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We propose a reformulation of Yang-Mills theory as a perturbative deformation of a novel topological
(quantum field theory. We prove that this reformulation of four-dimensional QCD leads to quark confinement
in the sense of an area law of the Wilson loop. First, Yang-Mills theory with a non-Abelian gauge@risup
reformulated as a deformation of a novel topological field theory. Next, a special class of topological field
theories is defined by both Becchi-Rouet-Stora-TyyBRST) and anti-BRST exact actions corresponding to
the maximal Abelian gauge leaving the maximal torus grblupf G invariant. Then we find topological field
theory ©>2) has a hidden supersymmetry for a choice of maximal Abelian gauge. As a resuld; the
dimensional topological field theory is equivalent to tHe—2)-dimensional coseG/H nonlinear sigma
model in the sense of the Parisi-Sourlas dimensional reduction. After maximal Abelian gauge fixing, the
topological property of the magnetic monopole and antimonopole of four-dimensional Yang-Mills theory is
translated into that of an instanton and anti-instanton in a two-dimensional equivalent model. It is shown that
the linear static potential in four dimensions follows from the instanton—anti-instanton gas in the equivalent
two-dimensional nonlinear sigma model obtained from the four-dimensional topological field theory by di-
mensional reduction, while the remaining Coulomb potential comes from the perturbative part in four-
dimensional Yang-Mills theory. The dimensional reduction opens a path for applying various exact methods
developed in two-dimensional quantum field theory to study the nonperturbative problem in low-energy phys-
ics of four-dimensional quantum field theori¢$0556-282(98)04920-(

PACS numbeis): 11.15.Tk, 12.38.Aw, 12.38.Lg

I. INTRODUCTION AND MAIN RESULTS We know a few examples of such expansions around a
nontrivial field configuration that have successfully led to the
In particle physics, perturbation theory is applicable if theresolution of the strong coupling problem. An example is a
coupling constant as an expansion parameter is small in theroof of quark confinement by Polyakof8] in three-
energy region considered. This is assured in the high-energyimensional compact @) gauge theory and three-
ultraviolet region of quantum chromodynamid®QCD)  dimensional compact quantum electrodynani@gD) in the
where the effective coupling constant is small due toGeorgi-Glashow model with gauge group @Y He consid-
asymptotic freedonj1]. On the other hand, in the infrared ered the nontrivial minimung}, of the action given by the
regime of QCD where the effective coupling is expected toinstanton(pseudoparticle The field.A,, is decomposed into
be large, the perturbation theory loses its validity. The quark),+Q, and Q, is considered as a quantum fluctuation
confinement is regarded as a typical example of indicatinground(), . The integral oveQ, is Gaussian and is exactly
the difficulty of treating strongly coupled gauge theories. Theintegrated out. The result is written as the sum over all pos-
conventional perturbation theory deals with the small deviasible configurations of instantons and anti-instantons. In the
tion from the trivial gauge field configuratiad,,=0 which  three-dimensional case, instant@mti-instantonis given by
is a minimum of the actiors. the magnetic monopoléntimonopol@ Moreover, Seiberg
In the last decade, various evidence about Abelian domiand Witten[9] have shown that in the four-dimensiorsl
nance and magnetic monopole dominance in the low-energy 2 supersymmetric gauge theories, the nonperturbative con-
physics of QCD has been accumulated based on a Monteibutions come only from the magnetic monopole or instan-
Carlo simulation of lattice QCD initiated by the wofR],  ton in the prepotential which exactly determines the low-
see, e.g., Ref3] for a review. This urges us to reconsider if energy effective Abelian gauge theory. These examples show
there may exist any perturbation theory appropriate for QCQhat the quark confinement is caused by the condensation of
with the expansion parameter being small even in the inframagnetic monopoles.
red region. There the expansion must be performed about a Recently, a reformulation of the Yang-Milly¥M) theory
nontrivial gauge field configuratiotd,#0 other than the as a deformation of topologic&tjuantum field theory has
trivial one A,=0. In gauge field theories, we know that been attempteffl0—12, abbreviated TQ)FT hereafter. The
there are soliton solutions called the vortgX, magnetic BF theory[12] as a topological field theoryTFT) can be
monopole[5], and instantori6,7]. They are candidates for regarded as a zero-coupling limit of YM theofg3-15.
such a nontrivial field configuration. A similar idea was proposed recently by Abe and Nakanishi
[13] where two-dimensional BF theory is essentially equi-
valent to the zeroth-order approximation to YM theory
*Email address: kondo@cuphd.nd.chiba-u.ac.jp in their framework of the newly proposed method of
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solving quantum field theory. In higher dimensions, how-realize the dual superconductor vacuum of QCD, we need to
ever, the limit is singular due to the fact that the gauge symtake the MAG. MAG is an example of Abelian projection
metry in BF theory is larger than that in YM theory. In the proposed by 't Hooff20]. The basic idea of Abelian projec-
last couple of years, considerable progress has been madetton is that the off-diagonal non-Abelian parts are made as
assure that YM theory can be obtained as a deformfgienr  small as possible. Imposing MAG, the gauge degrees of free-
turbation of topological BF theory by Fucito, Martellini, and dom corresponding t&/H is fixed and the residual gauge
Zeni[15]. This reformulation is the first-order formulation of invariance for the maximal torus grodpof the gauge group
YM theory, called BF-YM theory16,17. They checked the G remains unbroken. Under MAG, it is expected that the
area law behavior for the Wilson loop average and computedff-diagonal gluons(belonging toG/H) become massive
the string tension. In this formalism, an area law arises in @nd the low-energy physics of QCD is described by the di-
very simple geometrical fashion, as an higher linking numbeagonal Abelian paribelonging toH) alone. All the off-
between the loop and surface. diagonal fields transform as charged fields under the residual
In this paper, we reconsider YM theory from a topological Abelian gauge symmetrid and are expected to be massive.
point of view. First we reformulate YM theory as a deforma- It is shown[17] that an Abelian-projected effective gauge
tion of a novel TFT. This is equivalent to saying that YM theory (APEGT) of QCD is obtained by integrating out all
theory is described as a perturbation around the nontriviathe massive degrees of freedom in the sense of the Wilsonian
field configuration(), given by TFT. This formulation of renormalization groupRG) [22]. Therefore the resulting
YM theory will be suitable for describing the low-energy APEGT for G=SU(2) is written in terms of the Abelian
region of YM theory, because the topological property doedield variables only. In fact, the APEGT obtained in the pre-
not depend on the details of the short-distance behavior ofious paper is written in terms of the maximal Abeliagly
the theory and depends only on the global structure of thgauge fielda, , the dual Abelian gauge field,, and the
theory. In order for such a description to be successful, TFinagnetic monopole currert, which couples tdb, . This
must include the most essential or dominant degrees of fregheory is an interpolating theory in the sense that it gives two
dom for describing the low-energy physics in question. Thedual descriptions of the same physics, say, quark confine-
monopole dominance is a hint for the search of an appropriment. APEGT tells us that the dual theory which is more
ate TFT. The TFT we propose in this paper is different fromsuitable in the strong coupling region is given by the dual
the conventional TFT's of Witten typlel0] or Schwarz type  Ginzburg-LandauGL) theory, i.e., the dual Abelian gauge
[11]. Witten type TFT starts from the gauge fixing condition Higgs mode[4]. That is to say, monopole condensation pro-

of self-duality vides the massny, for the dual gauge field and leads to the
linear or confining static potential between quarks and the

F o—+F * :=Ee F (1.1) nonzero string tensiow is given by a~m§. APEGT is
o s pye 2 kPO PO regarded as a low-energy effective theory of QCD in the

distance scal&®> m;l with m, being the nonzero mass of

corresponding to the instanton configuration in four-y, off-diagonal gluons. Consequently, the Abelian domi-
dimensional YM theory[6]. The total action can be written -0 [23,24 in the physics in the long distand@> R,

as Becchi-Rouet-Stora-Tyup(BRST) transformationdg of ._ ) “1 il pe realized in APEGT. A quite recent simulation

some functionaV composed of the fields and their ghosts: by Amemiya and Suganuni25] shows that the propagator
_ VY=gV, 1.2 of the off-diagonal charged gluon behaves as the massive
So=[Qs.V}=5g @2 gauge boson and provides the short-range interaction, while
On the other hand, Schwarz-type TFT has a nontrivial clasthe diagonal gluon propagates long distance. Fof25¥M
sical actionS, which is metric independerthence topologi-  theory, they obtainm,=0.9 GeV corresponding tdR.
cal) with nontrivial gauge fixing. For example, BF theory =4.5 fm. In fact, the massiveness of off-diagonal gluons is

and Chern-Simons theory belong to this type, analytically derived as a by-product in this paper.
In our formulation of YM theory, the nonperturbative
Sior=Sa+[Qg,V'}=Sy+ 8gV'. 1.3 treatment of YM theory in the low-energy region can be

reduced to that of TFT in the sense that any perturbation
Our TFT tries to incorporate the magnetic monopole degreefom TFT does not change essentially the result on low-
of freedom as essential degrees of freedom for low-energgnergy physics obtained from TFT. Therefore, we can hope
physics. For this, we use the the maximal Abelian gaugehat the essential contribution for quark confinement is de-
(MAG). In MAG, we find that the action is written in the rived from TFT alone. In light of monopole dominance, the

form TFT should be constructed such that the monopole degrees
_ of freedom are included as the most dominant topological
Stot= 98680, (1.4 configuration in TFT. If quark confinement is proved based
o on TFT, the monopole dominance will be naturally under-
using the anti-BRST transformatiafy [18]. stood by this construction of TFT. Furthermore, this will

In a previous papelrl7], we proved that the dual super- shed light on a possible connection with the instanton con-
conductor picture of quark confinement in QGproposed figuration which is the only possible topological nontrivial
by Nambu, 't Hooft, and Mandelstafii9—-21) can be de- configuration in four-dimensional Euclidean YM theory
rived from QCD without any specific assumption. In order towithout partial gauge fixing.
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The purpose of this paper is to prove quark confinemenhas instanton solution as a topological solifd®—53. The
within the reformulation of four-dimensional QCD based oninstanton is a finite action solution of the field equation and
the criterion of area law for the Wilson lodj26] (see Sec. obtained as a solution of the self-duality equation. The in-
VI). Here the Wilson loop is taken to be planar and diagbnal stanton(anti-instantoi solution is given by the holomorphic
in the maximal torus groupl (as taken by Polyako¥8]).  (antiholomorphig function.

Although actual calculations are presented only for the \ye show that the instantafnti-instantoi configuration
SU(2) case, out strategy of proving quark confinement is alsgy two-dimensionalo(3) NLSM can be identified with the
applicable to SWN) case and more generally to arbitrary pagnetic monopoléantimonopolg configuration in higher

compact Lie group. dimensions. Furthermore, the instant@mti-instantoh con-

This paper is orgamzed_ as follows. In Sec. I, the TFT ISfiguration in two dimensions is considered as the projection
constructed from gauge-fixing and Faddeev-Popov terms

C . : of instanton (anti-instantom solution of four-dimensional
The action is written as a BRST exact form according to th M theorv on the two-dimensional plane throuah dimen-
standard procedure of BRST formalism. In other words, the . y ol . P gn dim
TFT is written as a BRST transformation of a functional of sional reductlon. From this opservatlon, WEe can see Intimate
the field variables including ghosts. Here we take the MAGcennectlon between magnetlc_monopole and ms;anton. In
as a gauge fixing condition. Then the MAG fixes the coseprinciple, the gluon propagator is calculable according to the
GIH of the gauge grous and leaves the maximal torus €xact treatment of th©(3) NLSM. In the O(3) NLSM,
subgroupH unbroken. Consequently, YM theory is reformu- dynamical mass generation occurs and the correlatlon' length
lated as aperturbativé fluctuation around the nontrivial to- Pecomes finite and all the excitations are maspA&. This
pological configuration given by TFT. shows that the off-diagonal gluons are massig# 0. The

In Sec. lIl, it is shown that a version of MAG allows us to mass is nonperturbatively generated and behavesngs
write the TFT in the form(1.4) which is both BRST and ~exp(—471gP).
anti-BRST exact. This version of TFT is called MAG TFT In Sec. VI, the planar diagonal Wilson loop in four-
hereafter. We find that MAG TFT has a hidden supersymdimensional S) MAG TFT is calculated in the two-
metry (SUSY) based on the superspace formulatiaB—32 dimensional equivalent model by making use of dimensional
of BRST invariant theorief33,34. The hidden SUSY plays reduction. The actual calculation is done in the dilute-
quite a remarkable role in the next section. instanton-gas approximatiof64—5§ in two dimensions.

