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Yang-Mills theory as a deformation of topological field theory, dimensional reduction,
and quark confinement

Kei-Ichi Kondo*
Department of Physics, Faculty of Science, Chiba University, Chiba 263, Japan

~Received 13 April 1998; published 12 October 1998!

We propose a reformulation of Yang-Mills theory as a perturbative deformation of a novel topological
~quantum! field theory. We prove that this reformulation of four-dimensional QCD leads to quark confinement
in the sense of an area law of the Wilson loop. First, Yang-Mills theory with a non-Abelian gauge groupG is
reformulated as a deformation of a novel topological field theory. Next, a special class of topological field
theories is defined by both Becchi-Rouet-Stora-Tyupin~BRST! and anti-BRST exact actions corresponding to
the maximal Abelian gauge leaving the maximal torus groupH of G invariant. Then we find topological field
theory (D.2) has a hidden supersymmetry for a choice of maximal Abelian gauge. As a result, theD-
dimensional topological field theory is equivalent to the (D22)-dimensional cosetG/H nonlinear sigma
model in the sense of the Parisi-Sourlas dimensional reduction. After maximal Abelian gauge fixing, the
topological property of the magnetic monopole and antimonopole of four-dimensional Yang-Mills theory is
translated into that of an instanton and anti-instanton in a two-dimensional equivalent model. It is shown that
the linear static potential in four dimensions follows from the instanton–anti-instanton gas in the equivalent
two-dimensional nonlinear sigma model obtained from the four-dimensional topological field theory by di-
mensional reduction, while the remaining Coulomb potential comes from the perturbative part in four-
dimensional Yang-Mills theory. The dimensional reduction opens a path for applying various exact methods
developed in two-dimensional quantum field theory to study the nonperturbative problem in low-energy phys-
ics of four-dimensional quantum field theories.@S0556-2821~98!04920-0#

PACS number~s!: 11.15.Tk, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION AND MAIN RESULTS

In particle physics, perturbation theory is applicable if t
coupling constant as an expansion parameter is small in
energy region considered. This is assured in the high-en
ultraviolet region of quantum chromodynamics~QCD!
where the effective coupling constant is small due
asymptotic freedom@1#. On the other hand, in the infrare
regime of QCD where the effective coupling is expected
be large, the perturbation theory loses its validity. The qu
confinement is regarded as a typical example of indica
the difficulty of treating strongly coupled gauge theories. T
conventional perturbation theory deals with the small dev
tion from the trivial gauge field configurationAm50 which
is a minimum of the actionS.

In the last decade, various evidence about Abelian do
nance and magnetic monopole dominance in the low-ene
physics of QCD has been accumulated based on a M
Carlo simulation of lattice QCD initiated by the work@2#,
see, e.g., Ref.@3# for a review. This urges us to reconsider
there may exist any perturbation theory appropriate for Q
with the expansion parameter being small even in the in
red region. There the expansion must be performed abo
nontrivial gauge field configurationAm5” 0 other than the
trivial one Am50. In gauge field theories, we know th
there are soliton solutions called the vortex@4#, magnetic
monopole@5#, and instanton@6,7#. They are candidates fo
such a nontrivial field configuration.

*Email address: kondo@cuphd.nd.chiba-u.ac.jp
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We know a few examples of such expansions aroun
nontrivial field configuration that have successfully led to t
resolution of the strong coupling problem. An example is
proof of quark confinement by Polyakov@8# in three-
dimensional compact U~1! gauge theory and three
dimensional compact quantum electrodynamics~QED! in the
Georgi-Glashow model with gauge group SU~2!. He consid-
ered the nontrivial minimumVm of the action given by the
instanton~pseudoparticle!. The fieldAm is decomposed into
Vm1Qm and Qm is considered as a quantum fluctuatio
aroundVm . The integral overQm is Gaussian and is exactl
integrated out. The result is written as the sum over all p
sible configurations of instantons and anti-instantons. In
three-dimensional case, instanton~anti-instanton! is given by
the magnetic monopole~antimonopole!. Moreover, Seiberg
and Witten@9# have shown that in the four-dimensionalN
52 supersymmetric gauge theories, the nonperturbative c
tributions come only from the magnetic monopole or insta
ton in the prepotential which exactly determines the lo
energy effective Abelian gauge theory. These examples s
that the quark confinement is caused by the condensatio
magnetic monopoles.

Recently, a reformulation of the Yang-Mills~YM ! theory
as a deformation of topological~quantum! field theory has
been attempted@10–12#, abbreviated T~Q!FT hereafter. The
BF theory @12# as a topological field theory~TFT! can be
regarded as a zero-coupling limit of YM theory@13–15#.
A similar idea was proposed recently by Abe and Nakani
@13# where two-dimensional BF theory is essentially eq
valent to the zeroth-order approximation to YM theo
in their framework of the newly proposed method
©1998 The American Physical Society19-1
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solving quantum field theory. In higher dimensions, ho
ever, the limit is singular due to the fact that the gauge sy
metry in BF theory is larger than that in YM theory. In th
last couple of years, considerable progress has been ma
assure that YM theory can be obtained as a deformation~per-
turbation! of topological BF theory by Fucito, Martellini, an
Zeni @15#. This reformulation is the first-order formulation o
YM theory, called BF-YM theory@16,17#. They checked the
area law behavior for the Wilson loop average and compu
the string tension. In this formalism, an area law arises i
very simple geometrical fashion, as an higher linking num
between the loop and surface.

In this paper, we reconsider YM theory from a topologic
point of view. First we reformulate YM theory as a deform
tion of a novel TFT. This is equivalent to saying that Y
theory is described as a perturbation around the nontri
field configurationVm given by TFT. This formulation of
YM theory will be suitable for describing the low-energ
region of YM theory, because the topological property do
not depend on the details of the short-distance behavio
the theory and depends only on the global structure of
theory. In order for such a description to be successful, T
must include the most essential or dominant degrees of f
dom for describing the low-energy physics in question. T
monopole dominance is a hint for the search of an appro
ate TFT. The TFT we propose in this paper is different fro
the conventional TFT’s of Witten type@10# or Schwarz type
@11#. Witten type TFT starts from the gauge fixing conditio
of self-duality

Fmn56F̃mn , F̃mnª
1

2
emnrsFrs , ~1.1!

corresponding to the instanton configuration in fou
dimensional YM theory@6#. The total action can be written
as Becchi-Rouet-Stora-Tyupin~BRST! transformationdB of
some functionalV composed of the fields and their ghosts

Stot5@QB ,V%5dBV. ~1.2!

On the other hand, Schwarz-type TFT has a nontrivial c
sical actionScl which is metric independent~hence topologi-
cal! with nontrivial gauge fixing. For example, BF theo
and Chern-Simons theory belong to this type,

Stot5Scl1@QB ,V8%5Scl1dBV8. ~1.3!

Our TFT tries to incorporate the magnetic monopole degr
of freedom as essential degrees of freedom for low-ene
physics. For this, we use the the maximal Abelian gau
~MAG!. In MAG, we find that the action is written in th
form

Stot5dBd̄BO, ~1.4!

using the anti-BRST transformationd̄B @18#.
In a previous paper@17#, we proved that the dual supe

conductor picture of quark confinement in QCD~proposed
by Nambu, ’t Hooft, and Mandelstam@19–21#! can be de-
rived from QCD without any specific assumption. In order
10501
-
-

to

d
a
r

l

al

s
of
e
T
e-
e
ri-

-

s-

s
y
e

realize the dual superconductor vacuum of QCD, we nee
take the MAG. MAG is an example of Abelian projectio
proposed by ’t Hooft@20#. The basic idea of Abelian projec
tion is that the off-diagonal non-Abelian parts are made
small as possible. Imposing MAG, the gauge degrees of f
dom corresponding toG/H is fixed and the residual gaug
invariance for the maximal torus groupH of the gauge group
G remains unbroken. Under MAG, it is expected that t
off-diagonal gluons~belonging toG/H) become massive
and the low-energy physics of QCD is described by the
agonal Abelian part~belonging toH) alone. All the off-
diagonal fields transform as charged fields under the resi
Abelian gauge symmetryH and are expected to be massiv
It is shown @17# that an Abelian-projected effective gaug
theory ~APEGT! of QCD is obtained by integrating out a
the massive degrees of freedom in the sense of the Wilso
renormalization group~RG! @22#. Therefore the resulting
APEGT for G5SU(2) is written in terms of the Abelian
field variables only. In fact, the APEGT obtained in the pr
vious paper is written in terms of the maximal Abelian U~1!
gauge fieldam , the dual Abelian gauge fieldbm , and the
magnetic monopole currentkm which couples tobm . This
theory is an interpolating theory in the sense that it gives t
dual descriptions of the same physics, say, quark confi
ment. APEGT tells us that the dual theory which is mo
suitable in the strong coupling region is given by the du
Ginzburg-Landau~GL! theory, i.e., the dual Abelian gaug
Higgs model@4#. That is to say, monopole condensation pr
vides the massmb for the dual gauge field and leads to th
linear or confining static potential between quarks and
nonzero string tensions is given by s;mb

2 . APEGT is
regarded as a low-energy effective theory of QCD in t
distance scaleR.mA

21 with mA being the nonzero mass o
the off-diagonal gluons. Consequently, the Abelian dom
nance @23,24# in the physics in the long distanceR.Rc

ªmA
21 will be realized in APEGT. A quite recent simulatio

by Amemiya and Suganuma@25# shows that the propagato
of the off-diagonal charged gluon behaves as the mas
gauge boson and provides the short-range interaction, w
the diagonal gluon propagates long distance. For SU~2! YM
theory, they obtainmA>0.9 GeV corresponding toRc
54.5 fm. In fact, the massiveness of off-diagonal gluons
analytically derived as a by-product in this paper.

In our formulation of YM theory, the nonperturbativ
treatment of YM theory in the low-energy region can
reduced to that of TFT in the sense that any perturba
from TFT does not change essentially the result on lo
energy physics obtained from TFT. Therefore, we can h
that the essential contribution for quark confinement is
rived from TFT alone. In light of monopole dominance, th
TFT should be constructed such that the monopole deg
of freedom are included as the most dominant topolog
configuration in TFT. If quark confinement is proved bas
on TFT, the monopole dominance will be naturally unde
stood by this construction of TFT. Furthermore, this w
shed light on a possible connection with the instanton c
figuration which is the only possible topological nontrivi
configuration in four-dimensional Euclidean YM theo
without partial gauge fixing.
9-2
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
The purpose of this paper is to prove quark confinem
within the reformulation of four-dimensional QCD based
the criterion of area law for the Wilson loop@26# ~see Sec.
VI !. Here the Wilson loop is taken to be planar and diagon1

in the maximal torus groupH ~as taken by Polyakov@8#!.
Although actual calculations are presented only for
SU~2! case, out strategy of proving quark confinement is a
applicable to SU~N! case and more generally to arbitra
compact Lie group.

This paper is organized as follows. In Sec. II, the TFT
constructed from gauge-fixing and Faddeev-Popov ter
The action is written as a BRST exact form according to
standard procedure of BRST formalism. In other words,
TFT is written as a BRST transformation of a functional
the field variables including ghosts. Here we take the MA
as a gauge fixing condition. Then the MAG fixes the co
G/H of the gauge groupG and leaves the maximal toru
subgroupH unbroken. Consequently, YM theory is reform
lated as a~perturbative! fluctuation around the nontrivial to
pological configuration given by TFT.

In Sec. III, it is shown that a version of MAG allows us
write the TFT in the form~1.4! which is both BRST and
anti-BRST exact. This version of TFT is called MAG TF
hereafter. We find that MAG TFT has a hidden supersy
metry ~SUSY! based on the superspace formulation@28–32#
of BRST invariant theories@33,34#. The hidden SUSY plays
quite a remarkable role in the next section.

In Sec. IV, it turns out that this choice of MAG leads
dimensional reduction in the sense of Parisi and Sourlas~PS!
@28#. Consequently theD-dimensional MAG TFT is reduced
to the equivalent (D22)-dimensional cosetG/H nonlinear
sigma model~NLSM!. This means the equivalence of th
partition function in two theories. Furthermore, P
dimensional reduction tells us that the calculation of corre
tion functions inD-dimensional TFT can be performed in th
equivalent (D22)-dimensional model if the argumentsxi lie
on a certain (D22)-dimensional subspace, because the c
relation function coincides with the same correlation fun
tion calculated in the (D22)-dimensional equivalent mode
defined on the subspace on whichxi lies,

K)
i
Fi~xi !L

MAG TFTD

5K)
i
Fi~xi !L

G/H NLSMD22

.

~1.5!

In Sec. V, we study concretely the case ofG5SU(2) YM
theory in four dimensions. In this case,H5U(1) and the
equivalent dimensionally reduced model is given by the tw
dimensional O~3! nonlinear sigma model~NLSM!. The two-
dimensional NLSM on group manifolds or the principal ch
ral model is exactly solvable@35–46#. Therefore, the four-
dimensional MAG TFT defined in this paper is exac
solvable. It is known that the two-dimensionalO(3) NLSM
is renormalizable and asymptotic free@47,48#. Moreover, it

1The full non-Abelian Wilson loop will be treated in a subseque
paper@27#, see Sec. VII.
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has instanton solution as a topological soliton@49–53#. The
instanton is a finite action solution of the field equation a
obtained as a solution of the self-duality equation. The
stanton~anti-instanton! solution is given by the holomorphic
~antiholomorphic! function.

We show that the instanton~anti-instanton! configuration
in two-dimensionalO(3) NLSM can be identified with the
magnetic monopole~antimonopole! configuration in higher
dimensions. Furthermore, the instanton~anti-instanton! con-
figuration in two dimensions is considered as the project
of instanton ~anti-instanton! solution of four-dimensional
YM theory on the two-dimensional plane through dime
sional reduction. From this observation, we can see intim
connection between magnetic monopole and instanton
principle, the gluon propagator is calculable according to
exact treatment of theO(3) NLSM. In the O(3) NLSM,
dynamical mass generation occurs and the correlation le
becomes finite and all the excitations are massive@46#. This
shows that the off-diagonal gluons are massive,mA5” 0. The
mass is nonperturbatively generated and behaves asmA

;exp(24p2/g2).
In Sec. VI, the planar diagonal Wilson loop in fou

dimensional SU~2! MAG TFT is calculated in the two-
dimensional equivalent model by making use of dimensio
reduction. The actual calculation is done in the dilu
instanton-gas approximation@54–56# in two dimensions.
This is very similar to the calculation of the Wilson loop
the Abelian Higgs model in two dimensions@57,58#. We can
pursue this analogy further using the CP1 formulation of the
O(3) NLSM. In CP1 formulation, the residual U~1! symme-
try is manifest and we can introduce the U~1! gauge field
coupled to two complex scalar fields, whereas in the NLS
the U~1! gauge invariance is hidden, since the field varia
n(z) is gauge invariant. The CP1 formulation indicates the
correspondence of TFT to GL theory. As a result, the ex
tence of a topological nontrivial configuration correspondi
to the magnetic monopole and antimonopole in YM theory
MAG is sufficient to prove quark confinement in the sense
an area law of the diagonal Wilson loop.

