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Scattering of straight cosmic strings by black holes: Weak-field approximation
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The scattering of a straight, infinitely long string moving with velocityv by a black hole is considered. We
analyze the weak-field case, where the impact parameter (bimp) is large, and obtain exact solutions to the
equations of motion. As a result of scattering, the string is displaced in the direction perpendicular to the
velocity by an amountDb;22pGMvg/c32p(GM)2/(4c3vbimp), whereg5@12(v/c)2#21/2. The second
term dominates at low velocitiesv/c,(GM/bimp)

1/2. The late-time solution is represented by a kink and
antikink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new
‘‘phase.’’ The solutions are applied to the problem of string capture, and are compared to numerical results.
@S0556-2821~98!02920-8#

PACS number~s!: 11.27.1d, 04.70.Dy, 97.60.Lf
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I. INTRODUCTION

A cosmic string is a relativistic nonlocal object with a
infinite number of internal degrees of freedom. The probl
of scattering and capture of a cosmic string by a black hol
interesting for many reasons. In some regimes, it has feat
in common with the scattering of test particles. In other
gimes, its nonlocal properties give rise to similarities w
the problem of black-hole–black-hole scattering. In the p
cess of scattering or capture, one can expect strong gra
tional radiation from the string–black-hole system; this
diation might be of astrophysical interest in connection w
Laser Interferometric Gravitational Wave Observato
~LIGO! and other projects searching for gravitational rad
tion.

In our study of string motion we neglect the gravitation
effects produced by the string@which for grand unified
theory ~GUT! strings are of order;1026# and assume tha
the width of the string is negligible~for GUT strings the
width is of order;10229 cm). In this approximation, a tes
cosmic string is represented by a two-dimensional wo
sheet, and its motion is described by the Nambu-Goto ac
@1#. From the mathematical point of view, the scatteri
problem reduces to finding a minimal surface which gives
extremum to the Nambu-Goto action.

We are interested in a cosmic string whose length is m
greater than the radius of the black hole. For this reason
will consider a string of infinite length. The interaction of th
string with a black hole has two possible outcomes: eit
the string is captured by the black hole, or it is scattered
the latter case the string absorbs some energy, so this pro
is inelastic.

A complete description of the final stationary configur
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tions of trapped cosmic strings has already been given@2,3#.
Stationary trapped strings are a special case of statio
string configurations; in the Kerr-Newman spacetime, s
tionary string configurations admit exact solutions by se
ration of variables@5,6#. The general scattering problem, an
the determination of the conditions of capture, requires so
ing the dynamical equations and is a much more complica
problem. A numerical determination of the critical impa
parameter for capture has been discussed in Refs.@7,8#.

This paper is devoted to the analytical study of the mot
of a straight cosmic string in the gravitational field of a bla
hole in the weak-field approximation. At early times~before
scattering!, and at late times~after scattering!, the string is
moving in a nearly flat spacetime where the weak-field
proximation allows one to formulate the scattering proble
in terms of ‘‘in’’ and ‘‘out’’ states of the string. For large
impact parameters, the string moves at all times in a reg
where the weak-field approximation remains valid. Mor
over, even if the impact parameter is small and the str
reaches the strong-field region near the black hole, the a
lytic weak-field solutions of the equations of motion are im
portant in formulating the initial and boundary conditions f
the numerical computations@9#.

In this paper we derive and solve the equations of mot
of an infinite straight cosmic passing near a black hole in
weak-field approximation. We demonstrate that, as a re
of scattering, the string is displaced in the direction perp
dicular to its motion by an amountDb;22pGMvg/c3

2p(GM)2/(4c3vbimp), where g5@12(v/c)2#21/2. The
second term dominates at low velocitiesv/c
,(GM/bimp)

1/2. This result for low velocity motion is in an
agreement with the result recently obtained by Page@10#.
The late-time solution is represented by a kink and antiki
propagating in opposite directions at the speed of light, a
leaving behind them the string in a new ‘‘phase.’’ In th
Conclusions, the solutions are applied to the problem
string capture, and are compared to numerical results.
©1998 The American Physical Society18-1
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II. MOTION OF STRAIGHT STRINGS

The aim of this paper is to study the scattering of
infinitely long cosmic string by a black hole. We assume t
the string is initially far from the black hole, straight, an
moving with constant velocityv. We assume that the grav
tational field is weak and solve the equations of string m
tion using the perturbation theory.