In Sec. 1V, it turns out that this choice of MAG leads to Thjs is very similar to the calculation of the Wilson loop in
dimensional reduction in the sense of Parisi and SolR&  the Abelian Higgs model in two dimensiof7,58. We can
[28]. Consequently th®-dimensional MAG TFT is reduced pyrsue this analogy further using the ‘0Brmulation of the
to the equivalent @ —2)-dimensional cose&/H nonlinear O(3) NLSM. In CP formulation, the residual (1) symme-
sigma model(NLSM). This means the equivalence of the ty js manifest and we can introduce thé1l gauge field
partition function in two theories. Furthermore, PS-coypled to two complex scalar fields, whereas in the NLSM,
dimensional reduction tells us that the calculation of correlatne U(1) gauge invariance is hidden, since the field variable
tion functions inD-dimensional TFT can be performed in the n(z) is gauge invariant. The GFormulation indicates the
equivalent D —2)-dimensional model if the argumenéslie  correspondence of TFT to GL theory. As a result, the exis-
on a certain D — 2)-dimensional subspace, because the cortence of a topological nontrivial configuration corresponding
relation function coincides with the same correlation func-ig the magnetic monopole and antimonopole in YM theory in
tion calculated in the — 2)-dimensional equivalent model \AG is sufficient to prove quark confinement in the sense of

defined on the subspace on whichlies, an area law of the diagonal Wilson loop.
At the end of the 1970s, two-dimensional NLSMs were
<H ]—"—(x-)> _ < I ]—‘-(x-)> extensively studied motivated by their similarity with four-
A oA : dimensional YM theory. Some of the NLSMs exhibit renor-
MAG TFT,, G/H NLSMp_,

malizability, asymptotic freedomq vacua, and an instanton
(1.5 solution. These analogies are not accidental in our view.
Now this is understood as a consequence of dimensional
; ; , , reduction. The beta function in the two-dimensiox(3)
theory in four dimensions. In this case,=U(1) and the | SM has been calculated by Polyakf47]. This should
equivalent dimensionally reduced model is given by the tWo.gincide with the beta function of four-dimensional

dimensional @) nonlinear sigma mod&NLSM). The two-  gy2)/u(1) MAG TFT. Now we will be able to understand
d|men3|onel NLSM on group manifolds or the principal chi- why the Migdal-Kadanoff approximate renormalization
rel model is exactly solvabl§35—4§. Therefore, the four- group (RG) schemd59] yields reasonably good resuits.
dimensional MAG TFT defined in this paper is exactly ° | should be remarked that dimensional reduction is also

solvable. It is known that the two-dimensior@(3) NLSM  ,ssiple for gauge fixings other than MAG. Such an example
is renormalizable and asymptotic frgé7,48. Moreover, it |, -« proposed by Hata and Kug60] which is called the
pure gauge modéPGM). However, the choice of MAG as a
gauge-fixing condition is essential to prove quark confine-
The full non-Abelian Wilson loop will be treated in a subsequentment based on the nontrivial topological configuration, be-
paper[27], see Sec. VIL. cause MAG leads to th&/H NLSM by dimensional reduc-

In Sec. V, we study concretely the case® SU(2) YM
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tion. The two-dimensional coset SNJ/U(1)N~* NLSM  [83], Chern-Simons theor84], the induced potential in the

can have a soliton solution as suggested by path integral[85,8, and so on. The exact solubility is
pulled up at the level of correlation function, not the field
I, SUNN)/U(1)N-1]=2ZN"1, (1.6)  equation. This should be compared with the Hamiltonian re-

duction of the YM self-duality equatiof87]. Furthermore,
However, the two-dimensional NLSM obtained from the the APEGT obtained in MAG can have the same meaning as
PGM by dimensional reduction does not have any instantothe low-energy effective theory oN=2 supersymmetric
solution, since YM theory and QCD obtained by Seiberg and WitfeX.
This issue will be discussed in subsequent papers.
IT,[SU(N)]=0. .7
Il. YANG-MILLS THEORY AS A DEFORMATION
Therefore the PGM loses a chance of proving quark confine- OF TOPOLOGICAL FIELD THEORY
ment based on the nontrivial topological configuration and
more effort is needed to prove quark confinement based on First, we summarize the BRST formulation of YM theory
the perturbative or nonperturbative treatment around the toh the manifestly covariant gauge and subsequently introduce
po]ogica”y trivial Conﬁgura’[ion[el,60,62_65 Moreover, the MAG. Next, we derive the TFT describing the magnetic
the MAG has a clear physical meaning which leads to thénonopole from the YM theory in MAG. The TFT is ob-
dual superconductor picture of QCD vacuum as shown ifained from the gauge fixing part of the YM theory. Finally,
Ref. [17]. This is not the case in PGM. In fact, there is athe YM theory in MAG is reformulated as @erturbative
claim [68] that the criterion of Kugo and Ojima for color deformation of the TFT.
confinemen{66,67] is different from the Wilson criterion.
It is possible to extend our treatment to arbitrary compact A. Yang-Mills theory and gauge fixing
L|e_ group G alon_g the same Im_es as above, as long as the We consider the Yang-Mill€YM) theory with a gauge
existence of the instanton solution is guaranteed by the non- _ N the D-dimensional space-time de-
trivial homotopy groupJII,(G/H)#0. Although the dilute- group G=SU(N) on the ensional space-time de
gas approximation is sufficient to deduce the linear potential?Crlbecj by the actionl{>2)
it is better to compare this result with those obtained by other
methods. For this purpose, it is worth performing & Bx- Stot=f de(LQCD[A, Y+ Lep), (2.1
pansion to know the result especially fir>2. The O(N)
and CP'~! models ha\ée 1been extensively stud{&®—77. 1
However, SUN)/U(1)" " is isomorphic toO(N+1) or —— Wi v _
CP'"! only whenN=2, and the two-dimensionaD(N) Lacd A¥] ZgztrG(f“V]:”")J”’//(W Dl AI=m¢,
NLSM has no instanton solution fad>3. To the author’s 2.2
knowledge, the M analysis of the two-dimensional coset
SU(N)/U(1)N~! NLSM has not been worked out, probably Where
due to the fact that SW)/U(1)N"! is not a symmetric

space in the sense of a Riemannian manif@i@l. N?-1 A
It should be remarked that the resolution of quark con- Fu(X) = AZl Fh()TA
finement is not simply to show that the full gluon propagator B
behaves as k# in the infrared region ak—0. The correct =, A, (X) = 3, A, (X) =1 [A,(X), A,(X)],

picture of quark confinement must be able to explain the
anisotropy(or directional dependengeaused by the exis-
tence of a widely separated quark-antiquark pair if we stand )
on the dual superconductivity scenario. This is necessary to DulAl=d,—1A,. 2.4
deduce the QCDBhadron string picture. Our proof of quark
confinement is possible only when the two-dimensionaiThe gauge fixing ternfq is specified below. We adopt the
plane on which a pair of quarks and anti-quarks exists igollowing convention. The generator§*(A=1,... N?
selected as a subspace of dimensional reduction. Hence thisl) of the Lie algebra of the gauge grou =SU(N) are
feature is desirable from the viewpoint of the string picture.taken to be Hermitian satisfyifg”, T®]=if*#°T¢ and nor-
In fact, the effective Abelian gluon propagator obtained frommalized as tifAT®)=3"®. The generators in the adjoint
the dual description in APEGT shows such an anisotropyepresentation are given py*Jgc= —if agc. We define the
[17]. quadratic Casimir operator &;(G) §"B=fACPfBCD | etH
The dimensional reduction of TFT opens a path for anabe the maximal torus group @ andT? be the generators in
lyzing nonperturbative problems in four-dimensional YM the Lie algebrag\’ of the cosetG/H where? is the Lie
theory based on various technologies developed for twoalgebra ofH.

2.3

dimensional field theories, such as the Bethe ar{gdizand For G=SU(2), TA=(1/2)d"(A=1,2,3) with Pauli
conformal field theory(CFT) [79,80. They are intimately matricesc” and the structure constant i$8¢=¢"B€. The
connected to the Wess-Zumino-Novikov-Witten mof&l],  indicesa,b, ..., denote the off-diagonal parts of the matrix

non-Abelian bosonizatiof81,82, the quantum spin model representation. The Cartan decomposition is given by
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3 2

i=—i 085G .C.C,
A 0= X AROTA=a, (0T 2 ALOT? Lop=—108Ggl A, .C.C. 4]

— o
(2.5 =trg| ¢d, A*+iCo*D, [ A]C+ §¢2 . (213
Under gauge transformation, the gauge fidig(x) trans-
forms as B. MAG and singular configuration
A#(X)HA‘E(X) ==U(X)A#(X)UT(X)+iU(X)&MU T(x). In a previous papdrl7], we examined the maximal Abe-
(2.6) lian gauge as an example of Abelian projectj@0]. For G

=SU(2), MAG isgiven by
These gauge degrees of freedom are fixed by the procedure
of gauge fixing. A covariant choice is given by the Lorentz F*[A,a] ::(a"iia”“)Ai=0, (2.19
gauge
using the ¢,3) basis
F[A]:=0,A#=0. 2.
LAL= 0 27 0*:=(0+10?)/2. (2.15
The procedure of gauge fixing must be done in such a way
that the gauge fixing condition is also preserved for theThe simplest choice dBy for MAG in (+,3) basis is given
gauge rotated field! ), i.e., F[AY]=0. This is guaranteed by
by the Faddeev-PopoiFP) ghost term.

We formulate thg theory based on the BRST formglism. Ggf:Z E:( FX[Aa]+ z¢¢ , (2.16
In the BRST formalism, the gauge-fixing and FP pégk is = 2
specified by a functionaGy of the field variables through L . ) ) )
the relation which is equivalently rewritten in the usual basis as
. Z3 — a
EGF:: | 5BGgf[~A,u, ,C,C,¢], (28) Ggf: zl , Ca( Fa[A,a] + E(ba , (217}
a=1,
where(C,C are ghost, antighost fields antlis the Lagrange
multiplier field for incorporating the gauge fixing condition. FAA,a]:=(0" 8"~ e2%a#)AD :=D#2 a]A] .
Here &g denotes the nilpotent BRST transformation (2.18
8 A, (X)=D,C(X):=9,C(X) —i[ A (X),C(x)], The basic idea of Abelian projection proposed by 't Hooft

[20] is to remove as many non-Abelian degrees of freedom

1 — ) as possible, by partially fixing the gauge in such a way that
6sC(x) =15 [C(X),C0)],  6sC(X) =1 (), the maximal torus groupd of the gauge grous remains
unbroken. Under the Abelian projectio®,=SU(N) gauge
dsp(x)=0, theory reduces tdd=U(1)N"! Abelian gauge theory plus
magnetic monopoles. Actually, the choid2.14 for G
Sg(X) =i C(X) (X). (2.9 =SU(2) is nothing but the condition of minimizing the
functional R[A] for the gauge rotated off-diagonal gluon
The partition function of QCD is given by fields A, i.e., minyR[AY],
ZQCD[J]:f [dA,][dC][dC][d¢][de]ldey] R[A]==%f dPx{[AL 012+ [AZ(x)]%}
X expli +S;)}, 2.1
Wi (Soct )} (2.10 ) f P COA (0. 019

where the source term is introduced as

. . . We can generalize the MAG to arbitrary gro@oas
SJ::f de{tr[J“AM+JCC+JCT+J¢,¢]+ n+ ni}.

(2.11 R[A] ==f dPxtrg., »

In the BRST formalism, both the gauge-fixing and the FP

terms are automatically produced according to ). The ~ Where the trace is taken over the Lie algedra{. Under the
most familiar choice of5 is MAG, it is shown [17] that the integration of the off-

diagonal gluon fieIdsAZ e G\H in SU(2) YM theory leads to
a the Abelian-projected effective gauge thedAPEGT) writ-
Ggf:trG[d I ALt S ¢) } (212 ten in terms of the maximal Abelian(l) gauge fielda,, , the
dual U1) gauge fieldb,, , and the magnetitmonopolg cur-
This yields rentk,, .

1
5400 A,()

: (2.20
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In the gauge transformatid.6), the local gauge rotation aﬂ(x) :=Q3(x) ::tr[TBQIL(X)]' (2.25
U(x) is performed in such a way that the gauge rotated field
A} (x) minimizes the functionaR[.4"] and hence satisfies According to a Monte Carlo simulation on the latti&, the
the gauge-fixing conditiorf2.14. We define the magnetic magnetic monopole part gives the most dominant contribu-

current by tion in various quantities characterizing the low-energy phys-
ics of QCD, e.g., string tension, chiral condensate, topologi-
Ku(X) = €4,000"TP7(X), (2.2)  cal charge, etc.
Therefore, it is expected that the most important degrees
fpo(X) =4, (X) = d,as(X), (222 of freedom for the low-energy physics comes from the sec-

ond piece(} ,(x) of Allf(x). Therefore, we decompose the
YM theory into two pieces, i.e., the contribution from the

U/oy._ U art () (x) and the remaining part.
a, ()=t T2 A (x)]. 223 PartQ,(x) gp

using the Abelian partdiagonal patextracted as

If the gauge field.A (x) is not singular, the first piece C. Magnetic monopole in non-Abelian gauge theory

U(X)AM(X)UT(X) of 'AY »(X) is nonsingular and does not  First we recall the calculation of the Abeligdiagona)
give rise to magnetic current. On the contrary, the secon@leld strength in four-dimensional YM theory. We introduce

pieceQ ,(x), three local field variables corresponding to the Euler angles
Q,()=1U(x)a,U"(x) (2.24 (8(x),@(X),x(X)),(0e[0,7],¢[0,27],x € [0,27])
does give the nonvanishing magnetic monopole curisss, (2.26
e.g., Ref[17]) for to write an element W) e SU(2) as
e(i/2>[<p<x>+x<x>100$ e~ (112100~ x(0]gjp——~ o)
U(X) :eix(x)a'3/2ei 0(X)02/2ei<p(x)03/2: (227}

0(x)

_e<i/2>[¢<x>fx<x>1sin%x) e 121e0) 4 Xl gos——

In the usual convention of perturbation theory, we take 1
(Q Q,-Q, Q= p Sin6(d,00,0—3d,¢d,0),

Q,(x) ==i§U(x)aMU*(x). (2.28 (2.32

which implies
Note that the following identity17] holds for(},,:

1
9,0,(X) = 3,0,(X) =ig[Q,(x),Q,(X)] CulQ]= —smﬂ(ﬁ 09,0—d,9d,0).  (2.33

+ I—U(x)[aM ,d,JUT(x). (229  Now we show thaCl;! denotes the monopole contribution
9 to the diagonal field strength,,. Note thatC[}”) is gener-
ated from the off-diagonal gluon field3?,, Q2.
In four dimensions, the magnetic monopole charge is cal-
culated from the magnetic current

Then the diagonal part reads

f9,(%):=9,03(x)—3,03(x)

i ~ 1
i _ . F0 Q — Q
=G 00+ GUCOL0,, 2,0UT(0}, (2.30 Ku= s T =3€umolpo (234
whereC,,, was introduced in a previous pagdd7] as as
Q ’ ~
C,ELV] ::(lg[ﬂ,u. ,Q,,])<3) gm(v(3)): f (3)d30'p,k,u,: f (S)dgo-,uavfgv
\% \%
=ge™0200=ig(Q,; 0, -0,0]). (2.3)
= J d%o, T . (2.39
Using the Euler angle expression fdr, we obtain DEFVCEE

105019-6



YANG-MILLS THEORY AS A DEFORMATION OF . .. PHYSICAL REVIEW D 58 105019

We can identity the first and second parts of right-hand-side U i

(RHS) of Eq. (2.30 with the the magnetic monopole and the F oy X)= §U(X)[(9ﬂ ,3,JUT(x), (2.49
Dirac string part respectively contained in the ,Rheory

and hence the YMtheory[17]. This is clearly seen by the \yhere the RHS is identified with the contribution from the
explicit calculation using Euler angles, since we can rewritepjrac string, see Ref17]. Note that the original YM theory

Eq.(2.30 as does not have a magnetic monopole solution. However, if we
1 partially fix the gauges/H=SU(2)/U(1) andretain the re-
fgy: ——sin6(d,00,0—3,¢d,0) sidualH=U(1) gauge, the theory can have a singular con-

figuration. This is a reason why the magnetic monopole ap-
1 pears in YM theory which does not have a Higgs field. The
+—([d,.,d,]x+cosd[d,,d,]e¢). (2.39  existence of a Dirac string in the RHS of E@.44) reflects
9 the fact that the field strengtﬁﬁv(x) contains the magnetic
monopole contribution. We have obtained a gauge theory
with magnetic monopole starting from YM theory. There-
1 ) fore, MAG enables us to deduce the magnetic monopole
gm(V(S))szs(z)dz%aprasm (3,00, 3,99,0), without introducing the scalar field, in contrast to the 't
(2.37) Hooft-Polyakov monopole. See R¢L7] for more details.