At the end of the 1970s, two-dimensional NLSMs we
extensively studied motivated by their similarity with fou
dimensional YM theory. Some of the NLSMs exhibit reno
malizability, asymptotic freedom,u vacua, and an instanto
solution. These analogies are not accidental in our vi
Now this is understood as a consequence of dimensio
reduction. The beta function in the two-dimensionalO(3)
NLSM has been calculated by Polyakov@47#. This should
coincide with the beta function of four-dimension
SU~2!/U~1! MAG TFT. Now we will be able to understand
why the Migdal-Kadanoff approximate renormalizatio
group ~RG! scheme@59# yields reasonably good results.

It should be remarked that dimensional reduction is a
possible for gauge fixings other than MAG. Such an exam
was proposed by Hata and Kugo@60# which is called the
pure gauge model~PGM!. However, the choice of MAG as a
gauge-fixing condition is essential to prove quark confin
ment based on the nontrivial topological configuration, b
cause MAG leads to theG/H NLSM by dimensional reduc-

t

9-3
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019
tion. The two-dimensional coset SU(N)/U(1)N21 NLSM
can have a soliton solution as suggested by

P2@SU~N!/U~1!N21#5ZN21. ~1.6!

However, the two-dimensional NLSM obtained from th
PGM by dimensional reduction does not have any instan
solution, since

P2@SU~N!#50. ~1.7!

Therefore the PGM loses a chance of proving quark confi
ment based on the nontrivial topological configuration a
more effort is needed to prove quark confinement based
the perturbative or nonperturbative treatment around the
pologically trivial configuration@61,60,62–65#. Moreover,
the MAG has a clear physical meaning which leads to
dual superconductor picture of QCD vacuum as shown
Ref. @17#. This is not the case in PGM. In fact, there is
claim @68# that the criterion of Kugo and Ojima for colo
confinement@66,67# is different from the Wilson criterion.

It is possible to extend our treatment to arbitrary comp
Lie group G along the same lines as above, as long as
existence of the instanton solution is guaranteed by the n
trivial homotopy group,P2(G/H)5” 0. Although the dilute-
gas approximation is sufficient to deduce the linear poten
it is better to compare this result with those obtained by ot
methods. For this purpose, it is worth performing a 1/N ex-
pansion to know the result especially forN.2. The O(N)
and CPN21 models have been extensively studied@69–77#.
However, SU(N)/U(1)N21 is isomorphic toO(N11) or
CPN21 only when N52, and the two-dimensionalO(N)
NLSM has no instanton solution forN.3. To the author’s
knowledge, the 1/N analysis of the two-dimensional cos
SU(N)/U(1)N21 NLSM has not been worked out, probab
due to the fact that SU(N)/U(1)N21 is not a symmetric
space in the sense of a Riemannian manifold@78#.

It should be remarked that the resolution of quark co
finement is not simply to show that the full gluon propaga
behaves as 1/k4 in the infrared region ask→0. The correct
picture of quark confinement must be able to explain
anisotropy~or directional dependence! caused by the exis
tence of a widely separated quark-antiquark pair if we st
on the dual superconductivity scenario. This is necessar
deduce the QCD~hadron! string picture. Our proof of quark
confinement is possible only when the two-dimensio
plane on which a pair of quarks and anti-quarks exists
selected as a subspace of dimensional reduction. Hence
feature is desirable from the viewpoint of the string pictu
In fact, the effective Abelian gluon propagator obtained fro
the dual description in APEGT shows such an anisotro
@17#.

The dimensional reduction of TFT opens a path for a
lyzing nonperturbative problems in four-dimensional Y
theory based on various technologies developed for t
dimensional field theories, such as the Bethe ansatz@46# and
conformal field theory~CFT! @79,80#. They are intimately
connected to the Wess-Zumino-Novikov-Witten model@81#,
non-Abelian bosonization@81,82#, the quantum spin mode
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@83#, Chern-Simons theory@84#, the induced potential in the
path integral @85,86#, and so on. The exact solubility i
pulled up at the level of correlation function, not the fie
equation. This should be compared with the Hamiltonian
duction of the YM self-duality equation@87#. Furthermore,
the APEGT obtained in MAG can have the same meaning
the low-energy effective theory ofN52 supersymmetric
YM theory and QCD obtained by Seiberg and Witten@9#.
This issue will be discussed in subsequent papers.

II. YANG-MILLS THEORY AS A DEFORMATION
OF TOPOLOGICAL FIELD THEORY

First, we summarize the BRST formulation of YM theo
in the manifestly covariant gauge and subsequently introd
the MAG. Next, we derive the TFT describing the magne
monopole from the YM theory in MAG. The TFT is ob
tained from the gauge fixing part of the YM theory. Finall
the YM theory in MAG is reformulated as a~perturbative!
deformation of the TFT.

A. Yang-Mills theory and gauge fixing

We consider the Yang-Mills~YM ! theory with a gauge
group G5SU(N) on the D-dimensional space-time de
scribed by the action (D.2)

Stot5E dDx~LQCD@A,c#1LGF!, ~2.1!

LQCD@A,c#ª2
1

2g2trG~FmnFmn!1c̄~ igmDm@A#2m!c,

~2.2!

where

Fmn~x!ª (
A51

N221

F mn
A ~x!TA

ª]mAn~x!2]nAm~x!2 i @Am~x!,An~x!#,

~2.3!

Dm@A#ª]m2 iAm . ~2.4!

The gauge fixing termLGF is specified below. We adopt th
following convention. The generatorsTA(A51, . . . ,N2

21) of the Lie algebraG of the gauge groupG5SU(N) are
taken to be Hermitian satisfying@TA,TB#5 i f ABCTC and nor-
malized as tr(TATB)5 1

2 dAB. The generators in the adjoin
representation are given by@TA#BC52 i f ABC . We define the
quadratic Casimir operator asC2(G)dAB5 f ACDf BCD. Let H
be the maximal torus group ofG andTa be the generators in
the Lie algebraG\H of the cosetG/H whereH is the Lie
algebra ofH.

For G5SU(2), TA5(1/2)sA(A51,2,3) with Pauli
matricessA and the structure constant isf ABC5eABC. The
indicesa,b, . . . , denote the off-diagonal parts of the matr
representation. The Cartan decomposition is given by
9-4
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
Am~x!5 (
A51

3

A m
A~x!TA

ªam~x!T31 (
a51

2

Am
a ~x!Ta.

~2.5!

Under gauge transformation, the gauge fieldAm(x) trans-
forms as

Am~x!→A m
U~x!ªU~x!Am~x!U†~x!1 iU ~x!]mU†~x!.

~2.6!

These gauge degrees of freedom are fixed by the proce
of gauge fixing. A covariant choice is given by the Loren
gauge

F@A#ª]mA m50. ~2.7!

The procedure of gauge fixing must be done in such a w
that the gauge fixing condition is also preserved for
gauge rotated fieldA m

U , i.e., F@AU#50. This is guaranteed
by the Faddeev-Popov~FP! ghost term.

We formulate the theory based on the BRST formalis
In the BRST formalism, the gauge-fixing and FP partLGF is
specified by a functionalGgf of the field variables through
the relation

LGFª2 idBGgf@Am ,C,C̄,f#, ~2.8!

whereC,C̄ are ghost, antighost fields andf is the Lagrange
multiplier field for incorporating the gauge fixing condition
HeredB denotes the nilpotent BRST transformation

dBAm~x!5DmC~x!ª]mC~x!2 i @Am~x!,C~x!#,

dBC~x!5 i
1

2
@C~x!,C~x!#, dBC̄~x!5 if~x!,

dBf~x!50,

dBc~x!5 iC~x!c~x!. ~2.9!

The partition function of QCD is given by

ZQCD@J#ªE @dAm#@dC#@dC̄#@df#@dc#@dc̄#

3exp$ i ~Stot1SJ!%, ~2.10!

where the source term is introduced as

SJªE dDx$tr@JmAm1JcC1Jc̄C̄1Jff#1h̄c1hc̄%.

~2.11!

In the BRST formalism, both the gauge-fixing and the
terms are automatically produced according to Eq.~2.8!. The
most familiar choice ofG is

Ggf5trGF C̄S ]mA m1
a

2
f D G . ~2.12!

This yields
10501
re

y
e
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LGFª2 idBGgf@Am ,C,C̄,f#

5trGFf]mA m1 i C̄]mDm@A#C1
a

2
f2G . ~2.13!

B. MAG and singular configuration

In a previous paper@17#, we examined the maximal Abe
lian gauge as an example of Abelian projection@20#. For G
5SU(2), MAG isgiven by

F6@A,a#ª~]m6 iam!Am
650, ~2.14!

using the (6,3) basis

O6
ª~O 16 iO 2!/A2. ~2.15!

The simplest choice ofGgf for MAG in ( 6,3) basis is given
by

Ggf5(
6

C̄7S F6@A,a#1
a

2
f6D , ~2.16!

which is equivalently rewritten in the usual basis as

Ggf5 (
a51,2

C̄aS Fa@A,a#1
a

2
faD , ~2.17!

Fa@A,a#ª~]mdab2eab3am!Am
b
ªDmab@a#Am

b .
~2.18!

The basic idea of Abelian projection proposed by ’t Hoo
@20# is to remove as many non-Abelian degrees of freed
as possible, by partially fixing the gauge in such a way t
the maximal torus groupH of the gauge groupG remains
unbroken. Under the Abelian projection,G5SU(N) gauge
theory reduces toH5U(1)N21 Abelian gauge theory plus
magnetic monopoles. Actually, the choice~2.14! for G
5SU(2) is nothing but the condition of minimizing th
functional R@A# for the gauge rotated off-diagonal gluo
fields A, i.e., minUR@AU#,

R@A#ª
1

2E dDx$@Am
1 ~x!#21@Am

2 ~x!#2%

5E dDxAm
1~x!Am

2~x!. ~2.19!

We can generalize the MAG to arbitrary groupG as

R@A#ªE dDxtrG\HF1

2
Am~x!Am~x!G , ~2.20!

where the trace is taken over the Lie algebraG\H. Under the
MAG, it is shown @17# that the integration of the off-
diagonal gluon fieldsAm

a PG\H in SU~2! YM theory leads to
the Abelian-projected effective gauge theory~APEGT! writ-
ten in terms of the maximal Abelian U~1! gauge fieldam , the
dual U~1! gauge fieldbm , and the magnetic~monopole! cur-
rent km .
9-5
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In the gauge transformation~2.6!, the local gauge rotation
U(x) is performed in such a way that the gauge rotated fi
A m

U(x) minimizes the functionalR@AU# and hence satisfie
the gauge-fixing condition~2.14!. We define the magnetic
current by

km~x!ªemnrs]n f rs~x!, ~2.21!

f rs~x!ª]ras
U~x!2]sar

U~x!, ~2.22!

using the Abelian part~diagonal part! extracted as

am
U~x!ªtr@T3A m

U~x!#. ~2.23!

If the gauge fieldAm(x) is not singular, the first piece
U(x)Am(x)U†(x) of A m

U(x) is nonsingular and does no
give rise to magnetic current. On the contrary, the sec
pieceVm(x),

Vm~x!ª iU ~x!]mU†~x! ~2.24!

does give the nonvanishing magnetic monopole current~see,
e.g., Ref.@17#! for
10501
d

d

am
V~x!ªVm

3 ~x!ªtr@T3Vm~x!#. ~2.25!

According to a Monte Carlo simulation on the lattice@3#, the
magnetic monopole part gives the most dominant contri
tion in various quantities characterizing the low-energy ph
ics of QCD, e.g., string tension, chiral condensate, topolo
cal charge, etc.

Therefore, it is expected that the most important degr
of freedom for the low-energy physics comes from the s
ond pieceVm(x) of A m

U(x). Therefore, we decompose th
YM theory into two pieces, i.e., the contribution from th
part Vm(x) and the remaining part.

C. Magnetic monopole in non-Abelian gauge theory

First we recall the calculation of the Abelian~diagonal!
field strength in four-dimensional YM theory. We introduc
three local field variables corresponding to the Euler ang

„u~x!,w~x!,x~x!…,~uP@0,p#,wP@0,2p#,xP@0,2p#!

~2.26!

to write an element U(x)PSU(2) as
U~x!5eix~x!s3/2eiu~x!s2/2eiw~x!s3/25S e~ i /2![w~x!1x~x!]cos
u~x!

2
e2~ i /2![w~x!2x~x!]sin

u~x!

2

2e~ i /2![w~x!2x~x!]sin
u~x!

2
e2~ i /2![w~x!1x~x!]cos

u~x!

2

D . ~2.27!
n

al-
In the usual convention of perturbation theory, we take

Vm~x!ª
i

g
U~x!]mU†~x!. ~2.28!

Note that the following identity@17# holds forVm :

]mVn~x!2]nVm~x!5 ig@Vm~x!,Vn~x!#

1
i

g
U~x!@]m ,]n#U†~x!. ~2.29!

Then the diagonal part reads

f mn
V ~x!ª]mVn

3~x!2]nVm
3 ~x!

5Cmn
[V]~x!1

i

g
$U~x!@]m ,]n#U†~x!%~3!, ~2.30!

whereCmn was introduced in a previous paper@17# as

Cmn
[V]

ª~ ig@Vm ,Vn#!~3!

5geab3Vm
a Vn

b5 ig~Vm
1Vn

22Vm
2Vn

1!. ~2.31!

Using the Euler angle expression forU, we obtain
i ~Vm
1Vn

22Vm
2Vn

1!5
1

g2 sinu~]mu]nw2]mw]nu!,

~2.32!

which implies

Cmn@V#5
1

g
sinu~]mu]nw2]mw]nu!. ~2.33!

Now we show thatCmn
[V] denotes the monopole contributio

to the diagonal field strengthf mn . Note thatCmn
[V] is gener-

ated from the off-diagonal gluon fieldsVm
1 ,Vm

2 .
In four dimensions, the magnetic monopole charge is c

culated from the magnetic current

km5]n f̃ mn
V , f̃ mn

V
ª

1

2
emnrs f rs

V , ~2.34!

as

gm~V~3!!5E
V~3!

d3smkm5E
V~3!

d3sm]n f̃ mn
V

5E
S~2!5]V~3!

d2smn f̃ mn
V . ~2.35!
9-6
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
We can identity the first and second parts of right-hand-s
~RHS! of Eq. ~2.30! with the the magnetic monopole and th
Dirac string part respectively contained in the TFT4 theory
and hence the YM4 theory @17#. This is clearly seen by the
explicit calculation using Euler angles, since we can rew
Eq. ~2.30! as

f mn
V 52

1

g
sinu~]mu]nw2]mw]nu!

1
1

g
~@]m ,]n#x1cosu@]m ,]n#w!. ~2.36!

The magnetic monopole part is given by

gm~V~3!!5
1

2gES~2!
d2srsemnrssinu~]mu]nw2]mw]nu!,

~2.37!

while the Dirac string part is

gDS~V~3!!5
1

2gES~2!
d2srsemnrs

3~@]m ,]n#x1cosu@]m ,]n#w!. ~2.38!

The first definition~2.37! of gm gives the quantized magnet
charge@17#. The integrand is the Jacobian fromS2 to S2 as
will be shown in Sec. V and the Homotopy group reads

P2„SU~2!/U~1!…5P2~S2!5Z. ~2.39!

