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We investigate the chiral phase transition in 8)(gauge theories as the number of quark flavdts, is
varied. We argue that the transition takes place at a large enough vaNiesaof that it is governed by the
infrared fixed point of thes function. We study the nature of the phase transition analytically and numerically,
and discuss the spectrum of the theory as the critical valud;dé approached in both the symmetric and
broken phases. Since the transition is governed by a conformal fixed point, there are no light excitations on the
symmetric side. We extend previous work to include higher order effects by developing a renormalization
group estimate of the critical couplinf50556-282(198)00722-X]

PACS numbe(s): 11.30.Rd, 12.10.Dm

[. INTRODUCTION shown that the chiral order parameter vanishes continuously

at N;—N¢{ from below, but that the phase transition is not

In an SUN) gauge theory witiN; massless quarks, it is conventionally second order in that there is no effective, low
expected that both confinement and spontaneous chiral syrenergy Landau-Ginzburg Lagrangian, i.e. the correlation

metry breaking take place provided thdt is not too large. length does not diverge as the critical point is approached.
If, on the other handN; is large enough, the theory is ex- ~ Once chiral symmetry breaking sets in, the quarks de-
pected neither to confine nor break chiral symmetry. For excouple at momentum scales below the dynamical mass leav-
ample, if N is larger than 1M/2 for quarks in the funda- N9 the pure gauge theory behind. The effective coupling
mental representation, asymptotic freedofand hence then grows, leading to con.flnement ata scalg on thg orQer of

confinement and chiral symmetry breaking lost. Even for ~ the quark mass. Thus fo¥; just belowNs, the fixed point is

a range ofN; below 1N/2, the theory should remain only an approximate feature of_the theory governing momen-
chirally symmetric and deconfined. The reason is that afuMm Scales above the dynamically generated mass. This is
infrared fixed point is preserftl,2], determined by the first adequate, however, since it is this momentum range that de-

! c I
two terms in the renormalization groyRG) beta function. tergmesdl\_lf and_ the cfm;]e_\cterhof thettran?non. leled
By an appropriate choice of andNy, the coupling at the . Coc P andiien in ge1)-dimensional gauge
fixed point,«, , can be made arbitrarily smdlB], making a Y gaug

erturbative analysis reliable. Such a theory is massless aﬁtgeories withNy quarks|6]. Using a largeN; expansion it
P analy i " ory . was found[7] that the effective infrared coupling runs to a
conformally invariant in the infrared. It is asymptotically

¢ but without " ¢ hiral v breaki fixed point proportional to M. As N; is lowered this cou-
ree, but without confinement or chiral Symmelry breaxing. pling strength exceeds the critical coupling necessary to pro-

As Ny is reducedg, increases. At some critical value of ,ce spontaneous symmetry breaking. It was argued that this
Nt (Nf) there will be a phase transition to the chirally asym- .ritical 1N coupling lies in a range where the largg
metric and confined phase. It is an important problem in theuyxpansion is reliablés]. These conclusions were also sup-
study of gauge field theories to determiNg and to charac- ported by lattice simulation®]. It was then noted that as in

terize the nature of the phase transition. _the case of the (3 1)-dimensional SUY) theory, this phase
~ In arecent Lettef4], we suggested that the phase transi-transition is not conventionally second ordét.
tion takes place at a large enough valueNjf so that the For QCD the study of the chiral phase transition as a

infrared fixed pointa,, reliably exists and governs the phase function of N; is of theoretical interest, but is unlikely to
transition. The transition was then analyzed using the laddeghed direct light on the physics of the real world. There
expansion of a gap equation, or equivalently the Cornwallremains the possibility, however, that if technicolor is the
Jackiw-Tomboulis(CJT) effective potential5]. It was ar-  correct framework for electroweak symmetry breaking, the
gued that confinement effects can be neglected to estimatgansition could be physically relevant. In a recent Letter
N{ and to determine the nature of the transition. It was therf10], it was pointed out that in an SP) technicolor theory,
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a single family of techniquarksd\;=8) leads to an infrared 1 ) NZ2—1
fixed point near the critical coupling for the chiral phase C= 542 | 3MN"—10NN; =3 —5—Ny . (4)

transition. This can provide a natural oriditl] for walking

technicolor[12] and has other interesting phenomenologicalThese two coefficients are independent of the renormaliza-
features. ~ tion scheme. The theory is asymptotically freebif0 (N
In this paper, we explore further the features of the chiralc 11Ny At two loops, the theory has an infrared stable, non-

phase transition as function bf;. In Sec. Il, we summarize trjyial fixed point if b>0 andc<O0. In this case the fixed
the properties of an SW) gauge theory wittN; massless point is at

quarks, and describe the existence and properties of an infra-

red(IR) stable fixed point. In Sec. Ill, we review chiral phase b

transition lore in SUN) gauge theories, both at zero tem- =T o ®)
perature and finite temperature. We present our study of the

chiral phase transition in Sec. IV. We examine the character The fixed point couplingr, can be made arbitrarily small
of the phase transition by computing the quark-antiquarkyy taking (1IN/2—N;)/N to be small and positivg3]. This
scattering amplitude foN;>Nf{ (a, <a) in the RG im-  can be achieved either by going to lafiyeand N; with the
proved ladder approximation. We observe thatdQr—a,  ratio fixed, or by analytically continuing itN;. With the
from below, there are no light scalar or pseudo-scalar deeoupling taken to run between zero in the ultraviolet and
grees of freedom, showing that the phase transition is ndh the infrared, the higher order terms fifa) can then reli-
conventionally second order. A light spectrum, in addition toably be neglected. The theory is only weakly interacting in
the Goldstone bosons, does exist in the broken phase, and wee infrared, so that there is no chiral symmetry breaking or
describe what is currently known about it. In Sec. V, weconfinement.