The magnetic monopole part is given by

while the Dirac string part is D. TFT and its deformation

1 Since the Dirac string does not contribute to the action,

gDS(V(3))=E (2)d20-p0'6p,vp0' the topological nontrivial sector with a magnetic monopole

s in YM theory is described by the gauge-fixing and FP ghost
X([d,.,d,]x+cosb[d,,d,]¢). (2.38  terms alongwe forget the matter field for a while

The first definition(2.37) of g,, gives the quantized magnetic - 1 D
charge[17]. The integrand is the Jacobian frd8 to S? as Sterl 2,,,C.C 1= | d"XLrer,
will be shown in Sec. V and the Homotopy group reads

T,(SU(2)/U(1))=TT(S2)=Z. (2.39 Lrrri=—10Ggl0,,.C.C. 4], (245
This theory describes the topological field theory for the
magnetic monopole, which is called MAG TFT hereafter. If
we restrict the gauge rotation k) to the regular one ,(x)
27N reduces to a pure gauge fieﬂbfw(x)zo and hence the TFT
9m="g 9gm=2mn(neZ). (240 s reduced to topological trivial theory. This model is called
the pure gauge modéPGM) which has been studied by
In the second definitio2.38 of g,,, if we choosey=—¢ Hata, Kugo, Niigata, and TanigucHi61-64. However,
using residual (1) gauge invariance, then the Dirac string PGM has only unphysical gauge modes and does not have
appears on the negativgaxis, i.e.,6= . In this case, the physical modes. We consider that the topological objects
surface integral reduces to the line integral around the stringust give the main contribution to the low-energy physics.
From this viewpoint, the PGM is not interesting to us, since
3 PGM cannot contain the topological nontrivial configuration
Gos(V! ))_E s<2>d0“”€“”””[ap Jole(x) as will be shown in the following.

In this paper, we take into account the topological non-
trivial configuration involved in the theor§2.45 and extract
the most important contribution in low-energy physics. We
o ) _ ) consider thafl ,(x) gives the most important dominant con-
This gives the same resul.38 but with the minus sign, as  tripution and the remaining contributions are treated as a
suggested from the Homotopy group perturbation around it. Whether this is efficient or not cru-

cially depends on the choice & . For this purpose, MAG
I, (U(1))=2. (2.42 is most appropriate as will be s?hown later.
Actually, two description are equivalent, as can be seen from  OUr reformulation of YM theory proceeds as follows.
the relation First of all, we decompose the gauge fielg,(x) into the
nonperturbative piecé€ ,(x) (including a topological non-
I1,(SU(2)/U(1))=I1,(U(1)). (2.43 trivial  configuration and the perturbative piece
U(X)A#(X)UT(X) (including only the topological trivial

If the contribution fromU(x)AM(x)UT(x) is completely  configuration. Next, we treat the original YM theory as a
neglected, i.e.A%(X)=0Q,(x)=iU(x)d,U"(x), Eq.(2.29  perturbative deformation of TFT written in terms ©f,(x)
implies alone. Using the normalization of the field in perturbation

Then Eq.(2.37) gives the magnetic chargg, satisfying the
Dirac quantization condition,

1
T EL(l)daﬂwpraap@(X)- (2.4
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theory, TFT is obtained from YM theory in the limit of van- where

ishing coupling constang— 0. If we absorb the coupling . .

constanig into the gauge field, TFT does not have an appar- GtV 7,7.B) =trg( ya*V,). (2.50
ent coupling constant.

We expect that the TFT of describing the magnetic monoHere we have introduced new ghost field antighost field
pole gives the most dominant nonperturbative contributions,  ang the multiplier field3 which are subject to a new
in low-energy physics. In fact, the monopole dominance in Lo
low-energy physics of QCD has been confirmed by MonteBRST transformationss,
Carlo simulationg3]. A similar attempt to reformulate YM ~ B .
theory as a deformation of topological BF theory was done  98Vu(X) = DulV]¥(X)=0,y() =i1[V,.(x), ¥(X)],
by Martellini et al.[15]. The model is called BF-YM theory. 1
A similar attempt was also made by Izayjd] for the PGM ~ _: T
using the BF formulation in three dimensions. Topological 98y(X) IZH(X)'Y(X)]’

BF theory includes the topological nontrivial configuration.
The APEGT for BF-YM theory can be constructed, see Ref. Bey(X)=iB(X),
[17].

First, we regard the fieldsl, and ¢ as the gauge trans-
formation of the fields/, and¥ (we use different characters
to avoid confusions

3sB(x)=0,

BV (x)=y(X)W(X). (2.5
AL () :=U0)V,00UT(x) +Q (%),
Then the partition function can be rewritten as

Q,(x) ==i—U(X)r9,LUT(X) (2.46 _
g ZQCD[J]ZJ [dU][dC][dC][d¢]

#(x) =U(x)¥(x), (2.47)

X | [dV,[dyl[dy][dB][d¥][d¥
where)V,, and ¥ are identified with the perturbative parts in f[ plldyltdylldplld VI y]

the topological trivial sector. .
Let[dU] be the invariant Haar measure on the gr@ap ><exp{if de{—iﬁBGgf[Qu+ UVMUT,C,C,(;S]
Using the gauge invariance of the FP determinAfid]
given by o~ — :
+ Locd V¥ ]—10gG4(V,,,7,7,.8)} +iS;1,
— -1
A[A] 1==J[dU]1;[ SLoAL ()], (2.52
- where
A[A]=A[AY ], (2.48
we can rewrite SJ:f dDX{trg[Ju(QM+ UV#UT)
1=A[A]f [duil] 5[aﬂ,45’1(x)] +3CHIC+I 4]+ U+ pPUT. (2,53
X
., . The correlation functions of the original fundamental field
=A[AY ]f [dU]E[ S[omAL (%] A, . is obtained by differentiating[J] with respect to
the source J,,, 7, 7. The integration over the fields
—A du ST o™ (U,C,C,¢) should be treated nonperturbatively. The pertur-
[V]f ! ]1;[ L0V u(x)] bative expansion around TFT means performing an integra-

tion over the new fields¥ y? B) after power-series ex-

Ef [dy]l[dy][dB] pansions in the coupling constagt
Assume that a choice @ allows the separation of the
o variable in such a way that
Xexp[if de(trg{Ba“VMJriya/‘Dﬂ[V]y})] B
—i8gGy{Q,+UV,UT.CC ¢]

- [ taviravias — 186Gy[ 2, T ]+ IVAMALU]
Xexp[i f de[—i?sBégf(vM,y,?ﬁ)]], (2.49 +'§v,’jvﬁ/cAB[U]. (2.54
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In the next section, we show that the MAG satisfies the conthat the QCD is reduced to TFT in the vanishing limit of
dition (2.54 and obtain the explicit form foM,,K. Then,  coupling constant. Thus QCD has been reformulated as a
under the conditiori2.54), the partition function is rewritten deformation of TFT. In a similar way, we can reformulate
as QED as a deformation of TFT, see RE88].

Zoed 9= | [dUTLdCITdClldg)]
Ill. MAXIMAL ABELIAN GAUGE AND HIDDEN

xexp[isTFTmM C.C.$)+iIW[U; 3, 7,7 SUPERSYMMETRY

The purpose of this section is to give some prerequisites
which are necessary in order to understand the dimensional
reduction discussed in the next section. First of all, we give a
special version of the MAG which leads to the dimensional

(2.59 reduction of the TFT part obtained from YM theory in MAG.

where\N[U;J”,;, n] is the generating functional of the con- Usi.ng the BRSTég and gnti-BRST_EB transformations, the
nected correlation function o, in the perturbative sector 2ction of the MAG TFT is written in the form
given by

+if dPxtrg[ J4Q , + 3.C+IC+I 4011,

einU:J“Enlzf [dV,I[dy][dyl[dBI[d¥][d¥] STFT=f d°x 35 O(X). CHY
xexp[iSpQCE[VM,\If,y,?,B] Second, we introduce the superfie_ld formalism. The (
_ +2)-dimensional superspaee=(x*, 6, 6) is defined by in-
I . . . . -y
4 Dy| YA 7A L _))A),B i AB troducing two Grassmannian coordinat®® in addition to
IJ X VT ZV/*V"IC [Vl the ordinary (bosoni¢ D-dimensional coordinatex*(u
=1,... D). We define the supersymmetry transformations
+trg(;U‘lf+ W@UT)H’ (2.56 and study the property of the superfi_eld which is invariant
under the supersymmetry transformation.
Third, we give a geometrical meaning of the BRST and
where anti-BRST transformations in the superspace. The gauge
jﬁ==(UTJ“U)A+iMﬁ[U]. (2.57 field A,(x) is extended into a superfield(X) as the con-

nection one-form in the superspace. The merit of this formal-
ism lies in the fact that we can also give a geometrical mean-
ing to the FP ghost and antighost fields; actually the FP ghost
and antighost fields can be identified as connection fields in
Al D the superspace. Furthermore, BRST transformation is rewrit-
Seaed Vi V.77, 8] '_f d"x{Locrl Vi ] ten as a geometrical condition, the horizontal condition. Con-
sequently, the BRST transformatidg (anti-BRST transfor-

~106Gg V. 7,7 A1} (2.58 mationEB) of the field variable coincides with the derivative

The deformatiorW[U;J“,;, 7] should be calculated accord- xad (‘9/.‘93) in.th.e d_irectiqn ‘9(5)' Takin_g inio account
ing to the ordinary perturbation theory in the coupling Con_that the differentiation is equivalent to the integration for the

stantg. When there is no external source for quarks, we havé;ragsmannlan variable, we can write the MAG TFT in a
manifestly supersymmetric covariant form

Here PQCD denotes the perturbative QGidpological
trivial sectop defined by the actioSpqcp,

iW[U;J“,0,0]::In<exp[iJ d®x| TH)VA(X)
i Srer= f dPx f de f doo(x,0,0), (3.2
A B
+ Evﬂ(x)vﬂ(x)/c“‘(x) ]>
PQCD _
1 whereO(x)_is extended to the superfiel@(X)=0O(x, 6, )
:Eng dDXf dPy(VA(X)VE(Y))Eoco and O(x, 6,6) has OSpD/2) invariant form. This implies
the existence of the hidden supersymmetry in MAG TFT
x{jﬁ(X)jE(y) which is an origin of the dimensional reduction shown in the

next section.
—8P(x—y) 8, KABUT(x)}+0O(g*T?).

(2.59 A. Choice of MAG

Therefore, W[ U;J#,0,0] is expressed as a power series in  In the previous section, we considered the simplest MAG
the coupling constarg and goes to zero ag—0. It turns out  condition (2.16 which leads to
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Lor=d°F[A al+ 5 (¢%)+iC*D** a]D"T a]C’

—iCHAZA#P— AC ARC 5] CP 1 CASEP[ A a]Co.
(3.3

Note that we can take a more general form @y [62,17,

P 03 JR—
Gy=2 C*|F*[Aal+5¢"|+(CCC

+92, (x)C3C*C™. (3.4

In what follows, we choose a specific form
w=2> CT(F[Aa]-¢~)—2C°C*C", (35

which corresponds in Eq3.4) to

a=-2, (=—2, 75=0. (3.6

Then the gauge fixing paldge= —i 6gGgyr has an additional
contribution

Lo=Lop— {2 (£)CCT¢p*—(C'CC'C™

=Lor— (2, iedBC3Cegb—¢cCctCccfc™. (3.7
a,b

PHYSICAL REVIEW D 58 105019

where we have included the source tetfpp®+ J5A% . Thus
the action is summarized as

1
bab | ; b, b
—zngZwaAV—i— iC*D#2a]Da]C

56sz d®x

1 1 —
a b b b3~3rhby2
GM‘F;D’ua [a]J¢+J”a +z(§6a C=C"

a
+A,

_ i — 1
_§C+C_C+C__ _g\]l()beab3c3ca_ Z(JZ)Z}'

o

(3.10

_ 1
Qj=—2ig*(C?CP—CC*8™) 6, + —D [a]*D,[a]®,
(3.11)

G;=:i<£—1

(2%

D [a]°®(e3C3C?), (3.12

whereG?,(x)=0 for the choice of Eq(3.6).
An advantage of the choid®.5) is thatGg’Jf is written as
the anti-BRST exact form

1 U IR
= 6B(§(AZ)2+|C3C3)=5B(A;AM+|Z c*c*|,
(3.13

where 85 is the nilpotent anti-BRST transformati¢a8],

8 A, (X)=D,C(x):=3,C(x) —i[A,(X),C(x)],

The four-ghost interaction term is generated. This is a gen-

eral feature of nonlinear gauge fixigSeparating the
¢?-dependent terms and integrating out the figk) we ob-
tain

1 _
_ E(Fa[A,a]—FJZ-F §I 6ab3C3Cb)2

Ser= f d®x
+iC3D#aa]D5Ta]Co—iCHALAP— ACALC D)

X CP+iC2e3FP[ A a]C3—(C*C C*C™

+ALJE| (3.9

2Such a term is necessary to renormalize the YM theory in MAG,
since the MAG is nonlinear gauge-fixing. This is reflected in the

fact that the Ul) invariant four-ghost interaction

C*C C*C~ is produced through the expansion of In@etsee
Ref. [17]),

(C3cP—Cees)(CPea—-Cictsh?)

