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Scattering of straight cosmic strings by black holes: Weak-field approximation
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The scattering of a straight, infinitely long string moving with velocitpy a black hole is considered. We
analyze the weak-field case, where the impact parameigg)(is large, and obtain exact solutions to the
equations of motion. As a result of scattering, the string is displaced in the direction perpendicular to the
velocity by an amountb~ —27G Mo y/c®— 7(GM)?/(4c3vbyy,,), wherey=[1—(v/c)?]~ Y2 The second
term dominates at low velocities/c<(G M/bimp)l’z. The late-time solution is represented by a kink and
antikink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new
“phase.” The solutions are applied to the problem of string capture, and are compared to numerical results.
[S0556-282(98)02920-9

PACS numbses): 11.27+d, 04.70.Dy, 97.60.Lf

I. INTRODUCTION tions of trapped cosmic strings has already been gji2e3].
Stationary trapped strings are a special case of stationary

A cosmic string is a relativistic nonlocal object with an string configurations; in the Kerr-Newman spacetime, sta-
infinite number of internal degrees of freedom. The problentionary string configurations admit exact solutions by sepa-
of scattering and capture of a cosmic string by a black hole isation of variable$5,6]. The general scattering problem, and
interesting for many reasons. In some regimes, it has featurdébe determination of the conditions of capture, requires solv-
in common with the scattering of test particles. In other re-ng the dynamical equations and is a much more complicated
gimes, its nonlocal properties give rise to similarities with problem. A numerical determination of the critical impact
the problem of black-hole—black-hole scattering. In the proparameter for capture has been discussed in R&®].
cess of scattering or capture, one can expect strong gravita- This paper is devoted to the analytical study of the motion
tional radiation from the string—black-hole system; this ra-of a straight cosmic string in the gravitational field of a black
diation might be of astrophysical interest in connection withhole in the weak-field approximation. At early timé@sefore
Laser Interferometric Gravitational Wave Observatoryscattering, and at late timegafter scattering the string is
(LIGO) and other projects searching for gravitational radia-moving in a nearly flat spacetime where the weak-field ap-
tion. proximation allows one to formulate the scattering problem

In our study of string motion we neglect the gravitationalin terms of “in” and “out” states of the string. For large

effects produced by the strinfwhich for grand unified impact parameters, the string moves at all times in a region
theory (GUT) strings are of order10 ®] and assume that where the weak-field approximation remains valid. More-
the width of the string is negligibléfor GUT strings the over, even if the impact parameter is small and the string
width is of order~10"2° cm). In this approximation, a test reaches the strong-field region near the black hole, the ana-
cosmic string is represented by a two-dimensional worldytic weak-field solutions of the equations of motion are im-
sheet, and its motion is described by the Nambu-Goto actioportant in formulating the initial and boundary conditions for
[1]. From the mathematical point of view, the scatteringthe numerical computatiori9].

problem reduces to finding a minimal surface which gives an In this paper we derive and solve the equations of motion
extremum to the Nambu-Goto action. of an infinite straight cosmic passing near a black hole in the

We are interested in a cosmic string whose length is muchveak-field approximation. We demonstrate that, as a result

greater than the radius of the black hole. For this reason, wef scattering, the string is displaced in the direction perpen-
will consider a string of infinite length. The interaction of the dicular to its motion by an amountb~ —27GMu y/c3
string with a black hole has two possible outcomes: either- m(GM)?/(4c%vb;y,), where y=[1—(v/c)?] Y2 The
the string is captured by the black hole, or it is scattered. Irsecond term dominates at low velocitiesv/c

the latter case the string absorbs some energy, so this procesgG M/bjm) Y2 This result for low velocity motion is in an

is inelastic. agreement with the result recently obtained by PEHa.