Then Eq.~2.37! gives the magnetic chargegm satisfying the
Dirac quantization condition,

gm5
2pn

g
, ggm52pn~nPZ!. ~2.40!

In the second definition~2.38! of gm , if we choosex52w
using residual U~1! gauge invariance, then the Dirac strin
appears on the negativeZ axis, i.e.,u5p. In this case, the
surface integral reduces to the line integral around the st

gDS~V~3!!5
1

2gES~2!
dsmnemnrs@]r ,]s#w~x!

52
1

2gES~1!
dsmnremnrs]rw~x!. ~2.41!

This gives the same result~2.38! but with the minus sign, as
suggested from the Homotopy group

P1„U~1!…5Z. ~2.42!

Actually, two description are equivalent, as can be seen f
the relation

P2„SU~2!/U~1!…5P1„U~1!…. ~2.43!

If the contribution fromU(x)Am(x)U†(x) is completely
neglected, i.e.,A m

U(x)[Vm(x)5 iU (x)]mU†(x), Eq. ~2.29!
implies
10501
e

e

g

m

F mn
U ~x![

i

g
U~x!@]m ,]n#U†~x!, ~2.44!

where the RHS is identified with the contribution from th
Dirac string, see Ref.@17#. Note that the original YM theory
does not have a magnetic monopole solution. However, if
partially fix the gaugeG/H5SU(2)/U(1) andretain the re-
sidualH5U(1) gauge, the theory can have a singular co
figuration. This is a reason why the magnetic monopole
pears in YM theory which does not have a Higgs field. T
existence of a Dirac string in the RHS of Eq.~2.44! reflects
the fact that the field strengthF mn

U (x) contains the magnetic
monopole contribution. We have obtained a gauge the
with magnetic monopole starting from YM theory. Ther
fore, MAG enables us to deduce the magnetic monop
without introducing the scalar field, in contrast to the
Hooft-Polyakov monopole. See Ref.@17# for more details.

D. TFT and its deformation

Since the Dirac string does not contribute to the acti
the topological nontrivial sector with a magnetic monopo
in YM theory is described by the gauge-fixing and FP gh
terms alone~we forget the matter field for a while!,

STFT@Vm ,C,C̄,f#5E dDxLTFT ,

LTFTª2 idBGgf@Vm ,C,C̄,f#. ~2.45!

This theory describes the topological field theory for t
magnetic monopole, which is called MAG TFT hereafter.
we restrict the gauge rotation U(x) to the regular one,Vm(x)
reduces to a pure gauge fieldF mn

U (x)[0 and hence the TFT
is reduced to topological trivial theory. This model is calle
the pure gauge model~PGM! which has been studied b
Hata, Kugo, Niigata, and Taniguchi@61–64#. However,
PGM has only unphysical gauge modes and does not h
physical modes. We consider that the topological obje
must give the main contribution to the low-energy physi
From this viewpoint, the PGM is not interesting to us, sin
PGM cannot contain the topological nontrivial configurati
as will be shown in the following.

In this paper, we take into account the topological no
trivial configuration involved in the theory~2.45! and extract
the most important contribution in low-energy physics. W
consider thatVm(x) gives the most important dominant con
tribution and the remaining contributions are treated a
perturbation around it. Whether this is efficient or not cr
cially depends on the choice ofGgf . For this purpose, MAG
is most appropriate as will be shown later.

Our reformulation of YM theory proceeds as follow
First of all, we decompose the gauge fieldAm(x) into the
nonperturbative pieceVm(x) ~including a topological non-
trivial configuration! and the perturbative piec
U(x)Am(x)U†(x) ~including only the topological trivial
configuration!. Next, we treat the original YM theory as
perturbative deformation of TFT written in terms ofVm(x)
alone. Using the normalization of the field in perturbati
9-7
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theory, TFT is obtained from YM theory in the limit of van
ishing coupling constantg→0. If we absorb the coupling
constantg into the gauge field, TFT does not have an app
ent coupling constant.

We expect that the TFT of describing the magnetic mo
pole gives the most dominant nonperturbative contributi
in low-energy physics. In fact, the monopole dominance
low-energy physics of QCD has been confirmed by Mo
Carlo simulations@3#. A similar attempt to reformulate YM
theory as a deformation of topological BF theory was do
by Martellini et al. @15#. The model is called BF-YM theory
A similar attempt was also made by Izawa@14# for the PGM
using the BF formulation in three dimensions. Topologic
BF theory includes the topological nontrivial configuratio
The APEGT for BF-YM theory can be constructed, see R
@17#.

First, we regard the fieldsAm and c as the gauge trans
formation of the fieldsVm andC ~we use different character
to avoid confusions!,

Am~x!ªU~x!Vm~x!U†~x!1Vm~x!,

Vm~x!ª
i

g
U~x!]mU†~x! ~2.46!

c~x!ªU~x!C~x!, ~2.47!

whereVm andC are identified with the perturbative parts
the topological trivial sector.

Let @dU# be the invariant Haar measure on the groupG.
Using the gauge invariance of the FP determinantD@A#
given by

D@A#21
ªE @dU#)

x
d@]mA m

U21
~x!#,

D@A#5D@AU21
#, ~2.48!

we can rewrite

15D@A#E @dU#)
x

d@]mAm
U21

~x!#

5D@AU21
#E @dU#)

x
d@]mA m

U21
~x!#

5D@V#E @dU#)
x

d@]mVm~x!#

>E @dg#@dḡ #@db#

3expH i E dDx~ trG$b]mVm1 i ḡ]mDm@V#g%!J
5E @dg#@dḡ #@db#

3expH i E dDx@2 i d̃BG̃gf~Vm ,g,ḡ,b!#J , ~2.49!
10501
r-

-
s

n
e

e

l
.
f.

where

G̃gf~Vm ,g,ḡ,b!ªtrG~ ḡ]mVm!. ~2.50!

Here we have introduced new ghost fieldg, antighost field
ḡ, and the multiplier fieldb which are subject to a new
BRST transformationd̃B ,

d̃BVm~x!5Dm@V#g~x!ª]mg~x!2 i @Vm~x!,g~x!#,

d̃Bg~x!5 i
1

2
@g~x!,g~x!#,

d̃Bḡ~x!5 ib~x!,

d̃Bb~x!50,

d̃BC~x!5g~x!C~x!. ~2.51!

Then the partition function can be rewritten as

ZQCD@J#5E @dU#@dC#@dC̄#@df#

3E @dVm#@dg#@dḡ #@db#@dC#@dC̄#

3expH i E dDx$2 idBGgf@Vm1UV mU†,C,C̄,f#

1LQCD@V,C#2 i d̃BG̃gf~Vm ,g,ḡ,b!%1 iSJJ ,

~2.52!

where

SJ5E dDx$trG@Jm~Vm1UV mU†!

1JcC1Jc̄C̄1Jff#1h̄UC1hC̄U†%. ~2.53!

The correlation functions of the original fundamental fie
Am ,c,c̄ is obtained by differentiatingZ@J# with respect to
the source Jm ,h̄,h. The integration over the fields
(U,C,C̄,f) should be treated nonperturbatively. The pert
bative expansion around TFT means performing an integ
tion over the new fields (Vm ,g,ḡ,b) after power-series ex
pansions in the coupling constantg.

Assume that a choice ofGgf allows the separation of the
variable in such a way that

2 idBGgf@Vm1UV mU†,C,C̄,f#

52 idBGgf@Vm ,C,C̄,f#1 iV m
AM m

A@U#

1
i

2
V m

AV m
BK AB@U#. ~2.54!
9-8
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
In the next section, we show that the MAG satisfies the c
dition ~2.54! and obtain the explicit form forMm ,K. Then,
under the condition~2.54!, the partition function is rewritten
as

ZQCD@J#ªE @dU#@dC#@dC̄#@df#

3expH iSTFT@Vm ,C,C̄,f#1 iW@U;Jm,h̄,h#

1 i E dDxtrG@JmVm1JcC1Jc̄C̄1Jff#J ,

~2.55!

whereW@U;Jm,h̄,h# is the generating functional of the con
nected correlation function ofVm in the perturbative secto
given by

eiW[U;Jm,h̄,h]
ªE @dVm#@dg#@dḡ #@db#@dC#@dC̄#

3expH iSPQCD@Vm ,C,g,ḡ,b#

1 i E dDxFV m
AJ m

A1
i

2
V m

AV m
BK AB@U#

1trG~ h̄UC1hC̄U†!G J , ~2.56!

where

J m
A
ª~U†JmU !A1 iM m

A@U#. ~2.57!

Here PQCD denotes the perturbative QCD~topological
trivial sector! defined by the actionSPQCD,

SPQCD@Vm ,C,g,ḡ,b#ªE dDx$LQCD@Vm ,C#

2 i d̃BG̃gf@Vm ,g,ḡ,b#%. ~2.58!

The deformationW@U;Jm,h̄,h# should be calculated accord
ing to the ordinary perturbation theory in the coupling co
stantg. When there is no external source for quarks, we h

iW@U;Jm,0,0#ª lnK expH i E dDxFJ m
A~x!V m

A~x!

1
i

2
V m

A~x!V m
B~x!K AB~x!G J L

PQCD

5
1

2
g2E dDxE dDy^V m

A~x!V n
B~y!&PQCD

c

3$J m
A~x!J n

B~y!

2dD~x2y!dmnK AB@U#~x!%1O~g4J 4!.

~2.59!

Therefore,W@U;Jm,0,0# is expressed as a power series
the coupling constantg and goes to zero asg→0. It turns out
10501
-

-
e

that the QCD is reduced to TFT in the vanishing limit
coupling constant. Thus QCD has been reformulated a
deformation of TFT. In a similar way, we can reformula
QED as a deformation of TFT, see Ref.@88#.

III. MAXIMAL ABELIAN GAUGE AND HIDDEN
SUPERSYMMETRY

The purpose of this section is to give some prerequis
which are necessary in order to understand the dimensi
reduction discussed in the next section. First of all, we giv
special version of the MAG which leads to the dimension
reduction of the TFT part obtained from YM theory in MAG
Using the BRSTdB and anti-BRSTd̄B transformations, the
action of the MAG TFT is written in the form

STFT5E dDxdBd̄BO~x!. ~3.1!

Second, we introduce the superfield formalism. TheD

12)-dimensional superspaceX5(xm,u,ū) is defined by in-
troducing two Grassmannian coordinatesu,ū in addition to
the ordinary ~bosonic! D-dimensional coordinatesxm(m
51, . . . ,D). We define the supersymmetry transformatio
and study the property of the superfield which is invaria
under the supersymmetry transformation.

Third, we give a geometrical meaning of the BRST a
anti-BRST transformations in the superspace. The ga
field Am(x) is extended into a superfieldA(X) as the con-
nection one-form in the superspace. The merit of this form
ism lies in the fact that we can also give a geometrical me
ing to the FP ghost and antighost fields; actually the FP gh
and antighost fields can be identified as connection field
the superspace. Furthermore, BRST transformation is rew
ten as a geometrical condition, the horizontal condition. C
sequently, the BRST transformationdB ~anti-BRST transfor-
mationd̄B) of the field variable coincides with the derivativ
]/]u (]/]ū) in the directionu( ū). Taking into account
that the differentiation is equivalent to the integration for t
Grassmannian variable, we can write the MAG TFT in
manifestly supersymmetric covariant form

STFT5E dDxE duE dūO~x,u,ū !, ~3.2!

whereO(x) is extended to the superfieldO(X)5O(x,u,ū)
andO(x,u,ū) has OSp(D/2) invariant form. This implies
the existence of the hidden supersymmetry in MAG T
which is an origin of the dimensional reduction shown in t
next section.

A. Choice of MAG

In the previous section, we considered the simplest MA
condition ~2.16! which leads to
9-9



l

e

ti-

n

G
he

KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019
LGF5faFa@A,a#1
a

2
~fa!21 iC̄aDmab@a#Dm

bc@a#Cc

2 iC̄a@Am
a Amb2Am

c Amcdab#Cb1 iC̄aeab3Fb@A,a#C3.

~3.3!

Note that we can take a more general form forGgf @62,17#,

Ggf5(
6

C̄7S F6@A,a#1
a

2
f6D1zC3C̄1C̄2

1h(
6

~6 !C̄3C̄6C7. ~3.4!

In what follows, we choose a specific form

Ggf8 5(
6

C̄7~F6@A,a#2f6!22C3C̄1C̄2, ~3.5!

which corresponds in Eq.~3.4! to

a522, z522, h50. ~3.6!

Then the gauge fixing partLGF52 idBGgf has an additiona
contribution

LGF8 5LGF2z(
6

~6 !C3C̄7f62zC̄1C̄2C1C2

5LGF2z(
a,b

i eab3C3C̄afb2zC̄1C̄2C1C2. ~3.7!

The four-ghost interaction term is generated. This is a g
eral feature of nonlinear gauge fixing.2 Separating the
fa-dependent terms and integrating out the fieldfa, we ob-
tain

SGF5E dDxF2
1

2a
~Fa@A,a#1Jf

a 1z i eab3C3C̄b!2

1 iC̄aDmab@a#Dm
bc@a#Cc2 iC̄a~Am

a Amb2Am
c Amcdab!

3Cb1 iC̄aeab3Fb@A,a#C32zC̄1C̄2C1C2

1Am
a JmaG , ~3.9!

2Such a term is necessary to renormalize the YM theory in MA
since the MAG is nonlinear gauge-fixing. This is reflected in t
fact that the U~1! invariant four-ghost interaction term

C̄1C̄2C1C2 is produced through the expansion of lndetQ ~see
Ref. @17#!,

~C̄aCb2C̄cCcdab!~C̄bCa2C̄dCddba!

522C̄1C1C̄2C2522C̄1C̄2C1C2. ~3.8!
10501
n-

where we have included the source termJf
a fa1Jm

a Am
a . Thus

the action is summarized as

SGF5E dDxF 1

2g2 Am
a Qmn

abAn
b1 iC̄aDmac@a#Dm

cb@a#Cb

1Am
a S Gm

a 1
1

a
Dmab@a#Jf

b 1JmaD1
1

2a
~zeab3C3C̄b!2

2zC̄1C̄2C1C22
i z

a
Jf

b eab3C3C̄a2
1

2a
~Jf

a !2G ,
~3.10!

Qmn
ab
ª22ig2~C̄aCb2C̄cCcdab!dmn1

1

a
Dm@a#acDn@a#cb,

~3.11!

Gm
c
ª i S z

a
21DDm@a#cb~eab3C3C̄a!, ~3.12!

whereGm
c (x)[0 for the choice of Eq.~3.6!.

An advantage of the choice~3.5! is thatGgf8 is written as
the anti-BRST exact form

Ggf8 5 d̄BS 1

2
~Am

a !21 iCaC̄aD5 d̄BS Am
1Am

21 i(
6

C6C̄7D ,

~3.13!

whered̄B is the nilpotent anti-BRST transformation@18#,

d̄BAm~x!5DmC̄~x!ª]mC̄~x!2 i @Am~x!,C̄~x!#,

d̄BC~x!5 i f̄~x!,

d̄BC̄~x!5 i
1

2
@ C̄~x!,C̄~x!#,

~3.14!
d̄Bf̄~x!50,

d̄Bc~x!5 i C̄~x!c~x!,

f~x!1f̄~x!5@C~x!,C̄~x!#,

wheref̄ is defined in the last equation. The BRST and an
BRST transformations have the following properties:3

~dB!250, ~ d̄B!250, $dB ,d̄B%ªdBd̄B1 d̄BdB50.
~3.16!

