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Phase structure of an SU„N… gauge theory with Nf flavors
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We investigate the chiral phase transition in SU(N) gauge theories as the number of quark flavors,Nf , is
varied. We argue that the transition takes place at a large enough value ofNf so that it is governed by the
infrared fixed point of theb function. We study the nature of the phase transition analytically and numerically,
and discuss the spectrum of the theory as the critical value ofNf is approached in both the symmetric and
broken phases. Since the transition is governed by a conformal fixed point, there are no light excitations on the
symmetric side. We extend previous work to include higher order effects by developing a renormalization
group estimate of the critical coupling.@S0556-2821~98!00722-X#
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I. INTRODUCTION

In an SU(N) gauge theory withNf massless quarks, it i
expected that both confinement and spontaneous chiral s
metry breaking take place provided thatNf is not too large.
If, on the other hand,Nf is large enough, the theory is ex
pected neither to confine nor break chiral symmetry. For
ample, if Nf is larger than 11N/2 for quarks in the funda-
mental representation, asymptotic freedom~and hence
confinement and chiral symmetry breaking! is lost. Even for
a range of Nf below 11N/2, the theory should remain
chirally symmetric and deconfined. The reason is that
infrared fixed point is present@1,2#, determined by the firs
two terms in the renormalization group~RG! beta function.
By an appropriate choice ofN and Nf , the coupling at the
fixed point,a* , can be made arbitrarily small@3#, making a
perturbative analysis reliable. Such a theory is massless
conformally invariant in the infrared. It is asymptotical
free, but without confinement or chiral symmetry breakin

As Nf is reduced,a* increases. At some critical value o
Nf (Nf

c) there will be a phase transition to the chirally asy
metric and confined phase. It is an important problem in
study of gauge field theories to determineNf

c and to charac-
terize the nature of the phase transition.

In a recent Letter@4#, we suggested that the phase tran
tion takes place at a large enough value ofNf

c so that the
infrared fixed pointa* reliably exists and governs the pha
transition. The transition was then analyzed using the lad
expansion of a gap equation, or equivalently the Cornw
Jackiw-Tomboulis~CJT! effective potential@5#. It was ar-
gued that confinement effects can be neglected to estim
Nf

c and to determine the nature of the transition. It was th
0556-2821/98/58~10!/105017~11!/$15.00 58 1050
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shown that the chiral order parameter vanishes continuo
at Nf→Nf

c from below, but that the phase transition is n
conventionally second order in that there is no effective, l
energy Landau-Ginzburg Lagrangian, i.e. the correlat
length does not diverge as the critical point is approache

Once chiral symmetry breaking sets in, the quarks
couple at momentum scales below the dynamical mass l
ing the pure gauge theory behind. The effective coupl
then grows, leading to confinement at a scale on the orde
the quark mass. Thus forNf just belowNf

c , the fixed point is
only an approximate feature of the theory governing mom
tum scales above the dynamically generated mass. Th
adequate, however, since it is this momentum range that
terminesNf

c and the character of the transition.
Our discussion of this phase transition paralleled

analysis of the chiral transition in (211)-dimensional gauge
theories withNf quarks@6#. Using a largeNf expansion it
was found@7# that the effective infrared coupling runs to
fixed point proportional to 1/Nf . As Nf is lowered this cou-
pling strength exceeds the critical coupling necessary to p
duce spontaneous symmetry breaking. It was argued that
critical 1/Nf coupling lies in a range where the largeNf
expansion is reliable@8#. These conclusions were also su
ported by lattice simulations@9#. It was then noted that as in
the case of the (311)-dimensional SU(N) theory, this phase
transition is not conventionally second order@6#.

For QCD the study of the chiral phase transition as
function of Nf is of theoretical interest, but is unlikely to
shed direct light on the physics of the real world. The
remains the possibility, however, that if technicolor is t
correct framework for electroweak symmetry breaking, t
transition could be physically relevant. In a recent Let
@10#, it was pointed out that in an SU~2! technicolor theory,
©1998 The American Physical Society17-1
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a single family of techniquarks (Nf58) leads to an infrared
fixed point near the critical coupling for the chiral pha
transition. This can provide a natural origin@11# for walking
technicolor@12# and has other interesting phenomenologi
features.

In this paper, we explore further the features of the ch
phase transition as function ofNf . In Sec. II, we summarize
the properties of an SU(N) gauge theory withNf massless
quarks, and describe the existence and properties of an i
red~IR! stable fixed point. In Sec. III, we review chiral pha
transition lore in SU(N) gauge theories, both at zero tem
perature and finite temperature. We present our study of
chiral phase transition in Sec. IV. We examine the chara
of the phase transition by computing the quark-antiqu
scattering amplitude forNf.Nf

c (a* ,ac) in the RG im-
proved ladder approximation. We observe that fora*→ac
from below, there are no light scalar or pseudo-scalar
grees of freedom, showing that the phase transition is
conventionally second order. A light spectrum, in addition
the Goldstone bosons, does exist in the broken phase, an
describe what is currently known about it. In Sec. V, w
include the effects of higher order contributions to both
RG b function and the estimate of the critical coupling, a
then discuss the reliability of our results. In Sec. VI, w
summarize our results, compare them to those from o
recent studies of SU(N) theories, and make some compa
sons of our work to the phase structure of supersymme
gauge theories. In an Appendix, we discuss infrared and
linear divergences, and issues of gauge invariance arisin
the study of the quark-antiquark scattering amplitude.