A complete description of the final stationary configura- The late-time solution is represented by a kink and antikink,
propagating in opposite directions at the speed of light, and
leaving behind them the string in a new “phase.” In the

*Email address: jpd@phys.ualberta.ca Conclusions, the solutions are applied to the problem of
TEmail address: frolov@phys.ualberta.ca string capture, and are compared to numerical results.
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II. MOTION OF STRAIGHT STRINGS

PHYSICAL REVIEW D58 105018

The aim of this paper is to study the scattering of an

infinitely long cosmic string by a black hole. We assume that

the string is initially far from the black hole, straight, and
moving with constant velocity. We assume that the gravi-

tational field is weak and solve the equations of string mo-

tion using the perturbation theory.
Our starting point is the Polyakov action for the relativis-
tic string[4]:

|:—gf drdoy—hhABG g 2.2

We use units in whiclis=c=1, and the sign conventions of
Ref.[11]. In Eq. (2.1) hag is the internal metric with deter-
minanth and G,z is the induced metric on the world sheet:

dxXHt ax”

LR X
8§A agB g;.L YA ,B

GABzg,uV (22)

X* (n=0,1,2,3) are the spacetime coordinates &hd(A
=0,3) are the world-sheet coordinaté$=r, (3=o. Fi-
nally, g,, is the spacetime metric.

The variation of the actioi2.1) with respect taX* and
hag gives the following equations of motion:

Ox#+hABrh x4x%=0, (2.3
1
Gag— EhABhCDGCDzoi 2.4
where
D:L&A(\ _hhAB(;’B). (25)
v—h

The first of these equations is the dynamical equation for
string motion, while the second one plays the role of con-

straints.

In the absence of the external gravitational fiel,
= 7., Wheren,, is the flat spacetime metric. In Cartesian
coordinates T,X,Y,Z), 7,,=diag(-1,1,1,1) andl';;=0,
and it is easy to verify that

X#=XH*(1,0)=[cosiB) 7,sinh(B) 7+ Xy,Yq,0],
(2.6

hag= 7ag=diag —1,1), (2.7

is a solution of equation&.3) and (2.4). This solution de-
scribes a straight string oriented along tAeaxis which
moves in theX direction with constant velocity =tanhg.
Initially, at 7,=0, the string is found atX*(0,0)
=(0,Xq,Yq,0), with Y, playing the role of impact param-
eter Yo=bj,,. For definiteness we choosg>0 and X,
<0, so that3>0.

€(o)=X,,=(coshg,sinh,0,0), (2.9
e(3=X,=(0,0,0,, (2.9
e{‘l)=n’f=(sinh,8,cosh/3,0,0), (2.10
e(z=n5=(0,0,1,0. (2.11

The first two unit vectors<‘; are tangent to the world sheet
of the string, while the other twak (R=1,2) are orthogo-
nal to it. It is easy to verify that the induced metfi, g on
the world sheet of the string is of the form

(2.12

0
Gag= Gag= 7aB-

I1l. WEAK-FIELD APPROXIMATION

The unperturbed solution is expressed in Cartesian coor-
dinates. To treat the Schwarzschild black hole as a source of
perturbations on a flat background, we use isotropic coordi-
nates ([, X,Y,Z) in which the line element of Schwarzschild
spacetime is

1—M/2R)? M \*
szz—nger(H—) (dX2+dY?+dz?),
(1+M/2R)?

2R
(3.1
whereR2= X2+ Y2+ 72, This metric is of the form

ds?’=—(1-2®)dT?+(1+2¥)(dX>+dY?+dZ?)

(3.2
with
%
®= [1+(1/2)¢]?" @3
3 1 1
_ Y2, 3, 4
\I’—go+4go +4(p +32go , (3.9

and ¢ is the Newtonian potentiab=M/R.
In what follows we assume that this potential is small and
write!

