F5sinh(g)Hmon.

III. LINEAR PERTURBATIONS OF DYONS

The perturbation analysis for the BPS monopole is s
plified by the circumstance that the electric perturbat
dFmon does not couple to the magnetic perturbationsdHmon
and dAmon. This is an immediate consequence of the f
that the BPS background configuration is nonelectric,Fmon
50.

Since the electric background field does not vanish for
dyons, the electric and the magnetic perturbations
coupled in this case. However, the linearity of the symme
~4! implies that all linear perturbations of JZ dyons can
obtained from the linear perturbations of the BPS monop
after a hyperbolic rotation with parameter sinh(g)5Q/P. It is,
therefore, sufficient to consider the perturbation analysis
the BPS monopole. Before doing so, we compute the var
contributions to the angular momentum.

A. Angular momentum

The total angular momentum~along the symmetry axis!
of a stationary YMH configuration is

J5E Ttwd3x, ~12!

where the relevant component of the stress-energy tens
terms of the three-dimensional quantities is given by

Ttw5
1

2
Tr$@F,H#DH2* ~DF∧* F !%w .
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By virtue of the field equation~5! and the relations
Tr$F@F,DF#%50 and Tr$F@H,DH#%5Tr$@F,H#DH#%,
we also find~after integrating by parts!

Ttw52
1

2
~* d Tr$F* F%!w . ~13!

This shows that both the electric and the magnetic pertu
tions of JZ dyons contribute to the angular momentum, si

dTtw52
1

2
~* d Tr$dF* F1F* dF%!w .

~Note that the second term is absent if the electric ba
ground field vanishes, implying that only electric perturb
tions give rise to the angular momentum of a BPS mo
pole.! Since the dyon perturbations can be obtained from
monopole perturbations, we express the angular momen
in terms of the latter, usingF5sinh(g)Hmon and dF
5sinh(g)dHmon1cosh(g)dFmon. With

dTtw5cosh~g!dTtw
el 1sinh~g!dTtw

mg, ~14!

one finds

dTtw
el 52

1

2
~* d Tr$dFmon* F%!w , ~15!

dTtw
mg52

1

2
~d* d Tr$Hmon* F%!w . ~16!

It is worthwhile noticing that both contributions todTtw are
separately gauge invariant. This is obvious for the elec
part, since this is proportional to the perturbation of a fie
which vanishes on the background, namely,Fmon. The same
is true for the magnetic part, since the quant
d Tr$Hmon* F% vanishes as well for a PBS background co
figuration.~Use* F5DHmon to see this.! In fact, defining the
one-formB according to

B5DHmon2* F, ~17!

the magnetic contribution~16! to the angular momentum ca
be cast into the simple form

dTtw
mg52

1

2
~* Tr$dB∧* F%!w , ~18!

which is manifestly gauge invariant, since, by definition,B
vanishes for the BPS background configuration.

The above expressions imply the following facts: Fir
the perturbation analysis for JZ dyons reduces to the per
bation analysis for BPS monopoles. Second, the electricand
the magnetic perturbations of a BPS background contrib
to the dyon angular momentum. Third, only thenon-self-
dual modes, that is, the magnetic perturbations withdBÞ0,
contribute to the dyon angular momentum.

The last statement reveals a fundamental difference
tween the perturbation theory of BPS monopoles and JZ
ons: Although the perturbation equations for JZ dyons can
1-3
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reduced to the ones for the BPS monopole, the physical c
tents are quite different: While only electric perturbatio
can give rise to the angular momentum of a monopole c
figuration, magnetic perturbations need to be taken into
count as well in the dyon case. Moreover, it is not sufficie
to consider perturbations within the Bogomol’nyi secto
since the latter cannot contribute to the angular momen
of a dyon.

B. Linear perturbations of the BPS monopole

Since the perturbation analysis of the JZ dyons can
reduced to the one for the BPS monopole, we shall n
focus on the latter. In the following we omit the subscr
‘‘mon’’ indicating the monopole fields, that is, we writedH
for dHmon, etc. Suppose that there is~at least! a one-
parameter family of continuous deformations of the B
monopole background,* F5DH, F50. Then the tangent to
this satisfies the linearized field equations. In order to line
ize Eqs.~5! and ~6!, it is very convenient to introduce th
one-form fieldB defined in Eq.~17!. One may then write the
first field equation in the form DB5D2H2D* F5@H,* DH
2F#2@F,* DF#, whereas the second field equation b
comes D* B5D* DH2DF5* @F,@F,H##. Hence, Eqs.~5!
and ~6! assume the form

DB2@H,* B#52@F,* DF#, ~19!

and

D* B5* @F,@F,H##, ~20!

respectively. The linearization of the field equations~7!,
~19!, ~20! is completely trivial, since both the electric fieldF
and the magnetic one-formB[DH2* F vanish for a BPS
background. Hence, the linearized field equations invo
only the gauge invariant perturbationsdF anddB: One im-
mediately finds the results

electric perturbations: D* DdF5* @H,@dF,H##,
~21!

magnetic perturbations: DdB5@H,* dB#, D* dB50,
~22!

wheredB is obtained from the definition~17!, that is,

dB5DdH2* DdA2@H,dA#. ~23!

~Here and in the following all quantities without a ‘‘d’’ refer
to background fields.! Before we consider the harmon
analysis of Eqs.~21!–~23!, we note the following:

The linearization of the Bogomol’nyi equation~11!, dB
50, has been studied extensively in the literature. The s
tions to dB50 are, however, only a subset of the gene
magnetic perturbations. The full magnetic perturbations
governed by the second order equations fordA and dH,
which are equivalent to the first order equations~22! for dB
and the inhomogeneous equation~23!. In particular, we have
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already argued above that only the nontrivial solutionsdB
Þ0 to Eq.~22! can contribute to the angular momentum@see
Eq. ~18!#.

In order to find the general magnetic perturbations, o
proceeds in two steps: First, one has to solve the system~22!
for dB. OncedB is known, it remains to solve the inhomo
geneous linearized Bogomol’nyi equation~23! for dA and
dH. This is achieved by using Green’s method, also tak
advantage of the explicitly known solutions to the homog
neous equations,dB50, derived in@6# and @8#.

Since the background BPS configuration has vanishingB,
the magnetic perturbationdB is manifestly gauge invariant
This is also verified by using the general behavior of t
perturbationsdA anddH under gauge transformations ge
erated by a Lie algebra valued scalar fieldx:

dA→dA1Dx, dH→dH1@H,x#. ~24!

Hence,dDH→dDH1@DH,x#, and dF→dF1@F,x#, im-
plying thatdB→dB1@B,x#5dB.

The second equation in Eq.~22! is a consistency condition
for the first one: Indeed, applying D on the first equation a
using D2dB5@F,dB# on the left-hand side~LHS!, and
@DH,* dB#5@* DH,dB#5@F,dB# on the right-hand side
~RHS!, yields the necessary condition@H,D* dB#50.