=—2Cicicici=-2c*tc ctc. (3.9

55C(X) =i p(x),

S 1
6sC(X) =i 5[C(%),C(X)],

o (3.19
Sp(x)=0,

Bgh(X) =i1C(X) (),
() + d(x)=[C(x),C(x)],

whereg is defined in the last equation. The BRST and anti-
BRST transformations have the following properttes:

(85)2=0, (J)?=0, {8, dg}:=03gdp+ ogdz=0.
(3.16

M Hence, we obtain

3The operationsg orEB on the product of two quantities is given
by
AXY)=(SX)YFXSY,  6=0,0, (3.19
where the+ (—) sign is taken for a bosonigermionic) quantity X.
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=1 = We define the inner product of two vectors by introducing
Ler=i608| 5 (AL) +iceca the superspacécovarianj metric tensoryy with compo-
nents
:iaBEB(A;A;HZ ciéi), (3.17 Nuv=0uvs  Mgg=—ngy=—2ly, others=0.

- (3.2
which is invariant under the BRST and anti-BRST transfor-The contravariant metric tensor is defined "Ny,
mations, =6". Note thatzyy is not symmetric. We introduce the

_ covariant supervector,
6B’CGF: 0= 5B£GF' (318) N
Xp= 7unX (3.28
Thus the MAG TFT action can be written as )
and the quadratic form
_ /1 — _
Srer= f deiasas(z[ﬂZ<x)]2+ica<x)ca<x>) (319 XMXy = XMy XN=X2+ (41y) 06 (3.29
Note thatxMX,, andXyXM are different, because the metric
:J dDX|5B§B<Q;(X)Q;(X)+|E Ct(X)EI(X)) tensor is not Symmetrlc,
) (3.20 XMX 4 XXM = punXVXM =x2— (4/7)06. (3.30

Integrations ovel and 6 are defined by

_ 1 _
zf dPx i8g8atrg.x E[Qﬂ(x)]eriC(x)C(x)).

(3.2 f dezfdﬁzo, fd%:f deg=i  (3.3)
For our choice of MAG, we find for Eq.2.54 or
MU= 3536 (UTAUD20S], 1\ o
— 0
KAB[U]:=8sg[ (UTAUA(UTBUN?],  (3.22 f dodal —1-[° (3.3
0 0 '
where we have used Ty 1
5BVM(X):OZEBV;L(X)- 3.23 Supersymmetry transformations are simply rotations in

) ) the superspace leaving invariant the quadratic form
The BRST and anti-BRST transformations fdrare
, - _ manXy XY= XEX5 + (207) (010, 016,). (3.3
SgU(X)=iC(x)U(x), gU(X)=iC(x)U(X).
(3.24  This corresponds to the orthosymplectic supergroup

) ] OSpD/2). It contains the rotation irRP, i.e., the D-
This reprOduceS the usual BRST and anti-BRST tranSformE‘jimensiona| Orthogona| group Do which |eave9(2 invari-

tions of the gauge fiel@ ,:=iUg,U". ant and the symplectic group OSp(2) of transformations
. leaving 0 invariant. In addition, OS{}/2) includes trans-
B. Superspace formulation formations that mix the commuting and anticommuting vari-

Now we explain the superspace formulation based orftbles,
Refs.[28—33. We introduce a D+ 2)-dimensional super-

spaceM with coordinates XK X =xt+ 28k E0+ 280,
XM:=(x*,0,0)e M, xeRP, (3.25 0— 0" :=0+ ya¥x,¢,
wherex* denotes the coordinate of tHz-dimensional Eu- 66" := 60— yahx ¢, (3.34
clidean space an@d and ¢ are anti-Hermitian Grassmann _
numbers satisfying wherea, a are arbitraryD vectors ancf is an anticommut-
o S ing c-number €2={&,01={¢,0}=0). We call this transfor-
6°=0, 6°=0, {6,6}:=66+66=0, mation 7(a,a). -
L (3.26 Any objectAM = (A* A’ A% which transforms similar to
0'=—90, o'=—0. the supercoordinate under OSpR) is defined to be é&on-
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travarianj supervector. IfA}' and A} are two such super-

vectors, then the inner product

AY Ao =AY A =ALA,, + (21y) (AIAS+AIAY)
(3.3

is invariant under superrotations. We define the the partial

derivatives to be covariant supervectors in superspace,

Jd d 4 3.3
= FretErie :=(d,,09,95). (3.39
Then the super-Laplacian defined by
May=Ass= "3, + ydqd,, (3.37)

is an invariant.
Introducing a gradingy(M) for each coordinatX™ as

P(r)=0, p(8)=p(6)=1, (3:39
the coordinates obey the graded commutation relations
XMXN— (—1)PMIP(N)XNYM— 0, (3.39

Similarly, objectsFy,\ which transform ad\)' A} are defined

to be (contravariant supertensors angiy :==FMN, is an

invariant. The metric tensor defined above is a supertensor.

PHYSICAL REVIEW D 58 105019

2
D, (x)=0=D,(x), ;a#CI)O(x) =x,P3(x). (3.43

This implies that®y(x) is a function only ofx?:=x*x*.
Then we can writePo(x)=f(x?) for a functionf: [0.%)
—C and®4(x) = (4/y)f'(x?).

Therefore, if the superfiel®(X) is supersymmetric, then
there exists a functiofi: [0,°)— C such that

O(X, 0,0)=f(x2) + (4ly) 06F (x2) = f(x2+ (4ly) 66).
(3.44)

C. Geometric meaning of BRST transformation in superspace

We define the connection one forfsuperspace vector
potentia) .A(X) and its curvaturésuperspace field strength

F(X) in the superspac&M:=(x*,6,6) e M,
A(X) = Ay (X)dXM
= A,(x,0,0)dx*+C(x,0,0)d0+C(x,6,0)d0,

~ 1
FX):=dAX) + 5 [AX), AX)]

1
=—§fNM(X)dX""dXN,

The metric has another invariant called the supertrace in ad-

dition to the tracen™N gy,

str( 7)=(—1)PM 5 . (3.40

We introduce the superfiel@(x,a,g) as
D (X,0,0)=Do(X)+ 0D (X) + 0D 5(X) + 06D 5(X)

=Dy(X) + 094D o(X) + 035D o(X) + 003 475P o(X),
(3.4)

where ®; are complex-valued functions,®;: RP

—C(i=0,1,2,3). It should be noted that all component
fields ®; transform according to the same representation of
O(D). Hence, in this formulation of superspace, supersym
metry transformations mix fields obeying different statistics,

but with identical spin.
For any superfieldb, the supertransformation acts as

[7(a,2)®](x,6,0)
=®(x,0,0)+[ yakx,®;(x) — yakx,P,(x)1¢
+[ =29, o(x)ak+ yakx,P5(x)] 0&
+[—20,Do(x)a*+ yarx,d5(x)]6¢
+2[9,®1(x)a*— 9, D,(x)a*] 06¢. (3.42)

If the superfield® is invariant by for all a,acRP, the

term with & of the RHS of this equation must be zero for all

a,aeRP. Hence,

Awn(X)=AR(X)TA,

dXM:=(dx*,d6,da), (3.45

whered is the exterior differential in the superspace,
Aemdt 54 P X+ —-do+ -—dd. (3.4
= =X — 537 (3.49

These definitions are compatible when
dxMdxN=— (—1)PMPNgxNgxM,

(XMlaM)dXNz(_ 1)p(M)p(N)dXN(XMlaM)'

(3.47

The supergauge transformation is given by
AX)— A" (X) :=U(X) AX)UT(X)+iUT(X)dxMayU(X),

(3.48

In what follows, we show that the superfields, (X),
C(X),C(X)are _respectively identified with a generalization of
AL(X), C(x), C(x) into the superspace. First, we require that

U(X):=exdio®(X)TA].

C(x,0,00=C(x),
(3.49

and impose théorizontal condition33] for any M,

Fmo(X)=Fua(X)=0,

Au(%,0,00=A4,(x), C(x,0,00=C(x),

(3.50

which is equivalent to set
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FX) = %]-'W(X)dx“dxv. (350 A, (%,6,8)=A,(X)+ 6D,C(X) + 6D,C(X)
+06(D,$(x)+{D,C(x),C(x)}),

By solving the horizontal condition, the dependence of the

e e 82 1005, ThE 5=+ of = g1c.c100 |+ 500
(d+ 6+ 8)(AL+CH+CY 0601 $0),C0],
+ %[A1+cl+€1,Al+cl+El]:dA1+ %[Al,Al]. C(x,0,0)=C(x)+ 0i ¢(x)+5( - %[T(Z](x))
(352 + 000~ b(x),C(%)]. (358

where we have defined the one form The nonvanishing componentstLV have

AT= AL, 0, 0000, CT=C(x,0,0)00, FusX,0,0)= F s+ 0L, (X),C00 T+ 0L 7, (X),C00]

CL:=C(x,6,0)d6. (3.53 +00G[F,(x),d(x)]
By comparing both sides of E¢3.52, we obtain +H{[ F,u(X),C()1,C0 ). (3.59
A, (X)=3,C(X)—i[AL(X),C(X)], For the matter fieldp(x), we define the superfield(X)
and its covariant derivative as
1 _ _
9C(X) =1 5[C(X).C(X) ], e(X) = @(X)+ 0p1(X) + 0p,(X) + 80¢p3(X), (3.60
DLAJe(X):=[d+AX)]e(X). (3.61)

TgAL(X)=3,C(X) —i[A,(X),C(X)],
The horizontal condition for the matter field is

1

PRI L0001 Due(X)dXM=D,e(X)dx*, (3.62
9,C(X) + d,0(X) = —{C(X),C(X)}, (3.54  Which implies

where we have used thdwd#+0 anddé,é anticommute Dyep(X)=0="Dgep(X). (3.63

with C. For the components which cannot be determined bx:rom this. we have. for example
the horizontal condition alone, we use the following identi- ' ' Pie,

fication: ¢1(X,0,0) = d4¢(x,0,0)

9,0(x,0,0):=i p(X), 3C(x,0,0):=i p(X). (3.55 == Ay(X)o(X)] g=5=0=— C(X) @(X) = S p(X).
(3.64

Accordingly, all the field variables obey the relation

This corresponds t&,,=0 and gives

i p(X)+id(x)+{C(x),C(x)}=0. (3.5
. o D(x,0,0)=D(x)+ 0 55P(X)]
From these results, it turns out that the derivatives in the
direction of 9,6 give respectively the BRST and the anti- + 6 Sg®(X)]+ 66] 555D (x)]. (3.69H
BRST transformations
Let ®4(X) and ®,(X) be two superfields corresponding
to ¢1(X) and ¢,(X), respectively. It is easy to show that the

P
=g, (3597 following formula holds:

90

where we define the derivative as the left derivative. ThisP1(X,8,0)®5(x,6,0)

implies that the BRST and anti-BRST charg@g,Qg are = 1(X) o(X) + 085 b1(X) bo(X) ]+ 05[] P1(X) ho(X)]
the generators of the translations in the varialtlgs o
Thus the superfields are determined as + 60065 65[ P1(X) da(X)]. (3.66
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Thus, for any(elementary or compositdield O(x), we can

define the corresponding superfial®(x, 4, 6) using BRST
and anti-BRST transformations as

O(X,0,0)=O(X) + 0550(X) + 055 O(X) + 0055 55O(X).
(3.67
In the superspaca, the BRST and anti-BRST transforma-

tions correspond to the translation 6fand 6 coordinates,
respectively.

For the Grassmann number, the integratfcdﬂ(fd?) is

equivalent to the differentiatiord/dﬁ(d/d?). Hence the
BRST 65 and anti-BRSTég transformation has the follow-
ing correspondence:

d —  d —
5BHE9HI de, (‘)‘BHd—E«—)f deé. (3.68
This implies
f 600X, 6,8) = — Os(X) = — — —0(x,6,9)
0 0 (Xyavg)__ S(X)__ﬁﬁ_e (X,H,@)

= — 58 O(X) = 85 050(X). (3.69

Therefore, if the Lagrangiadensity of the form 5BEBO(X)
is given for an operato©, the operatoi©O can be extended

into the superfield?(x,&,?) in the superspace,

J de53§Bc9(x)=f deJ dedeo(x,6,6).

(3.70
D. MAG TFT as a supersymmetric theory
The operator
O(X) =—ltrg 4 E[AM(X)] +iC(x)C(x) |, (3.7)

has a corresponding superfield given by
=i _ _
O(X)==7tfg\n{[AM(X)]2+2IC(X)C(X)}, (3.72

where we have chosen

::.—. (3.73

The superfield)(X) is written in OSpP/2) invariant form,

OX)= S trgl mmAMOOANX)]. (3.74

Thus the action of MAG TFT can be written in the mani-

festly superspace covariant form

Srer
] _ _
=J deJ d0d07trg\H[nNMQM(X,a,G)QN(x,G,G)].

(3.79
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IV. DIMENSIONAL REDUCTION OF TOPOLOGICAL
FIELD THEORY

After giving a basic knowledge for the dimensional reduc-
tion of Parisi and Sourlas in the supersymmetric model, we
apply this mechanism to MAG TFT. We show thB:
dimensional MAG TFT is reduced to theD(2)-dimen-
sional coselG/H nonlineare model (NLSM). This implies
that a class of correlation functions Brdimensional MAG
TFT can be calculated in the equivaledt{ 2)-dimensional
coset NLSM.

A. Parisi and Sourlas dimensional reduction

Now we split theD-dimensional Euclidean space into two
subsets

x=(z,x)eRP, zeRP™2 XeRZ 4.0

The relation(3.44) holds for anyD. Hence, for supersym-
metric operatoiD(X), we obtain
_ ~ — ~y  A—d n
O(x,0,0)=1f[z,x°+ (4ly)60]=1(z,x )+—0072f(z,x ).
Y dx
4.2

Therefore, for supersymmetric model, we find
36sz def daf doo(x, 6,6)

“ —4_ d “
=de*22J' dsz' daj do —00—f(z,x?)
Y dx?
4 . d n
=—— dezzf d2X—=f(z,x?
Yf dx? (zX)

4 © d
__ D-2 2 - 2
= yf d zfo dr dr2f(z,r )

4
—Wf d°~221(2,0)
Y

4.3

4
%f d°~220,[(2,0),0,0],

4An alternative derivation is as follows. By integration by parts,
we find forD>2

fdef’(x2)=33fer‘1drf’(r2)
0

; J drd(r2)P2-2f(r2)
0
dP~2xf(x?),

where Sp=2#P"?T'(D/2) is the area of the unit sphere -
dimensional space.