include the effects of higher order contributions to both the At two-loops the solution of the RG equation can be writ-
RG g function and the estimate of the critical coupling, andten as

then discuss the reliability of our results. In Sec. VI, we

summarize our results, compare them to those from other bl q) 1 1 1 a(a(p)—ay)
recent studies of SWN) theories, and make some compari- a ap  a, a(wia—a,)
sons of our work to the phase structure of supersymmetric

gauge theories. In an Appendix, we discuss infrared and cowherea=a(q). For a, a(u)<a, we can introduce a scale
linear divergences, and issues of gauge invariance arising iefined by

the study of the quark-antiquark scattering amplitude.

), (6)

B a, —a(p) 1
A=pu ex b lo 5 , (7
Il. FEATURES OF AN SU(N) GAUGE THEORY Ay a(w) a(p)
WITH N; FLAVORS so that
The Lagrangian of an SW) gauge theory is 1 q 1
- 1 ;=b|OgK +Z|Og(a*_a . (8)
L=ylid+g(uATYy=ZFLF* (1)

Then forg> A the running coupling displays the usual per-

] ) turbative behavior:
where s is a set ofN; 4-component spinors, thE? are the

generators of SW), andg(u) is the gauge coupling de- 1
fined by integrating out momentum components abpve a~ €)
With no quark mass, the quantum theory is invariant under b Iog( K)
the global symmetry group SO XSU(Nf)g
XU(1) +Rr- ; A : SV
The RG equation for the running gauge coupling is while for q=<A it approaches the fixed point, :
o (10
J a== —W'
po—a(u)=p(a) 119
K elA
=—ba*(p)—ca*(u)—da*(u)—..., (2

Thus forN; in the range where an infrared fixed-point exists,
A represents the intrinsic scale of the theory: above the scale
the coupling becomes asymptotically free, while belaw
he coupling rapidly approaches the infrared fixed-point.
It is interesting to note that the solution far= a(q) can
be written generally as

where a(u) =g?(u)/4m7. With N; flavors of quarks in the
fundamental representation, the first two coefficients ar
given by

1
b= g (1IN=2Ny) ® =, [W(GP™/eAba) +1] 71, (11)
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where W(x) =F "1(x) with F(x)=xe&" is the LambertW  or fermionic bound states of quarks. This is not the case in

function [13,14]. In the limit of small x, W(x)~x, giving the zero-temperature transition to be considered here. Fur-

Eqg. (10) for g<A. In the limit of large x,W(x)~logx, thermore, at zero temperature quarks experience long range

giving Eq. (9) for g>A. interactions, which are screened at finite temperature. These
differences have important consequences.

lll. CHIRAL SYMMETRY BREAKING
IV. THE GAP EQUATION WITH AN INFRARED FIXED

The physics of an SUW) gauge theory, even at zero tem- POINT
perature, depends strongly on the number of massless fla- _ _ . _
vors. As we have just noted, if (N{2— N;)/N is small, the We examine the chiral phase transition by making a set of

coupling remains small at all scales and the theory neithepimple assumptions whose validity we will examine later.
confines nor spontaneously breaks chiral symmetry. Th&irst of all, we assume that the transition takes place at a
quarks and gluons remain massless and the theory is govalue ofN¢ such that the infrared coupling is reliably gov-
erned by an infrared fixed point and is therefore conformallyerned by the two-loop fixed point described above. Even
invariant in the infrared. though this may not be a very small coupling, we assume
For Ny small compared to IN/2, the situation is quite that the transition may be studied by focusing on the under-
different. With N;=0, lattice simulations indicate that the lying quark and gluon degrees of freedom, ignoring other
theory confines producing a physical spectrum of massiv&ound states or resonances that might be formed. Next we
glueballs. In the case of real-world QCINE 3 with two ~ @ssume that the transition is governed to first approximation
light flavors, confinement and the spontaneous breakdowr?Y & 9ap equation in RG-improved ladder approximation.
of the chiral symmetry from SU(2)X SU(2)xX U(1), ; r tO The most attractive channel then corresponds to the breaking
SU(2) ;rXU(1) 4r are approximate experimental fea- Pattern  SUNg) XSUNp)rXU(1)+r 10 SUNf)Lr
tures, seen also in lattice simulations. Snigjlcan also be X U(1)Lir- _
explored by taking the largd limit with N fixed. There the ~In the broken phase, a common dynamical mﬁs;p),
chiral symmetry is UK;) X U(N()g, the chromodynamic with p the magnitude of a Euclidean momentum, will then
anomaly being irrelevant to leading order. It was was showrP€ generated for all thi; quarks. It can be taken to serve as
by Coleman and Wittefil5] that under reasonable assump- the orde_r parameter for the chiral phase transmon., and is
tions, confinement then necessarily implies the spontaneou§lated simply to the quark condensate. Although this quan-
breaking of UN;) X U(N¢)g to U(N{), +gr. tity, l_mllke the quark cond_ensate, is gauge dependent, itis
These two different phases of a zero-temperatureNgU( poss!ble to extract gauge-independent information from it.
theory can be characterized by a simple chiral order param- With only the quark and gluon degrees of freedom em-