<D=ql§+ (;)+'~~=(p+a¢>2+~~-, (3.5

= (/1;4- (7/+-~-=<p+b<pz+~-~. (3.6

The dots denote terms of order and higher and

1The same forn(3.2) of the metric is valid for the charged black
hole (with chargeQ). For the Reissner-Nordstrometric describing

It is convenient to introduce an orthogonal tetradsuch a black hole, one has-2d=(1+ ¢+qe?) " 2(1—qe¢?)?, 1

ef‘m) (m=0,1,2,3) connected with the world plane of the
string

+2¥=(1+¢+qe?)?% gq=1—(Q/M)?. For this metric, the ex-
pansion(3.5) is also valid witha=3 (q—3), b= 7 (q+2).
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a=—1, (3.7 1 1 1
Yast2 X(aB)~ hag—Q7as=0, 4.3
3
b=7. (3.8  where
. . . L 1 1 1 1
A string moving far from the black hole is moving in the Q= 3 nCD[ heot Yoot 2 x(c.pyl- (4.9
perturbed metric
1
9= vt Yur» (3.9  The tensory,g on the two-dimensional world sheet can be
L 5 decomposed &s
Yur= ’Y,u,v+ ’)/,U.V+ T (319
1 11 1 co
. YAB= S YT 28— 5 AB7 écp- 4.9
Yur=29 O, (3.11 _
By comparing Eqgs(4.3) and(4.5) one can conclude that one
1
2, can always choosg, so that
Yur=20° Ty, (3.12
1 1
o hag=h . 4.6
7,,=a825%+b8, 8,5 . (3.13 AB™ T177AB 4.
1
Herei,j=1,2,3 ands;; is the Kroneckerd symbol. To reach this it is sufficient to puya= — £ . For this choice
The perturbationy,,, of the metric results in the pertur- e have
bations 6X* and sh,g of the flat-spacetime solutio(R.6) w v
and(2.7). The equations describing these perturbations can T 11 1 1 1
be obtained by perturbing string equatiof®s3) and (2.4). YAB= 5 VA8~ 2 X(A8) ™ EWABWCDXC,D- 4.7
For this purpose we decompose the perturbation of the string
as Using Eq.(4.2) we get
— Mot — Rau Ay 1 1
OXE=XTem =X R X XA (319 Xoot X33= —2¢ costp, 4.9

where the four scalar functions of two variablg8(r,o) ) )
describe the deflection of the string world sheiat frozm the Xoat X30=0. (4.9
plane (2.6). As done earlier, we expang™= M+ x™
In what follows we choose these as the gauge fixing
conditions®

Let us consider now the perturbation of the dynamical
equation(2.3). First, we note that equatio@.6) implies that
J—hh"B s equal to"B up to the terms which are quadratic
in . As a result we have
The first-order corrections will be treated next and then ap- . )
plied to the general scattering problem. Second-order correc- O xm+ 7781, X X5 el =0. (4.10
tions will be discussed last to obtain the low-velocity behav-
ior of strings.

+--- in powers ofp. We will also use the expansion of the
internal metrichp:

1 2
hag= 7agt hagt hagt - - . (3.19

In these equations,

IV. FIRST-ORDER CORRECTIONS 2
R == @19

We start by considering effects which are of the first order
in ¢. In this approximation, the induced metric is

(4.1) 2In the general case besides the trace and trace-free “longitudi-
nal” part there is also a “transverse trace-free” party which
obeys the equatiowpg c7°¢=0 (see, e.g., Ref12)). It is easy to

where verify that a regular solution of this equation on the two-

dimensional world sheet vanishes.

;,AB: ;/WXKXEZZP diag1-2 sinf?B,1). (4.2 31t should be emphasized that methigg on the two-dimensional
world sheet can always be transformed by means of special choice
of the coordinates to the forrhag=Q n,g. Our choice of the

The perturbation of the constraint equati@») has the form  gauge fixing condition is the infinitesimal form of this relation.

1 1
Gpae= 7281 Ya8T2 X(AB)
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and

1 1 1 1 1
F,U,,aﬁzz( 7#&,B+ YuB,a™ ’)/aﬁ,,u,)
:¢,a5ﬂﬂ+ @,ﬁgﬂa_(lp,ﬂgaﬁ' (412

1
Since “longitudinal” fields y, are already fixed by our

gauge fixing condition we need to verify that E¢4$.10 for

PHYSICAL REVIEW D58 105018

The component$g normal to the string world sheet are
components of the physical force acting on the string. The
componentsf,, acting along the string provided a motion
along the world sheet which has no physical meaning and
can be removed by coordinate transformations.