=—7
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where we have assumef{z,o)=0[(z,%2),0,0]=0 and is dimensionally reduced to théd( 2)-dimensional model
used the notation of Eq3.41). in the sense of Parisi and Sourlas. From E@75 and

This shows the dimensional reduction by two units. The(4.3), the equivalentD —2)-dimensional theory is given by
supersymmetricD-dimensional model is equivalent to a

purely bosonic model ilD—2 dimensions. This fattwas _ J D-2 } “ Y
first discovered by Parisi and Sourlé®S [28]. Snism=2 | A7 2G5 5, 04(2)Q(2) 4.8
The correlation function in supersymmetric theory are
generated by the partition function in the presence of exter- T b2 + +
nal sources, =- ;f d” " “ztrg 3 [U(2)9*U'(2)U(2)9*U(2) ]
e o
Zousl 71 [ [601exe] ~ [ 0ol Lol 01 = 5[ @z pru@aut@) 49
_(D(X’G,g)ﬂx,ag)]]' (4.4  Thus theD-dimensional MAG TFT is reduced to theD(
—2)-dimensionalG/H nonlinearo model (NLSM) whose

where we write all the fields bgp collectively for the super- partition function is given by

symmetric Lagrangiafs,sy ®]. Restricting the source to a
(D —2)-dimensional subspace, ZNLSM:=J [dU]exp{ — Snsml U1}, (4.10
J(x,0,0)=3(2) 8*(x) 8(6) 5(6), (45 where we have dropped the ghost contributi@{z)C(z).

The correlation functions of the-dimensional TFT coincide
with the same correlation function calculated in the equiva-

. ) . . Yent (D —2)-dimensional NLSM if the arguments are lo-
which are restricted to theD(—2)-dimensional subspace. cated on the D — 2)-dimensional subspace,

These are identical to the correlation functions of the corre-
sponding D —2)-dimensional quantum theory,
<H fi(xi>> =<H ﬁ(xi>>

Zsysl J1=2Zp [ J], (4.6

where Zp_,[J] is the generating functional for if xeRP™2 (411
(D —2)-dimensional theory,

GMAGTFTp G/H NLSMp_,

C. Gluon propagator and mass gap

Zofz[J]Zj [ddo]

xex;:»{—f d°?z
4.7 %f dDXdegeipuxyjpgﬂerﬁg
a

When PS-dimensional reduction occurs, the three-way .
equivalence is known among) a field theory in a super- X nNM<QﬁA(x,0,6)Qﬂ(O,O,O)>TFTD|5=pﬂ=p;=0
space ofD commuting and two anticommuting dimensions,
(2) the corresponding ¥ —2)-dimensional quantum field
theory, and3) the D-dimensional classical stochastic theory,
namely, the stochastic average of thaedimensional classi-

The propagator of NLSM_, in momentum representa-
tion is obtained by takingf)ngngzo in the supersym-
}, metric quantity,

47
7£0[¢0]‘®0(Z)J(Z)

=f dP~2z épk'zkﬁij(Q?(Z)QF(O»NLSMD_Z

2

cal theory in the presence of random external sources. The _ 9_5 5411+ u(p2 pipj_u 2) 5
final point has not yet been made clear in this paper. 7 Oavdij| [1+u(pio)] pi (P 3ij
B. Dimensional reduction of TFT to NLSM (pi.pj.pkeRP7?). (412

The action(3.75 of TFT is manifestly invariant by all  From OSpp/2) invariance, we have
supertransformations. Therefori@;dimensional MAG TFT

1 _ = _
ﬁf dPxdd gelPuXu—Pa? Pl O (x,0,0) QR(0,0,0) e,

5The dimensional reduction was first shown order by order in

2
i i i i i g PmPN
perturbatlon_ theoryi.e., dlagram by diagrajfor scalar fleld[28] =5, [1+u(pf)] > —U(pE)CSMN , 4.13
and gauge fielfi29,30 theories. Later, the nonperturbative proof of T p
dimensional reduction was given at least for scalar field theories
[31,32. We followed the presentation ¢82] in this paper. where
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2._n2 1 9 — N2 02 o The existence of mass gap in two-dimensional3)O
PL=PL+ 2IPGPy=Pict P+ 21PaPy. (4.19 NLSM has been shown in Ref46,47. Therefore, the off-

By settingM = ., N=v and differentiating both sides of Eq. diagonal gluon®\} =% (a=1,2) in four-dimensional S(2)
(4.13 by 9°/dp,Jdp,, We obtain the propagator ilD-  MAG TFT have a nonzero massi,# 0. Although this was
dimensional TFT, assumed in the previous study of APEGT of YM thefity],

it was supported by Monte Carlo simulatip®5]. If we re-
strict the YM theory to the TFT part, the existence of a
nonzero gluon mass has just been proven. This will also hold
in the full YM theory, since the perturbation is not sufficient
to diminish this mass to yield massless gluons.

1 Dy 4ip X a b
o | A xePs #(QL(0)Q(0))rer,

2
= % ab{v(p) 5}LV+ ( 6;/,1/_ p,upv)v ,(pz)}v

(4.19 V. NONLINEAR & MODEL, INSTANTON,
AND MONOPOLE
where
) In the previous section we showed that, thanks to dimen-
2 1+u(p?) 2. .2 sional reduction, the calculation of correlation functions in
v(p2):= —, Pp°:=p%. (4.19 ) ’ :
p # TFTp is reduced to that in the NLSM ,. In what follows,

] ] we restrict our considerations to 8) YM theory. In this

We compare Eq(4.19 with Eq. (4.12) following Ref.[60].  saction we study the correspondence betweéd) GLSM,
If the particle spectrqm hag a mass g_a[DiFrZ dirznensions and SU2) MAG TFT,, especially focusing on the topologi-
(4.12, then the function (p°) is analytic arounp“=0 and 4| nontrivial configurations. It is well known that the two-
hence there is no massless particle at all in the channgfinensional @) NLSM has instanton solutions. We find
A, =0} in D dimensions(4.15. that the instanton in two dimensions corresponds to the mag-

Dimensional reduction shows the equivalence of the cornetic monopole in four dimensions. This correspondence is
relation functions at special coordinatesy 6=6=0 or p utilized to prove quark confinement in the next section.
=p,=py=0. It should be remarked that the spectra of par-
ticles in the channel U{) differ between D- and
(D —2)-dimensional models. It is worthwhile to remark that
PS-dimensional reduction implies neither the equivalence of For concreteness, we consider the casé &fSU(2). The
the state vector spaces nor the equivalence ofSttratrices  case ofG=SU(N), N>2 will be separately discussed in the
between the original model and the dimensionally reducedhext section.
model. First of all, we define

A. NLSM from TFT

- aa -1 3,@(X) +cos6(x)d, x(X) —e XM[ig,0(x)—sinO(X)d,x(X)]
R (x):=1U(x)d,U(X) =R, (X)T = 5| et ixtori . B
e [i9,0(x)+sinO(x)d,x(X)] [d,¢(X)+CosO(X)d,x(X)]
(5.
and
1 d,x(X)+cosb(x)d,¢(X) —e"XM[ig A(x)+sinB(x)d, e(X)]
L,(0:=1U(x)3,U(0 =LA TA= —( oo o g 5
2\e [19,0(x)—=sinO(X)d,e(X)] —[d,x(X)+cos8(x)d,e(X)]
(5.2
|
where we have used the Euler ange®, y and the funda- For later purposes, it is convenient to write various quan-
mental representation tities in terms of Euler angle variables,
A 1, L (0 1) ) (0 —i)
== , g = y g = ) y . 1 )
2 10 0 L;(x)::E(L}LiuLi)
. (1 0 ) 5.3 i
7%l -1/ ' - _—ﬁeﬂ“”[a#e(x):i sin6(x)3,¢(x)],
Note thatR, andL, are HermitianR!,=R,,, L =L,,. (5.4
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L3(X)=a,x(X)+cosO(X)d,¢(X), (5.5  dimensional unit vecton(x) on each point of space-time,
# . . n: RI—-S%(d:=D-2),
and n(x) sin (x)cose(X)
= n?(x) | :=| sin@(x)sine(x) | . 5.8
LA 00 + L0000 B 00 B iy B
:ZL;(X)L;(X) The direction of the unit vector in internal space is specified
:aﬂa(x)&ﬂe(x)+sin26(x)&ﬂcp(x)a#<p(x), by two anglesd(x),¢(x) at each poink e RY. Note that
3
58 n(x)-n(x)::z nA(x)nA(x)=1, (5.9
L3(x)L3(x)= 0 2, 5.
R(OL(X) =[3,x(X) +cos8(x)d,e(X)] (5.7) A(X)- 3,n(X)=0. (5.10

The Q3) NLSM is defined by introducing a three- Using

COSH(X)Cosp(X)d,, 0(X) —sin(X)sine(X)d,¢(X)

9,n(X) = cosf(x)sing(x)d, 8(X) +sin #(x)cose(X)d,e(X) |, (5.1
—sin#(x)4d,,0(x)
we find
1 1 2 2 2 1 1 2 2 2 1
5 L))"+ (Q(x)) ]=2—gz{[L,L(X)] +[L,(x)] }:Z—Qzﬁﬂn(X)ﬂﬂn(X) (5.19
1
=2—gz{[<9lu0(x)]2+Sin20(X)[o7#<p(X)]2}. (5.195

Following the argument in the previous section, we conclude that th@)&lY1) MAG TFT in D dimensions (TFJ) is
“equivalent” to O(3) NLSM in D—2 dimensions (NLSM_,) with the action

sNLSsz o2 zigzaﬂn(x)-&ﬂn(x). (5.16

Both the action(5.16 and the constrain6.9) are invariant under glob&(3) rotation in internal space. The vectors related
to U through the adjoint orbit parametrizati¢see, e.g., Ref.86] for a more rigorous mathematical presentatias

nAX)TA=UT(X)T3U(x), n*(x)=t[UX)TAUT(x)T®] (A=1,2,3. (5.17)

The residual 1) invariance corresponds to a rotation about the vattdn other wordsn is a U(1) gauge-invariant quantity
and the NLSM is a theory written in terms of a gauge invariant quantity alone. In fact, under the transforbhation

Y "T3U, n” is invariant. Then the (1) part in the Haar measure is factored out. This can be seen as follows.
In general, the action of NLSM is determined as follows. The infinitesimal distance in the group manif(@g/8(L)
=32 is given by

ds?=g,,(P)dP2dPP=R?[(dF)?+sirPo(de)?]. (5.18

81t is easy to see that we can write an alternative form for the action
(nXa,n)-(nXa,n)=d,n-a,n, (5.12
where the explicit form is written as

— Sin @(X)d,, 6(X) —Sin &(X)cos (X)COS¢(X)d,,p(X)
n(x) X d,n(x):=| €oSe(X)d,0x)—sin AX)cosAX)sin ¢(X)d,e(X) |. (5.13
SINPA(X)d,¢(X)
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This implies that the metrig,, and its determinang are
given by

g=detg,,) = R*sir’e.
(5.19

Hence the corresponding action of NLSM is given by

900=R?,  g,,=RZsir?g,

s=f d%gap[ P (X)]9,P3(x)3,P(x),  (5.20)

where coordinates”,u=1,- - - ,d span ad-dimensional flat
space-time and the fields®(a=1,2) are coordinates in two-
dimensional Riemann manifold1 called the target space.
The symmetric matribg,,(P) is the corresponding metric
tensor. Indeed, this actiofLagrangian agrees with Eq.
(5.195 for ®2=(6,¢). Consequently, the integration mea-
sure is given by

du(®):= Hd VO(@(x))dd dd?

xeR

= [I R3sina(x)do(x)de(x).

xeR

(5.2))

PHYSICAL REVIEW D 58 105019

(5.28

namely,n(x) approach the same valné” at infinity where
n© is any unit vector in internal spaca{®.n(®=1.

It is important to remark that the coset &)/U(1) is
isomorphic to the two-dimensional surfa®¥[S"=SO(n
+1)/SOM)],

2,n()—0 (1),

SU(2)/U(1)=S?*:=S2,. (5.29
Moreover, by one-point compactificatigine., adding a point
of infinity) the two-dimensional plane can be converted into
the two-dimensional sphere
RAU{0}=S2=S},. (5.30

This implies that any finite action configuratiofx) is just a
mapping fromS},, to S5, The mapping can be classified by
homotopy theory. The B) NLSM, has instanton and anti-
instanton solutions, because the homotopy group is non-
trivial,

I1,[SU(2)/U(1)]=11,(S?) =Z. (5.31)

The instanton(topological soliton is characterized by the

This is the area element of two-dimensional sphere of radiu¥1t€ger-valued topological char@g. This is seen as follows.

R. Thus the partition function is defined by

Zywswe= | [du(m] 11 8Ln00-n(x)—1]exp(— Syism).
xeR
(5.22

du(n)= Hd sinA(x)da(x)de(X). (5.23

xeR

The constraint(5.9) is removed by introducing the
Lagrange multiplier field\(x) as

SNLSM:J’ d®~?x
T
X ﬁaﬂn(x)ﬂun(x)Jr)\(x)[n(x)~n(x)—l] .
(5.24)
For this action, the field equation is
d,d,n(x)+N(x)n(x)=0. (5.29
Using the constraint and this field equation, we see
A(X)=A(X)N(x)-n(x)=—n(x)-d,d,n(x). (5.20
Therefore is eliminated from the field equation
3,0,N(X)—[N(X)-3,d,n(x)]n(x)=0. (5.27

B. Instanton solution

The mathematical identity

1
d,n-d,n= E(ﬁ“ni €,pNX3,N)-(d,N*€,,nX3,N)

*€,,N(d,nX3,N) (5.32
implies
d,n-d,n==*¢€,,n-(d,nX3,n). (5.33
Hence the action has a lower bound
Do T 472
Snism= | d 2_928"”()() : 3Mn(X)>SQ==?|Q|,
(5.39

whereQ is the Pontryagin indexwinding numbey defined
by

1
Q:ZQJ' dZXeM,,n-(&MnX a,n). (5.39

The Euclidean actiorsy gy of NLSM is minimized when
the inequality(5.33 is saturated. This happens if and only if

(5.39

Any field configuration that satisfies E¢.36) as well as the
constraint(5.9) will minimize the action and therefore auto-
matically satisfies the extremum condition given by the field
equation(5.27). The converse is not necessarily true. Note
that Eq.(5.36) is a first-order differential equation and easier
to solve than the field equatiofs.27 which is a second-

9,N=*€,,NXa,0N.