IV. HARMONIC ANALYSIS

Since the unperturbed BPS solution is spherically sy
metric, we perform a multipole decomposition and rewr
the electric perturbation equations~21! and the magnetic
ones~22!, ~23! as systems of ordinary differential equatio
with respect to the radial coordinate. Using these equatio
we show that the angular momentum integral can be co
puted exactly. Hence, the total angular momentum aris
from electric and magnetic perturbations is determined
the asymptotic behavior of the gauge invariant amplitud
dF anddB, respectively.

A. Isospin harmonics

The basic fieldsH,F,A, the auxiliary fieldB, and their
perturbations, are functions and one-forms with values in
Lie algebra su~2! of the gauge group SU~2!. Let us start by
considering such functions on the two-sphereS2. A conve-
nient basis, reducing the natural representation of SU~2!, is
obtained by taking the inner product of the vector spheri
harmonicsYJM

L with the basist5s/(2i ) of su~2! ~wheres
are the Pauli matrices!

CJM
L ~q,w!5t•YJM

L ~q,w!. ~25!

The isospin harmonicsCJM
L have total angular momentumJ

and fixed parity (21)L. Instead of theYJM
L it is also usual to

consider the basisYJM
(l) (withl50,61). For l50 and l

51 these vector harmonics are transverse, while they
longitudinal forl521 ~with respect to the radial unit direc
tion r̂). The transverse harmonicsYJM

(1) and YJM
(0) are also

called electric and magnetic multipoles, respectively. Th
1-4
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are obtained by applying certain differential operators on
ordinary spherical harmonicsYJM , while the longitudinal
harmonics are given byYJM

(21)5 r̂YJM ~see, e.g.,@19# or @20#!.
The formulas for theYJM

(l) can readily be translated into th
corresponding formulas for the isospin harmonicsCJM

(l)5t
•YJM

(l) ~with l50,61). One finds

CJM
~21!5t rYJM ,

CJM
~0!5

i

AJ~J11!
^dt r ,*̂ dYJM&,

CJM
~11!5

1

AJ~J11!
^dt r ,dYJM&, ~26!

wheret r5t• r̂. Here^ , & and*̂ denote the inner product an
the Hodge dual with respect to the standard metric onS2.
~Also note that the spherical components of thet obey the
relations dt r5tqdq1tw sinqdw and @tq ,tw#5t r ; see
Appendix A.! In terms of the isospin harmonics, the we
known relations between the vector harmonicsYJM

L andYJM
(l)

become

CJM
J115

1

A2J11
@AJCJM

~1!2AJ11CJM
~21!#,

CJM
J 5CJM

~0! ,

CJM
J215

1

A2J11
@AJ11CJM

~1!1AJCJM
~21!#. ~27!

By construction, the isospin harmonicsCJM
J ,CJM

J61 are eigen-

functions of the spherical Laplacian,D̂5 *̂ d*̂ d, and of the
parity operator,P̂:

D̂CJM
L 52L~L11!CJM

L , ~28!

P̂CJM
L 5~21!LCJM

L , ~29!

whereL5J, J61. ~The exterior derivatives of the isospi
harmonicsCJM

J andCJM
J61 and theirS2 duals are particularly

convenient for analyzing perturbations of Lie algebra valu
one-forms@21,4#. For the general theory of monopole ha
monics we refer to@22#.!

B. Perturbation amplitudes

Since rotational modes are our primary concern in t
article, we now focus on the sectorJ51. For theC10

(l) (l
50,61) we use~with some change of normalization! the
letters X, Y, and Z. A convenient basis ofJ51 isospin
harmonics then is
10502
e

d

s

X5t rK, where K[cosq,

&Y5^dt r ,dK&52tqsin q,

&Z52^dt r ,*̂ dK&5twsin q, ~30!

whereX andY span the even parity sector, whileZ has odd
parity. The su~2! valued electric perturbation functiondF
can, therefore, be expanded asdF5dFeven1dFodd, with

dFeven5
1

r
~f2X1f1Y!,

dFodd5
1

r
~f̃Z!. ~31!

@The factor 1/r is introduced for convenience; see, e.g., E
~45!, ~46!. Throughout this article, all amplitudes furnishe
with a tilde refer to the odd parity sector, which is releva
for deformations.# A similar expansion holds fordH; how-
ever, unlikedF, dH is not gauge invariant; see Sec. V C an
Appendix D.

Turning to Lie algebra valued one-forms, we note that
exterior derivatives of the basis functionsX, Y, andZ can be
expressed in terms of the derivatives oft r and K5cosq
}Y1 0. @This is a peculiarity of theJ51 harmonics, for which
dC1M

(0) 5(&dY1dX)/)50.# One finds

dX52&dY5t rdK1Kdt r ,

*̂&dZ5t rdK2Kdt r . ~32!

As the parity operation commutes with the exterior differe
tiations and anticommutes with the Hodge dual, one can
pand the su~2! valued magnetic perturbation one-formdB as
dB5dBeven1dBodd, with

dBeven5
1

r 2 ~b2X1b1Y!dr 1b1t rdK1b2Kdt r ,

dBodd5
1

r 2 ~ b̃Z!dr 1b̃1*̂ t rdK1b̃2*̂ Kdt r , ~33!

whereb̃, b6 , b1,2, andb̃1,2 depend on the radial coordinat
r . ~Again, a similar formula holds fordA. In contrast todB,
dA is not gauge invariant, implying that not all coefficien
in the expansion ofdA correspond to physical degrees
freedom; see Sec. V C and Appendix D!.

At this point we also recall that the background gau
potential and Higgs field are parametrized in terms of t
radial functionsw(r ) andh(r ) ~see Appendix A!,

A5@12w~r !# *̂ dt r , H5h~r !t r . ~34!

Since t r is an eigenfunction of the spherical Laplacia
d*̂ dt r522t rdV, the background field strength becomesF

52dw∧ *̂ dt r1(w221)t rdV. The BPS equations,F
5* DH, thus read
1-5
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w85wh, r 2h85w221, ~35!

with the globally regular solution

w~r !5
r

sinh~r !
, h~r !5

1

r
2

cosh~r !

sinh~r !
. ~36!

For later use we also note that the second order equation
h can be integrated, which yields the useful relation

h85h22
2h

r
21. ~37!

C. Integration of angular momentum

We now show that the total angular momentumdJ
5cosh(g)dJel1sinh(g)dJmg can be expressed in terms of th
values of the gauge invariant perturbationsdF anddB at the
origin and at infinity. According to Eqs.~15! and ~18!, the
electric and the magnetic perturbations give rise to

dJel52
1

2 E ~* d Tr$dFeven* F%!wd3x ~38!

and

dJmg52
1

2 E ~* Tr$dBeven∧* F%!wd3x, ~39!

respectively. Here we have already used the fact that only
even parity sector contributes to the total angular mom
tum. In order to express the above integrands in terms of
radial amplitudesf6 , b6 , andb1,2, we first note that the
background field strength can be written in the simple fo

* F5w8dt r1h8t rdr . ~40!