Hence, we obtain

3The operationdB or d̄B on the product of two quantities is give
by

d~XY!5~dX!Y7XdY, d5dB ,d̄B , ~3.15!
where the1(2) sign is taken for a bosonic~fermionic! quantityX.

,

9-10
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LGF5 idBd̄BS 1

2
~Am

a !21 iCaC̄aD
5 idBd̄BS Am

1Am
21 i(

6
C6C̄7D , ~3.17!

which is invariant under the BRST and anti-BRST transf
mations,

dBLGF505 d̄BLGF. ~3.18!

Thus the MAG TFT action can be written as

STFT5E dDxidBd̄BS 1

2
@Vm

a ~x!#21 iCa~x!C̄a~x! D ~3.19!

5E dDxidBd̄BS Vm
1~x!Vm

2~x!1 i(
6

C6~x!C̄7~x! D
~3.20!

5E dDx idBd̄BtrG\HS 1

2
@Vm~x!#21 iC~x!C̄~x! D .

~3.21!

For our choice of MAG, we find for Eq.~2.54!

M m
A@U#ªdBd̄B@~UTAU†!aVm

a #,

K AB@U#ªdBd̄B@~UTAU†!a~UTBU†!a#, ~3.22!

where we have used

dBVm~x!505 d̄BVm~x!. ~3.23!

The BRST and anti-BRST transformations forU are

dBU~x!5 iC~x!U~x!, d̄BU~x!5 i C̄~x!U~x!.
~3.24!

This reproduces the usual BRST and anti-BRST transfor
tions of the gauge fieldVmª iU ]mU†.

B. Superspace formulation

Now we explain the superspace formulation based
Refs. @28–33#. We introduce a (D12)-dimensional super
spaceM with coordinates

XM
ª~xm,u,ū !PM, xPRD, ~3.25!

wherexm denotes the coordinate of theD-dimensional Eu-
clidean space andu and ū are anti-Hermitian Grassman
numbers satisfying

u250, ū250, $u,ū%ªuū1 ūu50,
~3.26!

u†52u, ū†52 ū.
10501
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We define the inner product of two vectors by introduci
the superspace~covariant! metric tensorhMN with compo-
nents

hmn5dmn , huū52hūu522/g, others50.
~3.27!

The contravariant metric tensor is defined byhMNhNL

5dL
M . Note thathMN is not symmetric. We introduce th

covariant supervector,

XM5hMNXN ~3.28!

and the quadratic form

XMXM5XMhMNXN5x21~4/g!ūu. ~3.29!

Note thatXMXM andXMXM are different, because the metr
tensor is not symmetric,

XMXM5” XMXM5hMNXNXM5x22~4/g!ūu. ~3.30!

Integrations overū andu are defined by

E du5E dū50, E duu5E dū ū5 i ~3.31!

or

E dudūS 1

u

ū

uū

D 5S 0

0

0

1

D . ~3.32!

Supersymmetry transformations are simply rotations
the superspace leaving invariant the quadratic form

hMNX1
MX2

N5x1
mx2

m1~2/g!~ ū1u22u1ū2!. ~3.33!

This corresponds to the orthosymplectic supergro
OSp(D/2). It contains the rotation inRD, i.e., the D-
dimensional orthogonal group O(D) which leavesx2 invari-
ant and the symplectic group OSp(2) of transformatio
leavinguū invariant. In addition, OSp(D/2) includes trans-
formations that mix the commuting and anticommuting va
ables,

xm→xm8ªxm12āmju12amjū,

u→u8ªu1gamxmj,

ū→ ū8ª ū2gāmxmj, ~3.34!

wherea, ā are arbitraryD vectors andj is an anticommut-
ing c-number (j25$j,u%5$j,ū%50). We call this transfor-
mationt(a,ā).

Any objectAM5(Am,Au,Aū) which transforms similar to
the supercoordinate under OSp(D/2) is defined to be a~con-
9-11
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019
travariant! supervector. IfA1
M and A2

M are two such super
vectors, then the inner product

A1
MA2M5A2

MA1M5A1
mA2m1~2/g!~A1

ūA2
u1A2

ūA1
u!

~3.35!

is invariant under superrotations. We define the the pa
derivatives to be covariant supervectors in superspace,

]MªS ]

]xm ,
]

]u
,

]

]ū
Dª~]m ,]u ,]ū!. ~3.36!

Then the super-Laplacian defined by

]M]MªDSS5]m]m1g]ū]u , ~3.37!

is an invariant.
Introducing a gradingp(M ) for each coordinateXM as

p~m!50, p~u!5p~ ū !51, ~3.38!

the coordinates obey the graded commutation relations

XMXN2~21!p~M !p~N!XNXM50. ~3.39!

Similarly, objectsFMN which transform asA1
MA2

N are defined
to be ~contravariant! supertensors andFM

M
ªFMNhMN is an

invariant. The metric tensor defined above is a superten
The metric has another invariant called the supertrace in
dition to the tracehMNhMN ,

str~h!5~21!p~M !hM
M . ~3.40!

We introduce the superfieldF(x,u,ū) as

F~x,u,ū !5F0~x!1uF̄1~x!1 ūF2~x!1 ūuF3~x!

5F0~x!1u]uF0~x!1 ū] ūF0~x!1 ūu]u]ūF0~x!,

~3.41!

where F i are complex-valued functions,F i : RD

→C ( i 50,1,2,3). It should be noted that all compone
fields F i transform according to the same representation
O(D). Hence, in this formulation of superspace, supersy
metry transformations mix fields obeying different statisti
but with identical spin.

For any superfieldF, the supertransformationt acts as

@t~a,ā!F#~x,u,ū !

5F~x,u,ū !1@gamxmF1~x!2gāmxmF2~x!#j

1@22]mF0~x!ām1gāmxmF3~x!#uj

1@22]mF0~x!am1gamxmF3~x!#ūj

12@]mF1~x!am2]mF2~x!ām#ūuj. ~3.42!

If the superfieldF is invariant byt for all a,āPRD, the
term with j of the RHS of this equation must be zero for a
a,āPRD. Hence,
10501
al
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F1~x![0[F2~x!,
2

g
]mF0~x!5xmF3~x!. ~3.43!

This implies thatF0(x) is a function only ofx2
ªxmxm.

Then we can writeF0(x)5 f (x2) for a function f : @0,̀ )
→C andF3(x)5(4/g) f 8(x2).

Therefore, if the superfieldO(X) is supersymmetric, then
there exists a functionf : @0,̀ )→C such that

O~x,u,ū !5 f ~x2!1~4/g!ūu f 8~x2!5 f ~x21~4/g!ūu!.
~3.44!

C. Geometric meaning of BRST transformation in superspace

We define the connection one form~superspace vecto
potential! A(X) and its curvature~superspace field strength!

F(X) in the superspace,XM
ª(xm,u,ū)PM,

A~X!ªAM~X!dXM

5Am~x,u,ū !dxm1C~x,u,ū !du1 C̄~x,u,ū !dū,

F~X!ªd̃A~X!1
1

2
@A~X!,A~X!#

52
1

2
FNM~X!dXMdXN,

AM~X!ªAM
A ~X!TA,

dXM
ª~dxm,du,dū !, ~3.45!

whered̃ is the exterior differential in the superspace,

d̃ªd1d1 d̄ª
]

]xm dxm1
]

]u
du1

]

]ū
dū. ~3.46!

These definitions are compatible when

dxMdxN52~21!p~M !p~N!dxNdxM,

~xM,]M !dxN5~21!p~M !p~N!dxN~xM,]M !. ~3.47!

The supergauge transformation is given by

A~X!→A8~X!ªU~X!A~X!U†~X!1 iU †~X!dxM]MU~X!,

U~X!ªexp@ ivA~X!TA#. ~3.48!

In what follows, we show that the superfieldsAm(X),
C(X),C̄(X)are respectively identified with a generalization
Am(x), C(x), C̄(x) into the superspace. First, we require th

Am~x,0,0!5Am~x!, C~x,0,0!5C~x!, C̄~x,0,0!5 C̄~x!,

~3.49!

and impose thehorizontal condition@33# for any M ,

FMu~X!5FM ū~X!50, ~3.50!

which is equivalent to set
9-12
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F~X!5
1

2
Fmn~X!dxmdxn. ~3.51!

By solving the horizontal condition, the dependence of
superfieldAM(x,u,ū) on u,ū is determined as follows. The
horizontal condition~3.51! is rewritten as

~d1d1 d̄ !~A 11C 11 C̄1!

1
1

2
@A 11C 11 C̄1,A 11C 11 C̄1#5dA 11

1

2
@A 1,A 1#.

~3.52!

where we have defined the one form

A 1
ªAm~x,u,ū !dxm, C 1

ªC~x,u,ū !du,

C̄1
ª C̄~x,u,ū !dū. ~3.53!

By comparing both sides of Eq.~3.52!, we obtain

]uAm~X!5]mC~X!2 i @Am~X!,C~X!#,

]uC~X!5 i
1

2
@C~X!,C~X!#,

]ūAm~X!5]mC̄~X!2 i @Am~X!,C̄~X!#,

]ūC̄~X!5 i
1

2
@ C̄~X!,C̄~X!#,

]uC̄~X!1]ūC~X!52$C~X!,C̄~X!%, ~3.54!

where we have used thatdudu5” 0 anddu,u anticommute
with C. For the components which cannot be determined
the horizontal condition alone, we use the following iden
fication:

]uC̄~x,0,0!ª if~x!, ]ūC~x,0,0!ª i f̄~x!. ~3.55!

This corresponds toFuū50 and gives

if~x!1 i f̄~x!1$C~x!,C̄~x!%50. ~3.56!

From these results, it turns out that the derivatives in
direction of u,ū give respectively the BRST and the an
BRST transformations

]

]u
5dB ,

]

]ū
5 d̄B , ~3.57!

where we define the derivative as the left derivative. T
implies that the BRST and anti-BRST chargesQB ,Q̄B are
the generators of the translations in the variablesu,ū.

Thus the superfields are determined as
10501
e

y
-

e

s

Am~x,u,ū !5Am~x!1uDmC~x!1 ūDmC̄~x!

1 ūu„iDmf~x!1$DmC~x!,C̄~x!%…,

C~x,u,ū !5C~x!1uS 2
1

2
@C,C#~x! D1 ū i f̄~x!

1 ūu@ i f̄~x!,C~x!#,

C̄~x,u,ū !5 C̄~x!1u if~x!1 ūS 2
1

2
@ C̄,C̄#~x! D

1 ūu@2 if~x!,C̄~x!#. ~3.58!

The nonvanishing components ofFmn have

Fmn~x,u,ū !5Fmn~x!1u@Fmn~x!,C̄~x!#1 ū@Fmn~x!,C~x!#

1 ūu„i @Fmn~x!,f~x!#

1$@Fmn~x!,C~x!#,C̄~x!%…. ~3.59!

For the matter fieldw(x), we define the superfieldw(X)
and its covariant derivative as

w~X!ªw~x!1uw1~x!1 ūw2~x!1 ūuw3~x!, ~3.60!

D̃@A#w~X!ª@ d̃1A~X!#w~X!. ~3.61!

The horizontal condition for the matter field is

DMw~X!dXM5Dmw~X!dxm, ~3.62!

which implies

Duw~X!505Dūw~X!. ~3.63!

From this, we have, for example,

w1~x,0,0!5]uw~x,0,0!

52Au~X!w~X!uu5 ū5052C~x!w~x!5dBw~x!.

~3.64!

Accordingly, all the field variables obey the relation

F~x,u,ū !5F~x!1u@dBF~x!#

1 ū@ d̄BF~x!#1 ūu@ d̄BdBF~x!#. ~3.65!

Let F1(X) and F2(X) be two superfields correspondin
to f1(x) andf2(x), respectively. It is easy to show that th
following formula holds:

F1~x,u,ū !F2~x,u,ū !

5f1~x!f2~x!1udB@f1~x!f2~x!#1 ū d̄B@f1~x!f2~x!#

1 ūud̄BdB@f1~x!f2~x!#. ~3.66!
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Thus, for any~elementary or composite! field O(x), we can
define the corresponding superfieldO(x,u,ū) using BRST
and anti-BRST transformations as

O~x,u,ū !5O~x!1udBO~x!1 ū d̄BO~x!1 ūud̄BdBO~x!.

~3.67!
In the superspaceM, the BRST and anti-BRST transforma
tions correspond to the translation ofu and ū coordinates,
respectively.

For the Grassmann number, the integration*du(*dū) is
equivalent to the differentiationd/du(d/dū). Hence the
BRST dB and anti-BRSTdB transformation has the follow
ing correspondence:

dB↔
d

du
↔E du, d̄B↔

d

dū
↔E dū. ~3.68!

This implies

E dudūO~x,u,ū !52O3~x!52
]

]u

]

]ū
O~x,u,ū !

52 d̄BdBO~x!5dBd̄BO~x!. ~3.69!

Therefore, if the Lagrangian~density! of the formdBd̄BO(x)
is given for an operatorO, the operatorO can be extended
into the superfieldO(x,u,ū) in the superspace,

E dDxdBd̄BO~x!5E dDxE dudūO~x,u,ū !.

~3.70!

D. MAG TFT as a supersymmetric theory

The operator

O~x!ª2 i trG\HS 1

2
@Am~x!#21 iC~x!C̄~x! D , ~3.71!

has a corresponding superfield given by

O~X!ª
2 i

2
trG\H$@Am~X!#212iC~X!C̄~X!%, ~3.72!

where we have chosen

1

g
ª

i

2
. ~3.73!

The superfieldO(X) is written in OSp(D/2) invariant form,

O~X!5
2 i

2
trG\H@hNMAM~X!AN~X!#. ~3.74!

Thus the action of MAG TFT can be written in the man
festly superspace covariant form

STFT

5E dDxE dudū
2 i

2
trG\H@hNMVM~x,u,ū !VN~x,u,ū !#.

~3.75!
10501
IV. DIMENSIONAL REDUCTION OF TOPOLOGICAL
FIELD THEORY

After giving a basic knowledge for the dimensional redu
tion of Parisi and Sourlas in the supersymmetric model,
apply this mechanism to MAG TFT. We show thatD-
dimensional MAG TFT is reduced to the (D22)-dimen-
sional cosetG/H nonlinears model ~NLSM!. This implies
that a class of correlation functions inD-dimensional MAG
TFT can be calculated in the equivalent (D22)-dimensional
coset NLSM.

A. Parisi and Sourlas dimensional reduction

Now we split theD-dimensional Euclidean space into tw
subsets

x5~z,x̂!PRD, zPRD22, x̂PR2. ~4.1!

The relation~3.44! holds for anyD. Hence, for supersym
metric operatorO(X), we obtain

O~x,u,ū !5 f @z,x̂21~4/g!ūu#[ f ~z,x̂2!1
4

g
ūu

d

dx̂2
f ~z,x̂2!.

~4.2!

Therefore, for supersymmetric model, we find4

SGF5E dDxE duE dūO~x,u,ū !

5E dD22zE d2x̂E duE dū
4

g
ūu

d

dx̂2
f ~z,x̂2!