eter, the expectation value of the quark bilinear ployed, an analysis of the gap equation leads to the conclu-
sion that the chiral transition is one in which the order pa-
(. rameter vanishes continuously at the transition. Near the
M}=(aLak), (12 Y

transition,> (p) is small compared to the intrinsic scale
and the equation can be linearized to study the momentum

—N;)/N small, the order parameter vanishes, while fr regimeE(p)<p<A_ that dominates the tra}nsit?on. At low
small compared to IN/2, it is non-vanishing. The location mom‘?”ta the running _couplmg(k)_ appearing m_the 9ap
and character of the transition constitute an important an§duation approaches its fixed point valag . It is well
unresolved problem in the study of gauge field theories. ThiNoWn that the gap equation has non-vanishing solution only
problem has been studied by the continuum gap equatioWhen this coupling exceeds a gauge-invariant critivalue
method, by the consideration of instanton configurations, and

by lattice simulations. After summarizing the results of the = = . .
first approach here, we will comment on the other ap- 3Cx(R)  3(N°—1)
proaches and compare the results.

It is also interesting to compare this phase transition wit
the finite temperature transition of an SW)( gauge theory.
There, the transition is known to be second orfles] for
N;=2 and has been argued to be strongly first ofd&t for

. A 7 the theory.
N;=3. An important distinction between finite and zero tem- Settinga, equal toa, gives an estimatd] of the critical
perature is that at finite temperature, the quarks are Screen%(amber of ﬁavors ¢
at distance scales large compared to the inverse temperature.
This is because in Euclidean field theory at finite tempera- 100N2— 66
ture, the integral over the energy is replaced by a sum over N?zN(m),
Matsubara frequencies given byn2T for bosons and (2
+1)# T for fermions, wheren is an integer. Only th@=0
bosons survive at large distances. Thus to characterize a fi-
nite temperature transition in which the order parameter van-'A more general definitiofi14] of the critical coupling is that the

ishes continuously, it is not necessary to consider the quarksomalous dimension afy becomes 1.

a.k.a. the quark condensate. For some range oN{(2A1

T 27N

(13

hIt can be shown that when the coupling exceeds this critical
value, the CJT effective potentig8] becomes unstable at the
origin, indicating that a chirally-asymmetric solution is ener-
getically favored and therefore represents the ground state of

(14)
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above which there is no chiral symmetry breaking. Note that -6
the ratioN{/N is predicted to be very close to 4 for .

We next discuss the critical behavior at this transition. .
Since the infrared behavior is governed by the fixed point .
a, , we can get a simplified look at the transition by taking B8
the coupling to be constant and equald9>a. in a mo-
mentum range up to some cutoff, <A. The well-known
solution to this simplified mode(often referred to in the
literature as quenched QEDs a non-vanishing dynamical -10
mass,(p) falling monotonically as a function op from
some valueX(0) [19,20. For a,—«a. from above WN;
—Nf from below), 3(0) exhibits the behavior

Log($(0)/A.)

{2 * L ] ]
-14 -12 -10 -8 -6

- nf(r-1) 172

3(0)=~A, exp (15)

[ @ FIG. 1. Numerical solution of the Schwinger-Dyson equation
a_c 1 with a running coupling possessing an infrared fixed point. Hgye
is the dynamical mass andis the ratio of the fixed point coupling
Thus the order paramet&(0) is predicted to vanish non- to the critical coupling.
analytically asa, — a. )

We expect a similar critical behavior in the full theory. causea(k)~a, for small momenta, it can then be seen that
After all, the intrinsic scale introduced in Eq(7), where — 1/10g(A./%(0)) vanishes likeyr —1 asr—1. SinceA /A
a(A)~0.78, , plays the role of an ultraviolet cutoff. behaves likei(—1)"*«, it follows that 1/lodA/=(0)) also
Asymptotic freedom sets in beyond this scale and the dyvanishes likeyr—1 asr—1.
namical mass function falls rapidly<(1/p?). Indeed we find This can also be seen in a direct, numerical solution of the
that with a running coupling the critical behavior is exponen-integral gap equation. In Landau gauge and after Wick rota-
tial as above, but that the coefficient in the exponential detion to Euclidean space, this equation can be written in the
pends on the details of physics at scales on the orddr &f  form
is not universally— 7.