Taking advantage of the trace formulas Tr$Xt r%52K/2,
Tr$Yt r%5Tr$Zt r%50, and Tr$Xdt r%50, Tr$Ydt r%
5 *̂ Tr$Zdt r%52dK/(2&), it is now not difficult to com-
pute the above integrands from the expansions~31! and~33!.
One finds

* d Tr$dFeven* F%5
1

2r 2 F rh8f22
r 2

&
S w8f1

r D 8G *̂ dK,

~41!

* Tr$dBeven∧* F%5
1

2r 2 F r 2h8b12
1

&
w8b1G *̂ dK.

~42!

With K[cosq we have *̂ dK52sin2 qdw, which shows
that the above formulas yield thew components appearing i
the integrands of Eqs.~38! and ~39!. It is an interesting fact
that the above brackets can be written as radial derivati
This enables one to perform the angular momentum integ
and to expressdJel anddJmg in terms of the values ofdFeven

anddBeven at the origin and at infinity. In order to see thi
one has to use the perturbation equations in the harm
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decomposition, as given in the next section. Considering
magnetic part, one uses the first two equations in Eq.~49! to
obtain 2(12w2)b15b28 1&wb18 , which enables one to
eliminateb1 in Eq. ~42!. Also taking advantage of the back
ground equation~35!, one then has@r 2h8b12w8b1 /&#5
2@b21&wb1#8/2. A similar, but more complicated ma
nipulation uses the second order equations~45! to write the
electric contribution~41! in the desired form; see Appendi
F. The two contributions~38! and ~39! to the angular mo-
mentum finally become

dJel52
p

3
@~12w222rh !f21r 2hf28 1&wrhf1#0

` ,

~43!

dJmg52
p

3
@b21&wb1#0

` . ~44!

V. PERTURBATION EQUATIONS

Using the expansions~31! and ~33!, as well as the tools
developed in Appendixes B and C, it is now straightforwa
to write down the system of perturbation equations. T
consists of Eq.~21! for the electric perturbationsdF, Eqs.
~22! for the magnetic perturbationsdB, and the inhomoge-
neous BPS Eqs.~23! for dH anddA.

A. Electric perturbations

For the electric perturbations~31!, governed by Eq.~21!,
one finds the differential equations

S f29

f19
D 5

1

r 2 S 2~w211! 22&w

22&w ~w2111r 2h2!
D S f2

f1
D ~45!

in the even parity sector, and

f̃95
1

r 2 ~w2111r 2h2!f̃ ~46!

in the odd parity sector. Here we have used Eq.~C1! to
compute the LHS of Eq.~21!, and @t r ,X#50, @t r ,Y#5
2Z, @t r ,Z#5Y to obtain the RHS: @H,@dF,H##

5h2r 21(f1Y1f̃Z).

B. Magnetic perturbations: dB equations

In order to determine the magnetic perturbationsdB, we
first write the decomposition~33! in the form

dB5
1

r 2 bdr 1B̂, ~47!

where the one-formB̂ is tangential toS2. In terms ofb and
B̂, the magnetic perturbation equations~22! assume the form
1-6
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@H,b#5 *̂ D̂B̂,

B̂85r 22D̂b2@H,*̂ B̂#,

b852 *̂ D̂*̂ B̂. ~48!

Here we have used the fact that the unperturbed gauge
tential has no radial component, implying the decomposit
D5dr ∧] r1D̂ for the covariant derivative~see Appendix B!.
Taking advantage of the formulas given in Appendix C, it
now not hard to obtain the sets of differential equations
the radial functions parametrizingdBeven and dBodd. One
finds

b28 52~b11wb2!, b18 52&~wb11b2!,

r 2b185b22
w

&
b1 , r 2~b281hb2!5wb22

1

&
b1 ,

hb15&~b22wb1! ~49!

for the even parity sector, and

b̃85&~wb̃12b̃2!,

r 2b̃185
w

&
b̃, r 2~ b̃281hb̃2!52

1

&
b̃,

05b̃11wb̃2 , hb̃5&~wb̃11b̃2! ~50!

for the odd parity sector. We note that both sectors con
constraint equations, reflecting the fact that the second e
tion in Eq. ~22! is an integrability condition for the first one

At this point we also note the following, somewhat su
prising fact: The scalar magnetic amplitudesb6 andb̃ satisfy
the same set of second order equations~45!, ~46! as the elec-
tric amplitudesf6 and f̃,

S b29

b19
D 5

1

r 2 S 2~w211! 22&w

22&w ~w2111r 2h2!
D S b2

b1
D , ~51!

b̃95
1

r 2 ~w2111r 2h2!b̃. ~52!

This follows from the arguments given in Appendix B, and
also verified directly from the above equations. Using
odd parity equations~50! we have, for instance,b̃9

5&(w8b̃11wb̃182b̃28)5@h21r 22(w211)#b̃, where we
have used the Bogomol’nyi equations~35! for the back-
ground fieldsh andw.

We also point out that not all solutions to the second or
equations~51! and ~52! satisfy the first order equations~49!
and~50!. In fact, it is not hard to see that the solution spac
defined by Eqs. ~49! and ~50! are three- and one
dimensional, respectively, rather than four- and tw
dimensional.
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C. Magnetic perturbations: Inhomogeneous BPS equations

In order to write out the inhomogeneous Bogomol’n
equations~23!, we need the harmonic decomposition of t
fields dH and dA. The fact that the latter are not gaug
invariant enables us to get rid of certain amplitudes. In A
pendix D it is shown that—up to a pure gauge—the h
monic decompositions ofdH anddA assume the form

dHeven5g2X1g1Y,

dHodd5g̃Z, ~53!

and

dAeven5a1*̂ t rdK1a2*̂ Kdt r ,

dAodd5ã1t rdK1ã2Kdt r , ~54!

respectively. The radial functionsg6 , g̃, a1,2, andã1,2 are
gauge invariant, up to a one-dimensional set of resid
gauge transformations in the even parity sector,

g2→g2 , g1→g11hc3 ,

a1→a11
w

&
c3 ,

a2→a22
1

&
c3 , ~55!

and a two-dimensional set of residual gauge transformat
in the odd parity sector,

g̃→g̃2hc2 ,

ã1→ã11c12
w

&
c2 ,

ã2→ã21wc12
1

&
c2 , ~56!

wherec1 , c2 , andc3 are arbitrary constants parametrizin
the residual gauge freedom~see Appendix D!. In terms of the
gauge invariant source termsb6 , b̃, b1,2, andb̃1,2, and the
~almost! gauge invariant amplitudes introduced above,
inhomogeneous linearized Bogomol’nyi equations~23! even-
tually become

r 2g28 12~a11wa2!5b2 ,

r 2g18 /&2~wa11a2!5b1 /&,

a181g22wg1 /&5b1 ,

a282ha21wg22g1 /&5b2 , ~57!

in the even parity sector, and
1-7
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r 2g̃8/&1~ ã22wã1!5b̃/&,

2ã181wg̃/&5b̃1 ,

2ã281hã22g̃/&5b̃2 , ~58!

in the sector with odd parity.
For the vanishing RHS, the above equations are the

earized Bogomol’nyi equations, which have been studied
the literature. Using the background equations~35!, it is easy
to verify that the residual gauge modeg250, g15&h,
a15w, a2521 satisfies the homogeneous equations~57!,
while the residual gauge modesg̃5&h, ã15w, ã251 and
g̃50, ã151, ã25w are solutions to the homogeneous equ
tions ~58!.