II. FEATURES OF AN SU „N… GAUGE THEORY
WITH Nf FLAVORS

The Lagrangian of an SU(N) gauge theory is

L5c̄@ i ]”1g~m!A” aTa#c2
1

4
Fmn

a Famn ~1!

wherec is a set ofNf 4-component spinors, theTa are the
generators of SU(N), and g(m) is the gauge coupling de
fined by integrating out momentum components abovem.
With no quark mass, the quantum theory is invariant un
the global symmetry group SU(Nf)L3SU(Nf)R
3U(1)L1R .

The RG equation for the running gauge coupling is

m
]

]m
a~m!5b~a!

[2ba2~m!2ca3~m!2da4~m!2 . . . , ~2!

wherea(m)5g2(m)/4p. With Nf flavors of quarks in the
fundamental representation, the first two coefficients
given by

b5
1

6p
~11N22Nf ! ~3!
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1

24p2 S 34N2210NNf23
N221

N
Nf D . ~4!

These two coefficients are independent of the renormal
tion scheme. The theory is asymptotically free ifb.0 (Nf
, 11

2 N). At two loops, the theory has an infrared stable, no
trivial fixed point if b.0 and c,0. In this case the fixed
point is at

a* 52
b

c
. ~5!

The fixed point couplinga* can be made arbitrarily sma
by taking (11N/22Nf)/N to be small and positive@3#. This
can be achieved either by going to largeN andNf with the
ratio fixed, or by analytically continuing inNf . With the
coupling taken to run between zero in the ultraviolet anda*
in the infrared, the higher order terms inb~a! can then reli-
ably be neglected. The theory is only weakly interacting
the infrared, so that there is no chiral symmetry breaking
confinement.

At two-loops the solution of the RG equation can be wr
ten as

b logS q

m D5
1

a
2

1

a~m!
2

1

a*
logS a„a~m!2a* …

a~m!~a2a* ! D , ~6!

wherea5a(q). For a, a(m),a* we can introduce a scal
defined by

L5m expF 21

ba*
logS a* 2a~m!

a~m! D2
1

ba~m!G , ~7!

so that

1

a
5b logS q

L D1
1

a*
logS a

a* 2a D . ~8!

Then forq@L the running coupling displays the usual pe
turbative behavior:

a'
1

b logS q

L D , ~9!

while for q!L it approaches the fixed pointa* :

a'
a*

11
1

e S q

L D ba
*

. ~10!

Thus forNf in the range where an infrared fixed-point exis
L represents the intrinsic scale of the theory: above the s
L the coupling becomes asymptotically free, while belowL
the coupling rapidly approaches the infrared fixed-point.

It is interesting to note that the solution fora5a(q) can
be written generally as

a5a* @W~qba
* /eLba

* !11#21, ~11!
7-2
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where W(x)5F21(x) with F(x)5xex is the LambertW
function @13,14#. In the limit of small x, W(x)'x, giving
Eq. ~10! for q!L. In the limit of large x, W(x)' log x,
giving Eq. ~9! for q@L.

III. CHIRAL SYMMETRY BREAKING

The physics of an SU(N) gauge theory, even at zero tem
perature, depends strongly on the number of massless
vors. As we have just noted, if (11N/22Nf)/N is small, the
coupling remains small at all scales and the theory nei
confines nor spontaneously breaks chiral symmetry.
quarks and gluons remain massless and the theory is
erned by an infrared fixed point and is therefore conforma
invariant in the infrared.

For Nf small compared to 11N/2, the situation is quite
different. With Nf50, lattice simulations indicate that th
theory confines producing a physical spectrum of mass
glueballs. In the case of real-world QCD (N53 with two
light flavors!, confinement and the spontaneous breakdo
of the chiral symmetry from SU(2)L3SU(2)R3U(1)L1R to
SU(2)L1R3U(1)L1R are approximate experimental fe
tures, seen also in lattice simulations. SmallNf can also be
explored by taking the largeN limit with Nf fixed. There the
chiral symmetry is U(Nf)L3U(Nf)R , the chromodynamic
anomaly being irrelevant to leading order. It was was sho
by Coleman and Witten@15# that under reasonable assum
tions, confinement then necessarily implies the spontane
breaking of U(Nf)L3U(Nf)R to U(Nf)L1R .

These two different phases of a zero-temperature SUN)
theory can be characterized by a simple chiral order par
eter, the expectation value of the quark bilinear

M j
i 5^q̄L

i qR
j &, ~12!

a.k.a. the quark condensate. For some range of (11N/2
2Nf)/N small, the order parameter vanishes, while forNf
small compared to 11N/2, it is non-vanishing. The location
and character of the transition constitute an important
unresolved problem in the study of gauge field theories. T
problem has been studied by the continuum gap equa
method, by the consideration of instanton configurations,
by lattice simulations. After summarizing the results of t
first approach here, we will comment on the other a
proaches and compare the results.

It is also interesting to compare this phase transition w
the finite temperature transition of an SU(N) gauge theory.
There, the transition is known to be second order@16# for
Nf52 and has been argued to be strongly first order@17# for
Nf>3. An important distinction between finite and zero te
perature is that at finite temperature, the quarks are scre
at distance scales large compared to the inverse tempera
This is because in Euclidean field theory at finite tempe
ture, the integral over the energy is replaced by a sum o
Matsubara frequencies given by 2npT for bosons and (2n
11)pT for fermions, wheren is an integer. Only then50
bosons survive at large distances. Thus to characterize
nite temperature transition in which the order parameter v
ishes continuously, it is not necessary to consider the qu
10501
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or fermionic bound states of quarks. This is not the case
the zero-temperature transition to be considered here.
thermore, at zero temperature quarks experience long ra
interactions, which are screened at finite temperature. Th
differences have important consequences.