52
4

gE dD22zE d2x̂
d

dx̂2
f ~z,x̂2!

52
4

gE dD22zE
0

`

pdr2
d

dr2 f ~z,r 2!

5
4p

g E dD22z f~z,0!

5
4p

g E dD22zO0@~z,0!,0,0#, ~4.3!

4An alternative derivation is as follows. By integration by par
we find for D.2

E dDxf8~x2!5SDE
0

`

rD21drf8~r2!

52SD

D22

2 E
0

`

dr2~r2!D/222f ~r 2!

52pE dD22x f~x2!,

where SD52pD/2/G(D/2) is the area of the unit sphere inD-
dimensional space.
9-14
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
where we have assumedf (z,`)[O0@(z,`),0,0#50 and
used the notation of Eq.~3.41!.

This shows the dimensional reduction by two units. T
supersymmetricD-dimensional model is equivalent to
purely bosonic model inD22 dimensions. This fact5 was
first discovered by Parisi and Sourlas~PS! @28#.

The correlation function in supersymmetric theory a
generated by the partition function in the presence of ex
nal sources,

ZSUSY@J#ªE @dF#expH 2E dDxdudū@LSUSY@F#

2F~x,u,ū !J~x,u,ū !#J , ~4.4!

where we write all the fields byF collectively for the super-
symmetric LagrangianLSUSY@F#. Restricting the source to
(D22)-dimensional subspace,

J~x,u,ū !5J~z!d2~ x̂!d~u!d~ ū !, ~4.5!

and taking the derivatives ofZSS@J# with respect toJ(z), we
obtain the correlation functions of the superspace the
which are restricted to the (D22)-dimensional subspace
These are identical to the correlation functions of the co
sponding (D22)-dimensional quantum theory,

ZSUSY@J#5ZD22@J#, ~4.6!

where ZD22@J# is the generating functional fo
(D22)-dimensional theory,

ZD22@J#ªE @dF0#

3expH 2E dD22zF4p

g
L0@F0#2F0~z!J~z!G J .

~4.7!

When PS-dimensional reduction occurs, the three-w
equivalence is known among~1! a field theory in a super
space ofD commuting and two anticommuting dimension
~2! the corresponding (D22)-dimensional quantum field
theory, and~3! theD-dimensional classical stochastic theor
namely, the stochastic average of theD-dimensional classi-
cal theory in the presence of random external sources.
final point has not yet been made clear in this paper.

B. Dimensional reduction of TFT to NLSM

The action~3.75! of TFT is manifestly invariant by all
supertransformations. Therefore,D-dimensional MAG TFT

5The dimensional reduction was first shown order by order
perturbation theory~i.e., diagram by diagram! for scalar field@28#
and gauge field@29,30# theories. Later, the nonperturbative proof
dimensional reduction was given at least for scalar field theo
@31,32#. We followed the presentation of@32# in this paper.
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is dimensionally reduced to the (D22)-dimensional model
in the sense of Parisi and Sourlas. From Eqs.~3.75! and
~4.3!, the equivalent (D22)-dimensional theory is given by

SNLSM52pE dD22ztrG\HF1

2
dmnVm~z!Vn~z!G ~4.8!

52
p

g2E dD22ztrG\H@U~z!]mU†~z!U~z!]mU†~z!#

5
p

g2E dD22ztrG\H@]mU~z!]mU†~z!#. ~4.9!

Thus theD-dimensional MAG TFT is reduced to the (D
22)-dimensionalG/H nonlinears model ~NLSM! whose
partition function is given by

ZNLSMªE @dU#exp$2SNLSM@U#%, ~4.10!

where we have dropped the ghost contributioniC(z)C̄(z).
The correlation functions of theD-dimensional TFT coincide
with the same correlation function calculated in the equi
lent (D22)-dimensional NLSM if the argumentsxi are lo-
cated on the (D22)-dimensional subspace,

K)
i
Fi~xi !L

GMAG TFTD

5K)
i
Fi~xi !L

G/H NLSMD22

if xiPRD22. ~4.11!

C. Gluon propagator and mass gap

The propagator of NLSMD22 in momentum representa
tion is obtained by takingp̂5pu5pū50 in the supersym-
metric quantity,

1

2p i E dDxdudūeipmxm2pūu1puū

3hNM^VM
a ~x,u,ū !VN

b ~0,0,0!&TFTD
u p̂5pu5pū50

5E dD22z eipk•zkd i j ^V i
a~z!V j

b~0!&NLSMD22

5
g2

p
dabd i j H @11u~pk

2!#
pipj

pk
2 2u~pk

2!d i j J ,

~pi ,pj ,pkPRD22!. ~4.12!

From OSp(D/2) invariance, we have

1

2p i E dDxdudūeipmxm2pūu1puū^VM
a ~x,u,ū !VN

b ~0,0,0!&TFTD

5
g2

p
dabH @11u~pL

2!#
pMpN

pL
2 2u~pL

2!dMNJ , ~4.13!

where

n

s
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pL
2
ªpm

2 12ip ūpu5pk
21 p̂212ip ūpu . ~4.14!

By settingM5m, N5n and differentiating both sides of Eq
~4.13! by ]2/]pu]pū , we obtain the propagator inD-
dimensional TFT,

1

2p i E dDxeipmxm^Vm
a ~x!Vn

b~0!&TFTD

5
g2

p
dab$v~p!dmn1~dmn2pmpn!v8~p2!%,

~4.15!

where

v~p2!ª
11u~p2!

p2 , p2
ªpm

2 . ~4.16!

We compare Eq.~4.15! with Eq. ~4.12! following Ref. @60#.
If the particle spectrum has a mass gap inD22 dimensions
~4.12!, then the functionv(p2) is analytic aroundp250 and
hence there is no massless particle at all in the cha
Am

a 5Vm
a in D dimensions~4.15!.

Dimensional reduction shows the equivalence of the c
relation functions at special coordinates,x̂5u5 ū50 or p̂
5pu5pū50. It should be remarked that the spectra of p
ticles in the channel U(x) differ between D- and
(D22)-dimensional models. It is worthwhile to remark th
PS-dimensional reduction implies neither the equivalence
the state vector spaces nor the equivalence of theS matrices
between the original model and the dimensionally redu
model.
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The existence of mass gap in two-dimensional O~3!
NLSM has been shown in Refs.@46,42#. Therefore, the off-
diagonal gluonsAm

a 5Vm
a (a51,2) in four-dimensional SU~2!

MAG TFT have a nonzero mass,mA5” 0. Although this was
assumed in the previous study of APEGT of YM theory@17#,
it was supported by Monte Carlo simulation@25#. If we re-
strict the YM theory to the TFT part, the existence of
nonzero gluon mass has just been proven. This will also h
in the full YM theory, since the perturbation is not sufficie
to diminish this mass to yield massless gluons.

V. NONLINEAR s MODEL, INSTANTON,
AND MONOPOLE

In the previous section we showed that, thanks to dim
sional reduction, the calculation of correlation functions
TFTD is reduced to that in the NLSMD22 . In what follows,
we restrict our considerations to SU~2! YM theory. In this
section we study the correspondence between O~3! NLSM2
and SU~2! MAG TFT4, especially focusing on the topolog
cal nontrivial configurations. It is well known that the two
dimensional O~3! NLSM has instanton solutions. We fin
that the instanton in two dimensions corresponds to the m
netic monopole in four dimensions. This correspondence
utilized to prove quark confinement in the next section.

A. NLSM from TFT

For concreteness, we consider the case ofG5SU(2). The
case ofG5SU(N), N.2 will be separately discussed in th
next section.

First of all, we define
Rm~x!ª iU †~x!]mU~x!5Rm
A~x!TA5

21

2 S ]mw~x!1cosu~x!]mx~x! 2e2 ix~x!@ i ]mu~x!2sinu~x!]mx~x!#

e1 ix~x!@ i ]mu~x!1sinu~x!]mx~x!# 2@]mw~x!1cosu~x!]mx~x!#
D ,

~5.1!

and

Lm~x!ª iU ~x!]mU~x!†5Lm
A~x!TA5

1

2S ]mx~x!1cosu~x!]mw~x! 2e1 ix~x!@ i ]mu~x!1sinu~x!]mw~x!#

e2 ix~x!@ i ]mu~x!2sinu~x!]mw~x!# 2@]mx~x!1cosu~x!]mw~x!#
D ,

~5.2!
n-
where we have used the Euler anglesu,w,x and the funda-
mental representation

TA5
1

2
sA, s1

ªS 0 1

1 0D , s2
ªS 0 2 i

i 0 D ,

s3
ªS 1 0

0 21D . ~5.3!

Note thatRm andLm are Hermitian,Rm
† 5Rm , Lm

† 5Lm .
For later purposes, it is convenient to write various qua
tities in terms of Euler angle variables,

Lm
6~x!ª

1

A2
~Lm

1 6 iL m
2 !

5
6 i

A2
e7 ix~x!@]mu~x!7 i sinu~x!]mw~x!#,

~5.4!
9-16
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Lm
3 ~x!5]mx~x!1cosu~x!]mw~x!, ~5.5!

and

Lm
1 ~x!Lm

1 ~x!1Lm
2 ~x!Lm

2 ~x!

52Lm
1~x!Lm

2~x!

5]mu~x!]mu~x!1sin2u~x!]mw~x!]mw~x!,

~5.6!

Lm
3 ~x!Lm

3 ~x!5@]mx~x!1cosu~x!]mw~x!#2. ~5.7!

The O~3! NLSM is defined by introducing a three
10501
dimensional unit vectorn(x) on each point of space-time
n: Rd→S2(dªD22),

n~x!ªS n1~x!

n2~x!

n3~x!
DªS sinu~x!cosw~x!

sinu~x!sinw~x!

cosu~x!
D . ~5.8!

The direction of the unit vector in internal space is specifi
by two anglesu(x),w(x) at each pointxPRd. Note that

n~x!•n~x!ª (
A51

3

nA~x!nA~x!51, ~5.9!

n~x!•]mn~x!50. ~5.10!

Using
tion
]mn~x!ªS cosu~x!cosw~x!]mu~x!2sinu~x!sinw~x!]mw~x!

cosu~x!sinw~x!]mu~x!1sinu~x!cosw~x!]mw~x!

2sinu~x!]mu~x!
D , ~5.11!

we find6

1

2
@~Vm

1 ~x!!21~Vm
2 ~x!!2#5

1

2g2$@Lm
1 ~x!#21@Lm

2 ~x!#2%5
1

2g2]mn~x!•]mn~x! ~5.14!

5
1

2g2 $@]mu~x!#21sin2u~x!@]mw~x!#2%. ~5.15!

Following the argument in the previous section, we conclude that the SU~2!/U~1! MAG TFT in D dimensions (TFTD) is
‘‘equivalent’’ to O~3! NLSM in D22 dimensions (NLSMD22) with the action

SNLSM5E dD22x
p

2g2]mn~x!•]mn~x!. ~5.16!

Both the action~5.16! and the constraint~5.9! are invariant under globalO(3) rotation in internal space. The vectorn is related
to U through the adjoint orbit parametrization~see, e.g., Ref.@86# for a more rigorous mathematical presentation! as

nA~x!TA5U†~x!T3U~x!, nA~x!5tr@U~x!TAU†~x!T3# ~A51,2,3!. ~5.17!

The residual U~1! invariance corresponds to a rotation about the vectorn. In other words,n is a U~1! gauge-invariant quantity
and the NLSM is a theory written in terms of a gauge invariant quantity alone. In fact, under the transformaU

→eiuT3
U, nA is invariant. Then the U~1! part in the Haar measure is factored out. This can be seen as follows.

In general, the action of NLSM is determined as follows. The infinitesimal distance in the group manifold SU(2)/U(1)
>S2 is given by

ds25gab~F!dFadFb5R2@~du!21sin2u~dw!2#. ~5.18!

6It is easy to see that we can write an alternative form for the action

~n3]mn!•~n3]mn!5]mn•]mn, ~5.12!
where the explicit form is written as

n~x!3]mn~x!ªS 2sinw~x!]mu~x!2sinu~x!cosu~x!cosw~x!]mw~x!

cosw~x!]mu~x!2sinu~x!cosu~x!sinw~x!]mw~x!

sin2u~x!]mw~x!
D. ~5.13!
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This implies that the metricgab and its determinantg are
given by

guu5R2, gww5R2sin2u, g5det~gab!5R4sin2u.
~5.19!

Hence the corresponding action of NLSM is given by

S5E ddxgab@F~x!#]mFa~x!]mFb~x!, ~5.20!

where coordinatesxm,m51,•••,d span ad-dimensional flat
space-time and the fieldsFa(a51,2) are coordinates in two
dimensional Riemann manifoldM called the target space
The symmetric matrixgab(F) is the corresponding metri
tensor. Indeed, this action~Lagrangian! agrees with Eq.
~5.15! for Fa5(u,w). Consequently, the integration me
sure is given by

dm~F!ª )
xPRd

Ag„F~x!…dF1dF2

5 )
xPRd

R2sinu~x!du~x!dw~x!. ~5.21!

This is the area element of two-dimensional sphere of rad
R. Thus the partition function is defined by

ZNLSMªE @dm~n!# )
xPRd

d@n~x!•n~x!21#exp~2SNLSM!,

~5.22!

dm~n!5 )
xPRd

sinu~x!du~x!dw~x!. ~5.23!

The constraint ~5.9! is removed by introducing the
Lagrange multiplier fieldl(x) as

SNLSM5E dD22x

3F p

2g2]mn~x!•]mn~x!1l~x!@n~x!•n~x!21#G .
~5.24!

For this action, the field equation is

]m]mn~x!1l~x!n~x!50. ~5.25!

Using the constraint and this field equation, we see

l~x!5l~x!n~x!•n~x!52n~x!•]m]mn~x!. ~5.26!

Thereforel is eliminated from the field equation

]m]mn~x!2@n~x!•]m]mn~x!#n~x!50. ~5.27!

B. Instanton solution

Instantons are solutions of field equations with a nonz
but finite action. For this, the fieldn(x) must satisfy
10501
s

o

]mn~x!→0 ~r→`!, ~5.28!

namely,n(x) approach the same valuen(0) at infinity where
n(0) is any unit vector in internal space,n(0)

•n(0)51.
It is important to remark that the coset SU(2)/U(1) is

isomorphic to the two-dimensional surfaceS2@Sn>SO(n
11)/SO(n)#,

SU~2!/U~1!>S2
ªSint

2 . ~5.29!

Moreover, by one-point compactification~i.e., adding a point
of infinity! the two-dimensional plane can be converted in
the two-dimensional sphere

R2ø$`%>S25Sphy
2 . ~5.30!

This implies that any finite action configurationn(x) is just a
mapping fromSphy

2 to Sint
2 . The mapping can be classified b

homotopy theory. The O~3! NLSM2 has instanton and anti
instanton solutions, because the homotopy group is n
trivial,

P2@SU~2!/U~1!#5P2~S2!5Z. ~5.31!

The instanton~topological soliton! is characterized by the
integer-valued topological chargeQ. This is seen as follows

The mathematical identity

]mn•]mn5
1

2
~]mn6emrn3]rn!•~]mn6emsn3]sn!