This can be understood analytically in the following man- S (p)= 1 f d_k2 kZZ (k) a(M?)
ner. Following Ref[21], the gap equation can be converted 4 M2 k*+3(k)*  ag

to differential form with appropriate boundary conditions,

_ Lo 2
and the solution to the linearized equation can be written a¥/here 2M =max(k) and the approximational(p—k)®]
~a(M*°) has been made before doing the angular integra-

c3(0)? p dk tion. We solve this equation with a numerical ultraviolet cut-
(©) sin f 7 Va(k/ac—1 (16)  off much larger thanA and plot lod%(0)/A) versus
1/yr—1 in Fig. 1. The result is insensitive to the numerical
for momentap below the scale\. at which a(A)=a,,  cutoff and exhibits straight line behavior es-1. The slope
where ¢ is chosen so thaf (3(0))=3(0). We have of the line is 0.8%. If the theory is modified in some way at
dropped terms explicitly proportional to derivativesafk)  scales on the order df, straight line behavior is still exhib-
since the coupling is near the fixed point in this range and wéted, but with a slope depending on the details of the modi-
have taken the lower limit of the integral to be of ordp) fication. Thus the only feature of the critical behavior deter-
[a=((1)]. Fork>A,, the solution takes a different form, mined purely by the infrared, fixed point behavior is that
expressible in terms of a hyperbolic sine function when thel/log(A/%(0)) vanishes likeyr—1 asr—1.
running is slow. The two solutions must matchpat A . and Below the scale of the dynamical ma®¢p), the quarks
the upper solution must satisfy the ultraviolet boundary condecouple, leaving a pure gauge theory behind. One might
dition. Note thatA./A vanishes like (—1)** asr—1,  worry that this would invalidate the above analysis since it

(18)

2(p)=

aX(0)

wherer=a, /ag. relies on the fixed point which only exists when the quarks
The matching condition ak . says simply that contribute to thes function. This is not a problem, however,
since when, (0)< A, the dominant momentum range in the
Ac dk gap equation, leading to the above critical behavid, is
Lzm) K Va(k)/ag=1 17) 3(0)<p<A. In this range, the quarks are effectively mass-

less and the coupling does appear to be approaching an in-
takes on some value depending on the details of the uppdrared fixed point. Below the scal¥(0) confinement sets in.
solution. It can be seen to be finite in the limit>1 and it  The confinement scale can be estimated by noting that at the
must be less tham if the dynamical mass is to remain posi- decoupling scale&(0), the effective coupling constant is of
tive for all momenta(Solutions with nodes also exist, but a order a.. A simple estimate using the above expressions
computation of the vacuum enery,22] indicates that the then shows that the confinement scale is roughly the same
nodeless solution represents the stable ground stBee. order as the chiral symmetry breaking sca€)).
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If N; is reduced sufficiently below so thata, is not freedom in the symmetric phase, we examine the color-
close toa., both=(0) and the confinement scale become ofsinglet quark-antiquark scattering amplitude in the same
orderA. The linear approximation to the gap equation is then(RG-improved laddegrapproximation leading to the above
no longer valid and it is no longer the case that higher ordecritical behavior. If the transition is second order, then poles
contributions to the effective potential can be argued to b&hould appear which move to zero momentum as we ap-
small. The methods of this paper are then no longer usefulproach the transition. We take the incomigiuclidean mo-

From the behavior ok(0) near the transition, the corre- mentum of the initial quark and antiquark to §&, but keep
Sponding behavior of the Goldstone boson decay ConStané, non-zero momentum transfer by assigning outgoing mo-
the quark condensate, and other physical scales can be esfizntag/2+p for the final quark and antiquark. Any light
mated. We return to this question after considering furtheg,(ar resonances should make their presence known by pro-

the nature of the chiral phase transition we have just deducing pole in the scattering amplitudian the complexq?
scribed. plane

The smooth vanishing of the order paramel6), Eq. If the Dirac indices of the initial quark and antiquark are

(15), suggests that the chiral symmetry phase transition at . .
N;=N¢ (@, = a,) might be second order. In a second Orderandp, and those of the final state quark and antiquarkeare

i S . ; .and 7, then the scattering amplitude can be written for suffi-
transition, however, an infinite correlation length is associ-

ated with a set of scalar and pseudoscalar degrees of freg'—emIy smallg as

dom, with vanishing masses, described by an effective

Landau-Ginzburg Lagrangian. In the broken phase, the Gold-

stone bosons are massless and the other scalar masses vanish Thpore(Po8) =03 0r p? T+,
at the transition. There are no other light degrees of freedom.

In the symmetric phase, the scalars and pseudoscalars form a

degenerate multiplet. The situation here is quite differentyhere the dots indicate pseudoscalar, vector, axial-vector,
We first demonstrate this by showing that in the symmetricang tensor components, and we have factored qut
phase, there are no light scalar and pseudoscalar degreean(fike-l—(p’q) dimensionless. We contract Dirac indices so

freedom. We then comment more generally on the physics qfnat we obtain the Schwinger-DysdBD) equation for the

the transition. scalar s-channel scattering amplitudg,p,q), containing
only t-channel gluon exchanges.pf>q?, theng? will sim-
ply act as an infrared cutoff in the loop integrations.