IV. THE GAP EQUATION WITH AN INFRARED FIXED
POINT

We examine the chiral phase transition by making a se
simple assumptions whose validity we will examine lat
First of all, we assume that the transition takes place a
value of Nf such that the infrared coupling is reliably gov
erned by the two-loop fixed point described above. Ev
though this may not be a very small coupling, we assu
that the transition may be studied by focusing on the und
lying quark and gluon degrees of freedom, ignoring oth
bound states or resonances that might be formed. Next
assume that the transition is governed to first approxima
by a gap equation in RG-improved ladder approximatio
The most attractive channel then corresponds to the brea
pattern SU(Nf)L3SU(Nf)R3U(1)L1R to SU(Nf)L1R
3U(1)L1R .

In the broken phase, a common dynamical massS(p),
with p the magnitude of a Euclidean momentum, will the
be generated for all theNf quarks. It can be taken to serve a
the order parameter for the chiral phase transition, and
related simply to the quark condensate. Although this qu
tity, unlike the quark condensate, is gauge dependent,
possible to extract gauge-independent information from i

With only the quark and gluon degrees of freedom e
ployed, an analysis of the gap equation leads to the con
sion that the chiral transition is one in which the order p
rameter vanishes continuously at the transition. Near
transition,S(p) is small compared to the intrinsic scaleL,
and the equation can be linearized to study the momen
regime S(p),p,L that dominates the transition. At low
momenta the running couplinga(k) appearing in the gap
equation approaches its fixed point valuea* . It is well
known that the gap equation has non-vanishing solution o
when this coupling exceeds a gauge-invariant critical1 value

ac[
p

3C2~R!
5

2pN

3~N221!
. ~13!

It can be shown that when the coupling exceeds this crit
value, the CJT effective potential@3# becomes unstable at th
origin, indicating that a chirally-asymmetric solution is ene
getically favored and therefore represents the ground sta
the theory.

Settinga* equal toac gives an estimate@4# of the critical
number of flavors

Nf
c5NS 100N2266

25N2215 D , ~14!

1A more general definition@14# of the critical coupling is that the

anomalous dimension ofc̄c becomes 1.
7-3
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THOMAS APPELQUISTet al. PHYSICAL REVIEW D 58 105017
above which there is no chiral symmetry breaking. Note t
the ratioNf

c/N is predicted to be very close to 4 for allN.
We next discuss the critical behavior at this transitio

Since the infrared behavior is governed by the fixed po
a* , we can get a simplified look at the transition by taki
the coupling to be constant and equal toa* .ac in a mo-
mentum range up to some cutoffL* ,L. The well-known
solution to this simplified model~often referred to in the
literature as quenched QED! is a non-vanishing dynamica
massS(p) falling monotonically as a function ofp from
some valueS~0! @19,20#. For a*→ac from above (Nf

→Nf
c from below!, S~0! exhibits the behavior

S~0!'L* expS 2p

Aa*
ac

21
D . ~15!

Thus the order parameterS~0! is predicted to vanish non
analytically asa*→ac .

We expect a similar critical behavior in the full theor
After all, the intrinsic scaleL introduced in Eq.~7!, where
a(L)'0.78a* , plays the role of an ultraviolet cutoff
Asymptotic freedom sets in beyond this scale and the
namical mass function falls rapidly (;1/p2). Indeed we find
that with a running coupling the critical behavior is expone
tial as above, but that the coefficient in the exponential
pends on the details of physics at scales on the order ofL. It
is not universally2p.

This can be understood analytically in the following ma
ner. Following Ref.@21#, the gap equation can be convert
to differential form with appropriate boundary condition
and the solution to the linearized equation can be written

S~p!5
cS~0!2

p
sin E

aS~0!

p dk

k
Aa~k!/ac21 ~16!

for momentap below the scaleLc at which a(Lc)5ac ,
where c is chosen so thatS„S(0)…5S(0). We have
dropped terms explicitly proportional to derivatives ofa(k)
since the coupling is near the fixed point in this range and
have taken the lower limit of the integral to be of orderS~0!
@a5O(1)#. For k.Lc , the solution takes a different form
expressible in terms of a hyperbolic sine function when
running is slow. The two solutions must match atp5Lc and
the upper solution must satisfy the ultraviolet boundary c
dition. Note thatLc /L vanishes like (r 21)1/ba

* as r→1,
wherer[a* /ac .

The matching condition atLc says simply that

E
aS~0!

Lc dk

k
Aa~k!/ac21 ~17!

takes on some value depending on the details of the u
solution. It can be seen to be finite in the limitr→1 and it
must be less thanp if the dynamical mass is to remain pos
tive for all momenta.~Solutions with nodes also exist, but
computation of the vacuum energy@5,22# indicates that the
nodeless solution represents the stable ground state.! Be-
10501
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causea(k)'a* for small momenta, it can then be seen th
1/log„Lc /S(0)… vanishes likeAr 21 asr→1. SinceLc /L
behaves like (r 21)1/ba

* , it follows that 1/log„L/S(0)… also
vanishes likeAr 21 asr→1.