Instantons are solutions of field equations with a nonzermrder differential equation.

but finite action. For this, the field(x) must satisfy

Now we proceed to construct the topological charge:
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3(0,¢)
9,nXa,n=sin6(3,00,0—3d,¢0d,0)n=sin—-——- XX
(5.39

whered(0,¢)/d(x*,x") is the Jacobian of the transformation
from coordinates X*,x”) on Sphy to S2, parametrized by
(6,¢) whereu,v are any pair from 1. .. ,D. Using

n-(d,nxad,n)=sinb(d,00,¢—3d,¢d,0)=sin———- 26.¢)

ax#x")’
(5.38
it is easy to see thdp is an integer, since
1 3(8,¢)
= 2 i —_—
Q - Sﬁhyd Xe*‘”smea(x“,x”)
3(0,¢)
Cam ﬁg [N 500 )
_ 1 f inedéed 5.3
=an)e sin @, (5.39

int

whereS?, is a surface of a unit sphere with area 4Hence
Q gives a number of times the internal sphsﬁgis wrapped
by a mappmg from the physical spa@éqys to the space of
fields SZ,.
The instanton equatio(b.36 can be rewritten as

d1n=Fi(NdaNz—N3dyN), dn==xi(NdN3—N3zd1N),

n:=n;+in,.

(5.40

By changing the variablegstereographic projection from
north pole,

ny(x) Na(X)
Wl( ) 1—n (X) 2( ) 1—n (X) (54])
the instanton equation reads
MW= TF1dW, W:=Wi+iw,. (5.42

This is equivalent to the Cauchy-Riemann equation

Iw4(2)
X,

Iw1(2)
X

ow
— 42

_0wy(2)
+ , =%
9%

%4

. Zi=XqtiXs.
(5.43

For the upper(lower) signs,w is an analytic function of
Z*(z). Any analytic functionw(z),w(z*) is a solution of
instanton equation and also of the field equation. Notewhat
is not an entire function and allows isolated polesni(z),
while cuts are prohibited by the single-valuedness gi).
The divergencev—o corresponds tm;=1, i.e., the north

pole inS%,. The Euler angles are related to the new variables

as

PHYSICAL REVIEW D 58 105019

WltztaHECOSgo, W2:=tan§Sin¢>,
n,+in, o ta 54
w= 1-n, =€ 002, (5.49

corresponding to the stereographic projection from the north
pole’

By using the new variables, we obtain the expressions for
the topological charge

dwdw* i

o f B dx;dx,
T 2m)e(1+wwr)?

Efsz(1+|w|2)2
oW Jw*
Xy IXyq

oW owW*
( (5.46

Xy Xy

dx;dx, /aw ﬂw*+
1+|w[?)2| axq dx,

and an action
oW Iw*
Xy IXy

f dzx—é n-g,n= LZ(
(5.4

A typical instanton solution with topological chardgg
=n is given by

(5.48

where the constantg and z, is regarded as the size and
location of the instanton. The theory has the translational and
scale invarianceX—x—a and x— px, respectively, since

the solution exists for arbitrary and zy, but neither the
action nor the topological charge depend on these constants.
The parameterp,z, are called collective coordinates.

w(z)=[(z—2z0)/p]",

C. One instanton solution

The one instanton solution at the origip=0,

w(z)=12/p, (5.49
implies a solution for theéd(3) vector,
2pXy 2pX; _ 2|~ p?
N P N P
|Z|2:=x2+x3. (5.50

This solution is regarded as representing a monopole or a
projection of the four-dimensional instanton onto the two-
dimensional plane in the following sense. First, we observe

"The stereographic projection from the south pole is

0 0
W;:=COt-COS¢p, W,:=COt=Sine,
2 2
n1+|n2 _ e 0 -
1+ng any- (649
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that the field of an instanton at infinity points in the positive n-(d,nxad,n)=C,,[Q]=sin6(3,00,0—3,¢3d,0).
3 direction n(® while the field at the origin points in the (5.59
opposite direction, '

0 Hence we obtain an alternative expression for the winding
|z/=0—n=(0,0-1)=—n?, number,

|Z|:p_)n:(xl/plX2/pvo)l (55:D 1 2 1 2
Q::gJ d ZEMVC#V[Q]Z EJ d O-MVC,U,V[Q]'
|z|=0—n=(0,0,)=n?, (5.56

If we identify the plane with the sphel®¥ by stereographic
projection from north pole, the noriisouth pole of S? cor-
responds to the infinity pointhe origin and equator to the _
circle |z]=p. Therefore, one instanton soluti§5.49 looks €uCul = €4, (3,0 X 9,0). (5.57
similar to a magnetic monopoler a sea urchin The wind-
ing numberQ of this configuration is determined by the area
of the sphere divided by#, i.e.,Q=1. Thus the one instan-
ton has winding number-1 (the one anti-instanton ha3
=—1). Equivalently, this denotes the magnetic chagge
=1.

An alternative interpretation is possible as follows. The
configuration(5.50 leads to

We can define the topological charge density by

From Eqgs(2.30, (2.37), and(5.55), if we restrictu, v to two
dimensions, the monopole contribution in four dimensions
corresponds to the instanton contribution in two dimensions.
However, the monopole current defined by the divergence of
the dual field strengttt f,, cannot be calculated in the di-
mensionally reduced model, since all the derivatives are not
necessarily contained in two-dimensional space. However, if
the four-dimensional diagonal field streng‘tﬁy is self-dual,

4p2

n(Z)‘[ﬁiﬂ(Z)X&jn(Z)]Z — €jj W

(5.52 “f, =1 (5.58

My

This should be compared with the four-dimensional instan€ monopole charge in four dimensions completely agrees
ton solution in the nonsingular gauge with the winding numbekinstanton chardein two dimen-

sions
2
AA(X):7] i ]:A (X):_’Y] L :Q (5 59)
m A/LVX2+p2’ v AMV(X2+p2)2’ Om . .

X2t . X2 (5.53 The intimate relationship between the magnetic monopole
1 41 . . . . i
and instantons may be a reflection of this observation. Intu-
itively speaking, the magnetic monople and antimonople cur-
rents piercing the surface of tljplanay Wilson loop corre-

2 sponds to the instanton and anti-instanton in the
dimensionally reduced two-dimensional world. In order to
derive the area law of the Wilson loop, the currents must

549 pierce the surface uniformly. In this sense, the monopole

current condensation must occur in four dimensions. The di-

mensional reduction of TFT implies self-duality at the level

of the correlation function,

which implies

4p

3
A s

_ X F3(7)=
A T

where we have usegs;; = €3 = €;; . Therefore, the instan-
ton solution(5.52 in two dimensions is equal to the projec-
tion of the field strength#¥3, of the four-dimensional instan-
ton solution (in the nonsingular gaugeonto a two-
dimensional plane. Therefore it is expected that there is an
interplay between the instanton and the monopole in four
dimensions. However, this does not imply that the four-
dimensional instanton configuration play the dominant rolesince both sides coincide with the same correlation function
in the confinement. The degrees of freedom responsible fdn the dimensionally reduced two-dimensional model.

the confinement is the magnetic monopole which has com- If we define

plete correspondence with the two-dimensional instantons as

1
(Funter,= Ee,uvp(r<‘7:p(r>TFT41 (5.60

shown in the next subsection furthermore. 5 1 abBd. b
= — —F >< = — —
h, g 1:n3(n d,n) g —@e N a,n>,
D. Instanton and magnetic monopole (5.6
By dimensional reduction, we can convert the calculation
) ) . . ) _ AANA
of correlation functions in MAG TFJ into that in a,=A,n"+h,, (5.62
NLSMp_,, if all the arguments sit on the D(—2)-
dimensional subspace. Euler angle expression yields then we obtain the field strength,
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. _ — A A
fu=d,a,—-d,a,=d,(A,N")

1
—3d,(ASnM)— EEABCnA&#nBaynC. (5.63
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VI. WILSON LOOP AND LINEAR POTENTIAL

First of all, in order to see explicitly that the dimension-
ally reduced two-dimensional NLSM hagq1) gauge invari-
ance(corresponding to the residull symmetry, we study
the CP formulation of Q3) NLSM. The CP formulation

This field strength is regular everywhere and does not congp,q\vs gauge structure more clearly than thi@8)®ILSM and
tain the Dirac string. This is nothing but the field strength thelps us to see the analogy of NLSM with ti&+1)-

't Hooft-Polyakov monopole, since” is obtained fromT?
by gauge rotatiorf5.17), nA(x) TA=U"(x) T3U(x). The Eu-
ler angle expression

1 sirf 64
h=— = n® (5.64

T g 1% cosé

is constructed from the instantawortex) solution in two
dimensions by the stereographic projection.

dimensional Abelian Higgs model, i.e., the GL model. The
CPY"! model can have an instanton solution for aNy
whereas the ON) NLSM cannot have one foN>3. For
SUN) YM theory in MAG, the dimensionally reduced
SU(N)/U(1)N~1 NLSM has instanton solutions for arly.
The instanton solution of B) NLSM, is identified as a vor-
tex solution.

Next, we give the relationship among three theories; the
CP' model, @3) NLSM and TFT. It turns out that the cal-

The expression for the instanton charge in two-dimensioreulation of the Wilson loop in four-dimensional TFT is re-
is equivalent to the magnetic charge in four dimensions, beduced to that in the two-dimensional Emodel owing to

cause
1 ABC A B C
KM==§6MVP(,.6 9,n"d,n"3,n
1 ABC A B C
:ge‘“,,pa.e d,(n ﬁpn d n )
= %G/xvpoav[n' ((7an aa'n)]- (565)
we have

1
gm::J d3XKO::§J d3X6ijk(9i[n' (&an ﬁkn)]

1
= Ef dZO'iEijk[n'((?an &kn)]

1 2
:8_Wf32d xej[n-(9;nXan)]=Q. (5.66)

The magnetic current is topologically conservegK, =0
without an equation of motion.

We can also define the three-dimensional topological cur-

rent

J

P

_ ABC/ Ay ~Bo C
Py upo€ (N7d,N"3,n~)

(5.67

1
= %eﬂpg[n- (d,nXd,n)].

ThenQ is obtained from

Q::J dxJp. (5.68

dimensional reduction.

In Sec. VIC, we will show that summing up the contri-
bution of instanton and anti-instanton configurations to the
Wilson loop in the NLSM or CP* model leads to quark
confinement in four-dimensional TFT and YM theory in the
sense of an area law of the Wilson loop. We emphasize that
the cosetG/H is quite important for the existence of the
instanton and that the coset structure is a consequence of the
MAG together with dimensional reduction. We find that the
magnetic monopole in four dimensions corresponds to an
instanton(or vortex in two dimensions. Finally, we discuss
some extensions of the proof of quark confinement for the
general gauge group and in higher-dimensional cases.

A. CPN~1 model and instanton solution

The CP'"! model is described by th complex scalar
field ¢.(x)(a=1,...N) and the action of the
d=(D—2)-dimensional CP ! model is given by

Serl #1= 5 [ 000,400,600
B (0 3,01 ¢* (9 3,601},

(6.1
where there is the constraint
N

¢*<x>-¢<x)==a§l b5 (X) ha(x)=1. (6.2

By introducing an auxiliary vector fiele/,,, the CP'~*
model can be equivalently rewritten as

Ser=y | (0,4 (X)- 3,800+ V()

=2V, (X)[1 ™ (x)- 9, 4(X)]}. (6.3

This is related to Hopf invariant and Chern-Simons theoryin fact, integrating out th&, field in Eq. (6.3 recovers Eqg.
[89]. The details will be presented in a forthcoming paper. (6.1). HereV, corresponds to the composite operator
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Vu(X)=i¢*(X)-d,¢(X). (6.4

This is real and¢*(x)-d,¢(x) is pure imaginary, since
from the constraint,

@* (X)- 9p(X) + ™ (X) - p(X)=2Rd ¢* - dp(X)]= (26 5

Then, using the constrair{6.2), the CP'~! model can be
further rewritten as

Ser V1= 5 [ 4(D,IV1g 001D VIg(0)

(6.6
D, [V]p(x):=(3,+iV,)p(X). (6.7

The partition function is defined by

Zepi= j

X exp(— Scd V1.

Here D ,[V] is actually interpreted as the covariant deriva-
tive, because the Lagrangian is invariant under thH&)U
gauge transformation

ba(X) = da(X)" = a(x) €M,

[dV,][d¢][d¢* ] Hd oL p(X)- p(x)—1]

xeR

(6.9

V,(X)—=V,(x)" =V, (X) = ,A(X), (6.9
whereA is independent of the indexand
D, ba(X) =D, da(x)1e! ™. (6.10

By this property, this model is called the &P* model (the
target space is the complex projective spabdite that

CPN"1=U(N)/U(1)/U(N—1)=SU(N)/U(N—1).
(6.11)

The CP'~! model has global SW{) symmetry and the (1)
subgroup of this SUY) is a local gauge symmetry. Hence
the CP'~! model is U1) gauge theory for aniN. However,

PHYSICAL REVIEW D 58 105019

The multiplier field is eliminated using

AX)=N(X) ™ (X)- p(X) == ¢* (X)- D ,[VID,[V](x),

(6.149
to yield
D,IVID,[V]é(x)={¢* (x)-D,[VID,[V]$(X)}(x)=0.
(6.19

Instantons are finite action solutions of field equations.
The finiteness of the action requires the boundary condition

D, da=d,0atiV,¢,—0 as r:=[x|—o.

(6.1

Separatingp, into the modulus and the angular part,

Ba(X) =] Pa(x)|e'%2, (6.17)
the boundary condition yields
Iuba Iyl bl
V,= ‘(;aazu rd)af‘ -3,0,. (6.18

HereV, must be real and independentaf Hence,d, | ¢,|
=0 andJ, 0, is independent oh. This meange,|= ¢, for

a fixed complex vector with¢g)* - pp=1 and®,=0 (¢)
for a common phase angl®(¢) which can depend ow
parar.n_etri.zing. a circIeSFl)hy. Consequently, the boundary
condition is given by

Ba(X)— o' 91, (6.19

where the allowed values of the pha8eform a circleS!, .
The mapping® from St to St is characterized by an winding
number

V,——3,0(¢),

1 doe

=— |  do—0, 6.2
Q 27l P (6.20

which has an integral value corresponding to the fact that

I,(sh=z. (6.21)

V,. is an auxiliary vector field and does not represent indepjthough the global SUY) rotations can continuously
pendent degrees of freedom, since the kinetic term is absergham‘:]e the value ap,, this freedom does not introduce any

Apart from this fact, the C¥"* model is similar to the Abe-

lian Higgs model or scalar quantum electrodynamics. It is  The windin

known that the kinetic term o¥, is generated through ra-
diative correction, see Ref57].