VI. ODD PARITY MODES

We shall now solve the perturbation equations. We s
with the odd parity sector, for which all solutions can
obtained in closed form. We emphasize, however, that
sector is of minor importance, since the odd parity mod
cannot contribute to the angular momentum. In Sec. VI A
compute the magnetic amplitudesdBodd, which we use in
Sec. VI B as source terms to obtain the perturbationsdHodd

anddAodd. In Sec. VI C we finally compute the electric pe
turbationsdFodd.

A. Solutions to the dB equations

In order to compute the source termdBodd, we have to
solve Eqs.~50! for the amplitudesb̃ and b̃1,2 defined in Eq.
~33!. Using the last two equations in Eq.~50! to expressb̃1

and b̃2 in terms of b̃, the first equation becomesb̃8/b̃
5h(w1w21)/(w2w21), which is trivial to solve, since the
numerator is the derivative of the denominator. Hence,
only solution to Eqs.~50! is

b̃5w2
1

w
, &b̃15h, &b̃252

h

w
. ~59!

Inserting this back into the expansion~33!, and using the
background equation~35! for h8 and the formula~C1! for
DZ, yield the simple result

dBodd5
1

w
D~hZ!. ~60!

B. Solutions to the inhomogeneous BPS equations

Now that the source terms for the linearized Bogomol’n
equations~58! are known, we can proceed and solve t
inhomogeneous problem. Since the homogeneous equa
admit three solutions, two of which are the residual gau
modesg̃5&h, ã15w, ã251 andg̃50, ã151, ã25w, we
need to find the remaining solution of the homogene
problem and a solution of the inhomogeneous equatio
This is achieved by deriving a third order equation forg̃. In
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fact, sinceg̃50 is a residual gauge mode of Eqs.~58!, the
differential equation forg̃ will be of second, rather than third
order. Moreover, using the second residual gauge mode,
eventually ends up with a first order equation. First, o
easily finds, from Eqs.~58!,

~r 2g̃8!82h~r 2g̃8!2~w211!g̃52hb̃, ~61!

where&(wb̃12b̃2)5b̃8 was used on the RHS. Now usin
the second residual gauge modeg̃gauge5h, the homogeneous
part of the above equation can be cast into the following fi
order equation for (g̃/h)8:

Fh2r 2

w
S g̃

h
D 8G 850,

with the solutiong̃}h*w/(rh)2. The integration can be per
formed by using the relation@w/(r 2h)#85w/(rh)2, follow-
ing from the background equation~37!. Hence, the only non-
gauge mode of the homogeneous equations~58! is

g̃hom5
w

r 2 , &ã1
hom5h2

1

r
, &ã2

hom5
w

r
. ~62!

@In order to verify that this solves the homogeneous part
Eqs.~58!, one uses again the first order equation~37! for the
background fieldh.# We may finally use the two solution
g̃hom and g̃gauge5h to solve the inhomogeneous equatio
~61! with source termI52hb̃52h(w2w21):

g̃ inh5E dr
I
r 2 ~m~1!g̃

gauge1m~2!g̃
hom!, ~63!

with m (1)5g̃hom/W and m (2)52g̃gauge/W, where W

5g̃gauge(g̃hom)82g̃hom(g̃gauge)8 is the Wronskian of the two
homogeneous solutions. A short computation yieldsW
5w/r 2, and hencem (1)51, m (2)52r 2h/w. We thus end up
with

g̃ inh5
w

r 2 F E r 2h

w

hh8

w
dr 2

r 2h

w
E hh8

w
dr G . ~64!

This shows that the physical modes describing magn
perturbations withJ51 and odd parity form a two-paramete
family. In particular, the perturbations of the Higgs field b
come

dHodd5~C1g̃hom1C2g̃ inh!. ~65!

@The arbitrary constantC2 reflects the fact that the sourc
termsdB are themselves solutions to a homogeneous se
equations, implying that the inhomogeneity in Eq.~61! is
only fixed up to a multiplicative constant.# Since the self-
dual solutiong̃hom diverges like 1/r 2 near the origin, while
the non-self-dual partg̃ inh diverges like*er /r at infinity, we
conclude that there exist no small magnetic perturbation
BPS monopoles and JZ dyons with odd parity.
1-8
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C. Solutions to thedF equations

The electric perturbationsf̃ with odd parity are governed
by Eq.~46!. Since the magnetic amplitudeb̃ fulfills the same
second order equation, we immediately conclude from
solution ~59! that

f̃~1!5w2
1

w
~66!

solves Eq.~46!. @In fact, using (w6w21)85h(w7w21),
one has (w2w21)95h8(w1w21)1h2(w2w21)5@(w2

11)/r 21h2#(w2w21).# The second solution is given b
f̃ (2)5f̃ (1)*@f̃ (1)#22dr . The integral can be carried out, an
yields

f̃~2!5
1

r S w1
1

wD2
h

w
. ~67!

@Using the background equations~35! it is not hard to verify
that this is indeed the second solution to Eq.~46!.# The elec-
tric perturbations with odd parity are, therefore,

dFodd5
1

r
~C1f̃~1!1C2f̃~2!!, ~68!

which remains finite forr→` only if C15C2 . However, as
(f̃ (1)1f̃ (2))/r diverges like 1/r 2 in the vicinity of the origin,
we conclude that there exist no small electric perturbati
of BPS monopoles and JZ dyons with odd parity.

VII. EVEN PARITY MODES

A. Solutions to the dB equations

In order to solve Eqs.~49!, we first note that the equatio
for b18 is a consequence of the remaining ones. Eliminat
b1 by using the last equation in Eq.~49!, we obtain a system
of three first order equations forb2 , b1 , andb2 . It is then
straightforward to decouple these equations, which yield
third order equation forb2 . Sinceb2 enters this equation
only via its derivatives, one concludes thatb25const is a
solution. In fact, one easily verifies that~any constant times!

b2
~0!52, b1

~0!5&S w1
1

wD , b1
~0!52h, b2

~0!5
h

w
~69!

solves Eqs.~49!. In order to find the remaining two solution
it is convenient to define the quantities

S5hb21~b12wb2!,

D5h21~b11wb2!. ~70!

SinceS andD vanish for the solution~69!, it is possible to
derive a system of two first order equations for these qu
tities. Using the three equations forb2 , b1 , and b2 , one
finds after some manipulationsS852h2D and D8
5h2r 2(w211)21S, which also yields the following secon
order equation forS:
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S922
h8

h
S822

w211

r 2 S50. ~71!