6emnn•~]mn3]nn! ~5.32!

implies

]mn•]mn>6emnn•~]mn3]nn!. ~5.33!

Hence the action has a lower bound

SNLSMªE dD22x
p

2g2]mn~x!•]mn~x!>SQª
4p2

g2 uQu,

~5.34!

whereQ is the Pontryagin index~winding number! defined
by

Qª

1

8pE d2xemnn•~]mn3]nn!. ~5.35!

The Euclidean actionSNLSM of NLSM is minimized when
the inequality~5.33! is saturated. This happens if and only

]mn56emnn3]nn. ~5.36!

Any field configuration that satisfies Eq.~5.36! as well as the
constraint~5.9! will minimize the action and therefore auto
matically satisfies the extremum condition given by the fie
equation~5.27!. The converse is not necessarily true. No
that Eq.~5.36! is a first-order differential equation and easi
to solve than the field equation~5.27! which is a second-
order differential equation.

Now we proceed to construct the topological charge:
9-18



n

t

le

rth

for

d
and

nts.

r a
o-
rve

YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
]mn3]nn5sinu~]mu]nw2]mw]nu!n5sinu
]~u,w!

]~xm,xn!
n,

~5.37!

where](u,w)/](xm,xn) is the Jacobian of the transformatio
from coordinates (xm,xn) on Sphy

2 to Sint
2 parametrized by

(u,w) wherem,n are any pair from 1, . . . ,D. Using

n•~]mn3]nn!5sinu~]mu]nw2]mw]nu!5sinu
]~u,w!

]~xm,xn!
,

~5.38!

it is easy to see thatQ is an integer, since

Qª

1

8p R
Sphy

2
d2xemnsinu

]~u,w!

]~xm,xn!

5
1

4p R
Sphy

2
dsmnsinu

]~u,w!

]~xm,xn!

5
1

4pESint
2

sinududw, ~5.39!

whereSint
2 is a surface of a unit sphere with area 4p. Hence

Q gives a number of times the internal sphereSint
2 is wrapped

by a mapping from the physical spaceSphys
2 to the space of

fields Sint
2 .

The instanton equation~5.36! can be rewritten as

]1n57 i ~n]2n32n3]2n!, ]2n56 i ~n]1n32n3]1n!,

nªn11 in2 . ~5.40!

By changing the variables~stereographic projection from
north pole!,

w1~x!ª
n1~x!

12n3~x!
, w2~x!ª

n2~x!

12n3~x!
, ~5.41!

the instanton equation reads

]1w57 i ]2w, wªw11 iw2 . ~5.42!

This is equivalent to the Cauchy-Riemann equation

]w1~z!

]x1
56

]w2

]x2
,

]w1~z!

]x2
57

]w2~z!

]x1
, zªx11 ix2 .

~5.43!

For the upper~lower! signs, w is an analytic function of
z* (z). Any analytic functionw(z),w(z* ) is a solution of
instanton equation and also of the field equation. Note thaw
is not an entire function and allows isolated poles inw(z),
while cuts are prohibited by the single-valuedness ofna(x).
The divergencew→` corresponds ton351, i.e., the north
pole inSint

2 . The Euler angles are related to the new variab
as
10501
s

w1ªtan
u

2
cosw, w2ªtan

u

2
sinw,

w5
n11 in2

12n3
5eiwcot

u

2
, ~5.44!

corresponding to the stereographic projection from the no
pole.7

By using the new variables, we obtain the expressions
the topological charge

Q5
i

2pES2

dwdw*

~11ww* !25
i

2pES2

dx1dx2

~11uwu2!2

3S ]w

]x1

]w*

]x2
2

]w

]x2

]w*

]x1
D , ~5.46!

and an action

E d2x
1

2
]mn•]mn5E

S2

dx1dx2

~11uwu2!2S ]w

]x1

]w*

]x1
1

]w

]x2

]w*

]x2
D .

~5.47!

A typical instanton solution with topological chargeQ
5n is given by

w~z!5@~z2z0!/r#n, ~5.48!

where the constantsr and z0 is regarded as the size an
location of the instanton. The theory has the translational
scale invariance (x→x2a and x→rx, respectively!, since
the solution exists for arbitraryr and z0 , but neither the
action nor the topological charge depend on these consta
The parametersr,z0 are called collective coordinates.

C. One instanton solution

The one instanton solution at the originz050,

w~z!5z/r, ~5.49!

implies a solution for theO(3) vector,

n15
2rx1

uzu21r2 , n25
2rx2

uzu21r2 , n35
uzu22r2

uzu21r2 ,

uzu2ªx1
21x2

2 . ~5.50!

This solution is regarded as representing a monopole o
projection of the four-dimensional instanton onto the tw
dimensional plane in the following sense. First, we obse

7The stereographic projection from the south pole is

w1ªcot
u

2
cosw, w2ªcot

u

2
sinw,

w5
n11in2

11n3
5eiwtan

u

2
. ~5.45!
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that the field of an instanton at infinity points in the positi
3 direction n(0) while the field at the origin points in the
opposite direction,

uzu50→n5~0,0,21![2n~0!,

uzu5r→n5~x1 /r,x2 /r,0!, ~5.51!

uzu5`→n5~0,0,1![n~0!.

If we identify the plane with the sphereS2 by stereographic
projection from north pole, the north~south! pole of S2 cor-
responds to the infinity point~the origin! and equator to the
circle uzu5r. Therefore, one instanton solution~5.49! looks
similar to a magnetic monopole~or a sea urchin!. The wind-
ing numberQ of this configuration is determined by the ar
of the sphere divided by 4p, i.e.,Q51. Thus the one instan
ton has winding number11 ~the one anti-instanton hasQ
521). Equivalently, this denotes the magnetic chargegm
51.

An alternative interpretation is possible as follows. T
configuration~5.50! leads to

n~z!•@] in~z!3] jn~z!#52e i j

4r2

~ uzu21r2!2 . ~5.52!

This should be compared with the four-dimensional inst
ton solution in the nonsingular gauge,

A m
A~x!5hAmn

2xn

x21r2 , F mn
A ~x!52hAmn

4r2

~x21r2!2 ,

x25x1
21•••1x4

2 , ~5.53!

which implies

A i
3~z!5e i j

2xj

uzu21r2 , F i j
3 ~z!52e i j

4r2

~ uzu21r2!2 ,

~5.54!

where we have usedh3i j 5e3i j 5e i j . Therefore, the instan
ton solution~5.52! in two dimensions is equal to the proje
tion of the field strengthF 12

3 of the four-dimensional instan
ton solution ~in the nonsingular gauge! onto a two-
dimensional plane. Therefore it is expected that there is
interplay between the instanton and the monopole in f
dimensions. However, this does not imply that the fo
dimensional instanton configuration play the dominant r
in the confinement. The degrees of freedom responsible
the confinement is the magnetic monopole which has c
plete correspondence with the two-dimensional instanton
shown in the next subsection furthermore.

D. Instanton and magnetic monopole

By dimensional reduction, we can convert the calculat
of correlation functions in MAG TFTD into that in
NLSMD22 , if all the arguments sit on the (D22)-
dimensional subspace. Euler angle expression yields
10501
-

n
r

-
e
or
-

as

n

n•~]mn3]nn!5Cmn@V#5sinu~]mu]nw2]mw]nu!.

~5.55!

Hence we obtain an alternative expression for the wind
number,

Qª

1

8pE d2zemnCmn@V#5
1

4pE d2smnCmn@V#.

~5.56!

We can define the topological charge density by

emnCmn@V#5emnn•~]mn3]nn!. ~5.57!

From Eqs.~2.30!, ~2.37!, and~5.55!, if we restrictm,n to two
dimensions, the monopole contribution in four dimensio
corresponds to the instanton contribution in two dimensio
However, the monopole current defined by the divergence
the dual field strength* f mn cannot be calculated in the d
mensionally reduced model, since all the derivatives are
necessarily contained in two-dimensional space. Howeve
the four-dimensional diagonal field strengthf mn

V is self-dual,

* f mn
V 5 f mn

V , ~5.58!

the monopole charge in four dimensions completely agr
with the winding number~instanton charge! in two dimen-
sions

gm5Q. ~5.59!

The intimate relationship between the magnetic monop
and instantons may be a reflection of this observation. In
itively speaking, the magnetic monople and antimonople c
rents piercing the surface of the~planar! Wilson loop corre-
sponds to the instanton and anti-instanton in
dimensionally reduced two-dimensional world. In order
derive the area law of the Wilson loop, the currents m
pierce the surface uniformly. In this sense, the monop
current condensation must occur in four dimensions. The
mensional reduction of TFT implies self-duality at the lev
of the correlation function,

^Fmn&TFT4
5

1

2
emnrs^Frs&TFT4

, ~5.60!

since both sides coincide with the same correlation funct
in the dimensionally reduced two-dimensional model.

If we define

hmª2
1

g

1

17n3~n3]mn!352
1

g

1

17n3eab3na]mnb,

~5.61!

amªA m
AnA1hm , ~5.62!

then we obtain the field strength,
9-20
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f mnª]man2]nam5]m~A n
AnA!

2]n~A m
AnA!2

1

g
eABCnA]mnB]nnC. ~5.63!

This field strength is regular everywhere and does not c
tain the Dirac string. This is nothing but the field strength
’t Hooft-Polyakov monopole, sincenA is obtained fromT3

by gauge rotation~5.17!, nA(x)TA5U†(x)T3U(x). The Eu-
ler angle expression

hmª2
1

g

sin2u]mw

17 cosu
~5.64!

is constructed from the instanton~vortex! solution in two
dimensions by the stereographic projection.

The expression for the instanton charge in two-dimens
is equivalent to the magnetic charge in four dimensions,
cause

Kmª
1

8p
emnrseABC]nnA]rnB]snC

5
1

8p
emnrseABC]n~nA]rnB]snC!

5
1

8p
emnrs]n@n•~]rn3]sn!#, ~5.65!

we have

gmªE d3xK0ª
1

8pE d3xe i jk] i@n•~] jn3]kn!#

5
1

8pE d2s ie i jk@n•~] jn3]kn!#

5
1

8pES2
d2xe jk@n•~] jn3]kn!#5Q. ~5.66!

The magnetic current is topologically conserved]mKm50
without an equation of motion.

We can also define the three-dimensional topological c
rent

Jm5
1

8p
emrseABC~nA]rnB]snC!

5
1

8p
emrs@n•~]rn3]sn!#. ~5.67!

ThenQ is obtained from

QªE d2xJ0 . ~5.68!

This is related to Hopf invariant and Chern-Simons the
@89#. The details will be presented in a forthcoming pape
10501
n-
f

n
e-

r-

y

VI. WILSON LOOP AND LINEAR POTENTIAL

First of all, in order to see explicitly that the dimensio
ally reduced two-dimensional NLSM has U~1! gauge invari-
ance~corresponding to the residualH symmetry!, we study
the CP1 formulation of O~3! NLSM. The CP1 formulation
shows gauge structure more clearly than the O~3! NLSM and
helps us to see the analogy of NLSM with the~111!-
dimensional Abelian Higgs model, i.e., the GL model. T
CPN21 model can have an instanton solution for anyN,
whereas the O~N! NLSM cannot have one forN.3. For
SU~N! YM theory in MAG, the dimensionally reduced
SU(N)/U(1)N21 NLSM has instanton solutions for anyN.
The instanton solution of O~3! NLSM2 is identified as a vor-
tex solution.

Next, we give the relationship among three theories;
CP1 model, O~3! NLSM and TFT. It turns out that the cal
culation of the Wilson loop in four-dimensional TFT is re
duced to that in the two-dimensional CP1 model owing to
dimensional reduction.

In Sec. VI C, we will show that summing up the contr
bution of instanton and anti-instanton configurations to
Wilson loop in the NLSM2 or CP1 model leads to quark
confinement in four-dimensional TFT and YM theory in th
sense of an area law of the Wilson loop. We emphasize
the cosetG/H is quite important for the existence of th
instanton and that the coset structure is a consequence o
MAG together with dimensional reduction. We find that th
magnetic monopole in four dimensions corresponds to
instanton~or vortex! in two dimensions. Finally, we discus
some extensions of the proof of quark confinement for
general gauge group and in higher-dimensional cases.

A. CPN21 model and instanton solution

The CPN21 model is described by theN complex scalar
field fa(x)(a51, . . . ,N) and the action of the
d5(D22)-dimensional CPN21 model is given by

SCP@f#5
b

2E ddx$]mf* ~x!•]mf~x!

1@f* ~x!•]mf~x!#@f* ~x!•]mf~x!#%,

~6.1!

where there is the constraint

f* ~x!•f~x!ª(
a51

N

fa* ~x!fa~x!51. ~6.2!

By introducing an auxiliary vector fieldVm , the CPN21

model can be equivalently rewritten as

SCP5
b

2E ddx$]mf* ~x!•]mf~x!1Vm
2 ~x!

22Vm~x!@ if* ~x!•]mf~x!#%. ~6.3!

In fact, integrating out theVm field in Eq. ~6.3! recovers Eq.
~6.1!. HereVm corresponds to the composite operator
9-21
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Vm~x!5 if* ~x!•]mf~x!. ~6.4!

This is real andf* (x)•]mf(x) is pure imaginary, since
from the constraint,

f* ~x!•]f~x!1]f* ~x!•f~x!52Re@f* •]f~x!#50.
~6.5!

Then, using the constraint~6.2!, the CPN21 model can be
further rewritten as

SCP@f,V#5
b

2E ddx$Dm@V#f* ~x!%•$Dm@V#f~x!%,

~6.6!

Dm@V#f~x!ª~]m1 iVm!f~x!. ~6.7!

The partition function is defined by

ZCPªE @dVm#@df#@df* # )
xPRd

d@f~x!•f~x!21#

3exp~2SCP@f,V# !. ~6.8!

Here Dm@V# is actually interpreted as the covariant deriv
tive, because the Lagrangian is invariant under the U~1!
gauge transformation

fa~x!→fa~x!8ªfa~x!eiL~x!,

Vm~x!→Vm~x!8ªVm~x!2]mL~x!, ~6.9!

whereL is independent of the indexa and

Dmfa~x!→@Dmfa~x!#eiL~x!. ~6.10!

By this property, this model is called the CPN21 model ~the
target space is the complex projective space!. Note that

CPN21>U~N!/U~1!/U~N21!>SU~N!/U~N21!.
~6.11!

The CPN21 model has global SU(N) symmetry and the U~1!
subgroup of this SU(N) is a local gauge symmetry. Henc
the CPN21 model is U~1! gauge theory for anyN. However,
Vm is an auxiliary vector field and does not represent in
pendent degrees of freedom, since the kinetic term is abs
Apart from this fact, the CPN21 model is similar to the Abe-
lian Higgs model or scalar quantum electrodynamics. It
known that the kinetic term ofVm is generated through ra
diative correction, see Ref.@57#.

The constraint is included in the action by introducing t
Lagrange multiplier fieldl as

SCP5
b

2E ddx$†Dm@V#f* ~x!‡•†Dm@V#f~x!‡

1l~x!@f* ~x!•f~x!21#%. ~6.12!