V. STRING SCATTERING

Equation(4.14 for string propagation in a weak gravita-
tional field can be easily solved. The retarded Green’s func-

m=A are identically satisfied for this choice and do not giveio, for the 2D0] operator is

additional restrictions. For this purpose we remark that

1 w B i 1 1 1 1
F,u,a,BX,AX,BX,sz( Yac.sT YBcA™ YAB.C)-

(4.13

By using this relation and Ed4.7) it is easy to verify that
Eq. (4.10 is satisfied identically fom=A.

Let us now discuss dynamical equatighl0. It has the
form

P P\
) (4.19

1 1
DXR:<_W+F Xr= fr,

and describes “transverse” perturbations of the straight

1
string under the action of the external gravitational fofge

1
To calculatefg, note that
(4.195
1 1
Kp=— nABrM,aBX,CfAX,BB

1 ) 1 . 1
=costtB T, oo+ 2 sinhB coshB T, o1+ sintPBT , 11

— I, 33 (4.16
Simple calculations give
1 - .
K,=—2sintt8 ¢ ,+2 sinhB costB ¢ 15
+2sinttB @18, —2¢ 355 . (4.17)
Using these results one easily obtains
1 .
fi=2sinifB cosB ¢ x, (4.18
1 .
f,=—2sinfg8 ¢y, (4.19
1
fo=2sinhB cositgB ¢ y, (4.20
1
fa=—2coskpB ¢ ;. (4.21

1
GO(O',T|(r’,T’)=E@(T—T'—|U—a"|). (5.0

Using this Green’s function we can write a solution of Eq.
(4.14) in the fornf

Xn(T,0) = X (T,0) + X (T )+ xm(T—0), (5.2

where
X%(T,O‘):—f dr’f do'Gy(o, 1o’ , 7" ) (7', 0")
0 —o

1(- otr—1
=——J' dr'f do'f (7' ,0") (5.3
2 70 o—(r—17")

is a solution of inhomogeneous equation ayf are solu-
tions of homogeneous equation which are fixed by the initial
data

Xm(70,0) = Xm(70+ @)+ Xm(70— ), (5.4

Xm(70,0) = Xm(To+ &)+ Xm(To— ) .
(5.5

Let us first consider perturbations perpendicular to the
direction of motion(the Y direction, described byy,. We
assume that initially(at the infinite past y,=0. For this
initial condition at 7o=—o%, x, =0. The asymptotic final
solution (at the infinite future takes the form

1 © ©
Xz(rzm)zlimxg(7,0)2—517 dT’fﬁ do'fy(7',0').
(5.6)

Substituting expressiof#.18) for f, and making a change of
variables of integration from#, o) to (X,Z) we get

o0 ® (?
X2(T:oo): _S|nh8 J_wdxf_xdz 0.)_$(X1YO'Z)
(5.7)

“In this section we consider only first-order corrections to string
1

motion. The superscript 1 iry,, and similar quantities in this sec-
tion is omitted for briefness.
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FIG. 1. Weak-field scattering. FIG. 3. y, perturbation.
The integral represents the flux of the Newton gravitational
field through the plan¥ =Y, which is equal to ZrM (that is
a half of the total flux 4rM). Using this simple observation
we get that as the result of scattering the string as the whole

Y3+ (Xo+ 7sinhB) (Xo+ S SinhB)
Y, sinhB R(7,0)