This can also be seen in a direct, numerical solution of
integral gap equation. In Landau gauge and after Wick ro
tion to Euclidean space, this equation can be written in
form

S~p!5
1

4 E dk2

M2

k2S~k!

k21S~k!2

a~M2!

ac
~18!

where M5max(p,k) and the approximationa@(p2k)2#
'a(M2) has been made before doing the angular integ
tion. We solve this equation with a numerical ultraviolet cu
off much larger thanL and plot log„S(0)/Lc… versus
1/Ar 21 in Fig. 1. The result is insensitive to the numeric
cutoff and exhibits straight line behavior asr→1. The slope
of the line is 0.82p. If the theory is modified in some way a
scales on the order ofL, straight line behavior is still exhib-
ited, but with a slope depending on the details of the mo
fication. Thus the only feature of the critical behavior det
mined purely by the infrared, fixed point behavior is th
1/log„L/S(0)… vanishes likeAr 21 asr→1.

Below the scale of the dynamical massS(p), the quarks
decouple, leaving a pure gauge theory behind. One m
worry that this would invalidate the above analysis since
relies on the fixed point which only exists when the qua
contribute to theb function. This is not a problem, howeve
since whenS(0)!L, the dominant momentum range in th
gap equation, leading to the above critical behavior~15!, is
S(0),p,L. In this range, the quarks are effectively mas
less and the coupling does appear to be approaching a
frared fixed point. Below the scaleS~0! confinement sets in
The confinement scale can be estimated by noting that a
decoupling scaleS~0!, the effective coupling constant is o
order ac . A simple estimate using the above expressio
then shows that the confinement scale is roughly the s
order as the chiral symmetry breaking scale,S~0!.

FIG. 1. Numerical solution of the Schwinger-Dyson equati
with a running coupling possessing an infrared fixed point. HereS0

is the dynamical mass andr is the ratio of the fixed point coupling
to the critical coupling.
7-4



o
e
de
b
fu
-
ta
e

he
d

e
c
fre
tiv
ol
va
om
rm
n

tri
e
s

s

lor-
me
e
les
ap-

o-
t
pro-

e
ffi-

tor,

so

PHASE STRUCTURE OF AN SU(N) GAUGE THEORY . . . PHYSICAL REVIEW D 58 105017
If Nf is reduced sufficiently belowNf
c so thata* is not

close toac , bothS~0! and the confinement scale become
orderL. The linear approximation to the gap equation is th
no longer valid and it is no longer the case that higher or
contributions to the effective potential can be argued to
small. The methods of this paper are then no longer use

From the behavior ofS~0! near the transition, the corre
sponding behavior of the Goldstone boson decay cons
the quark condensate, and other physical scales can be
mated. We return to this question after considering furt
the nature of the chiral phase transition we have just
scribed.

The smooth vanishing of the order parameterS~0!, Eq.
~15!, suggests that the chiral symmetry phase transition
Nf5Nf

c (a* 5ac) might be second order. In a second ord
transition, however, an infinite correlation length is asso
ated with a set of scalar and pseudoscalar degrees of
dom, with vanishing masses, described by an effec
Landau-Ginzburg Lagrangian. In the broken phase, the G
stone bosons are massless and the other scalar masses
at the transition. There are no other light degrees of freed
In the symmetric phase, the scalars and pseudoscalars fo
degenerate multiplet. The situation here is quite differe
We first demonstrate this by showing that in the symme
phase, there are no light scalar and pseudoscalar degre
freedom. We then comment more generally on the physic
the transition.

A. The symmetric phase

To search for light, scalar and pseudoscalar degree
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freedom in the symmetric phase, we examine the co
singlet quark-antiquark scattering amplitude in the sa
~RG-improved ladder! approximation leading to the abov
critical behavior. If the transition is second order, then po
should appear which move to zero momentum as we
proach the transition. We take the incoming~Euclidean! mo-
mentum of the initial quark and antiquark to beq/2, but keep
a non-zero momentum transfer by assigning outgoing m
mentaq/26p for the final quark and antiquark. Any ligh
scalar resonances should make their presence known by
ducing pole in the scattering amplitude~in the complexq2

plane!.
If the Dirac indices of the initial quark and antiquark arel

andr, and those of the final state quark and antiquark ars
andt, then the scattering amplitude can be written for su
ciently smallq as

Tlrst~p,q!5dlrdst

1

p2 T~p,q!1••• , ~19!

where the dots indicate pseudoscalar, vector, axial-vec
and tensor components, and we have factored out 1/p2 to
make T(p,q) dimensionless. We contract Dirac indices
that we obtain the Schwinger-Dyson~SD! equation for the
scalar s-channel scattering amplitude,T(p,q), containing
only t-channel gluon exchanges. Ifp2@q2, thenq2 will sim-
ply act as an infrared cutoff in the loop integrations.

The SD equation in the scalar channel is:
T~p,q!5
a*
ac

p214p2l
p2

L
*
2 1

a*
4ac

S E
q2

p2 dk2

k2 T~k,q!1E
p2

L
*
2 dk2

k2 T~k,q!
p2

k2D 1lE
q2

L
*
2 dk2

k2 T~k,q!
p2

L
*
2 . ~20!
q.

g

For the purpose of this discussion we neglect the running
the gauge couplinga up to the scaleL* . This is a good
approximation at the low momenta of interest here, wh
the coupling is near the infrared fixed pointa* . For conve-
nience, we use Landau gauge (j51) where the quark wave
function renormalization vanishes. The issue of gauge inv
ance is addressed in the Appendix. The first term in Eq.~20!
is simply one gluon exchange, while the second term ar
from a chirally symmetric, four-quark interaction, i.e.
Nambu–Jona-Lasinio~NJL! @23# interaction, which we have
introduced here for purposes of this analysis. It allows us
make contact with the familiar study of light degrees of fre
dom in the NJL theory when it is near-critical.