Considering the quantityS/h, we obtain a Schro¨dinger
equation with potentialP(r ),

~S/h!95P~r !~S/h!, where P~r !52
w211

r 2 1
~h21!9

h21 .

~72!

Having solved this equation, one obtains the magnetic a
plitude b2 from the definition ofS and the first equation in
Eq. ~49!. In order to findb1 one uses the last equation in E
~49! and solves Eqs.~70! for b1 andb2 . This yields

b25E S8

h
dr ,

&b15
1

h S w1
1

wD ~hb22S!2
1

2h2 S w2
1

wDS8. ~73!

The formulas forb1 andb2 in terms ofS are not given
here, sincedB can be expressed in terms ofb2 and b1

alone. This is seen as follows: Using the relations~C1!, the
terms tangential toS2 in the expansion~33! for dBevencan be
written in the form

b1t rdK1b2Kdt r

5
1

w221
@~wb22b1!D̂X1&~b22wb1!D̂Y#

5
1

w221
@~hb22S!D̂X1~hb1!D̂Y#,

where we have used the last equation in Eq.~49! and the
definition ~70! to get rid ofb1 andb2 . Now using Eq.~73!
for b2 , we haveS85hb28 , and thus (hb22S)85h8b2 ,
which enables us to write the term proportional toX in Eq.
~33! as r 22b2dr 5(w221)21h8b2dr 5(w221)21d(hb2

2S). Hence, the terms proportional toX and D̂X combine
to an exact covariant derivative, which finally yields the r
sult

dBeven5
1

w221
$D@~hb22S!X#1b1D@hY#%. ~74!

This shows that all three magnetic modes with even pa
are obtained from Eqs.~72!, ~73!, and~74!. In particular, the
trivial solution S (0)50 of Eq. ~72! gives rise to the solution
~69!, which yields

dBeven,~0!5
2

w221 H D~hX!1
1

&
S w1

1

w
DD~hY!J .

~75!

The two nontrivial solutions of Eq.~72! are not ~yet!
known in closed form. However, their qualitative behavi
1-9
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can be discussed rigorously: The potentialP(r ) is positive
definite for all finite values ofr . @In fact, using the back-
ground equations to compute (h21)9, one finds from Eq.
~72!

P~r !5
1

r 2 1S h8

h
D 2

1S 1

r
1

h8

h
D 2

, ~76!

which is manifestly non-negative, and vanishes only for
→`.# As h8/h51/r 22r /151O(r 3) in the vicinity of the
origin, we haveP(r )56/r 21O(1), implying that the funda-
mental solutions behave likeS (1)/h}1/r 2 and S (2)/h}r 3.
For r→` one has P(r )52/r 21O(1/r 3), which yields
S (1)/h}1/r and S (2)/h}r 2. The monotonicity property of
S/h, following from the positivity of the potential~76!, en-
ables one to conclude that the solution which diverges at
origin remains finite at infinity, and vice versa.@Also we
have used global existence, following from the linearity
Eq. ~72! and from the finiteness of the potential forrÞ0.#
Sinceh behaves liker near the origin and approaches t
constant value21 at infinity, the two nontrivial solutions o
Eq. ~72! behave as follows:

S~1!}r 21, S~2!}r 4, for r→0, ~77!

and

S~1!}r 21, S~2!}r 2, for r→`. ~78!

In Sec. IV C we have shown that the angular moment
can be expressed as a boundary integral. The relevant q
tity appearing in Eq. ~44! is the difference of (b2

1&wb1) between infinity and zero. For the solutionS (1)

this quantity remains finite at infinity, whereas it diverg
logarithmically at the origin.~Note that the leading power
1/r 2, cancels in the above combination.! On the other hand
(b21&wb1) remains bounded at the origin for the solutio
S (2), whereas it obviously diverges liker 2 at infinity. Hence,
neither of the two nontrivial solutions to Eq.~72! gives rise
to a finite angular momentum. The fact that we are able
decide this without solving the inhomogeneous equati
~57! for dH and dA follows from the observation that th
angular momentum depends on the magnetic perturbat
only via the fielddB. Moreover, only the boundary values o
the gauge invariant quantitydB are needed to obtain th
magnetic contribution to the total angular momentum.

Surprisingly enough, the third solution, given in clos
form in Eq. ~69!, does give rise to a finite angular mome
tum, although the amplitudeb1 diverges at infinity. By vir-
tue of Eq.~44! we have

dJmg52
p

3
@b21&wb1#0

`5
2p

3
. ~79!

In order to decide whether this is an acceptable perturbat
we have to compute the physical fieldsdH anddA.
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B. Solutions to the inhomogeneous BPS equations

We now discuss the inhomogeneous lineariz
Bogomol’nyi equations~57!. These can be written as
fourth order equation for either of the four variable
g6 ,a1,2, parametrizingdHeven and dAeven. Sinceg2 van-
ishes for the residual gauge mode of the system~57!, the
equation forg2 is only of third, rather than fourth order. On
finds

~r 2g28 !922h~r 2g28 !822~112w2!g28 14h~12w2!g2

5I@dBeven#, ~80!

where the inhomogeneity is an expression in terms ofb6 and
b1,2. Using Eqs.~49! for these amplitudes, it is possible t
expressI@dBeven# in terms ofb1 andb2 alone:

I@dBeven#5
2w

12w2 @w~hb2!81&~hb1!8#. ~81!

The solutions to the homogeneous problem, that is,
solutions to the linearized Bogomol’nyi equations are kno
in closed form@5,6,8#. In fact, they can be expressed in term
of the quantitiesw and h. Using the background relation
~35!, it is not difficult—and not particularly pleasan
either—to verify that the three solutions of the homogene
Eq. ~80! are

g2
~1!5h85

1

r 2 ~w221!,

g2
~2!5

1

r 3 @w22~rh21!#,

g2
~3!5w212~rh21!. ~82!

Concerning these solutions of the homogeneous linear
PBS equations, we note the following.

The amplitudeg2
(2) is not finite at the origin, whileg2

(3)

becomes unbounded at infinity. Hence, neitherg2
(2) nor g2

(3)

gives rise to small perturbations ofdHeven.
The third solution,g2

(1) , does give rise to an acceptab
physical mode. The latter corresponds to a translation al
the z axis. This is seen by differentiating the backgrou
field H5t rh with respect to ]z5cosq]r2r21 sinq]q ,
which yields ]zH5h8X1r 21h&Y, and henceg25h8.
@Note that the coefficient in front ofY is not the amplitude
g1 introduced in Eq.~53!, since the latter was defined in
gauge wheredA is tangential toS2; see Eq.~54!. The only
quantity which is not affected by the corresponding gau
transformation isg2 ; see also Appendix D.#

The remaining two physical zero modes in the sectoJ
51 correspond to translations along thex andy axes. They
do not occur in the above calculation, since, for reasons
symmetry, we have restricted the harmonic decompositi
to the magnetic quantum numberM50.

We recall that none of the above solutions to the line
ized BPS equations can contribute to the angular moment
1-10
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since only the fielddB, describing the non-self-dual pertu
bations, enters the expression~18!.