To search for light, scalar and pseudoscalar degrees of The SD equation in the scalar channel is:

(19

A. The symmetric phase

2 2 2 2

a p a p2 dk A2 dk p
T(p.a)= _~m+ 4w\ (5 + = ( f @ Tka)+ fpz @ Tka) iz
Cc * C

+)\fAidk2Tk i 20
qz q2 k2 ( 1q) Ai ( )

For the purpose of this discussion we neglect the running ofvith appropriate boundary conditions determined from Eq.
the gauge couplingr up to the scaleA, . This is a good (20). The solutions of Eq(21) have the form

approximation at the low momenta of interest here, where
the coupling is near the infrared fixed poisf . For conve-
nience, we use Landau gaugé=1) where the quark wave
function renormalization vanishes. The issue of gauge invari-
ance is addressed in the Appendix. The first term in(B@.  where the coefficientd andB are functions of?/A2 , and
is simply one gluon exchange, while the second term ariser o, < a,
from a chirally symmetric, four-quark interaction, i.e. a
Nambu—Jona-Lasini@NJL) [23] interaction, which we have

introduced here for purposes of this analysis. It allows us to

make contact with the familiar study of light degrees of free-1,¢ coefficientsA andB can be determined by substituting

dom in the NJL theory when it is near-critical. the solution back into Eq20). This gives
For momentgp?>q?, Eq.(20) can be converted to a dif-

ferential equation:

+B

p2 112+ (12 g
) . (22

12— (1
p? p2 |12 (127
A%

AL

T(D,Q)=A<

n=Vl—a, /.. (23

A 9 —124+(12)
Lo (R

42 a T(1 )’ [ N
4_ 7 T _ __* 1—- —
P ap®2 T e 1 Ao |\,
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and
\ q2 —1/2+(1/2) 5
201 _ S | B
2m(1 ’7)( N (Ai)
S RARTE
Ny Ny 1+9 As
where
1 1 )?
)\aE §+§77 , (26)
and
1 1 )?
AN = 5—57] 27

If we denote the location of the poles of the functiohs
andB in the complexqg? plane byqé, we then have

)1/7]

We see immediately that as—\, [the critical Nambu—
Jona-Lasinio (NJL) coupling for a,<a. the pole ap-
proaches the origirtq(z)=0, indicating the existence of light
degrees of freedom. This is to be expected for a second ord
phase transition. As, is increased the corresponding par-
ticles become broad resonan¢2d]. Of course in this region

our analysis is not complete, precisely because of the exi
tence of the light scalar and pseudoscalar degrees of fre

2 |7\a_)\|

2| _
|q0|_A* |)\_)\*|

(28

dom. These light degrees of freedom must be incorporated

into the analysis, for example they will have an effect on th

two loop B function. Furthermore as discussed by Chivukula

et al. [25] one generally expects that, with more than two
flavors of quarks, ak is tuned towards. , the theory under-
goes a Coleman-Weinberg transitigd6] to the chirally bro-
ken phase before reaches\ ,.

Now consider the limitp—0 (a, — ac), with A<1/4,

we have
1y
IQ§|—>Ai(1+ )

—AZ2 exr{ )

Thus we see that at, — «, with A <1/4, there are no poles
in the complexg?®-plane withg3<A, . There are therefore
no light scalar and pseudoscalar degrees of freedom to co
stitute an effective Landau-Ginzburg theory, so the chira
phase transition is not second order along the dige= o .
This is in agreement with the analysis of REZ7].

Now imagine starting out withw, <a, andA~\,, SO

_n
14—\

4
1-4\

(29

S_

e

PHYSICAL REVIEW D 58 105017

scalar grows and actually diverges. Thus the scalar resonance
disappears from the physical spectrum before we regch
=a.. Even before we reach this point, the width of the
scalars becomes as large as their mass, and they can no
longer be considered resonances.

There is nothing special about the scalar and pseudoscalar
channels in the above analysis. A similar analysis of the
other channels, such as vector and axial-vector, would also
reveal that there are no light excitations in the symmetric
phase near the critical coupling,. That this should be the
case is not surprising. With the transition governed by a
long-range gauge force with an infrared fixed point, approxi-
mate conformal invariance should be exhibited at momentum
scales small compared th in the symmetric phasegFor
further discussions on this point see R&8].) Thus no light
scales will be present, in contrast to phase transitions gov-
erned by short range forces as in the NJL or the finite tem-
perature theories.

B. The broken phase

In the broken phase near the transition, one light scale,
2.(0), appears. It is therefore natu@ the assumed absence
of instanton effectsto expect that the entire physical spec-
trum of the theory will be set b¥.(0) and scale to zero with
it as Ny— N from below. This point has been stressed re-
cently by Chivukula[29]. Thus there will clearly be no ef-
fctive Landau-Ginzburg Lagrangian. No finite set of light
degrees of freedom can be isolated in the broken phase in the
limit Ns—Nf, and no light degrees of freedotother than
g_uarks and gluonsexist in the symmetric phase.