Our starting point is the Polyakov action for the relativ
tic string @4#:

I 52
m

2 E dtdsA2hhABGAB . ~2.1!

We use units in whichG5c51, and the sign conventions o
Ref. @11#. In Eq. ~2.1! hAB is the internal metric with deter
minanth andGAB is the induced metric on the world shee

GAB5gmn

]X m

]zA

]X n

]zB
5gmnX ,A

m X ,B
n . ~2.2!

X m (m50,1,2,3) are the spacetime coordinates andzA (A
50,3) are the world-sheet coordinatesz05t, z35s. Fi-
nally, gmn is the spacetime metric.

The variation of the action~2.1! with respect toX m and
hAB gives the following equations of motion:

hX m1hABGab
m X ,A

a X ,B
b 50, ~2.3!

GAB2
1

2
hABhCDGCD50, ~2.4!

where

h5
1

A2h
]A~A2hhAB]B!. ~2.5!

The first of these equations is the dynamical equation
string motion, while the second one plays the role of co
straints.

In the absence of the external gravitational fieldgmn

5hmn , wherehmn is the flat spacetime metric. In Cartesia
coordinates (T,X,Y,Z), hmn5diag(21,1,1,1) andGab

m 50,
and it is easy to verify that

X m5Xm~t,s![@cosh~b! t,sinh~b! t1X0 ,Y0 ,s#,
~2.6!

hAB5hAB[diag~21,1!, ~2.7!

is a solution of equations~2.3! and ~2.4!. This solution de-
scribes a straight string oriented along theZ axis which
moves in theX direction with constant velocityv5tanhb.
Initially, at t050, the string is found atX m(0,s)
5(0,X0 ,Y0 ,s), with Y0 playing the role of impact param
eter Y0[bimp . For definiteness we chooseY0.0 and X0
,0, so thatb.0.

It is convenient to introduce an orthogonal tetr
e(m)

m (m50,1,2,3) connected with the world plane of th
string
10501
t

-

r
-

e~0!
m 5X,t5~coshb,sinhb,0,0!, ~2.8!

e~3!
m 5X,s5~0,0,0,1!, ~2.9!

e~1!
m 5n1

m5~sinhb,coshb,0,0!, ~2.10!

e~2!
m 5n2

m5~0,0,1,0!. ~2.11!

The first two unit vectorsX,A
m are tangent to the world shee

of the string, while the other twonR
m (R51,2) are orthogo-

nal to it. It is easy to verify that the induced metricGAB on
the world sheet of the string is of the form

GAB5
0

GAB5hAB . ~2.12!

III. WEAK-FIELD APPROXIMATION

The unperturbed solution is expressed in Cartesian c
dinates. To treat the Schwarzschild black hole as a sourc
perturbations on a flat background, we use isotropic coo
nates (T,X,Y,Z) in which the line element of Schwarzschil
spacetime is

ds252
~12M /2R!2

~11M /2R!2
dT21S 11

M

2 RD 4

~dX21dY21dZ2!,

~3.1!

whereR25X21Y21Z2. This metric is of the form

ds252~122F!dT21~112C!~dX21dY21dZ2!
~3.2!

with

F5
w

@11~1/2!w#2 , ~3.3!

C5w1
3

4
w21

1

4
w31

1

32
w4, ~3.4!

andw is the Newtonian potentialw5M /R.
In what follows we assume that this potential is small a

write1

F5
1

f1
2

f1•••5w1aw21•••, ~3.5!

C5
1

c1
2

c1•••5w1bw21•••. ~3.6!

The dots denote terms of orderw3 and higher and

1The same form~3.2! of the metric is valid for the charged blac
hole~with chargeQ!. For the Reissner-Nordstro¨m metric describing
such a black hole, one has 122F5(11w1qw2)22(12qw2)2, 1
12C5(11w1qw2)2, q512(Q/M )2. For this metric, the ex-

pansion~3.5! is also valid witha5
1
2 (q23), b5

1
4 (q12).
8-2
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SCATTERING OF STRAIGHT COSMIC STRINGS BY . . . PHYSICAL REVIEW D58 105018
a521, ~3.7!

b5
3

4
. ~3.8!