For momentap2.q2, Eq. ~20! can be converted to a dif
ferential equation:

p4
d2

~dp2!2 T52
a*
4ac

T, ~21!
of

e

i-

es

o
-

with appropriate boundary conditions determined from E
~20!. The solutions of Eq.~21! have the form

T~p,q!5AS p2

L
*
2 D 1/21~1/2!h

1BS p2

L
*
2 D 1/22~1/2!h

, ~22!

where the coefficientsA andB are functions ofq2/L
*
2 , and

for a* ,ac ,

h5A12a* /ac. ~23!

The coefficientsA andB can be determined by substitutin
the solution back into Eq.~20!. This gives

A5
22p2

~11h!2

~12h!S 12
l

l*
D S q2

L
*
2 D 21/21~1/2!h

12
l

la
1F l

la
2S 12h

11h D 2G S q2

L
*
2 D h , ~24!
7-5
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and

B5

2p2~12h!S 12
l

la
D S q2

L
*
2 D 21/21~1/2!h

12
l

la
1F l

la
2S 12h

11h D 2G S q2

L
*
2 D h , ~25!

where

la[F1

2
1

1

2
hG2

, ~26!

and

l* [F1

2
2

1

2
h G2

. ~27!

If we denote the location of the poles of the functionsA
andB in the complexq2 plane byq0

2, we then have

uq0
2u5L

*
2 S ula2lu

ul2l* u D
1/h

. ~28!

We see immediately that asl→la @the critical Nambu–
Jona-Lasinio ~NJL! coupling# for a* ,ac the pole ap-
proaches the originq0

250, indicating the existence of ligh
degrees of freedom. This is to be expected for a second o
phase transition. Asa* is increased the corresponding pa
ticles become broad resonances@24#. Of course in this region
our analysis is not complete, precisely because of the e
tence of the light scalar and pseudoscalar degrees of
dom. These light degrees of freedom must be incorpora
into the analysis, for example they will have an effect on
two loopb function. Furthermore as discussed by Chivuku
et al. @25# one generally expects that, with more than tw
flavors of quarks, asl is tuned towardsla the theory under-
goes a Coleman-Weinberg transition@26# to the chirally bro-
ken phase beforel reachesla .

Now consider the limith→0 (a*→ac), with l,1/4,
we have

uq0
2u→L

*
2 S 11

h

1/42l D 1/h

→L
*
2 expS 4

124l D . ~29!

Thus we see that ata*→ac , with l,1/4, there are no pole
in the complexq2-plane withq0

2!L* . There are therefore
no light scalar and pseudoscalar degrees of freedom to
stitute an effective Landau-Ginzburg theory, so the ch
phase transition is not second order along the linea* 5ac .
This is in agreement with the analysis of Ref.@27#.

Now imagine starting out witha* ,ac and l'la , so
that we have a light scalar resonance, and then dialing
parameters so thata* increases andl decreases in such
way that we approach the critical linea* 5ac . We then see
from Eqs.~28! and ~27! that we must first cross the linel
5l* , and that as we approach this line, the mass of
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scalar grows and actually diverges. Thus the scalar reson
disappears from the physical spectrum before we reacha*
5ac . Even before we reach this point, the width of th
scalars becomes as large as their mass, and they ca
longer be considered resonances.

There is nothing special about the scalar and pseudosc
channels in the above analysis. A similar analysis of
other channels, such as vector and axial-vector, would
reveal that there are no light excitations in the symme
phase near the critical couplingac . That this should be the
case is not surprising. With the transition governed by
long-range gauge force with an infrared fixed point, appro
mate conformal invariance should be exhibited at momen
scales small compared toL in the symmetric phase.~For
further discussions on this point see Ref.@28#.! Thus no light
scales will be present, in contrast to phase transitions g
erned by short range forces as in the NJL or the finite te
perature theories.

B. The broken phase

In the broken phase near the transition, one light sc
S~0!, appears. It is therefore natural~in the assumed absenc
of instanton effects! to expect that the entire physical spe
trum of the theory will be set byS~0! and scale to zero with
it as Nf→Nf

c from below. This point has been stressed
cently by Chivukula@29#. Thus there will clearly be no ef-
fective Landau-Ginzburg Lagrangian. No finite set of lig
degrees of freedom can be isolated in the broken phase in
limit Nf→Nf

c , and no light degrees of freedom~other than
quarks and gluons! exist in the symmetric phase.