It remains to find the solutions to the inhomogeneo
equation~80!. Since all solutions to the homogeneous pro
lem are known, we can apply standard methods to obtain
particular solutiong2

inh . For given inhomogeneityI one has

g2
inh5( g2

~k!E m~k!

I
r 2 dr , ~83!

where the three quantitiesm (k) are obtained from the homo
geneous solutionsg2

(k) by

m~k!5
« i jkg2

~ i !~g2
~ j !!8

«mnl g2
~m!~g2

~n!!8~g2
~ l !!9

. ~84!

A rather lengthy computation yields the value224w2/r 4 for
the Wronskian in the denominator, and then

m~1!5
1

4
„11r 21sinh2~r !…,

m~2!5
1

4 S sinh~r !cosh~r !2r 2
2

3
r 3D ,

m~3!52
1

12
. ~85!

In the previous section we have argued that only the solu
~69! of the equations~49! for dBeven gives rise to a finite
angular momentum. Hence, it remains to computeg2

inh for
the source term given byb2

(0)52 and b1
(0)5&(w1w21).

Using the expression~81!, we immediately have

I@dBeven~0!#524S h21
2w211

r 2 D . ~86!

The solutiong2
inh is now obtained from Eqs.~83!, ~84!, ~85!,

and ~86!. An expansion in powers ofr reveals thatg2
inh di-

verges like 1/r in the vicinity of the origin. Sinceg2
(2) di-

verges like 1/r 3, while g2
(1) andg2

(3) are well behaved forr
→0, there is no combination ofg2

inh with a homogeneous
solution ~82! which remains bounded at the origin. Henc
we conclude that there exist no bounded magnetic pertu
tions dH,dA, which give rise to finite angular momentum

C. Solutions to thedF equations

It remains to discuss the electric perturbations with ev
parity. The latter are governed by Eqs.~45! for f2 andf1 .
We have already argued that three solutions of these e
tions coincide with the magnetic solutionsb6

(0) , b6
(1) , and

b6
(2) , discussed in Sec. VII A. In order to find the remainin

solution, it is convenient to write the system~45! in the form
of a second order equation with two inhomogeneities. T
manipulations by which this can be achieved are discusse

Appendix E. Introducing the quantityS̃ in the same way as
in the magnetic case@see Eq.~73!#,
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S̃85hf28 , ~87!

one eventually finds the equation

S̃922
h8

h
S̃822

w211

r 2 S̃52k3h82k02
w211

r 2 , ~88!

wherek0 andk3 are integration constants. The homogeneo
part of this equation coincides with the corresponding m
netic equation~71!.

The particular solution fork350 is S̃5k0S̃ (0), with

S̃ (0)51. This yieldsf2
(0)5const, which coincides with the

magnetic solution~69!. The two solutions to the homoge

neous problem,S̃ (1) and S̃ (2), say, coincide with the two
remaining magnetic solutions obtained from the homo

neous equation~71!. The additional solution,S̃5k3S̃ (3),
which is not present in the magnetic case, is the particu
solution for k050. Again, this can be given in closed form

by introducing the quantityS5S̃/h2. Using again the back-
ground equation~37! for h, a short computation shows tha
the LHS of Eq. ~88! assumes the form (S8h2)812h8S.

Hence, the desired solution isS52k3/2, that is, S̃ (3)5

2h2/2. By virtue of Eq.~87! this yieldsf2
(3)}h.

We thus conclude that the four electric perturbations w
even parity are given by

f2
~0!52, f1

~0!5&S w1
1

wD , ~89!

f2
~3!52h, f1

~3!5
&

w
~rh !8, ~90!

f2
~1,2!5E dr

~S̃~1,2!!8

h
,

f1
~1,2!5

1

&
F S w1

1

wDf2
~1,2!2

r 2~f2
~1,2!!9

2w G , ~91!

where S̃ (1,2) are the two nontrivial solutions toS̃9

22(h8/h)S̃822r 22(w211)S̃50. The angular momentum
is obtained from Eq.~43! and the above solutions. One find

dJel~0!5
2p

3
@r 2h8~12rh !#0

` ,

dJel~3!5
2p

3
@rh~h2rh8!#0

` ,

dJel~1,2!52
p

3 F r 2hS h8

h
~rh21!f2

~1,2!1~f2
~1,2!!8

2
r

2
~f2

~1,2!!9D G
0

`

. ~92!
1-11
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It is easy to see that the only combination off (0) andf (3)

which gives rise to finite angular momentum is their su
However, since the amplitudes enteringdF are f1 /r and
f2 /r @see Eq.~31!#, the perturbationdF obtained from
f (0)1f (3) diverges at the origin like 1/r .

The behavior ofS̃ (1) given in Eqs.~77! and ~78! implies
thatf2

(1)5O(1/r 2) asr→0, andf2
(1)5O(1/r ) asr→`. Us-

ing this in the above expression shows that the angular
mentum is again finite,udJel(1)u,`. As above, the perturba
tion dF is, however, not bounded at the origin.

The solutionf2
(2) diverges liker 2 asr→`. However, the

leading order terms in the expression fordJel(2) cancel, and
so do the next-to-leading order terms. Hence, likedJel(0) and
dJel(3), dJel(2) diverges only with the first power ofr , im-
plying that there exist linear combinations off2

(2) with f2
(0)

(or f2
(3)) which give rise to finite angular momentum. Sin

f2
(0)/r is not bounded at the origin, whilef2

(2)/r is bounded,
only linear combinations off2

(2) with f2
(3) need to be con-

sidered. However, the latter give rise to perturbationsdF
which are not bounded at infinity.~Note thatf1

(2)/r behaves
like er /r , whereasf1

(3)/r grows likeer .)
We therefore conclude that all electric perturbations

BPS monopoles and JZ dyons which give rise to finite an
lar momentum are either unbounded at the origin or at in
ity.

VIII. CONCLUSIONS

In this article we have presented a gauge invariant
proach to the stationary perturbations of Julia-Zee dyons
BPS monopoles. Restricting our attention to axisymme
perturbations, we have found three sets of modes in e
parity sector.

Electric perturbations: These are manifestly gauge inv
ant, since the electric background field vanishes after a
perbolic rotation. There exist even parity perturbations w
finite angular momentum; however, these are either not w
behaved at the origin or at infinity. The same is true of
odd parity perturbations, which give rise to axial deform
tions.

Non-self-dual magnetic perturbations: These are pertu
tions which satisfy the linearized field equations, but are
at the same time subject to the linearized Bogomol’nyi eq
tions. As the corresponding background field vanishes,
non-self-dual magnetic perturbations are also gauge inv
ant. As in the electric case, there exist even parity pertu
tions with finite angular momentum. However, neither the
nor the odd parity modes are well behaved.

Self-dual magnetic perturbations: These have been in
tigated before and are known to be physically not accepta
apart from the translational modes. Moreover, general c
siderations show that self-dual modes cannot contribute
the angular momentum. The fact that all solutions to
linearized BPS equations are known in closed form is, ho
ever, very useful to reconstruct the physical fieldsdH and
dA for the non-self-dual modes.