The constraint is included in the action by introducing the

Lagrange multiplier field\ as

Ser=" | @%[D,[VI#* (01D, [VIgx)]
+ N[ B* (%) p(x)— 11} (6.12
The field equation is
D,IVID,[V]a(X)+N(X)(x)=0. (6.13

further homotopy classification.
g number can be rewritten in terms\6f as
follows. From Eq.(6.4),

v _i . d¢ 1dO 6.2
‘P_rqﬁ'a(pH r de’ 6.22
This leads to
P Y

= — — r = — — /-
2m Séhy o 2m Séhy
1 2

- f 02xe, 0,V 6.23
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where the integrand is a pure divergence. Using the confhe topological charge is expressed as
straint, we can show that this is rewritten as

1 2 + 1 2 2
Q:_Z_ d XGMV&MVV:_E d Xﬁﬂﬂﬂ|n|w| .

— 2 o
From the identity An example of the one instanton solution is given by
w(z)=u+[(z=2)/p]v, (6.39

1 : .
(DM¢).(D,LL(ZS):E(DILL(ﬁiIE/.LVDV(ﬁ)*'(DM¢iIGMVDV¢) .
whereu,v are any pair of orthonormal complex vectors sat-

Fie,,(D,$)*(D,$) 625 Istying

= = * u=np*.p= * 4=
we obtain u;=v,=1, u*-u=v*-v=1, u*.-v=0. (6.39

Hence a lower bound of the action is obtained,

Here the constant, z, represent the size and locati@n the

z plane of instanton. Reflecting the scale and translational
invariance of the action, we can choose arbitrary values for
p,Zg. The solution(6.34) is inverted to become

2
a
Scr= 2|Ql=Sq. (6.27 _ PUat(2-20)v,
’ P =2t

(6.36

The action has the minimum value when the inequality is _ _ o - .
saturated, As z— o, this solution satisfies the boundary condition with

a phase angl®(¢)= ¢,
D, da==*i€,,D,d,. (6.28

This is a self-duality equation which is analogous to the self- . ) ) .

duality equation of YM theory. This equation is first order HeNce this solution leads ©=1, the single instanton. The
(partial differential equation and easier to solve than the@nti-instanton is obtained by replaciady z*.

field equation. Solution of this equation automatically satis- USing the solution(6.34), the vector potential6.32 and
fies the field equation, but the converse is not necessaril§s field strength reads

true.

ba(2)—(2l]z))u=€"“u. (6.37)

. . . , X
— v 2_ 2 2
To solve Eq(6.28, we introduce the gauge invariant field V,=* E‘“’|x|2—+pz’ IX|?=x2+x3, (6.39
wa(X) = () p1(X) (a=1,...N). (6.29 0y
_ P
The covariant derivative is eliminated by substituting V=N =,V =+ 6‘“’(|x|2+p2)2' (639
$a(X) = wa(X) #1(x) into Eq.(6.28),
. Note thatV, tends to a pure (1) gauge field configuration
3, @a(X)=Ei€,,0,0,. (6.30  at infinity,
This is nothing but the Cauchy-Riemann equation. For the Y X
minus (plus) sign, eachw, is an analytic function of:=x, Vu*ifwwz 9,9, ®==arctanx—l. (6.40
+iXy (ZF =X —iX3).
The expression fo, in terms ofw is HenceV, denotes the vortex with a centersat 0. This is

consistent with Eq(6.23. This implies that the magnetic
field of the magnetic current induces ttguantizedl current
around it on a plane perpendicular to the magnetic field. This
is regarded as the dual of the usual Ampere law where the
electric current induces the magnetic field around it,

|
_ * . *
VM——22| | (0™ d,0—w-d,0%)

| N N N N ~
=§(w*~ﬁ#w—w~&#w*), w:=ol|o|,

1 1
|w]:=(0* - 0)?=|¢,| " (6.30 1= 2w ﬁ:V— 27 ﬁ:d_n’ VisVidxt. (643
Taking into account the Cauchy-Riemann relations, we obtn two dimensions the dual of the vector is again the vector.
tain The two descriptions are dual to each other.
. . The solution(6.39 should be compared with the four-
Vere & “d,0tw-d,0 — e 3 n|w| dimensional instanton solution in the nonsingular gauge
mom sy 2|w|? ey : (5.54. The instanton solutiori6.39 in two dimensions is

(6.32 regarded as the projection of the four-dimensional counter-

105019-23



KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019

part_(5.54) on the two-dimensional plane. However, this does v (x)=i¢*(x)- d,¢(x)=—9[d,x+C0s03 ,¢]= _SL?L'
not imply that the four-dimensional instanton configuration 6.46
play the dominant role in the confinement. The degrees of '
freedom responsible for the confinement is the magnetitience, the vector fiel&/, is equivalent toﬂi when u is
monopole which has complete correspondence with the twaestricted tou=1, ... d. Furthermore,

dimensional instantons. This has been shown in Secs. VB
and VC. * S 1.2 2\2 3,2

0 $* (%) 9, ()= ST (LL)7+ (LD +(L3)].
B. CP! model, O(3) NLSM, and TFT (6.47)

The CP model is locally isomorphic to the @) NLSM  Owing to the dimensional reduction, thB-dimensional
with the identification SU(2) MAG TFT is equivalent to the
d=(D—2)-dimensional CPmodel,

1
nA(X)==§¢;(X)(0A)ab¢b(X) (a,b=1,2 (6.42 , ]
Scrt= EJ ddX{[L,lL(X)]2+[|_;2L(X)]2}, :3‘:52-
) (6.48

n'=Re(¢] ¢;), n*=Im(¢7 ¢,), Consequently, when the Wilson loop has the support on the
(D —2)-dimensional subspacR'CRP, then the diagonal

1 Wilson loop inD-dimensional S(P) MAG TFT
n*=3 (¢l 62, (6.43 P

Q7,_ ; Q d
Actually, the constraint is satisfiet*n*= (| ¢|>+ | ,|?)? Wela ]._exp(|q f}gcaﬂ(z)dz“), zeR"® (649
=1. Hence the CPmodel has three independent parameters,
whereas @) vectorn has two. One of three parameters in aﬁ(x)zztr[Tﬁ‘Q#(x)]:Li(x), (6.50
the CP model is unobservable, since a global change of the
phase does not lead to any observable effect. In fags ~ corresponds to the Wilson loop ith= (D — 2)-dimensional
invariant under the (1) gauge transformation. It is possible CP* model,
to show that tgle %agrangia(rﬁi.l) for N=2 reduces to (8) .
NLSM. The CP'~* has instantons for arbitrafy=2, while B . _ ! Y
O(N) NLSM does not have them fd¥>3. The map from WelV] .-exp<|q ﬁvﬂ(z)dzﬂ) —exp{zqfsvw(z)do” )
the CP model to @3) NLSM is identified with a Hopf map 6.5
H:S3— S? whereS® denotes the unit three sphere embedded '
in R4 by | #1|?+[#2|°=1. In the language of mathematics, C. Area law for the diagonal Wilson loop
S% is a U1) bundle overs?, see e.g., Ref:89].

The field variables of CPmodel is written in terms of Now we evaluate the Wilson loop expectation value to
Euler angles obtain the static potential for two widely separated charges

+q (in a 6 vacuum). We define the diagonal Wilson loop
operator[8] for a closed loofC by

0
cos;,

b1= JZ_Sexr{'Eww

Wc[a“]==eXp(iq fﬁcag(x)dx*‘ o ag(x) =t TRAN ()]

0
sini, (6.52

i
2= \BBexg ~ 59
(6.449  According to the Stokes theorem, this is equal to
which satisfies the constrairt} ¢,=2S. Indeed, substitu- i
tion of Eq. (6.44 into Eq.(6.43 leads to Wc[au]zexp(qusfﬁy(x)do’”) (6.53

nl=2Re %)=2Ssin 6 cose, . :
($162) ® for any surfaceS with a boundaryC. We restrict the loofC

2_ *\ _ ; ; to be planar, otherwise, we could receive any benefit of di-
n<=2Im =2Ssinésin . . :
(142) fsine, mensional reduction to calculate the Wilson loop expecta-
3=y |2— | do|2=2S cosé. (6.45 tion. In what follows we calculate the contribution fra, ,

namely, the topological contribution alone. Then the dimen-
This is nothing but the Schwinger-Wigner representation ofional reduction implies
the spinS operator in terms of two Bose creation and anni- Q _ Q
hilation operators¢;,¢a. In the path integral formalism, (Wela ]>MAGTFT4_<WC[a Do) NLSM,»
they are not operators, batnumbers. o 3
Substituting Eq(6.44) into Eq. (6.4) yields a, (x)=t[T°Q ,(x)]. (6.59
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Following the procedure in Sec. Il, we regard other contri-Q inside S over all the instanton—anti-instanton ensembles

butions as perturbative deformatidhf U;J#,0,0], see Eq.

(2.59.
According to Sec. V Gor VIB) for G=SU(2), theWil-
son loop in two-dimensional @B) NLSM is rewritten as

2 1
We[a%]= exp{ i %qudZXgew,n- (d,nX am)) .
(6.595

generated from the action of NLSM.

In the following, we use the dilute instanton-gas approxi-
mation as a technique to calculate E6.56). This method is
well known, see, e.g., Chap. 11 of Rajarama8] or Chap.

7 of Coleman[57]. (We will give the Wilson loop calcula-
tion based on other methods elsewheYie first classify the
configurations of the fieleh that contribute to the tunneling
amplitude of instantonén|e™"T|0) according to the number
of well-separated instantoms, and anti-instantona_ such

Note that the integrand is the density of instanton number aghat Q=n=n, —n_. Then we sum over all configurations

shown in tge previous section. This implies_ that the Wilspnwith n, instantons andh_ anti-instantons, all widely sepa-
loop Wc[a™] (6.55 counts the number of instanton—anti- rated. In the dilute-gas approximation, the calculation of tun-

instanton(or vortex—antivortex in CPformulation) existing
in the areaS bounded by the loog in the O(3) NLSM. The
Wilson loop expectation value is written as

(Wcl aﬂ]>o<3) NLSM,

f du(n)d(n-n—1)e” SnsmtQw [a] |

N

=

f du(n)d(n-n—1)e SnsmtioQ

(6.56

where we have included the topological ter#Q.8 Inclu-
sion of topological term 6Q in the action is equivalent to
consider thef vacuum defined by

+ oo

|6>=:n2m e"’n).

(6.57

The action with a topological anglé is written as

SiLsm=SnLsm—i160Q=(n.+n_)S;—if(n.—n_),
2

T
S1(9)=—-

g (6.58

neling amplitude is reduced to that of a single instanton
(anti-instantoh contributionn—n+1 (n—n—1). The term
withn,=1, n_=0 (orn, =0, n_=1) is given by

(n=1]e "0}~ [ du(p) [ >

Xexg —S;(g)]exp( i)
= BLleeXF[ - Sl(g)]exq *i 0)
(6.59

HereT=L, or L, and the prefactoBL,L, comes from in-
tegration of the collective coordinates, i.e., the size and po-
sition of the instanton,

fd,u,(p)jdzx=BL1L2, B~O(m3), (6.60

where L,L, is the (finite but large volume of two-
dimensional space arilis a normalization constant of order
m,i, because instanton size is proportional to the inverse
massm,gl of off-diagonal gluons. In order to know the pre-
cise form ofB, we must determine the measwép) for the
collective coordinate, see Refs[90-94.

In the dilute-gas approximation, the denomindtbis cal-

We regard Eq(6.56 as the average of the instanton numberculated as

I7=(ele™"Tlo)= 2

L =0 n,!'n_!

o)

:zn!

ng=0 M4

(BLle)nJrJrn,

ex —(ny+n_)S;(g)+id(n.—n_)]

o)

1 _ 1 _
—(BLyL, e~ Su@+ifyn. E n_I(BLlLZefsl(g)*lﬁ)n_

= eXF{BLlLZe—Sl(g)+i0+ BLlee—Sl(g)—i 0]

=exf 2(BL,L,)cosfe 5197,

(6.61

8Note that the nonzeré is not essential to show the area law of the Wilson loop in the following. We ca®0t in the final results

(6.65 and(6.66).
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where there is no constraint on the integersorn_, since  with eithern, or n_ equal to zero is exponentially small
we are summing over ap=n_, —n_. The sum is precisely compared to the complete sum for lar§g56]. Wheng is
the grand partition function for a classical perfect ges.,  small, the instanton gas is extremely dilute. For largén-
noninteracting particlé$ containing two species of particles stantons and anti-instantons come closer together.

with equal chemical potentia™ 59 and volume measured When =0, the most dominant term in this sum is given
in units of B. The energy(action for a configuration with  for large T at

n, and n_ members of each species ia (+n_)S;(g)

while the entropy of the configuration s n.=n_=BL,L,e 519 (6.62
IN[(BL,Ly)™ "=/n,In_!].

The configuration of instanton and anti-instanton is not arand asT — the entire sum comes essentially from this term
exact solution of the equation of motion. However, the domi-alone. The important lessons learned from RB8] are (i)
nant term is given by the configuration for which the freethe dominant term contains both instantons and anti-
energy (energy minus entropyis smallest. For large cou- instantons and cannot be computed by a strict saddle-point
pling the action of a given field configuration decreases agnethod that relies on exact solutions to (Beiclidean equa-
g~ 2 while the entropy which is obtained as the log of thetion of motion and(ii) the dominant term is not the one for
volume of function space occupied by the configuration iswhich the classical action ekp S| is minimum.
less sensitive tg. Thus for moderate or strong coupling the ~ The calculation of the numeratéf reduces to the con-
entropy of a field configuration can be more important thanstruction of a system in & vacuum outside the loop and that
its action. The exact multi-instanton solutions are essentiallyn a 6+ 27rq vacuum inside the loop. Le&(C) be the area
of no relevance in constructing the vacuum state becausenclosed by the loog. In the dilute-gas approximation, the
they have so little entropy. In fact, the sum over all termsnumerator is

. [BA(C)J" 0" o 2 o
5= 2 %EXF{—(I’]T-FI’]I”)SKQ)-H 0+ Lq)(n'ﬂ—n'”)
n?.n"=0 nyinZ! 9

out, out
{B[LiLo—A(C)J}"™ "~ .
x 2 oy oy exy — (N2 +n2)S;(g) +i B(n%"=n)]
n, ,n_=0 + =

zslacreod o 55
=exp 2B|A(C)co 0+T

+[L,L,—A(C)]cosh e—51<9>]. (6.63

Here we decomposed the sum inside the Wilson loop anéinally we notice that the volume dependence disappears in
outside it. The decomposition. =n't+n%" is meaningful the ratiol5/1¢. The above derivation is very similar to the
only when the looC is sufficiently large and the instanton two-dimensional Abelian Higgs model, see R&b5|.

size is negligible compared with the size of the loGB0 In the vacuum with the topological angte therefore, the
that the overlapping of the instanton and anti-instanton withWilson loop expectation value has

the loop is neglectedthis is equivalent to neglecting the

perimeter decay part of the Wilson looghen we can write

27q
cosB—cos( 6+ T) }A(C)] .
(6.6H

The Wilson loop integral exhibits an area law. If we take the

rectangular Wilson loop, the static quark potential is derived.