Within this general picture, it is important to describe t
spectrum of resonances in more detail. If, for example
near-critical theory is the basis for a technicolor theory
electroweak symmetry breaking@10#, then the light scale
S~0! will correspond to the electroweak scale and the sp
trum of resonances at this scale will have a direct impact
precision electroweak measurements. In particular, theS pa-
rameter@30# will depend sensitively on this spectrum. A
especially interesting question in this regard is whether p
ity doubling or even inversion of parity partners appears
this light spectrum asNf

c is approached.
The Goldstone boson decay constantFp is also propor-

tional to S~0!. A simple dimensional estimate suggests th
Fp

2 'NS2(0)/16p2. Because of the dominance of the fixe
point at scales belowL, this is clearly a ‘‘walking’’ theory.
If the coupling stays close toac then the dynamical mas
S(p) falls roughly like 1/p in this range. As a consequenc
the condensatêq̄L

i qR
j & is enhanced well above the value

would have in a QCD-like theory. A simple estimate giv

^q̄L
i qR

j &'NS(0)2L/16p2.
Finally, it is important to note that with the entire spe

trum of physical states collapsing to zero withS~0! at the
transition, the analysis of the transition using only the qu
and gluon degrees of freedom is open to question. It se
reasonable, however, to conjecture that these states wil
be important at the momentum scalesS(0),k,L dominat-
ing the transition. Some evidence for this is provided
estimates of higher order effects to which we now turn.
7-6
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V. HIGHER ORDER ESTIMATES

We have so far analyzed the chiral symmetry break
phase transition using the ladder gap equation, i.e.
Schwinger-Dyson~SD! equation with the lowest order ker
nel, and the running gauge coupling determined by the t
loop b function. In order to consider higher order effects w
first develop a gauge-invariant technique to estimate
critical coupling without relying on the intricacies of the S
equation.

In Ref. @31#, it was noted that to lowest order the S
criticality condition can be written in the form

g~22g!51, ~30!

whereg is the anomalous dimension of the quark mass
erator. To all orders in perturbation theory, this condition
gauge invariant~sinceg is gauge invariant! and is equivalent
to the condition@18# g51 mentioned previously in the tex
However if these conditions are truncated at a finite orde
perturbation theory they lead to different results. We w
take Eq.~30! to define the critical coupling order by orde
since it allows us to reproduce the known leading order
sult.

Through three loopsg is given in the modified minima
subtraction (MS) scheme by@32#

g5g0a1g1a21g2a31••• ~31!

where

g05
3C2~R!

2p
~32!

g15
1

16p2 S 3C2~R!22
10C2~R!Nf

3
1

97C2~R!N

3 D
~33!

g25
1

64p3 129C2~R!32
70C2~R!Nf

2

27
2

129C2~R!2N

2

1
11413C2~R!N2

54
1C2~R!NfNS 2

556

27
248z~3! D

1C2~R!2Nf„246148z~3!…. ~34!

Inserting this result in Eq.~30! and truncating to one-loop w
find

2g0a51. ~35!

Solving for a we find a one-loop estimate of the critic
coupling that agrees with standard result:

ac
~1!5

p

3C2~R!
5

2pN

3~N221!
. ~36!

At two-loops the critical condition is

2g0a12g1a22g0
2a251. ~37!
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Solving for a we find a two-loop estimate of the critica
coupling:

ac
~2!5

36p

45C2~R!297N110Nf

6
A24pA9C2~R!197N210Nf

AC2~R!@245C2~R!197N210Nf #
. ~38!

The1 sign gives the positive root. We compare this with t
one-loop estimate by taking N large and using the valueNf
'4N corresponding to criticality:

ac
~2!'

~A11808272!p

69N
'

1.67

N
. ~39!

Numerically it can be seen that theO(a2) terms in the criti-
cality condition, Eq.~37!, evaluated ata5ac

(2) are typically
about 25% to 30% of the leading term forNf'4N. It can
also be seen numerically that forNf'4N the four-loop term
@32# in g is larger than the three-loop term, so it is not a
propriate to go beyond two loops in this expansion for the
values ofNf , and we should only use the three-loop term
an estimate of the error in our calculation.

Through three-loops, theb function is given by

b~a!52ba22ca32da4

whereb andc are given by Eqs.~3! and~4!, and in the MS
scheme,

d5
1

32p2 S 2857N321415N2Nf179N~Nf !
2

54

2
205N

18
C2~R!Nf1

11

9
C2~R!~Nf !

21C2~R!2Nf D .

~40!

Since the three-loop term is scheme dependent we ca
obtain a scheme independent answer without going to
same order inb and g, so we will only use the three-loop
term for error estimates.

In Table I we list some numerical results. We have co
puted the value ofNf

c for SU(N) gauge theories for values o
N ranging form 2 to 10, showing the results at differe
orders in perturbation theory. In Sec. IV~using the leading
order estimate of the critical coupling! it was shown thatNf

c

goes like 4N for largeN. We see that going to two loops i
the criticality condition produces a small shift in this rel
tion. We also list the estimated value of the critical coupli
at one and two loops. We see that even though the perc
age shift of the value ofNf

c is small, the higher order term
of the beta function make a significant contribution at t
critical point. ForNc between 3 and 10 we estimate that t
error inNf

c at two-loops is about 12% from the truncation
theb function and about 10% from the truncation ofg, while
for Nc52 the errors are somewhat larger, around 14% fr
each. It is important to emphasize that these are simply
merical estimates of the next to leading contributions. Ev
7-7
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at large N, there is no obvious small parameter here lead
to a controlled expansion. Thus the smallness of still hig
order terms is not guaranteed.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have explored features of the ch
phase transition in SU(N) gauge theories. We have argue
that the transition takes place at a relatively large value ofNf

(Nf
c'4N) where the infrared coupling is determined by

fixed point accessible in the loop expansion of theb func-
tion, and that the transition can be studied using a ladder
equation. Our higher order estimates suggest that the
mate ofNf

c is good to about 20%. To phrase things in phy
cal terms, the effect of the light quarks is to screen the lo
range force, eventually disordering the system and takin
to the symmetric phase. That the transition takes place
relatively large value ofNf means that the quarks are rel
tively ineffective at long range screening.