A string moving far from the black hole is moving in th
perturbed metric

gmn5hmn1gmn , ~3.9!

gmn5
1

gmn1
2

gmn1•••, ~3.10!

1

gmn52w dmn , ~3.11!

2

gmn52w2 pmn , ~3.12!

pmn5adm
0 dn

01bdm
i dn

j d i j . ~3.13!

Here i , j 51,2,3 andd i j is the Kroneckerd symbol.
The perturbationgmn of the metric results in the pertur

bationsdXm and dhAB of the flat-spacetime solution~2.6!
and ~2.7!. The equations describing these perturbations
be obtained by perturbing string equations~2.3! and ~2.4!.
For this purpose we decompose the perturbation of the st
as

dXm5xme~m!
m 5xRnR

m1xAXA
m , ~3.14!

where the four scalar functions of two variablesxm(t,s)
describe the deflection of the string world sheet from

plane ~2.6!. As done earlier, we expandxm5
1

xm1
2

xm

1••• in powers ofw. We will also use the expansion of th
internal metrichAB :

hAB5hAB1
1

hAB1
2

hAB1••• . ~3.15!

The first-order corrections will be treated next and then
plied to the general scattering problem. Second-order cor
tions will be discussed last to obtain the low-velocity beha
ior of strings.

IV. FIRST-ORDER CORRECTIONS

We start by considering effects which are of the first ord
in w. In this approximation, the induced metric is

GAB5hAB1
1

gAB12
1

x~A,B! , ~4.1!

where

1

gAB5
1

gmnXA
mXB

n 52w diag~122 sinh2b,1!. ~4.2!

The perturbation of the constraint equation~2.4! has the form
10501
n

g

e

-
c-
-

r

1

gAB12
1

x~A,B!2
1

hAB2QhAB50, ~4.3!

where

Q5
1

2
hCD@

1

hCD1
1

gCD12
1

x~C,D !#. ~4.4!

The tensor
1

gAB on the two-dimensional world sheet can b

decomposed as2

1

gAB5
1

2

1

ghAB12j~A,B!2
1

2
hABhCDjC,D . ~4.5!

By comparing Eqs.~4.3! and~4.5! one can conclude that on

can always choose
1

xA so that

1

hAB5
1

hhAB . ~4.6!

To reach this it is sufficient to put
1

xA52jA . For this choice

we have

1

gAB5
1

2

1

ghAB22
1

x~A,B!2
1

2
hABhCD

1

xC,D . ~4.7!

Using Eq.~4.2! we get

1

x0,01
1

x3,3522w cosh2b, ~4.8!

1

x0,31
1

x3,050. ~4.9!

In what follows we choose these as the gauge fix
conditions.3

Let us consider now the perturbation of the dynami
equation~2.3!. First, we note that equation~4.6! implies that
A2hhAB is equal tohAB up to the terms which are quadrat
in w. As a result we have

h
1

xm1hAB
1

Gm,abX,A
a X,B

b e~m!
m 50. ~4.10!

In these equations,

h52
]2

]t2 1
]2

]s2 ~4.11!

2In the general case besides the trace and trace-free ‘‘longit
nal’’ part there is also a ‘‘transverse trace-free’’ partgAB

TT which
obeys the equationgAB,C

TT hBC50 ~see, e.g., Ref.@12#!. It is easy to
verify that a regular solution of this equation on the tw
dimensional world sheet vanishes.

3It should be emphasized that metrichAB on the two-dimensional
world sheet can always be transformed by means of special ch
of the coordinates to the formhAB5VhAB . Our choice of the
gauge fixing condition is the infinitesimal form of this relation.
8-3
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and

1

Gm,ab5
1

2
~

1

gma,b1
1

gmb,a2
1

gab,m!

5w ,admb1w ,bdma2w ,mdab . ~4.12!

Since ‘‘longitudinal’’ fields
1

xA are already fixed by ou

gauge fixing condition we need to verify that Eqs.~4.10! for
m5A are identically satisfied for this choice and do not gi
additional restrictions. For this purpose we remark that

1

Gm,abX,A
a X,B

b X,C
m 5

1

2
~

1

gAC,B1
1

gBC,A2
1

gAB,C!.