Within this general picture, it is important to describe the
Spectrum of resonances in more detail. If, for example, a
near-critical theory is the basis for a technicolor theory of
electroweak symmetry breakindO], then the light scale
2.(0) will correspond to the electroweak scale and the spec-
trum of resonances at this scale will have a direct impact on
precision electroweak measurements. In particularSthe-
rameter[30] will depend sensitively on this spectrum. An
especially interesting question in this regard is whether par-
ity doubling or even inversion of parity partners appears in
this light spectrum as\{ is approached.

The Goldstone boson decay constant is also propor-
tional to %(0). A simple dimensional estimate suggests that
Ffrw NZ2(0)/1672. Because of the dominance of the fixed
point at scales below, this is clearly a “walking” theory.

If the coupling stays close te. then the dynamical mass

3. (p) falls roughly like 1p in this range. As a consequence,
the condensatéq, gk) is enhanced well above the value it
mould have in a QCD-like theory. A simple estimate gives
KqLgk)~NX(0)2A/1672.

Finally, it is important to note that with the entire spec-
trum of physical states collapsing to zero witi0) at the
transition, the analysis of the transition using only the quark

that we have a light scalar resonance, and then dialing thand gluon degrees of freedom is open to question. It seems

parameters so that, increases and decreases in such a
way that we approach the critical ling, = «.. We then see
from EQs.(28) and (27) that we must first cross the line

reasonable, however, to conjecture that these states will not
be important at the momentum scal®)<k<A dominat-
ing the transition. Some evidence for this is provided by

=\, , and that as we approach this line, the mass of thestimates of higher order effects to which we now turn.
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V. HIGHER ORDER ESTIMATES

We have so far analyzed the chiral symmetry breakin

PHYSICAL REVIEW D 58 105017

Solving for o« we find a two-loop estimate of the critical
coupling:

g

phase transition using the ladder gap equation, i.e. the 367

Schwinger-Dyson(SD) equation with the lowest order ker-
nel, and the running gauge coupling determined by the two-
loop B function. In order to consider higher order effects we
first develop a gauge-invariant technique to estimate the
critical coupling without relying on the intricacies of the SD

equation.

In Ref. [31], it was noted that to lowest order the SD

criticality condition can be written in the form

y(2—y)=1, (30

where vy is the anomalous dimension of the quark mass op-
erator. To all orders in perturbation theory, this condition is
gauge invarianfsincevy is gauge invariantand is equivalent

(2) —
¢ " 45C,(R)— 97N+ 10N,

a

\24mJ9C,(R) + 97N — 10N,
~ JCL(R)[—45C,(R)+97N—10N,]

The + sign gives the positive root. We compare this with the
one-loop estimate by taking N large and using the valye
~4N corresponding to criticality:

(\11808-72)w 1.67
69N TN

(39

o'~

(39

Numerically it can be seen that tif&( «?) terms in the criti-

to the conditior{18] y=1 mentioned previously in the text. cality condition, Eq(37), evaluated atr=a? are typically
However if these conditions are truncated at a finite order iribout 25% to 30% of the leading term fbl~4N. It can
perturbation theory they lead to different results. We will also be seen numerically that fid~4N the four-loop term
take Eq.(30) to define the critical coupling order by order, [32] in vy is larger than the three-loop term, so it is not ap-
since it allows us to reproduce the known leading order repropriate to go beyond two loops in this expansion for these

sult.

Through three loopy is given in the modified minimal

subtraction MS) scheme by32]

y=yoa+ yia?+ yad+ - (3D
where
3C,(R)
1 10C,(R)N; 97C,(R)N
— 2_
1= 1672 3C,(R) 3 + 3
(33
1 70C,(RIN?  129C,(R)2N
= 3— -
72~ ga3 12X2(R) 27 2

11413 ,(R)N? ( 556 )
+———5;—— +CaARININ| — —=—48((3)

+C,(R)?N¢(—46+48,(3)). (34)

Inserting this result in Eq.30) and truncating to one-loop we

find

2ypa=1. (35

Solving for @ we find a one-loop estimate of the critical

coupling that agrees with standard result:

T 27N (36
% T3C,(R) 3(NZ-1) )

At two-loops the critical condition is
2yoa+2y10°— yia?=1. (37

values ofN;, and we should only use the three-loop term as
an estimate of the error in our calculation.
Through three-loops, thg function is given by

B(a)=—ba?—ca®—da*

whereb andc are given by Eqs(3) and(4), and in the MS
scheme,

1 (285MN®—1418N%N¢+ 79N(Ny)?
- 327° 54

205N 11 ) )
_Wcz(R)Nﬁ' gcz(R)(Nf) + C,(R)“N¢ .

(40)

Since the three-loop term is scheme dependent we cannot
obtain a scheme independent answer without going to the
same order in3 and vy, so we will only use the three-loop
term for error estimates.