In conclusion, we would like to emphasize that the dist
guished properties of the BPS background are very critica
10502
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the methods developed in this article. Whether the m
result—the fact that there exist no rotational excitations
Julia-Zee dyons and BPS monopoles—generalizes to m
general background configurations is an open problem
particular, the effect of a Higgs potential and the coupling
gravity need to be investigated for the excitations of Ju
Zee dyons.

APPENDIX A: BPS BACKGROUND

The appropriate way to treat axial perturbations in gau
theories is by using the isospin harmonics introduced in S
IV A. It is, therefore, suited to write the background fields
terms of the spherical su~2! basist r ,tq ,tw , defined by

t r5t• r̂, dt r5tqdq1twsin qdw, ~A1!

wherer̂[r/r is the radial unit direction, andt5s/(2i ). The
commutation relations of the Pauli matrices imply@t r ,tq#
5tw ~and cyclic!, from which one obtains the formulas

@t r ,dt r #52 *̂ dt r , @dt r ,*̂ dt r #50, ~A2!

@dt r ,dt r #5@ *̂ dt r ,*̂ dt r #52t rdV, ~A3!

where*̂ denotes the Hodge dual with respect to the stand
metric of the two-sphereS2. It is helpful to recall that the
radial unit directionr̂ is a vector valued eigenfunction of th
spherical Laplacian with eigenvalue 2, implying

d*̂ dt r522t rdV. ~A4!

In terms oft r , the ‘‘Witten ansatz’’ for the spherically
symmetric connection one-form assumes the simple form

A5@12w~r !# *̂ dt r , ~A5!

since*̂ dt r5r 22(r3t)•dr. Using the commutation relation
~A3!, the gauge covariant derivatives oft r , dt r , and *̂ dt r
become

Dt r5wdt r , Ddt r50, ~A6!

D*̂ dt r522wt rdV. ~A7!

The Bogomol’nyi equations,* F5DH, can easily be written
out by using Eq.~A7!, the ansatzH5h(r )t r , and the for-
mulas * (dr ∧ *̂ dt r)52dt r , * dV5dr /r 2 for the three-
dimensional Hodge dual. One finds

* F5w8dt r1
w221

r 2 t rdr , ~A8!

DH5hwdt r1h8t rdr , ~A9!

which yields the well-known first order equations~35! for
w(r ) andh(r ).
1-12
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APPENDIX B: THE 2 11 DECOMPOSITION

The axial perturbation equations for a static, spherica
symmetric su~2! valued function involve the three
dimensional gauge covariant Laplacian with respect to
gauge potential~A5!. As the latter is tangential toS2, the
three-dimensional gauge covariant derivative operator is

D5dr ∧] r1D̂, ~B1!

where

D̂5d̂•1@A,•#, with d̂5dq∧]q1dw∧]w . ~B2!

For an arbitrary Lie algebra valued functionf we thus have

* D* DS f

r
D 5

1

r
S ] r

21
1

r 2 *̂ D̂*̂ D̂D f , ~B3!

where the factor 1/r is introduced for convenience.~Here we
have used* dr 5r 2dV and * D̂f 52dr ∧ *̂ D̂f .) The above
formula enables us to immediately write down the 211 de-
composition of the electric perturbation equation~21!. With
f 5rdF this becomes

S ] r
21

1

r 2 *̂ D̂*̂ D̂D ~rdF!52@H,@H,rdF##. ~B4!

The 211 decomposition of the~first order! magnetic
equations~22! with respect to the ansatz

dB5
1

r 2 bdr 1B̂ ~B5!

was given in Sec. V B; see Eqs.~48!. @Here B̂ denotes an
su~2! valued one-form tangential toS2, and b is an su~2!
valued scalar field.# We owe the proof of the assertion thatb
is subject to the same second order equation as the s
electric perturbationdF. In order to see this, one applie

*̂ D̂*̂ on the second, and] r on the third equation in~48!. A
short calculation yields

S ] r
21

1

r 2 *̂ D̂*̂ D̂D b52 *̂ @~D̂H2 *̂ A8!,B̂#2@H,*̂ D̂B̂#.

The 211 decomposition of the Bogomol’nyi equation give
D̂H5 *̂ A8, implying that the first commutator on the RH
vanishes. By virtue of the first equation in Eq.~48!, the sec-
ond commutator becomes@H,@H,b##, which yields the re-
sult

S ] r
21

1

r 2 *̂ D̂*̂ D̂D b52@H,@H,b##. ~B6!

Hence, the equation~B4! for the scalar electric perturbation
rdF, coincides with the second order equation~B6! for the
scalar part of the magnetic perturbation,b[r 2(dr,B).
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APPENDIX C: HARMONIC ANALYSIS

By virtue of the above decompositions, the task of writi
out the perturbation equations reduces to the problem
computing the gauge covariant derivative Dˆ of su~2! valued
functions and one-forms overS2. We have already argued i
Sec. IV A that theJ51 sector is spanned by the three sca
harmonicsX, Y, and Z, defined in terms oft r and K
[cosq @see Eq. ~30!#, and the four one-forms dX5

2&dY, *̂ dX, dZ, and *̂ dZ @see Eq.~32!#. Instead of the
latter, it is very convenient to use the linear combinatio
t rdK,Kdt r and their duals. The entire harmonic decompo
tion is then obtained from the formulas

D̂X5t rdK1wKdt r ,

&D̂Y52wt rdK2Kdt r ,

&D̂Z5wt r *̂ dK2K *̂ dt r ~C1!

for the covariant derivatives of the scalar basis, and the
lations

*̂ D̂~t rdK !5w&Z,

*̂ D̂~Kdt r !52&Z,

*̂ D̂~t r *̂ dK !5w&Y22X,

*̂ D̂~K *̂ dt r !5&Y22wX ~C2!

for the covariant derivatives of the basis one-forms.@The
equation for D̂X and Eqs.~C2! are immediate consequence
of Eq. ~A7!, while the derivations of the expressions for Dˆ Y

and D̂Z require slightly more work.#
As an illustration we compute*̂ D̂*̂ D̂(rdF), where we

use the expansion~31! to write rdF5f2X1f1Y1f̃Z.
For the first term we find, for instance,

*̂ D̂*̂ D̂~f2X!5f2*̂ D̂@t r *̂ dK1wK*̂ dt r #

5@2&wY22~w211!#f2 .