~4.13!

By using this relation and Eq.~4.7! it is easy to verify that
Eq. ~4.10! is satisfied identically form5A.

Let us now discuss dynamical equation~4.10!. It has the
form

h
1

xR5S 2
]2

]t2 1
]2

]s2D 1

xR5
1

f R , ~4.14!

and describes ‘‘transverse’’ perturbations of the strai

string under the action of the external gravitational force
1

f R .

To calculate
1

f R , note that

1

f m5
1

Kme~m!
m , ~4.15!

1

Km52hAB
1

Gm,abX,A
a X,B

b

5cosh2b
1

Gm,0012 sinhb coshb
1

Gm,011sinh2b
1

Gm,11

2
1

Gm,33. ~4.16!

Simple calculations give

1

Km522 sinh2b w ,m12 sinhb coshb w ,1dm
0

12 sinh2b w ,1dm
1 22w ,3dm

3 . ~4.17!

Using these results one easily obtains

1

f 152 sinh2b coshb w ,X , ~4.18!

1

f 2522 sinh2b w ,Y , ~4.19!

1

f 052 sinhb cosh2b w ,X , ~4.20!

1

f 3522 cosh2b w ,Z . ~4.21!
10501
t

The componentsf R normal to the string world sheet ar
components of the physical force acting on the string. T
componentsf A acting along the string provided a motio
along the world sheet which has no physical meaning
can be removed by coordinate transformations.

V. STRING SCATTERING

Equation~4.14! for string propagation in a weak gravita
tional field can be easily solved. The retarded Green’s fu
tion for the 2Dh operator is

G0~s,tus8,t8!5
1

2
Q~t2t82us2s8u!. ~5.1!

Using this Green’s function we can write a solution of E
~4.14! in the form4

xm~t,s!5xm
0 ~t,s!1xm

1~t1s!1xm
2~t2s!, ~5.2!

where

xm
0 ~t,s!52E

t0

t

dt8E
2`

`

ds8G0~s,tus8,t8! f m~t8,s8!

52
1

2Et0

t

dt8E
s2~t2t8!

s1t2t8
ds8 f m~t8,s8! ~5.3!

is a solution of inhomogeneous equation andxm
6 are solu-

tions of homogeneous equation which are fixed by the ini
data

xm~t0 ,s!5xm
1~t01s!1xm

2~t02s! , ~5.4!

ẋm~t0 ,s!5ẋm
1~t01s!1ẋm

2~t02s! .
~5.5!

Let us first consider perturbations perpendicular to
direction of motion~the Y direction!, described byx2 . We
assume that initially~at the infinite past! x250. For this
initial condition at t052`, x2

650. The asymptotic final
solution ~at the infinite future! takes the form

x2~t5`!5 lim
t→`

x2
0~t,s!52

1

2E2`

`

dt8E
2`

`

ds8 f 2~t8,s8!.

~5.6!

Substituting expression~4.18! for f 2 and making a change o
variables of integration from (t,s) to (X,Z) we get

x2~t5`!52sinhb E
2`

`

dXE
2`

`

dZ
]w

]Y
~X,Y0 ,Z!.

~5.7!

4In this section we consider only first-order corrections to str

motion. The superscript 1 in
1

xm and similar quantities in this sec
tion is omitted for briefness.
8-4
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The integral represents the flux of the Newton gravitatio
field through the planeY5Y0 which is equal to 2pM ~that is
a half of the total flux 4pM ). Using this simple observation
we get that as the result of scattering the string as the w
is displaced in theY direction by a constant value

x2~t5`!522pM sinhb. ~5.8!

At late but finite time only part of the string is displace
The size of the displaced region grows with the velocity
light. The transition between the ‘‘old’’ and ‘‘new’’ phase
occurs at two kinks moving in the opposite direction. T
late time solution can be found explicitly, and is schema
cally shown in Fig. 1. The background world sheet swe
out a flat plane in space; denote this thein-string plane, the
plane in which the motion of the string lies at early times.
late times, the scattered string approaches another plane
set from the in-string plane down byux2

`u; denote this the
out-string plane. As the energy acquired by the string
propagated to infinity through the two kinks, more and mo
of the string falls to the out-string plane. The asympto
deflectionx2

` is determined by the properties of the encou
ter, and is given by Eq.~5.8!.