In Table | we list some numerical results. We have com-
puted the value ofl{ for SU(N) gauge theories for values of
N ranging form 2 to 10, showing the results at different
orders in perturbation theory. In Sec. [¥sing the leading
order estimate of the critical coupling was shown thatN{
goes like N for largeN. We see that going to two loops in
the criticality condition produces a small shift in this rela-
tion. We also list the estimated value of the critical coupling
at one and two loops. We see that even though the percent-
age shift of the value ol{ is small, the higher order terms
of the beta function make a significant contribution at the
critical point. ForN. between 3 and 10 we estimate that the
error inN{ at two-loops is about 12% from the truncation of
the B8 function and about 10% from the truncationpfwhile
for N.=2 the errors are somewhat larger, around 14% from
each. It is important to emphasize that these are simply nu-
merical estimates of the next to leading contributions. Even
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TABLE I. Estimates ofNf. The two numbers in parentheses infrared fixed points are fairly generic in asymptotically free
give the order used in the critical condition grand theg function.  gauge theories with a large number of flavors. One promi-
The comparison of th€2,2) and(2,3) give an estimate of the error nent difference between the supersymmetric and non-

in truncating theg function at two-loops. supersymmetric cases is that the strongly coupled phase
+1<N;=Nfgysy does not have chiral symmetry breaking
6 (2 . ;
Ne Nf (1,2 Nf (2.2 Nf (2.3 e e or confinement foN>3. However a class of supersymmet-
2 786 8.27 712 1.4 111 ric chiral gauge theoriegwith antisymmetric tensor fields
3 11.9 12.4 10.9 0.785 0.595 _have bee_n foun_d35] Wher_e the theory does go from an
4 15.9 16.6 14.6 0.559 0.412 :(?;\r/irred fixed point to confinement upon the removal of one
5 20.0 20.8 18.3 0.436 0.317 ) . . -
The results of this paper can be contrasted with prelimi-
6 24.0 249 22. 0.359 0.258 . - -
nary lattice work[36] and the instanton liquid mod¢B7]
7 28.0 29.1 25.7 0.305 0.218 . . oo
8 320 33.3 29.4 0.266 0.189 which suggest that the chiral transition takes place at much
9 36'0 37'4 33'1 0'236 0'166 smaller values ofN; contrary to earlier lattice resul{88].
' ' ' ' ‘ The transition would then be an intrinsically strong coupling
10 40.0 41.6 36.8 0.212 0.149

phenomenon inaccessible to the methods used here. The
quarks would have to be much more effective at long range

. . ._screening than indicated by the gap equation, disordering the
at large N, there is no .ObVIOUS small parameter herg Ie.ad'ngystem even in the presence of a strong, attractive long range
to a controlled expansion. Thus the smallness of still higheg, e Fyrther work on all these approaches will be required
order terms is not guaranteed. to help to resolve this difference.
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With an infrared fixed point governing the transition, the DIVERGENCES

order parameter vanishes in a characteristic exponential fash-
ion and all physical scales vanish in the same way. There is We first discuss the gauge dependence of the quark-
no finite set of light degrees of freedom that can be identifiedantiquark scattering amplitude used in Sec. IV to demon-
to form an effective, Landau-Ginzburg theory. In the sym-strate the absence of light excitations in the symmetric phase.
metric phase N;>Nf), no light degrees of freedom are We will then discuss the presence of collinear divergences in
formed asN;— N¢. Thus the transition is continuous but not this amplitude. To demonstrate gauge invariance to leading
conventionally second order. The validity of the approach isorder, we follow the analysis 89]. As was done before we
considered by estimating higher order terms in both ghe will take the incoming(Euclidean momentum of the initial
function and the anomalous dimension of the mass operatofluark and antiquark to be/2, and have a non-zero momen-
In Ref.[33], it was noted that single instanton effects in atum transfer by assigning outgoing momenta=*p for the
theory with an infrared fixed point seem capable of trigger-final quark and antiquark. The SD equation in the scalar
ing a chiral phase transition at similarly large values ofchanneland in a covariant gauge with gauge paramgjés:
N;/N. A detailed computation was carried out only for an 252 2 2
SU(2) gauge theory but the analysis indicated that this could T(p,q) 9°21(p.9) AT NZ4(P.Q)P

= - >
be the case at larger valuesNfas well. 4aZ3(p) AL

It is interesting to compare our results with the phase 2 2 252
structure of supersymmetric SNJ theories where exact re- L j d k4 9°Z1(p.k) i '|;(k2,q)
sults are availablg34]. In such theories there is also a large a; (2m)" Z3(p—K)(p—k)* k*Z5(k)

range ofN; where the theory is asymptotically free and an
infrared fixed point occurs. A transition to a strongly coupled
phase occurs affg,sy=3N/2. Thus it seems plausible that

+4772p2 d*k 7 (oK T(k,q) AL
A2 ) 2ot 4(&)@@- (A1)
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The renormalization factord,, Z,, Z3, andZ, correspond and the approximations
to the gauge vertex, the quark wavefunction, the gauge boson
wavefunction, and the four-quark vertex respectively; and

gr(PK) g®  Zymaxpk) ‘
m dm " dm ZymanpRNZo(KZy(p) L (MAXPK))
“EOCR) - -
Using the definition of the renormalized couplings and
gzl(pik)
gr(p.k)= = (A3) Zy(max(p,k)) _
VZ3(p—K)Zo(K)Zo(p) )\R(pyk)N?\m=?\(ma>(p,k)) (AB)
R(P.K)= Z5(k)Z,(p) (Ad) we can perform the angular integrations to obtain
)Z,(p)Z 21 [ (2 dK 5(p)
T(pia) - “PEEPEE 2 g 212 ) 17 + 47&( [ e S T
A2 dk? p?\ . (2 dk®  Z3(p) p? (a2 dK® p°
+pr 1z a(0T(ka) 7 +qu T MP) 725 Tka) E%ﬁ T MRT(ka) 77 (A7)