The field equation is

Dm@V#Dm@V#f~x!1l~x!f~x!50. ~6.13!
10501
-

-
nt.

s

The multiplier field is eliminated using

l~x!5l~x!f* ~x!•f~x!52f* ~x!•Dm@V#Dm@V#f~x!,

~6.14!

to yield

Dm@V#Dm@V#f~x!2$f* ~x!•Dm@V#Dm@V#f~x!%f~x!50.

~6.15!

Instantons are finite action solutions of field equatio
The finiteness of the action requires the boundary condit

Dmfaª]mfa1 iVmfa→0 as rªuxu→`.
~6.16!

Separatingfa into the modulus and the angular part,

fa~x!ªufa~x!ueiQa~x!, ~6.17!

the boundary condition yields

Vm5 i
]mfa

fa
5 i

]mufau
ufau

2]mQa . ~6.18!

HereVm must be real and independent ofa. Hence,]mufau
50 and]mQa is independent ofa. This meansufau5f0 for
a fixed complex vector with (f0)* •f051 andQa5Q(w)
for a common phase angleQ(w) which can depend onw
parametrizing a circle,Sphy

1 . Consequently, the boundar
condition is given by

fa~x!→f0eiQ~w!, Vm→2]mQ~w!, ~6.19!

where the allowed values of the phaseQ form a circleSint
1 .

The mappingQ from S1 to S1 is characterized by an winding
number

Qª

1

2pESphy
1

dw
dQ

dw
, ~6.20!

which has an integral value corresponding to the fact tha

P1~S1!5Z. ~6.21!

Although the global SU(N) rotations can continuously
change the value off0 , this freedom does not introduce an
further homotopy classification.

The winding number can be rewritten in terms ofVm as
follows. From Eq.~6.4!,

Vw5
i

r
f* •

]f

]w
→2

1

r

dQ

]w
. ~6.22!

This leads to

Q52
1

2pESphy
1

dwrVw52
1

2pESphy
1

dl •V

52
1

2pE d2xemn]mVn , ~6.23!
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where the integrand is a pure divergence. Using the c
straint, we can show that this is rewritten as

Q5E d2xemn~Dmf!* ~Dnf!. ~6.24!

From the identity

~Dmf!•~Dmf!5
1

2
~Dmf6 i emnDnf!* •~Dmf6 i emnDnf!

7 i emn~Dmf!* ~Dnf! ~6.25!

we obtain

~Dmf!•~Dmf!>7 i emn~Dmf!* ~Dnf!. ~6.26!

Hence a lower bound of the action is obtained,

SCP>
p2

g2 uQuªSQ . ~6.27!

The action has the minimum value when the inequality
saturated,

Dmfa56 i emnDnfa . ~6.28!

This is a self-duality equation which is analogous to the s
duality equation of YM theory. This equation is first ord
~partial differential! equation and easier to solve than t
field equation. Solution of this equation automatically sa
fies the field equation, but the converse is not necessa
true.

To solve Eq.~6.28!, we introduce the gauge invariant fie

va~x!ªfa~x!/f1~x! ~a51, . . . ,N!. ~6.29!

The covariant derivative is eliminated by substituti
fa(x)5va(x)f1(x) into Eq. ~6.28!,

]mva~x!56 i emn]nva . ~6.30!

This is nothing but the Cauchy-Riemann equation. For
minus ~plus! sign, eachva is an analytic function ofzªx1
1 ix2 (z* 5x12 ix2).

The expression forVm in terms ofv is

Vm5
i

2uvu2 ~v* •]mv2v•]mv* !

5
i

2
~v̂* •]mv̂2v̂•]mv̂* !, v̂ªv/uvu,

uvuª~v* •v!1/25uf1u21. ~6.31!

Taking into account the Cauchy-Riemann relations, we
tain

Vm56emn

v* •]nv1v•]nv*

2uvu2 56emn]nlnuvu.

~6.32!
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The topological charge is expressed as

Q52
1

2pE d2xemn]mVn56
1

4pE d2x]m]mlnuvu2.

~6.33!

An example of the one instanton solution is given by

v~z!5u1@~z2z0!/r#v, ~6.34!

whereu,v are any pair of orthonormal complex vectors s
isfying

u15v151, u* •u5v* •v51, u* •v50. ~6.35!

Here the constantr,z0 represent the size and location~in the
z plane! of instanton. Reflecting the scale and translatio
invariance of the action, we can choose arbitrary values
r,z0 . The solution~6.34! is inverted to become

fa~z!5
rua1~z2z0!va

~r21uz2z0u2!1/2
. ~6.36!

As z→`, this solution satisfies the boundary condition wi
a phase angleQ(w)5w,

fa~z!→~z/uzu!u5eiwu. ~6.37!

Hence this solution leads toQ51, the single instanton. The
anti-instanton is obtained by replacingz by z* .

Using the solution~6.34!, the vector potential~6.32! and
its field strength reads

Vm56emn

xn

uxu21r2 , uxu25x1
21x2

2 , ~6.38!

Vmnª]mVn2]nVm57emn

2r2

~ uxu21r2!2 . ~6.39!

Note thatVm tends to a pure U~1! gauge field configuration
at infinity,

Vm→6emn

xn

uxu2
5]mQ, Qªarctan

x2

x1
. ~6.40!

HenceVm denotes the vortex with a center atx50. This is
consistent with Eq.~6.23!. This implies that the magnetic
field of the magnetic current induces the~quantized! current
around it on a plane perpendicular to the magnetic field. T
is regarded as the dual of the usual Ampere law where
electric current induces the magnetic field around it,

I 5
1

2p R
C
V5

1

2p R
C
dQ5n, VªVmdxm. ~6.41!

In two dimensions the dual of the vector is again the vec
The two descriptions are dual to each other.

The solution~6.39! should be compared with the four
dimensional instanton solution in the nonsingular gau
~5.54!. The instanton solution~6.39! in two dimensions is
regarded as the projection of the four-dimensional coun
9-23
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019
part~5.54! on the two-dimensional plane. However, this do
not imply that the four-dimensional instanton configurati
play the dominant role in the confinement. The degrees
freedom responsible for the confinement is the magn
monopole which has complete correspondence with the t
dimensional instantons. This has been shown in Secs.
and V C.

B. CP1 model, O„3… NLSM, and TFT

The CP1 model is locally isomorphic to the O~3! NLSM
with the identification

nA~x!ª
1

2
fa* ~x!~sA!abfb~x! ~a,b51,2! ~6.42!

or

n15Re~f1* f2!, n25Im~f1* f2!,

n35
1

2
~ uf1u22uf2u2!. ~6.43!

Actually, the constraint is satisfied,nAnA5(uf1u21uf2u2)2

51. Hence the CP1 model has three independent paramete
whereas O~3! vector n has two. One of three parameters
the CP1 model is unobservable, since a global change of
phase does not lead to any observable effect. In fact,n is
invariant under the U~1! gauge transformation. It is possib
to show that the Lagrangian~6.1! for N52 reduces to O~3!
NLSM. The CPN21 has instantons for arbitraryN>2, while
O(N) NLSM does not have them forN.3. The map from
the CP1 model to O~3! NLSM is identified with a Hopf map
H:S3→S2 whereS3 denotes the unit three sphere embedd
in R4 by uf1u21uf2u251. In the language of mathematic
S3 is a U~1! bundle overS2, see e.g., Ref.@89#.

The field variables of CP1 model is written in terms of
Euler angles,

f15A2SexpF i

2
~w1x!Gcos

u

2
,

f25A2SexpF2
i

2
~w2x!Gsin

u

2
,

~6.44!

which satisfies the constraintfa* fa52S. Indeed, substitu-
tion of Eq. ~6.44! into Eq. ~6.43! leads to

n152Re ~f1f2* !52Ssinu cosw,

n252Im ~f1f2* !52Ssinu sinw,

n35uf1u22uf2u252Scosu. ~6.45!

This is nothing but the Schwinger-Wigner representation
the spinS operator in terms of two Bose creation and an
hilation operatorsfa

† ,fa . In the path integral formalism
they are not operators, butc numbers.

Substituting Eq.~6.44! into Eq. ~6.4! yields
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Vm~x!5 if* ~x!•]mf~x!52S@]mx1cosu]mw#52SLm
3 .

~6.46!

Hence, the vector fieldVm is equivalent toVm
3 when m is

restricted tom51, . . . ,d. Furthermore,

]mf* ~x!•]mf~x!5
S

2
@~Lm

1 !21~Lm
2 !21~Lm

3 !2#.

~6.47!

Owing to the dimensional reduction, theD-dimensional
SU~2! MAG TFT is equivalent to the
d5(D22)-dimensional CP1 model,

SCP15
b

2E ddx$@Lm
1 ~x!#21@Lm

2 ~x!#2%, bª
p

g2 .

~6.48!

Consequently, when the Wilson loop has the support on
(D22)-dimensional subspaceRd,RD, then the diagonal
Wilson loop inD-dimensional SU~2! MAG TFT

WC@aV#ªexpS iq R
C
am

V~z!dzmD , zPRd ~6.49!

am
V~x!ªtr@T3Vm~x!#5Lm

3 ~x!, ~6.50!

corresponds to the Wilson loop ind5(D22)-dimensional
CP1 model,

WC@V#ªexpS iq R
C
Vm~z!dzmD 5expS i

2
qE

S
Vmn~z!dsmnD .

~6.51!

C. Area law for the diagonal Wilson loop

Now we evaluate the Wilson loop expectation value
obtain the static potential for two widely separated char
6q ~in a u vacuum!. We define the diagonal Wilson loo
operator@8# for a closed loopC by

WC@aU#ªexpS iq R
C
am

U~x!dxmD , am
U~x!ªtr@T3A m

U~x!#.

~6.52!

According to the Stokes theorem, this is equal to

WC@aU#5expS i

2
qE

S
f mn

U ~x!dsmnD ~6.53!

for any surfaceS with a boundaryC. We restrict the loopC
to be planar, otherwise, we could receive any benefit of
mensional reduction to calculate the Wilson loop expec
tion. In what follows we calculate the contribution fromVm ,
namely, the topological contribution alone. Then the dime
sional reduction implies

^WC@aV#&MAG TFT4
5^WC@aV#&O~3! NLSM2

,

am
V~x!ªtr@T3Vm~x!#. ~6.54!
9-24
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Following the procedure in Sec. II, we regard other con
butions as perturbative deformationW@U;Jm,0,0#, see Eq.
~2.59!.

According to Sec. V C~or VI B! for G5SU(2), theWil-
son loop in two-dimensional O~3! NLSM is rewritten as

WC@aV#5expS i
2pq

g E
S
d2x

1

8p
emnn•~]mn3]nn! D .

~6.55!

Note that the integrand is the density of instanton numbe
shown in the previous section. This implies that the Wils
loop WC@aV# ~6.55! counts the number of instanton–an
instanton~or vortex–antivortex in CP1 formulation! existing
in the areaSbounded by the loopC in the O~3! NLSM. The
Wilson loop expectation value is written as

^WC@aV#&O~3! NLSM2

5

E dm~n!d~n•n21!e2SNLSM1 iuQWC@aV#

E dm~n!d~n•n21!e2SNLSM1 iuQ

5:
I 2

u

I 1
u ,

~6.56!

where we have included the topological termiuQ.8 Inclu-
sion of topological termiuQ in the action is equivalent to
consider theu vacuum defined by

uu&ª (
n52`

1`

einuun&. ~6.57!

The action with a topological angleu is written as

SNLSM
u 5SNLSM2 iuQ5~n11n2!S12 iu~n12n2!,

S1~g!5
4p2

g2 . ~6.58!

We regard Eq.~6.56! as the average of the instanton numb
10501
-

s
n

r

Q inside S over all the instanton–anti-instanton ensemb
generated from the action of NLSM.

In the following, we use the dilute instanton-gas appro
mation as a technique to calculate Eq.~6.56!. This method is
well known, see, e.g., Chap. 11 of Rajaraman@58# or Chap.
7 of Coleman@57#. ~We will give the Wilson loop calcula-
tion based on other methods elsewhere.! We first classify the
configurations of the fieldn that contribute to the tunneling
amplitude of instantonŝnue2HTu0& according to the numbe
of well-separated instantonsn1 and anti-instantonsn2 such
that Q5n5n12n2 . Then we sum over all configuration
with n1 instantons andn2 anti-instantons, all widely sepa
rated. In the dilute-gas approximation, the calculation of tu
neling amplitude is reduced to that of a single instan
~anti-instanton! contributionn→n11 (n→n21). The term
with n151, n250 ~or n150, n251) is given by

^n561ue2HTu0&5E dm~r!E d2x

3exp@2S1~g!#exp~6 iu!

5BL1L2exp@2S1~g!#exp~6 iu!.

~6.59!

HereT5L1 or L2 and the prefactorBL1L2 comes from in-
tegration of the collective coordinates, i.e., the size and
sition of the instanton,

E dm~r!E d2x5BL1L2 , B;O~mA
2 !, ~6.60!

where L1L2 is the ~finite but large! volume of two-
dimensional space andB is a normalization constant of orde
mA

2 , because instanton size is proportional to the inve
massmA

21 of off-diagonal gluons. In order to know the pre
cise form ofB, we must determine the measurem(r) for the
collective coordinater, see Refs.@90–94#.

In the dilute-gas approximation, the denominatorI 1
u is cal-

culated as
I 1
u
ª^uue2HTuu&5 (

n1 ,n250

`
~BL1L2!n11n2

n1!n2!
exp@2~n11n2!S1~g!1 iu~n12n2!#

5 (
n150

`
1

n1!
~BL1L2e2S1~g!1 iu!n1 (

n250

`
1

n2!
~BL1L2e2S1~g!2 iu!n2

5exp@BL1L2e2S1~g!1 iu1BL1L2e2S1~g!2 iu#

5exp@2~BL1L2!cosue2S1~g!#, ~6.61!

8Note that the nonzerou is not essential to show the area law of the Wilson loop in the following. We can putu50 in the final results
~6.65! and ~6.66!.
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 105019
where there is no constraint on the integersn1 or n2 , since
we are summing over allQ5n12n2 . The sum is precisely
the grand partition function for a classical perfect gas~i.e.,
noninteracting particles!9 containing two species of particle
with equal chemical potentiale2S1(g) and volume measure
in units of B. The energy~action! for a configuration with
n1 and n2 members of each species is (n11n2)S1(g)
while the entropy of the configuration i
ln@(BL1L2)

n11n2/n1!n2!#.
The configuration of instanton and anti-instanton is not

exact solution of the equation of motion. However, the dom
nant term is given by the configuration for which the fr
energy ~energy minus entropy! is smallest. For large cou
pling the action of a given field configuration decreases
g22 while the entropy which is obtained as the log of t
volume of function space occupied by the configuration
less sensitive tog. Thus for moderate or strong coupling th
entropy of a field configuration can be more important th
its action. The exact multi-instanton solutions are essenti
of no relevance in constructing the vacuum state beca
they have so little entropy. In fact, the sum over all ter
an
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with either n1 or n2 equal to zero is exponentially sma
compared to the complete sum for largeT @56#. Wheng is
small, the instanton gas is extremely dilute. For largerg in-
stantons and anti-instantons come closer together.

Whenu50, the most dominant term in this sum is give
for largeT at

n15n25BL1L2e2S1~g!, ~6.62!

and asT→` the entire sum comes essentially from this te
alone. The important lessons learned from Ref.@56# are ~i!
the dominant term contains both instantons and a
instantons and cannot be computed by a strict saddle-p
method that relies on exact solutions to the~Euclidean! equa-
tion of motion and~ii ! the dominant term is not the one fo
which the classical action exp@2S# is minimum.