H.(7,0)= arctar{

is displaced in ther direction by a constant value Xo(Xo+s. sinhg) +Y§
—arcta Yo SnBVo2r & (5.1)
Xa(7=%)=—27M sinhB. (5.8 o SINNBVp™+ 5%
At late but finite time only part of the string is displaced. We use the notation
The size of the displaced region grows with the velocity of 2 _ . 2. w2, 2
light. The transition between the “old” and “new” phases R%(7,0)=(XoF 7sinhf)"+ Yo+ 0%, (513
occurs at two kinks moving in the opposite direction. The s uz U2
late time solution can be found explicitly, and is schemati- p=Xo+ Yo, (5.13
cally shown in Fig. 1. The background world sheet sweeps
out a flat plane in space; denote this thestring plane the S.=7*0. (5.19

plane in which the motion of the string lies at early times. At

late times, the scattered string approaches another plane, off- At the moment whenr sinh8=—X,, the string passes at
set from the in-string plane down Hy3|; denote this the the closest distance from the source of the gravitational field.
out-string plane As the energy acquired by the string is In order to study the late time behavior of the string, let us
propagated to infinity through the two kinks, more and moreconsider the limit wherXy=—L, 7sinhg=2L, andL— .

of the string falls to the out-string plane. The asymptoticin this limit, the expression foH. simplifies to

deflectiony; is determined by the properties of the encoun-

ter, and is given by Eq5.8). ’ L+ o sinhgB
If a straight string starts its motionr&0) at X,<O, +~arcta
g g €0) atXo YosinhBv1+ (o/L)2
x2(0,0)=x2(0,0)=0, (5.9 L+osinhg
+arcta : . .
and the solution has the form YOS|nh,8\/1+[(2/smh,8)ta/L]2

. (5.195
x2(7,0)=—MsinhB[H (7,0)+H_(7,0)],

(5.10 For H.. the kink is located neas= +L/sinhB. Using this
fact we can further simplify the asymptotic expression for

where H. and to write it in the form

0.002 Xo 6
4
0.001 )
0 Xs(rg) O
-2
-0.001 Xa 4

-2000  -1000 0 1000 2000 T T 0 1000 2000

Z (ry) Z (xg)
FIG. 2. xo and x4 perturbations. FIG. 4. x5 perturbation.
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L+ o sinhg

(9/\/2 (9)(2 JL Sinhﬂ (9)(2
Y,coshB B

ar oL ar 2 4L’

. (5.16 (5.19

H,.~2 arcta+

At late time in the asymptotic region whegg,,~ 7,,, the
action (2.1) can be written as the sum of the action for the
straight string and a term which is quadratic in perturbations
This term is of the form(for details see Ref.13])

the integrals can be evaluated in a straightforward manner. In
the limit L— o, the energy carried away by each of the kinks
has a very simple form

“ 5u A2
|2:—5f drdoy—hh* By . (5.17) E:%W' (5.20

Hence the contributions of, to the energy is
wherew =Y cothg is the coordinate width of the kinks and

mo(= ax2\? [ 9x2\? A..=|xo(7=0)| their late-time amplitude.
E= Ej,xda or + FrInk (5.18 One can also obtain solutions for the other components of
Xm- Substituting Egs(4.18 and (4.20 into Eq. (5.3 and
Using solution(5.16 and performing the integrations one gets

1
xo(7,0)=M cosr(,b’)( InN[F.(r,0)]+IN[F_(7,0)]+ Ecoshﬂ) {sgr(s+)ln[G+(7,a)]+sgr(s_)ln[G_(r,a)]}),
(5.21

xi(1,0)=—M sinh(ﬁ)( In[F.(7,0)]+In[F_(7,0)]+ %cosf(ﬁ) {sgr(S+)In[G+(r,a)]+sgr(s_)ln[G_(r,o)]}) ,

(5.22
x3(7,0)=M cosi{B) {In[F . (7,0)]=In[F_(7,0)]}, (5.23
where
R coshB+ 7cosit B+ X, sinh3—s..
(7,0 = S S0P 7 COSTTA Xo SINNB 5. (5.24
coshB \/p?+5% + XosinhB—s..
G.(r.0) Vp?+si—|s.] (5.25
S P fs.] |
As was done fory,, expressions.24) can be rewritten in terms of the parametetwith L>Y):
- _ coshBV1+(o/L)?+ (costtB+1)/sinhB—(2/sinhB+ o/L) (5.26
© coshB 1+ (2/sinB= o/L)2—sinh3— (2/sinhB= a/L) '
1+ (2/sinhB=a/L)?—|2/sinhB =+ a/L
_V1+(2/sinhB* /L)~ |2/sinhB* oL | (5.2