If a straight string starts its motion (t50) at X0,0,

x2~0,s!5ẋ2~0,s!50, ~5.9!

and the solution has the form

x2~t,s!52M sinhb @H1~t,s!1H2~t,s!#,
~5.10!

where

FIG. 1. Weak-field scattering.

FIG. 2. x0 andx1 perturbations.
10501
l
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H6~t,s!5arctanFY0
21~X01t sinhb! ~X01s6 sinhb!

Y0 sinhb R~t,s!
G

2arctanFX0~X01s6 sinhb!1Y0
2

Y0 sinhbAr21s6
2 G . ~5.11!

We use the notation

R2~t,s!5~X01t sinhb!21Y0
21s2, ~5.12!

r25X0
21Y0

2 , ~5.13!

s65t6s. ~5.14!

At the moment whent sinhb52X0, the string passes a
the closest distance from the source of the gravitational fi
In order to study the late time behavior of the string, let
consider the limit whenX052L, t sinhb52L, andL→`.
In this limit, the expression forH6 simplifies to

H6'arctanF L6s sinhb

Y0sinhbA11~s/L !2G
1arctanF L6s sinhb

Y0sinhbA11@~2/sinhb!6s/L#2G .

~5.15!

For H6 the kink is located nears57L/sinhb. Using this
fact we can further simplify the asymptotic expression
H6 and to write it in the form

FIG. 3. x2 perturbation.

FIG. 4. x3 perturbation.
8-5
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H6'2arctanFL6s sinhb

Y0coshb G . ~5.16!

At late time in the asymptotic region wheregmn'hmn the
action ~2.1! can be written as the sum of the action for t
straight string and a term which is quadratic in perturbatio
This term is of the form~for details see Ref.@13#!

I 252
m

2 E dtdsA2hhABx ,A
R x ,B

R . ~5.17!

Hence the contributions ofx2 to the energy is

E5
m

2E2`

`

ds H S ]x2

]t D 2

1S ]x2

]s D 2J . ~5.18!

Using solution~5.16! and
he

e
to

m
ia

10501
s.

]x2

]t
5

]x2

]L

]L

]t
5

sinhb

2

]x2

]L
, ~5.19!

the integrals can be evaluated in a straightforward manne
the limit L→`, the energy carried away by each of the kin
has a very simple form

E5
5m

32p

A`
2

w
, ~5.20!

wherew5Y0 cothb is the coordinate width of the kinks an
A`5ux2(t5`)u their late-time amplitude.

One can also obtain solutions for the other component
xm . Substituting Eqs.~4.18! and ~4.20! into Eq. ~5.3! and
performing the integrations one gets
x0~t,s!5M cosh~b!S ln@F1~t,s!#1 ln@F2~t,s!#1
1

2
cosh~b! $sgn~s1!ln@G1~t,s!#1sgn~s2!ln@G2~t,s!#% D ,

~5.21!

x1~t,s!52M sinh~b!S ln@F1~t,s!#1 ln@F2~t,s!#1
1

2
cosh~b! $sgn~s1!ln@G1~t,s!#1sgn~s2!ln@G2~t,s!#% D ,

~5.22!

x3~t,s!5M cosh~b! $ ln@F1~t,s!#2 ln@F2~t,s!#%, ~5.23!

where

F6~t,s!5
R coshb1t cosh2b1X0 sinhb2s6

coshb Ar21s6
2 1X0 sinhb2s6

, ~5.24!

G6~t,s!5
Ar21s6

2 2us6u

Ar21s6
2 1us6u

. ~5.25!

As was done forx2 , expressions~5.24! can be rewritten in terms of the parameterL ~with L@Y0):

F65
coshbA11~s/L !21~cosh2b11!/sinhb2~2/sinhb6s/L !

coshb A11~2/sinhb6s/L !22sinhb2~2/sinhb6s/L !
, ~5.26!