In order to get a gauge invariant result, it is helpful to divide the scattering amplitude by the gauge dependent normalization
factors of the four quark legs, so we introduce

= T(p,q)
Tp,Q)=———. A8
P9 Z )z (A8)
We then have
p2 42 j 2 dk2 Z2 f A2 dk2 Zz(k) p2
% 2 Ll
T(p Q)— §7T +47T A AZ 4(X§( q2 k2 Z (k) ) k2 Z (p) (qu) k2
p2 dk® Z5(p) - P> (a2 dK® Zx(K) p’
+)\( fqz k2 Zz(k) (k ) fpz k2 ZZ(p) ( ) Ai ’ (Ag)
|
where we have used the fact thafp) approaches a fixed _ 2\ Y2+(112)n p2 |\ Y- (2
point for p<A. Here we will be satisfied with a result to T(D,Q)=A<A—z) +B A—;) , (A12)
* *

leading order ina, , neglecting terms suppressed by ,

\?, and a, . With this approximation we can also neglect intg Eq.(A9). Integrating this equation we see that to leading
the running of\. This is actually not a bad approximation, grder in a, the ¢ dependent terms take the form
since in the infrared (p) approaches a fixed-point given by

Eqg. (27). Now the RG solution for the quark wavefunction a, ,
lization is: ~1+0 . Al13
renormalization is (1 1 1 1 (ay) (A13)
4 + —+ —p+
A2\? el MY\ 2T
Zy(p)= Ak (A10)

So our solution for the scattering amplitufiggs. (24) and
(25)] and the conclusion that there are no light scalar degrees

where of freedom as one approaches the critical point from the
symmetric side of the critical curve are gauge invariant re-
_ 4 Ca(R)¢ 2 sults to leading order.
= +O0(ay). (A11) : . . .
A We next discuss the collinear divergences present in
T(p,q). Consider the differential cross-section for the scat-
Next we substitute the form tering of the quark and antiquark &(a?2). If the invariant
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amplitude atO(a?) is given by M, then from Eqs(22)—
(25 we have, to next-to-leading order,

9m%a?Cy(R)?2  27ma’Cy(R)® p?
M 2% + 1+|n - )
| | p4 2p4 q2
(A14)
The differential cross section is:
doo=(2m)*8Y(py+pa— 01— q2)| M|
d3 d3
°F1 dz (A15)

X 2m)32E, (27)32E,"
which gives

dO'O _ 1 5(4)( g )
dq,dQ,dq,dQ, (27)2 P1tP2—01—02

PHYSICAL REVIEW D 58 105017

sion in terms of the momentum of the observed(ye¢ con-
sider first the case whetle is approximately collinear with
g2, s0qj=d,+k). Changing variables we have

d(Tlg 1 E]_E
= (4) M A j
dq,dQ,dq;dQ; (277)25 (P1tpP2—0d1—0;)

d’k  (Ej—k) ——,
XJ omak g M

i
(A18)

Thus, to see the cancellation of the collinear divergence we
must add M|? to the final integral in Eq(A18).

In order to project out the scalar channel of the gluon
emission amplitude, we must contract the amplitude with
Sl and[ y*,v#],./16, wherep and\ (o and 7) are the
Dirac indices of the initial(final) quark and antiquark. We
then have

E.E
x| M2—=2 (A16)
Ma= —2—'9302(R) > (e*gP—ePq™)T?,  (AL9)
This is not, however, a physically observable cross-section. p? q; % %

To obtain a physically observable cross-section we must
combine this with the differential cross-section where a col-wheree® is the gluon polarization vector. Squaring and sum-

linear gluon(with momentumk and implicit summation on

the gauge index)as emitted:
doyg=(2m)*6W (p1+py— a1 — )| M2

" d3q, d3q, d3k
(27)32E, (27)32E, (2m)32k’

(A17)

ming over gluons and gluon polarizations we have:

g%C,(R)® 27

J

Putting the gluon on shelkf=0), and performing the inte-
gration(with the requirement that the gluon momentlrhe

A physical experiment cannot separately resolve the collinwithin a small cone of opening anglé around the quark
ear gluon and quark, so it is appropriate to frame the discusnomentumg,) we have

f d*k  (E;—k) e 27gGC2(R)3ijdkk2(Ej—k) s 6d6
(2m)%2k  E; [ M2~ 8p o (2m)*2k Jo g3+(E;—k)ké?
27ma®Cy(R)®  [EF&?
~ — In q2 y (AZ]—)
2

where we have only kept terms which divergeqés»O When combined with the integration over the region of phase space

corresponding t& being approximately collinear with;;, and settingq;=q,=

In(g?) dependence in EqA14), as expecte@40].

g, we see that these terms cancel with the
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