The calculation of the numeratorI 2
u reduces to the con

struction of a system in au vacuum outside the loop and tha
in a u12pq vacuum inside the loop. LetA(C) be the area
enclosed by the loopC. In the dilute-gas approximation, th
numerator is
I 2
u5 (

n1
in ,n2

in
50

`
@BA~C!#n1

in
1n2

in

n1
in !n2

in !
expF2~n1

in1n2
in !S1~g!1 i S u1

2pq

g D ~n1
in2n2

in !G
3 (

n1
out ,n2

out
50

`
$B@L1L22A~C!#%n1

out
1n2

out

n1
out!n2

out!
exp@2~n1

out1n2
out!S1~g!1 iu~n1

out2n2
out!#

5expH 2BFA~C!cosS u1
2pq

g D1@L1L22A~C!#cosuGe2S1~g!J . ~6.63!
s in
e

he
ed.
the

n

l

Here we decomposed the sum inside the Wilson loop
outside it. The decompositionn65n6

in1n6
out is meaningful

only when the loopC is sufficiently large and the instanto
size is negligible compared with the size of the loopC so
that the overlapping of the instanton and anti-instanton w
the loop is neglected~this is equivalent to neglecting th
perimeter decay part of the Wilson loop!. Then we can write

WC@aV#5expF2pq

g
i ~n1

in2n2
in !G . ~6.64!

9By the fermionization method, the noninteracting instanton a
anti-instanton system can be rewritten as the free massive ferm
models with two flavors. From this viewpoint, including the inte
actions between instantons and anti-instantons is equivalent t
troducing the four-fermion interaction of Thirring type@94#. By
bosonization, the interacting fermionic model is converted into
sine-Gordon-like bosonic model@94#. The Wilson loop calculation
from this point of view will be given in a forthcomming paper.
d

h

d
on

in-

e

Finally we notice that the volume dependence disappear
the ratio I 2

u/I 1
u . The above derivation is very similar to th

two-dimensional Abelian Higgs model, see Ref.@55#.
In the vacuum with the topological angleu, therefore, the

Wilson loop expectation value has

^WC@aV#&5expH 22Be2S1Fcosu2cosS u1
2pq

g D GA~C!J .

~6.65!

The Wilson loop integral exhibits an area law. If we take t
rectangular Wilson loop, the static quark potential is deriv
If q/g is an integer, the potential vanishes because
vacuum is periodic inu with period 2p. The integral charge
is screened by the formation of neutral bound states. Wheq
is not an integral multiples of an elementary chargeg, the
static quark potentialV(R) is given by the linear potentia
with string tensions,

V~R!5sR, s52Be2S1Fcosu2cosS u1
2pq

g D G ,
~6.66!
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YANG-MILLS THEORY AS A DEFORMATION OF . . . PHYSICAL REVIEW D 58 105019
where B;mA
2 and S15exp(24p2/g2) is the action for one

instanton. It should be remarked that the confining poten
is very much a nonperturbative quantum effect caused
instantons, because the linear potential has a factore2S1 /\ ~if
we had retained\ dependence! which is exponentially smal
in \ and vanishes as\→0. This is a crucial difference be
tween the linear potential~6.66! and the linear Coulomb po
tential in two dimensions.

On the other hand, the four-dimensional Coulomb pot
tial is calculated by perturbation theory@96# ~see Ref.@27#!,

V~R!52
C2

4p

g2

R
1const. ~6.67!

Therefore, we arrive at the conclusion that the total sta
quark potential in four-dimensional YM theory is give
by @27#

V~R!5sR2
C2

4p

g2

R
1const. ~6.68!

The two-dimensional O~N11! NLSM is asymptotic free
and theb function @47# is given by

b~g!ªm
dg~m!

dm
52

N21

8p2 g31O~g5!, ~6.69!

where g is the renormalized coupling constant andm the
renormalization scale~mass! parameter. By dimensiona
transmutation as in QCD, the mass and the ‘‘string tensio
of NLSM should be given by@42#

m;LexpS 2Eg dg

b~g! D , s;L2expS 22Eg dg

b~g! D .

~6.70!

For theb function ~6.69!, this implies forN52

s;L2expS 2
4p2

g2 D , ~6.71!

in agreement essentially with the above result~6.66!. In this
case, the scaleL of the theory is given by the off-diagona
gluon massmA . This result does not agree with fou
dimensional SU~N! YM theory in which

b~g!52
b0

16p2 g31O~g5!, b05
11N

3
.0, ~6.72!

because we have taken into account only the MAG TFT p
of YM theory and neglected an additional contribution co
ing from the perturbative part@note that the correspondenc
of SU~N! YM theory to O~N11! NLSM is meaningful only
for N52#. By integrating out the off-diagonal gluonsAm

6 in
MAG TFT ~3.10!, we can obtain the APEGT of MAG TFT
as performed for YM theory in the previous paper@17#. The
APEGT of MAG TFT is given by theH5U(1) gauge
theory with the running couplingg(m) governed byb func-
tion ~6.69!,
10501
al
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SAPEGT5E d4xF2
1

4g2~m!
f mn f mnG , ~6.73!

where ghost interactions and higher derivative terms are
glected.

The naive instanton calculus given above can be
proved by including the correction around the instanton
lutions following the works@92–95#. Although we have
identified the two-dimensional space with the sphere in
above, instanton solutions exist also for the torus@97,98# and
the cylinder @99#. However, the torus only admits multi
instantons with topological charge two or more~no single-
instanton solution!.

D. Importance of cosetG/H

In our approach, it is important to choose the cosetG/H
so thatP2(G/H)5” 0, because for any compact connect
Lie groupG,

P2~G!50, ~6.74!

where the two-dimensional NLSM fails to contain the insta
ton. The MAG naturally leads to such a coset G/H NLS
This is a reason why the PGM based onG cannot contain
nontrivial topological structure and dynamical degrees
freedom except for unphysical gauge modes, although
authors of Refs.@61,60# tried to include the physical mode
as perturbation of PGM. It would be interesting to clarify th
relationship between the Wilson criterion of quark confin
ment and color confinement criterion by Kugo and Ojim
@66# and Nishijima @67#. This issue is reserved for futur
investigations.

E. Generalization to SU„N…

The above consideration can be generalized to the m
general caseG5SU(N). Using

P1„SU~N!…50, ~6.75!

we obtain

P2„SU~N!/U~1!N21
…5P1„U~1!N21

…5ZN21.
~6.76!

This formula guarantees the existence of the instanton
anti-instanton solution in the SU(N)/U(1)N21NLSM2 model
obtained from SU(N)MAG TFT4 by dimensional reduction
Therefore, the whole strategy adopted in this paper to pr
the quark confinement will be valid for SU(N) gauge theory
in four dimensions. The origin of instantons in the dime
sionally reduced model is the monopole in the origin
model, as suggested by the mathematical formula~6.76!.

In order to study the caseN53 in more detail, it would
be efficient to perform the 1/N expansion to the
SU(N)/U(1)N21NLSM2 model.
9-27
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F. Higher-dimensional cases

Our strategy of proving quark confinement inD dimen-
sions is based on the existence of instanton solutions in
dimensionally reduced (D22)-dimensional NLSM. This
can be generalized to arbitrary dimension,D.4. Remember
the mathematical formula for the Homotopy group

Pn„SU~2!/U~1!…5Pn~S2!~nªD22.2!, ~6.77!

and

P3~S2!5Z ~D55!,

P4~S2!5Z2 ~D56!,

P5~S2!5Z2 ~D57!, . . . . ~6.78!

This provides the possibility of proving quark confineme
based on instantons and anti-instantons even forD.4 di-
mensions.

G. Exact results in two dimensions

The classical O~3! NLSM in 111 dimensions is charac
terized by an infinite number of conserved quantities and
Bäcklund transformations for generating solutions. T
quantized O~3! NLSM is asymptotically free and the con
served quantities exist free of anomalies@47#. An exact fac-
torizedS matrix has been constructed using the existence
the infinite conserved quantities@37#.

It is known @81# that thes model

S5
1

4l2E d2xtr~]mU21]mU !1kG~U !, ~6.79!

with a Wess-Zumino~WZ! term

G~U !ª
1

24pE d3xeabgtr@LaLbLg#, LmªU21]mU,

~6.80!

becomes massless and possesses an infrared stable
point when

l25
4p

k
~k51,2, . . .!. ~6.81!

At these special values ofk, the model~6.79! is called the
level k Wess-Zumino-Novikov-Witten~WZNW! model. The
familiar s model corresponds tok50 case where the theor
is asymptotically free and massive. The WZNW model
invariant under the conformal transformation and with
spect to infinite-dimensional current~Kac-Moody! algebra.

The s model with arbitrary couplingl can be solved
exactly by means of the Bethe ansatz technique@46#. How-
ever, the computation of correlation function remain beyo
the powers of the Bethe ansatz method. Although the c
formal field theory approach@79# is restricted to the fixed-
point case, it provides much more detailed information ab
the theory including the correlation functions@80#. We can
calculate exactly all correlation functions in rational confo
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mal field theories which include the WZNW and minim
models as subsets. The off-critical theory can be conside
as perturbation of conformal theories by a suitable relev
field. The perturbed field theory is called a deformation a
corresponds to the renormalization group trajectory star
from the corresponding fixed point. The integrable deform
tion @40# among all possible deformations gives integrab
perturbed field theory and factorized scattering theory.

The NLSM with a topological angleu is integrable at two
particular pointsu50 andu5p @8,39,42#. At u50 the cor-
relation length is finite and all the excitations are massi
The spectrum consists of a single O~3! triplet of massive
particles with a nonperturbatively generated massm

;r 0
21e22p/g2

. On the other hand, atu5p the scale invariant
behavior is observed in the IR limit, infinite correlatio
length. The large-distance asymptotics is described
SU(2)3SU(2) WZNW theory at levelk51. So the NLSM
at u5p can be considered as an interpolating trajectory e
ing up at the IR fixed point characterized by level 1 CFT

The three-dimensional Chern-Simons gauge theory i
topological field theory in the sense that the integrand of
action is a total derivative and it is generally covariant wit
out any metric tensor. If we quantize CS theory and tak
time slice, one dimension is lost, and the theory become
two-dimensional conformal field theory. The correlatio
function in CS theory are purely topological invariants a
the correlation functions over Wilson lines gives invaria
knot polynomial @84#. The knot theory can describe a
known rational conformal field theories. All the exact resu
in two dimensions mentioned above will be utilized to u
derstand more quantitatively the quark confinement in fo
dimensional QCD by dimensional reduction.

VII. DISCUSSION

In this paper we have considered one of the most imp
tant problems in modern particle physics: quark confinem
in four-dimensional QCD. In order to prove quark confin
ment in QCD, we have suggested to use a TQFT which
extracted from the YM theory in the MAG. This TQFT de
scribes the dynamics of magnetic monopole and antimo
pole in YM theory in MAG. We have proposed a reform
lation of QCD in which QCD can be considered as
perturbative deformation of the TQFT. In other words, in th
reformulation the nonperturbative dynamics of QCD is sa
rated by the TQFT we proposed, as far as the issue of qu
confinement is concerned. Needless to say, additional n
perturbative dynamics responsible for quark confinem
could possibly come from the self-interaction among t
gluon fields reflecting the non-Abelian nature of the gau
group. However, additional nonperturbative contributions
quark confinement are expected to be rather few, if any. T
claim is strongly supported by the recent numerical simu
tions@24,3# of lattice gauge theory with the maximal Abelia
gauge fixing, since the magnetic monopole dominance
well as the Abelian dominance in low-energy physics
QCD has been observed in this gauge for various quant
including the string tension. See Sec. IV E of@27# for more
discussion.
9-28
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The idea of reformulating the gauge theory as a deform
tion of a TQFT also works for Abelian gauge theory@88#. In
the Abelian case, on the other hand, there is no s
interaction for the gauge field. Hence, using the similar
formulation of Abelian gauge theory, we can prove the ex
tence of the quark~fractional charge! confinement phase in
the strong coupling region of four-dimensional QED@88#
without worrying about any additional nonperturbative e
fect. This result implies the existence of non-Gaussian fi
point in QED.

In this reformulation, the dimensional reduction occurs
a result of the supersymmetry hidden in the TQFT. Hen
the calculation of the Wilson loop in four-dimensional QC
is reduced to that in two-dimensional NLSM. It should
remarked that this equivalence between TQFT4 and NLSM2
is exact.

In this paper we have used the instanton calculus to
culate the Wilson loop in two dimensions. We have sho
that the area law of the Wilson loop is derived from nai
instanton calculus, i.e., the dilute instanton-gas approxi
tion. The improvement of the instanton calculus can be p
formed along the lines shown in Refs.@92–94#. ~In the Abe-
lian case, the improvement can be easily performed and
result is reinterpreted in terms of the vortex; see@88#.! The
two-dimensional instanton~anti-instanton! is considered as
the intersection of the magnetic monopole~antimonopole!
current with the two-dimensional space~plane!. This implies
that the quark confinement in QCD is caused by conden
tion of magnetic monopole and antimonopole~currents!, to-
gether with the previous result@17#. Therefore, these result
support the scenario of quark confinement proposed
Nambu, ’t Hooft, and Mandelstam, i.e., the dual superc
ductor picture of QCD vacuum.

Note that we have used the instanton calculus merel
see the correspondence between the two-dimensional in
ton and four-dimensional magnetic monopole~current!, we
need not to use the instanton calculus for exactly calcula
the Wilson loop in two-dimensional NLSM. We can us
s.
,

on
or
l.

5.

.

10501
a-

f-
-
-

d

s
e

l-
n

a-
r-

he

a-

y
-

to
an-

g

other methods too, e.g., fermionization@88#. There is some
hope to perform the calculation exactly, since the tw
dimensional O~3! NLSM is exactly soluble@42,43#.

Our formulation is also able to estimate the perturbat
correction around the nonperturbative~topologically non-
trivial! background withoutad hocassumptions. As an ex
ample, a calculation of static potential is given in Ref.@27#
where the perturbative Coulomb potential is reproduced
addition to the linear potential part coming from the TQF
The relationship between the full non-Abelian Wilson loo
and the diagonal Abelian Wilson loop can be given based
the non-Abelian Stokes theorem@27#. Consequently, Ref.
@27# completes~together with the results of this paper! the
proof of area decay of the full non-Abelian Wilson loo
within the reformulation of four-dimensional QCD as a pe
turbative deformation of TQFT.

The advantage of this reformulation is that one can
principle check whether this reformulation is reliable or n
since the calculations of the Wilson loop~and therefore
string tension! are reduced to calculations in a two
dimensional NLSM. In fact, one can check by direct nume
cal simulation whether the string tension obtained from
diagonal Wilson loop in two-dimensional NLSM saturat
that of the full non-Abelian Wilson loop in four-dimensiona
QCD, as proposed in Ref.@100#. This is nothing but the tes
of Abelian dominance and magnetic monopole domina
through the dimensionally reduced two-dimensional mod
Such simulations will prove or disprove the validity of th
reformulation of QCD proposed in this paper.
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