G65
A11~2/sinhb6s/L !22u2/sinhb6s/Lu

A11~2/sinhb6s/L !21u2/sinhb6s/Lu
. ~5.27!
e
ith

ell

rld
In rewriting the expressions in terms of the location of t
kink, s57L/sinhb, one sees thatF6→` and G6

→(coshb21)/(coshb11). Whereas the contributions lnG6

are well behaved, those from lnF6 generate a logarithmic
divergence inx0 andx1. This divergence is the result of th
long-range nature of gravitational forces and it is similar
the logarithmic divergence of the phase for the Coulo
scattering in quantum mechanics. It vanishes for potent
vanishing at infinity rapidly enough.
b
ls

The perturbationsxm are illustrated by Figs. 2–4, wher
the solutions are applied to the case of a straight string w
initial velocity v5tanhb50.76c and impact parameterb
5Y0540r g ~for 22000r g,s,2000r g). These figures show
each perturbation at late proper time, when the string is w
past the black hole. Thex0 andx1 perturbations~Fig. 2! are
exceedingly small. Thex2 perturbation~Fig. 3! describes the
deformation of the string normal to the background wo
sheet; the two kinklike pulses propagating away from theZ
8-6
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50 plane at the speed of light are clearly visible, and th
amplitude is considerably larger than any of the other per
bations. These pulses carry energy away to infinity and
the process, shift the string’s late-time position roughly 3.5r g
~wherer g5ZM! below the original position. Thex3 pertur-
bation ~Fig. 4! represents lateral displacements of points
the string towards theZ50 plane; the amplitude of thes
displacements is small in the weak field limit, but will b
come significant in the limit of ultrarelativistic velocity an
shallow impact parameter, where lateral displacements o
string are involved in transient loop formation@9#.

The perturbation solutions can be used to reconstruct
full world sheet of the string in Cartesian coordinates, us

X m5Xm1xme~m!
m . ~5.28!

Such a reconstruction is shown in Fig. 5, and was also u
to generate the schematic representation in Fig. 1. Figu
shows a sequence of string configurations separated by
stant intervals of proper time in two separate views. T
view on the left looks down on theXZ plane and shows the
outward propagation of the two pulses~the black hole lies at
the origin!. Note that the view is a 3D projection; the kink
appear to extend in theX direction, but they actually lie in
the Y direction ~the effect is an artifact of the viewpoin
chosen for this view!. The view on the right looks toward th
origin along the direction of motion, and shows the grow
of the perturbations along theY axis. Comparing to Figs. 2
through 4, it is easily seen that the shape of the pertur
world sheet is almost completely determined by thex2 per-
turbation. The contribution from the other perturbations
undetectable on the scale used in Fig. 5. At late times,
string is deflected by an amountux2

`u, as given by Eq.~5.8!.
To summarize, the scattering of the string in the we

gravitational fields calculated in the first order inw results in
the displacement of the string in the direction perpendicu
to the motion by the valuex2(t5`)522pGM sinhb/c2.
At any finite but large value oft a solution represents a kin
and antikink of the coordinate widthY0cothb5Y0c/v propa-
gating in the opposite directions with the velocity of lig
and leaving behind them the string in the new ‘‘phase’’ w
Y5Y01x2(t5`).

FIG. 5. Reconstruction of perturbed string~Cartesian coordi-
nates!.
10501
ir
r-
in

n

he

e
g

ed
5
n-

e

d

s
e

k

r

VI. LOW-VELOCITY LIMIT

As was already mentioned, the componentsf R normal to
the string world sheet are components of the physical fo
acting on the string. As can be seen from Eq.~4.18!, the
force f R acting on the string vanishes in the limitv→0. This
fact has a simple physical explanation. As was shown in R
@5#, a static string configuration in a static spacetime is
geodesic in a spacetime with the metricug00ugi j , which in
our case takes the form

dS25ug00ugi j dxidxj

5~122F!~112C!~dX21dY21dZ2!. ~6.1!

In the leading order,F5C5w, and the string is a straigh
line @1#. In other words, in the first-order approximation
force acting on a static string in a static spacetime of a bl
hole vanishes. For this reason, the leading terms in the
pansion of the force are of the second order inw, and they
remain so untilv/c;(GM/bimp)

1/2. In this section we dis-
cuss the effect of these second order terms on the motio
the string in the limit of very small velocities.