If g/g is an integer, the potential vanishes because the
vacuum is periodic irg with period 2. The integral charge

is screened by the formation of neutral bound states. Vwhen

By the fermionization method, the noninteracting |nst§nton andS not an integral multiples of an elementary chaggethe
anti-instanton system can be rewritten as the free massive fermion

models with two flavors. From this viewpoint, including the inter- stgtlc q.uark poFentlaV(R) is given by the linear potential
actions between instantons and anti-instantons is equivalent to ilwlth string tensiono,
troducing the four-fermion interaction of Thirring tyd®4]. By

bpsonization, _the intera_cting fermionic mo<_jel is converted in_to the V(R)=0R, o=2Be" S cose—cos( 0+ zlq) }
sine-Gordon-like bosonic modgd4]. The Wilson loop calculation g

from this point of view will be given in a forthcomming paper. (6.66

(Wc[a%])y= exp{ —2Be %1

. (6.69

2 o
W[a%]= exp[%qi (n'T—n")
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whereB~m3 and S, =exp(—4?/g?) is the action for one

instanton. It should be remarked that the confining potential SAPEGT:j d*x
is very much a nonperturbative quantum effect caused by

instantons, because the linear potential has a factor'’” (if _ . . o
we had retained dependendewhich is exponentially small where ghost interactions and higher derivative terms are ne-
in # and vanishes as—0. This is a crucial difference be- dlected.

1
- Wf#«”fM }, (673)

tween the linear potentid6.66) and the linear Coulomb po- ~ The naive instanton calculus given above can be im-
tential in two dimensions. proved by including the correction around the instanton so-
On the other hand, the four-dimensional Coulomb potenlutions following the works[92-95. Although we have
tial is calculated by perturbation theof96] (see Ref[27]),  identified the two-dimensional space with the sphere in the

above, instanton solutions exist also for the tdi®i598 and
5 g2 the cylinder[99]. However, the torus only admits multi-
V(R)=— 7 tconst. (6.6 instantons with topological charge two or mdre single-

instanton solution

Therefore, we arrive at the conclusion that the total static

qguark potential in four-dimensional YM theory is given D. Importance of cosetG/H

by [27]
y In our approach, it is important to choose the cdséit
C, g so thatIl,(G/H)#0, because for any compact connected
V(R):O'R_ EE"' const. (668) Lie groqu’

The two-dimensional QN+1) NLSM is asymptotic free I15(G)=0, (6.74

and theg function[47] is given by
da(as) N_1 where the two-dimensional NLSM fails to contain the instan-
glp - ton. The MAG naturally leads to such a coset G/H NLSM.
B(g)=p dp W93+O(95)’ 669 This is a reason why the PGM based Gncannot contain
nontrivial topological structure and dynamical degrees of
where g is the renormalized coupling constant apdthe  freedom except for unphysical gauge modes, although the
renormalization scalelmas$ parameter. By dimensional authors of Refs[61,6Q tried to include the physical modes
transmutation as in QCD, the mass and the “string tension’as perturbation of PGM. It would be interesting to clarify the

of NLSM should be given by42] relationship between the Wilson criterion of quark confine-
ment and color confinement criterion by Kugo and Ojima
9 dg 5 9 dg [66] and Nishijima[67]. This issue is reserved for future
mAexp - B8]’ o~ Atexp —2 B(9)] investigations.
(6.70

For the B function (6.69), this implies forN=2 E. Generalization to SUN)

The above consideration can be generalized to the more
general cas&=SU(N). Using

I1,(SUN))=0, (6.79

472

0'~A26X[< - ?), (6.7

in agreement essentially with the above re$6166. In this
case, the scald of the theory is given by the off-diagonal e obtain
gluon massm,. This result does not agree with four-

dimensional SIIN) YM theory in which _ _ _
IL,(SUN)/U(DHNH =TT, (U H=2ZN""%

bo . 1IN (6.76
ﬂ(g):—mg +0(9), bo=T>0. (6.72

This formula guarantees the existence of the instanton and
because we have taken into account only the MAG TFT paranti-instanton solution in the S®8)/U(1)N~*NLSM, model
of YM theory and neglected an additional contribution com-obtained from SU{)MAG TFT, by dimensional reduction.
ing from the perturbative pafnote that the correspondence Therefore, the whole strategy adopted in this paper to prove
of SU(N) YM theory to QN+1) NLSM is meaningful only  the quark confinement will be valid for SN} gauge theory
for N=2]. By integrating out the off-diagonal gluoms; in in four dimensions. The origin of instantons in the dimen-
MAG TFT (3.10, we can obtain the APEGT of MAG TFT, sionally reduced model is the monopole in the original
as performed for YM theory in the previous pap&v]. The  model, as suggested by the mathematical forniéiI@o).

APEGT of MAG TFT is given by theH=U(1) gauge In order to study the casd=3 in more detail, it would
theory with the running coupling(«) governed byg func-  be efficient to perform the N expansion to the
tion (6.69), SU(N)/U(1)N~INLSM, model.
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F. Higher-dimensional cases mal field theories which include the WZNW and minimal
Our strategy of proving quark confinement I dimen- models as s_ubsets. The off—critical_theory can_be considered
sions is based on the existence of instanton solutions in thgS Perturbation of conformal theories by a suitable relevant
dimensionally reduced O— 2)-dimensional NLSM. This field. The perturbed field thepry is called a de_formatlon a_nd
can be generalized to arbitrary dimensi@> 4. Remember corresponds to the renormalization group trajectory starting

the mathematical formula for the Homotopy group f_rom the corresponding fi_xed point. Thg integ_rable_ deforma-
tion [40] among all possible deformations gives integrable

I1,(SU(2)/U(1))=1II,(S?)(n:=D—2>2), (6.77) perturbed field theory and factorized scattering theory.
The NLSM with a topological anglé is integrable at two
and particular points#=0 and#= = [8,39,44. At #=0 the cor-
o _ relation length is finite and all the excitations are massive.
1589 =2 (D=5), The spectrum consists of a singlg3D triplet of massive
particles with a nonperturbatively generated mass

~r5%e279", On the other hand, @i= = the scale invariant
I($%)=2, (D=7),.... (6.78  behavior is observed in the IR limit, infinite correlation
length. The large-distance asymptotics is described by

This provides the possibility of proving quark confinementSU(2)X SU(2) WZNW theory at levek=1. So the NLSM

1,(8)=2, (D=6),

based on instantons and anti-instantons everDfor4 di-  at =7 can be considered as an interpolating trajectory end-
mensions. ing up at the IR fixed point characterized by level 1 CFT.

The three-dimensional Chern-Simons gauge theory is a

G. Exact results in two dimensions topological field theory in the sense that the integrand of the

action is a total derivative and it is generally covariant with-

_The classmlal.(C'B) NLSM in 1+1 dimensions IS .charac- out any metric tensor. If we quantize CS theory and take a
terized by an infinite number of conserved quantities and b¥ime slice, one dimension is lost, and the theory becomes a

ngtllttijzngd tég)n Sl:cI(I)_rSmI\/Iatlignzs fr(;r tgtei(?:l:atlf?ge S;]Igt'%f'cow_'etwo-dimensional conformal field theory. The correlation
9 ymp Y function in CS theory are purely topological invariants and

served quantities exist free of anomaljég]. An exact fac- e correlation functions over Wilson lines gives invariant

torized S matrix has been constructed using the existence tfh : :
the infinite conserved quantitiés?). %not polynomial [84]. The knot theory can describe all

It is known [81] that theo model !<nown rgtional' conforma_l field theories.'AII the exact results
in two dimensions mentioned above will be utilized to un-

1 derstand more quantitatively the quark confinement in four-

S= Kzf d?xtr(9,U"19*U)+kI'(U), (6.79  dimensional QCD by dimensional reduction.

with a Wess-ZumindWZ) term VII. DISCUSSION

1 In this paper we have considered one of the most impor-
F(U)::EJ d*xePMrL,Lgl,],  L,=U"%9,U, tant problems in modern particle physics: quark confinement
(6.80 in four-dimensional QCD. In order to prove quark confine-
ment in QCD, we have suggested to use a TQFT which is
becomes massless and possesses an infrared stable fix@dracted from the YM theory in the MAG. This TQFT de-
point when scribes the dynamics of magnetic monopole and antimono-
pole in YM theory in MAG. We have proposed a reformu-
lation of QCD in which QCD can be considered as a
perturbative deformation of the TQFT. In other words, in this
reformulation the nonperturbative dynamics of QCD is satu-
At these special values d&f, the model(6.79 is called the rated by the TQFT we proposed, as far as the issue of quark
level k Wess-Zumino-Novikov-WittetWZNW) model. The  confinement is concerned. Needless to say, additional non-
familiar o model corresponds =0 case where the theory perturbative dynamics responsible for quark confinement
is asymptotically free and massive. The WZNW model iscould possibly come from the self-interaction among the
invariant under the conformal transformation and with re-gluon fields reflecting the non-Abelian nature of the gauge
spect to infinite-dimensional currefffac-Moody) algebra. group. However, additional nonperturbative contributions to
The o model with arbitrary couplingh can be solved quark confinement are expected to be rather few, if any. This
exactly by means of the Bethe ansatz technigl. How-  claim is strongly supported by the recent numerical simula-
ever, the computation of correlation function remain beyondions[24,3] of lattice gauge theory with the maximal Abelian
the powers of the Bethe ansatz method. Although the congauge fixing, since the magnetic monopole dominance as
formal field theory approacfi79] is restricted to the fixed- well as the Abelian dominance in low-energy physics of
point case, it provides much more detailed information abouQCD has been observed in this gauge for various quantities
the theory including the correlation functiof80]. We can including the string tension. See Sec. |V E[&f7] for more
calculate exactly all correlation functions in rational confor- discussion.

) 4
N=—— (k=1,2,...). (6.82
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The idea of reformulating the gauge theory as a deformaether methods too, e.g., fermionizatip®8]. There is some
tion of a TQFT also works for Abelian gauge the$B88]. In hope to perform the calculation exactly, since the two-
the Abelian case, on the other hand, there is no selfdimensional @) NLSM is exactly solubld42,43.
interaction for the gauge field. Hence, using the similar re- Our formulation is also able to estimate the perturbative
formulation of Abelian gauge theory, we can prove the exiscorrection around the nonperturbatiy®pologically non-
tence of the quarkfractional chargeconfinement phase in trivial) background withoutd hocassumptions. As an ex-
the strong coupling region of four-dimensional QEBS] ample, a calculation of static potential is given in Ref7]
without worrying about any additional nonperturbative ef-where the perturbative Coulomb potential is reproduced in
fect. This result implies the existence of non-Gaussian fixecddition to the linear potential part coming from the TQFT.
point in QED. The relationship between the full non-Abelian Wilson loop

In this reformulation, the dimensional reduction occurs asand the diagonal Abelian Wilson loop can be given based on
a result of the supersymmetry hidden in the TQFT. Hencahe non-Abelian Stokes theoref27]. Consequently, Ref.
the calculation of the Wilson loop in four-dimensional QCD [27] completes(together with the results of this papehe
is reduced to that in two-dimensional NLSM. It should be proof of area decay of the full non-Abelian Wilson loop
remarked that this equivalence between TQBEMNd NLSM,  within the reformulation of four-dimensional QCD as a per-
is exact. turbative deformation of TQFT.

In this paper we have used the instanton calculus to cal- The advantage of this reformulation is that one can in
culate the Wilson loop in two dimensions. We have shownprinciple check whether this reformulation is reliable or not,
that the area law of the Wilson loop is derived from naivesince the calculations of the Wilson lod@and therefore
instanton calculus, i.e., the dilute instanton-gas approximastring tension are reduced to calculations in a two-
tion. The improvement of the instanton calculus can be perdimensional NLSM. In fact, one can check by direct numeri-
formed along the lines shown in Ref92-94. (In the Abe-  cal simulation whether the string tension obtained from the
lian case, the improvement can be easily performed and thdiagonal Wilson loop in two-dimensional NLSM saturates
result is reinterpreted in terms of the vortex; $88].) The that of the full non-Abelian Wilson loop in four-dimensional
two-dimensional instantoanti-instantoh is considered as QCD, as proposed in Ref100]. This is nothing but the test
the intersection of the magnetic monopdkntimonopolg¢  of Abelian dominance and magnetic monopole dominance
current with the two-dimensional spa@@ane. This implies  through the dimensionally reduced two-dimensional model.
that the quark confinement in QCD is caused by condensa&Buch simulations will prove or disprove the validity of the
tion of magnetic monopole and antimonopdétairrents, to-  reformulation of QCD proposed in this paper.
gether with the previous resylt7]. Therefore, these results
support the scenario of quark confinement proposed by
Nambu, 't Hooft, and Mandelstam, i.e., the dual supercon-
ductor picture of QCD vacuum. | would like to thank Yoshio Kikukawa and Ryu Sasaki

Note that we have used the instanton calculus merely téor helpful discussions in the early stage of this work. | am
see the correspondence between the two-dimensional instaslso grateful to Mauro Zeni for sending many comments and
ton and four-dimensional magnetic monopoteirren}, we  remarks on the first version of this paper. This work was
need not to use the instanton calculus for exactly calculatingupported in part by a Grant-in-Aid for Scientific Research
the Wilson loop in two-dimensional NLSM. We can use from the Ministry of Education, Science and Culture.
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