= 1+ (2/sinB= a/L)2+ | 2/sinhB= o/L |

In rewriting the expressions in terms of the location of the  The perturbationg,, are illustrated by Figs. 2—4, where
kink, o=%L/sinhB, one sees thatF.—~ and G. the solutions are applied to the case of a straight string with
—(coshB—1)/(costB+1). Whereas the contributions Gn initial velocity v=tanh3=0.76c and impact parameten
are well behaved, those from . generate a logarithmic = Y,=40r g (for —2000 ;<o <2000 4). These figures show
divergence iny, and ;. This divergence is the result of the each perturbation at late proper time, when the string is well
long-range nature of gravitational forces and it is similar topast the black hole. Thg® and x* perturbationgFig. 2) are
the logarithmic divergence of the phase for the Coulombexceedingly small. Thg? perturbation(Fig. 3) describes the
scattering in guantum mechanics. It vanishes for potentialdeformation of the string normal to the background world
vanishing at infinity rapidly enough. sheet; the two kinklike pulses propagating away fromZhe
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2000 VI. LOW-VELOCITY LIMIT

As was already mentioned, the componeigsiormal to
the string world sheet are components of the physical force
acting on the string. As can be seen from E4.18, the
force fg acting on the string vanishes in the linpit>0. This
fact has a simple physical explanation. As was shown in Ref.
[5], a static string configuration in a static spacetime is a
geodesic in a spacetime with the metfifggj; , which in
our case takes the form

1000

Z{ry) O

-1000

-2000

0 500 1000 1500 2000 36.5 38 39.5

X(rg) Y(rg) i j
S :|goo|gijdx dx
FIG. 5. Reconstruction of perturbed striiGartesian coordi- (1-28)(1+ 20)(dXC+dY+dZ?).  (6.1)

nates.

In the leading orderp =¥ = ¢, and the string is a straight
=0 plane at the speed of light are clearly visible, and theiline [1]. In other words, in the first-order approximation a
amplitude is considerably larger than any of the other perturforce acting on a static string in a static spacetime of a black
bations. These pulses carry energy away to infinity and, imole vanishes. For this reason, the leading terms in the ex-
the process, shift the string’s late-time position roughly§ 5 pansion of the force are of the second orderinand they
(wherer y=ZM) below the original position. Thg® pertur-  remain so untilv/c~(GM/bjy, Y2 In this section we dis-
bation (Fig. 4) represents lateral displacements of points orcuss the effect of these second order terms on the motion of
the string towards th&=0 plane; the amplitude of these the string in the limit of very small velocities.
displacements is small in the weak field limit, but will be-  Substituting Eq(3.14) into the dynamical equatior(2.3)
come significant in the limit of ultrarelativistic velocity and we get
shallow impact parameter, where lateral displacements of the
string are involved in transient loop formatid8]. i

The perturbation solutions can be used to reconstruct the MR

full world sheet of the string in Cartesian coordinates, using

where the[d operator is given by Eq4.13 and

2 2
O xR= fA=Ak+ B, (6.2

X=Xt yMeft (5.28 A#:—nABIZ‘gﬁX%XjB, (6.3

Such a reconstruction is shown in Fig. 5, and was also used He — pABTA

to generate the schematic representation in Fig. 1. Figure 5 B ) apl X BXhelm + XAX Bem)- (649
shows a sequence of string configurations separated by con-

stant intervals of proper time in two separate views. TheVote that

view on the left looks down on th¥Z plane and shows the , , L

outward propagation of the two pulséise black hole lies at T#=7""T, st YT, up. (6.5
the origin. Note that the view is a 3D projection; the kinks