Substituting Eq.~3.14! into the dynamical equations~2.3!
we get

nR
m h

2

xR5
2

f m[Am1Bm, ~6.2!

where theh operator is given by Eq.~4.13! and

Am52hAB
2

Gab
m X,A

a X,B
b , ~6.3!

Bm52hAB
1

Gab
m ~

1

x ,B
m X,A

a e~m!
b 1

1

x ,A
m X,B

b e~m!
a !. ~6.4!

Note that

2

Gab
m 5hmn

2

Gn,ab1
1

gmn
1

Gn,ab , ~6.5!

where
1

Gn,ab is given by Eq.~4.12! and

2

Gn,ab52w ~w ,a pnb1w ,b pna2w ,n pab!. ~6.6!

We focus our attention on the corrections to the motion
the string in theY direction. It is easy to verify that

A25cosh2b
2

G00
2 2

2

G33
2 52ww ,2@~12a!cosh2b2~12b!#.

~6.7!

Calculations also give

B252w ,2@~cosh2b1sinh2b!
1

x0,0

2sinh~2b!
1

x1,01
1

x3,3#22w ,3

1

x2,3. ~6.8!
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At low velocities one has

A2;2ww ,2~b2a!, ~6.9!

B2;2w ,2~
1

x0,01
1

x3,3!22w ,3

1

x2,3. ~6.10!

Equation~5.10! shows that
1

x2 vanishes atb→0. Using re-

lation ~4.8!, we finally get
2

f 2;22~21a2b!ww ,2 . ~6.11!

Using a relation similar to Eq.~5.6! we get

2

x2~t5`!5
21a2b

2 sinhb E
2`

`

dXE
2`

`

dZ
]w2

]Y
~X,Y0 ,Z!.

~6.12!

Calculating the integral one gets

2

x2~t5`!52
pM2~21a2b!

Y0sinhb
. ~6.13!

For the scattering of the string on the Schwarzschild bl
hole,a521 andb53/4, so that one has

2

x2~t5`!52
p~GM!2

4c4Y0sinhb
. ~6.14!

Using the expressions for the coefficientsa and b for the
scattering on a Reissner-Nordstro¨m black hole~see footnote
1! one gets

2

x2~t5`!52
p@~GM!22GQ2#

4c4Y0sinhb
. ~6.15!

These results are in the complete agreement with the re
obtained by Page@10#.

VII. CONCLUSIONS

We analyzed the motion of a cosmic string in the gra
tational field of a black hole in the approximation where t
field is weak. In particular, we demonstrated that after pa
ing the black hole, the string continues its motion with t
r
e,

um

.

10501
k

lts

-

s-

same velocityv as before scattering, but it is displaced in t
direction to the black hole and perpendicular tov by the
distance Db;22pGM sinhb/c22p(GM)2/(4c3vbimp),
where bimp is the impact parameter. Ifubimp2Dbu@r g
52GM/c2 the string moves always in a weak field.
ubimp2Dbu;r g52GM/c2 the string enters the strong-fiel
region near the black hole and it can be captured. This allo
us to give the following estimate of the critical capture im
pact parameter. For low velocity, (v/c)!1,

bcapture;
GM

c2 S p

4 D 1/2 S v
cD 21/2

. ~7.1!

For v/c.(GM/bimp)
1/2 the first term inDb dominates. This

means that the capture impact parameter grows for b
small and large values ofv/c, and hence there exists a ve
locity v for which the capture impact parameter has mi
mum value. This conclusion is confirmed by the results
the numerical computations of the capture impact param
@9#. The numerical results demonstrate also that for the
trarelativistic velocities the critical impact parameterbcapture

reaches the value 3A3GM/c2, that is the same value as th
capture parameter for the ultrarelativistic particles.

In addition to giving us a qualitative understanding of t
scattering and capture of cosmic strings by black holes,
analysis of the weak-field approximation is important for t
numerical study of these processes in the strong field. Be
and after the scattering the string moves far from the bl
hole, where the gravitational field is weak. Thus one can
the above analysis to provide a well-defined description
‘‘in’’ and ‘‘out’’ states of the string and to formulate the
scattering problem. We discuss this in Ref.@9#.
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