With an infrared fixed point governing the transition, th
order parameter vanishes in a characteristic exponential f
ion and all physical scales vanish in the same way. Ther
no finite set of light degrees of freedom that can be identifi
to form an effective, Landau-Ginzburg theory. In the sy
metric phase (Nf.Nf

c), no light degrees of freedom ar
formed asNf→Nf

c . Thus the transition is continuous but n
conventionally second order. The validity of the approach
considered by estimating higher order terms in both theb
function and the anomalous dimension of the mass opera

In Ref. @33#, it was noted that single instanton effects in
theory with an infrared fixed point seem capable of trigg
ing a chiral phase transition at similarly large values
Nf /N. A detailed computation was carried out only for a
SU~2! gauge theory but the analysis indicated that this co
be the case at larger values ofN as well.

It is interesting to compare our results with the pha
structure of supersymmetric SU(N) theories where exact re
sults are available@34#. In such theories there is also a larg
range ofNf where the theory is asymptotically free and
infrared fixed point occurs. A transition to a strongly coupl
phase occurs atNf,SUSY

c 53N/2. Thus it seems plausible tha

TABLE I. Estimates ofNf
c . The two numbers in parenthese

give the order used in the critical condition ong and theb function.
The comparison of the~2,2! and~2,3! give an estimate of the erro
in truncating theb function at two-loops.

Nc Nf
c ~1,2! Nf

c ~2,2! Nf
c ~2,3! ac

(1) ac
(2)

2 7.86 8.27 7.12 1.4 1.11
3 11.9 12.4 10.9 0.785 0.595
4 15.9 16.6 14.6 0.559 0.412
5 20.0 20.8 18.3 0.436 0.317
6 24.0 24.9 22. 0.359 0.258
7 28.0 29.1 25.7 0.305 0.218
8 32.0 33.3 29.4 0.266 0.189
9 36.0 37.4 33.1 0.236 0.166

10 40.0 41.6 36.8 0.212 0.149
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infrared fixed points are fairly generic in asymptotically fre
gauge theories with a large number of flavors. One pro
nent difference between the supersymmetric and n
supersymmetric cases is that the strongly coupled phasN
11,Nf<Nf,SUSY

c does not have chiral symmetry breakin
or confinement forN.3. However a class of supersymme
ric chiral gauge theories~with antisymmetric tensor fields!
have been found@35# where the theory does go from a
infrared fixed point to confinement upon the removal of o
flavor.

The results of this paper can be contrasted with preli
nary lattice work@36# and the instanton liquid model@37#
which suggest that the chiral transition takes place at m
smaller values ofNf contrary to earlier lattice results@38#.
The transition would then be an intrinsically strong coupli
phenomenon inaccessible to the methods used here.
quarks would have to be much more effective at long ran
screening than indicated by the gap equation, disordering
system even in the presence of a strong, attractive long ra
force. Further work on all these approaches will be requi
to help to resolve this difference.
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APPENDIX: GAUGE INVARIANCE AND COLLINEAR
DIVERGENCES

We first discuss the gauge dependence of the qu
antiquark scattering amplitude used in Sec. IV to dem
strate the absence of light excitations in the symmetric ph
We will then discuss the presence of collinear divergence
this amplitude. To demonstrate gauge invariance to lead
order, we follow the analysis of@39#. As was done before we
will take the incoming~Euclidean! momentum of the initial
quark and antiquark to beq/2, and have a non-zero momen
tum transfer by assigning outgoing momentaq/26p for the
final quark and antiquark. The SD equation in the sca
channel~and in a covariant gauge with gauge parameterj! is:

T~p,q!5
g2Z1

2~p,q!

4ajZ3~p!
p1

4p2lZ4~p,q!p2

L
*
2

1
pp2

aj
E d4k

~2p!4

g2Z1
2~p,k!

Z3~p2k!~p2k!2

T~k,q!

k2Z2
2~k!

1
4p2p2

L
*
2 E d4k

~2p!4 lZ4~p,k!
T~k,q!

k2Z2
2~k!

. ~A1!
7-8
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The renormalization factorsZ1 , Z2 , Z3 , andZ4 correspond
to the gauge vertex, the quark wavefunction, the gauge bo
wavefunction, and the four-quark vertex respectively; an

aj5
p

~31j!C2~R!
. ~A2!

Using the definition of the renormalized couplings

gR~p,k!5
gZ1~p,k!

AZ3~p2k!Z2~k!Z2~p!
~A3!

lR~p,k!5
lZ4~p,k!

Z2~k!Z2~p!
~A4!
o

ct
n,
y
n

10501
on
and the approximations

gR
2~p,k!

4p
'

g2

4p

Z1„max~p,k!…

Z3„max~p,k!…Z2~k!Z2~p!
[a„max~p,k!…

~A5!

and

lR~p,k!'l
Z4„max~p,k!…

Z2~k!Z2~p!
[l„max~p,k!… ~A6!

we can perform the angular integrations to obtain
alization
T~p,q!5
a~p!Z2~p!Z2~q!

aj
p214p2l~p!Z2~p!Z2~q!

p2

L
*
2 1

1

4aj
S E

q2

p2 dk2

k2 a~p!
Z2

2~p!

Z2
2~k!

T~k,q!