appear to extend in th¥ direction, but they actually lie in

the Y direction (the effect is an artifact of the viewpoint where FV «p 1S given by Eq.(4.12 and

chosen for this vieyw The view on the right looks toward the

origin along the direction of motion, and shows the growth 2

of the perturbations along thé axis. Comparing to Figs. 2 U ap=20(0 0Tt @ pmya= ¢, Tap). (6.6
through 4, it is easily seen that the shape of the perturbed

world sheet is almost completely determined by fheper- We focus our attention on the corrections to the motion of

turbation. The contribution from the other perturbations isthe string in theY direction. It is easy to verify that
undetectable on the scale used in Fig. 5. At late times, the
string is deflected by an amoupnt; |, as given by Eq(5.9). 2, 2,

To summarize, the scattering of the string in the weak A?=costB TGy I'55=2¢¢ A (1-a)costtp—(1-b)].
gravitational fields calculated in the first ordergrresults in (6.7
the displacement of the string in the direction perpendicular
to the motion by the valug,(r=»)=—-27GMsinhg/c?2.  Calculations also give
At any finite but large value of a solution represents a kink
and antikink of the coordinate widtWiycoth3=Yc/v propa- B2=2¢ J (cositB+sint?B) ;00
gating in the opposite directions with the velocity of light ’ ’
and leaving behind them the string in the new “phase” with

) 1 1 1
Y=Yo+ x2(17=2). —sin(2B) x10t X33l =20 3X23- (6.9
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At low velocities one has

A?~2¢¢ (b-a), (6.9

1 1 1
B2~2¢ o X007 X33 —2¢3X23- (6.10

1
Equation(5.10 shows thaty, vanishes ap3—0. Using re-

lation (4.8), we finally get

2
f2~_2(2+a_b)QD(P’2. (61])
Using a relation similar to Eq5.6) we get
: 2+a_brdxrdza¢2xvz
=0)=m ——— —_—
Xo(7=%) 2sinB J_. )« oy X:Y0.2).
(6.12
Calculating the integral one gets
2 7M?(2+a—b) 6.1
X2(T=%)= T Nsintg (6.13
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same velocity as before scattering, but it is displaced in the
direction to the black hole and perpendicularuwdy the
distance Ab~ —2wGM sinhB/c*— m(GM)Z/(4c*bi),
where bjy,, is the impact parameter. Ifbj,,—Ab[>r
=2GM/c” the string moves always in a weak field. If
|Dimp— Ab|~r4=2GM/c? the string enters the strong-field
region near the black hole and it can be captured. This allows
us to give the following estimate of the critical capture im-
pact parameter. For low velocityy{c) <1,

GM/ 1/2 v —-1/2
bcapturew_cf Z - .

c (7.9

Forv/c>(GM/bjyp) 2 the first term inAb dominates. This
means that the capture impact parameter grows for both
small and large values af/c, and hence there exists a ve-
locity v for which the capture impact parameter has mini-
mum value. This conclusion is confirmed by the results of
the numerical computations of the capture impact parameter
[9]. The numerical results demonstrate also that for the ul-
trarelativistic velocities the critical impact parametgf e
reaches the value\BGM/c?, that is the same value as the

For the scattering of the string on the Schwarzschild blaci€apture parameter for the ultrarelativistic particles.

hole,a=—1 andb=3/4, so that one has

m(GM)?

2
XZ(T:C’O):_W. (6.19

Using the expressions for the coefficiertsand b for the

scattering on a Reissner-Nordstrdblack hole(see footnote

1) one gets

7 (GM)?*-GQ’]
4c*Y,sinhB

(6.19

-

In addition to giving us a qualitative understanding of the
scattering and capture of cosmic strings by black holes, the
analysis of the weak-field approximation is important for the
numerical study of these processes in the strong field. Before
and after the scattering the string moves far from the black
hole, where the gravitational field is weak. Thus one can use
the above analysis to provide a well-defined description of
“in” and “out” states of the string and to formulate the
scattering problem. We discuss this in Re].
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