A similar computation for the second and third term giv
the result

*̂ D̂*̂ D̂~rdF!5@22~w211!f212&wf1#X

1@2&wf22~w211!f1#Y

2@~w211!f̃#Z, ~C3!

which, together with the 211 decomposition formula~B4!

and@H,@H,(rdF)#52(f1Y1f̃Z), yields the desired per
turbation equations~45! and ~46!.
1-13
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APPENDIX D: GAUGE TRANSFORMATIONS

In this Appendix we show that there exists a gauge
which the perturbationsdH and dA assume the expansion
~53! and ~54!, respectively. We also establish that the co
ficients are gauge invariant, up to the residual gauge tra
formations given in Eqs.~55! and ~56!. For simplicity, we
focus on the even parity sector; the manipulations for the
parity sector are completely analogous. The general exp
sions fordHeven anddAeven are

dHeven5ḡ2X1ḡ1Y, ~D1!

dAeven5ā0Zdr 1ā1t r *̂ dK1ā2K *̂ dt r , ~D2!

where the bars have been introduced to tell the amplitu
apart from the ones introduced in Eqs.~53! and ~54!. Under
a gauge transformation with an su~2! valued functionx one
has

dH→dH1@H,x#,

dA→dA1Dx, ~D3!

where, as usual,H is the background Higgs field and D th
covariant derivative with respect to the background poten
A. The strategy is to writedH and dA as sums of a pure
gauge and an~almost! gauge invariant part. FordA this is
achieved by a partial integration of the radial part, and
using the expressions~C1! for the covariant derivatives o
the isospin basis. The radial part ofdAeven can be written as

ā0Zdr 5DFZE ā0dr G2D̂ZE ā0dr ,

where we have used the fact that DZ5D̂Z. ~Recall that D
5dr ∧] r1D̂, and that the isospin harmonics are defined o
S2.) Now using the expression~C1! for D̂Z brings dAeven

into the desired form:

dAeven52Dx̄1F ā12
w

&
E ā0dr Gt r *̂ dK

1F ā21
1

&
E ā0dr GK *̂ dt r , ~D4!

where

x̄[2ZE ā0dr . ~D5!

In order to separate a pure gauge term fromdHeven, we use
@t r ,Z#5Y andH5ht r to write

dHeven52@H,x̄ #1ḡ2X1F ḡ12hE ā0dr GY, ~D6!
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with x̄ according to Eq.~D5!. Hence, after a gauge transfo
mation with x̄, the general perturbations~D1! and ~D2! as-
sume the forms~53! and ~54!, respectively, where the coef
ficients are related as follows:

g25ḡ2 , g15ḡ12hE ā0dr ,

a15ā12
w

&
E ā0dr , a25ā21

1

&
E ā0dr . ~D7!

It is clear from the above reasoning, and not hard to ver
that the amplitudes without bars are gauge invariant, up
residual gauge transformations with

x05c1X1c2Y1c3Z, ~D8!

wherec1 , c2 and c3 are arbitrary constants. Since only th
last term is relevant to the even parity sector, we ha
Dx0

even5c3(wt r *̂ dK2K *̂ dt r)/& and @H,x0
even#5c3hY.

Using this in the transformation laws~D3! for the even parity
perturbations~53! and ~54!, we conclude thatg2 is gauge
invariant, whileg1 , a1 anda2 transform according to Eqs
~55! under the residual gauge transformations. A complet
analogous reasoning establishes the transformation laws~56!
for the odd parity sector.

APPENDIX E: EVEN PARITY ELECTRIC
PERTURBATIONS

In this Appendix we briefly show how the two couple
second order equations~45! for f2 andf1 can be translated

into the inhomogeneous second order equation~88! for S̃,

defined byS̃85hf28 . The procedure involves two integra
tions. The first integration is achieved by the observation t
Eqs.~45! can be cast into the form

&f29 522&
w

r 2 ~&f12mf2!, ~E1!

f19 m2f1m9522&
w

r 2 ~&f12mf2!, ~E2!

where we have introduced the shorthandm[w11/w. Since
the RHS of the above equations are equal, and since
LHS are exact derivatives@f19 m2f1m95@m2(f1 /
m)8#8#, an integration yields the following first order rela
tion betweenf2 andf1 :

1

&
S f1

m D 8
52

f28 2k3

m2 , ~E3!

wherek3 is an integration constant. We now solve Eq.~E2!
for f1 /m, perform a derivative, and use the result on t
LHS of Eq. ~E3!. This yields the following second orde
equation forf28 :
1-14
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S r 2f29

w211D 8
22f28 54S w

w211D 2

~f28 2k3!, ~E4!

which shows thatf25const is a solution of the system~E1!,
~E2!.

Our aim is to integrate Eq.~E4! once more. In order to se

that this is possible, we introduce the variableS̃ according to
definition ~87!, and note that the term in front of (f28 2k3)
can be written in the form@(w221)/(w211)#8/h. Hence,
with

S̃8[hf28 , a[
w221

w211
, ~E5!

Eq. ~E4! assumes the form

F a

h8
S S̃8

h
D 8G 822

S̃8

h
5

a8

h
S S̃8

h
2k3D . ~E6!

It is not hard to perform the differentiations and to rewr

this third order equation forS̃ in the form

F S a

h8D S̃-1S a

h8D 8
S̃9G22F S a

hD S̃91S a

hD 8
S̃8G

2@2S̃82k3a8#50,

where each of the three pairs is manifestly an exact der
tive. Integrating the above expression and multiplying
result withh8/a eventually yields

S̃922
h8

h
S̃822

h8

a
S̃522k0

h8

a
2k3h8, ~E7!

where k0 is a further integration constant. Sincea
5r 2h8/(w211), this is the desired inhomogeneous seco
order equation~88!. We recall that the four parameter fami
of solutions to Eq.~E7! is

S̃5( kiS̃
~ i !, ~E8!

where the sum runs from 0 to 3, and whereS̃ (0)51, S̃ (3)

52h2/2, andS̃ (1,2) are the two~nontrivial! solutions to the
v
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homogeneous part of Eq.~E7!. The four independent solu
tions ~89!–~91! to the original system~45! are finally ob-
tained from Eq.~87!.

APPENDIX F: ELECTRIC CONTRIBUTION
TO THE ANGULAR MOMENTUM

In Sec. IV C we have argued that the total angular m
mentum can be expressed in terms of the perturbation am
tudes at the origin and at infinity. While we have establish
this result for the magnetic contribution~39!, we still owe the
proof of the formula~43! for the electric part~38!. In order to
show that the bracket in the integrand in Eq.~41! is an exact
radial derivative, we first perform a partial integration
both terms, which yields

rh8f22
r 2

&
S w8f1

r D 8
5F rhf22

r

&
w8f1G 8

2h~rf2!81&whf1 . ~F1!

In order to show that the last two terms on the RHS comb
to an exact derivative, we use the first perturbation equa
in Eq. ~45! to expressf1 in terms of f2 and f29 . Also
using the background equations forw andh, we then have

2h~rf2!81&whf1

52
r 2h

2
f29 2rhf28 1w2hf2

52S r 2h

2
f2D 9

1@w2211rh#f28 1@2w2h1~rh !8#f

5F2S r 2h

2
f2D 8

1~w2211rh !f2G8.
Using this on the RHS of Eq.~F1! gives the desired formula

rh8f22
r 2

&
S w8f1

r D 8
52

1

2
@~12w222rh !f2

1r 2hf28 1&wrhf1#8,

~F2!

which was used in Sec. IV C to establish the result~43!.
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