1E
p2

L
*
2 dk2

k2 a~k!T~k,q!
p2

k2D 1E
q2

p2 dk2

k2 l~p!
Z2

2~p!

Z2
2~k!

T~k,q!
p2

L
*
2 1E

p2

L
*
2 dk2

k2 l~k!T~k,q!
p2

L
*
2 . ~A7!

In order to get a gauge invariant result, it is helpful to divide the scattering amplitude by the gauge dependent norm
factors of the four quark legs, so we introduce

T̃~p,q!5
T~p,q!

Z2~p!Z2~q!
. ~A8!

We then have

T̃~p,q!5
a*
aj

p214p2l
p2

L
*
2 1

a*
4aj

S E
q2

p2 dk2

k2

Z2~p!

Z2~k!
T̃~k,q!1E

p2

L
*
2 dk2

k2

Z2~k!

Z2~p!
T̃~k,q!

p2

k2D
1lS E

q2

p2 dk2

k2

Z2~p!

Z2~k!
T̃~k,q!

p2

L
*
2 1E

p2

L
*
2 dk2

k2

Z2~k!

Z2~p!
T̃~k,q!

p2

L
*
2 D , ~A9!
ng

ees
the
re-

in
at-
where we have used the fact thata(p) approaches a fixed
point for p!L. Here we will be satisfied with a result t
leading order ina* , neglecting terms suppressed bya

*
2 ,

l2, anda* l. With this approximation we can also negle
the running ofl. This is actually not a bad approximatio
since in the infraredl(p) approaches a fixed-point given b
Eq. ~27!. Now the RG solution for the quark wavefunctio
renormalization is:

Z2~p!5S L
*
2

p2 D g

, ~A10!

where

g5
a* C2~R!j

4p
1O~a

*
2 !. ~A11!

Next we substitute the form
T̃~p,q!5AS p2

L
*
2 D 1/21~1/2!h

1BS p2

L
*
2 D 1/22~1/2!h

, ~A12!

into Eq.~A9!. Integrating this equation we see that to leadi
order ina* the j dependent terms take the form

a*

4ajS 1

2
2

1

2
h1g D S 1

2
1

1

2
h1g D '11O~a

*
2 !. ~A13!

So our solution for the scattering amplitude@Eqs. ~24! and
~25!# and the conclusion that there are no light scalar degr
of freedom as one approaches the critical point from
symmetric side of the critical curve are gauge invariant
sults to leading order.

We next discuss the collinear divergences present
T(p,q). Consider the differential cross-section for the sc
tering of the quark and antiquark atO(a3). If the invariant
7-9
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amplitude atO(a2) is given byM, then from Eqs.~22!–
~25! we have, to next-to-leading order,

uMu2'
9p2a2C2~R!2

p4 1
27pa3C2~R!3

2p4 F11 lnS p2

q2D G ,
~A14!

The differential cross section is:

ds05~2p!4d~4!~p11p22q12q2!uMu2

3
d3q1

~2p!32E1

d3q2

~2p!32E2
, ~A15!

which gives

ds0

dq1dV1dq2dV2
5

1

~2p!2 d~4!~p11p22q12q2!

3uMu2
E1E2

4
. ~A16!

This is not, however, a physically observable cross-sect
To obtain a physically observable cross-section we m
combine this with the differential cross-section where a c
linear gluon~with momentumk and implicit summation on
the gauge index a! is emitted:

ds1g5~2p!4d~4!~p11p22q12q2!uM au2

3
d3q1

~2p!32E1

d3q2

~2p!32E2

d3k

~2p!32k
, ~A17!

A physical experiment cannot separately resolve the co
ear gluon and quark, so it is appropriate to frame the disc
ys

D

10501
n.
st
l-

-
s-

sion in terms of the momentum of the observed jet~we con-
sider first the case wherek is approximately collinear with
q2 , soqj5q21k). Changing variables we have

ds1g

dq1dV1dqjdV j
5

1

~2p!2 d~4!~p11p22q12qj !
E1Ej

4

3E d3k

~2p!32k

~Ej2k!

Ej
uM au2.

~A18!

Thus, to see the cancellation of the collinear divergence
must adduMu2 to the final integral in Eq.~A18!.

In order to project out the scalar channel of the glu
emission amplitude, we must contract the amplitude w
drl/4 and @ga,gb#st/16, wherer and l ~s and t! are the
Dirac indices of the initial~final! quark and antiquark. We
then have

M a52
ig3C2~R!

p2qj
2

3

4
~eaqj

b2ebqj
a!Ta, ~A19!

whereea is the gluon polarization vector. Squaring and su
ming over gluons and gluon polarizations we have:

uM au252
g6C2~R!3

p4qj
2

27

8
. ~A20!

Putting the gluon on shell (k250), and performing the inte-
gration~with the requirement that the gluon momentumk be
within a small cone of opening angled around the quark
momentumq2) we have
ace
he
E d3k

~2p!32k

~Ej2k!

Ej
uM au2'2

27g6C2~R!3

8p2 E
0

Ej dkk2~Ej2k!

~2p!22k E
0

d udu

q2
21~Ej2k!ku2

'2
27pa3C2~R!3

4p4 lnS Ej
2d2

q2
2 D , ~A21!

where we have only kept terms which diverge asq2
2→0. When combined with the integration over the region of phase sp

corresponding tok being approximately collinear withq1 , and settingq15q25q, we see that these terms cancel with t
ln(q2) dependence in Eq.~A14!, as expected@40#.
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