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Abelian magnetic monopole dominance in quark confinement

Kei-Ichi Kondo*
Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

~Received 26 May 1998; published 9 October 1998!

We prove Abelian magnetic monopole dominance in the string tension of QCD. Abelian and monopole
dominance in low-energy physics of QCD has been confirmed for various quantities by recent Monte Carlo
simulations of lattice gauge theory. In order to prove this dominance, we use the reformulation of continuum
Yang-Mills theory in the maximal Abelian gauge as a deformation of a topological field theory of magnetic
monopoles, which was proposed in the previous article by the author. This reformulation provides an efficient
way for incorporating the magnetic monopole configuration as a topological nontrivial configuration in the
functional integral. We derive a version of the non-Abelian Stokes theorem and use it to estimate the expec-
tation value of the Wilson loop. This clearly exhibits the role played by the magnetic monopole as an origin of
the Berry phase in the calculation of the Wilson loop in a manifestly gauge-invariant manner. We show that the
string tension derived from the diagonal~Abelian! Wilson loop in topological field theory~studied in the
previous article! converges to that of the full non-Abelian Wilson loop in the limit of a large Wilson loop.
Therefore, within the above reformulation of QCD, this result~together with the previous result! completes the
proof of quark confinement in QCD based on the criterion of the area law of the full non-Abelian Wilson loop.
@S0556-2821~98!08420-3#

PACS number~s!: 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

In a series of articles@1–3#, we have investigated quar
~charge! confinement in four-dimensional non-Abelian@1,2#
~Abelian @3#! gauge theories. The main purpose of these
ticles was to clarify the mechanism of quark@charge# con-
finement and to give proof of quark confinement start
from quantum chromodynamics~QCD! @quantum electrody-
namics~QED!# without introducingad hocassumptions. A
special gauge fixing called the maximal Abelian gau
~MAG! has been adopted in these investigations. For a n
Abelian gauge groupG, the MAG implies a partial gauge
fixing in which the cosetG/H is fixed with the maximal
torus subgroupH being unbroken. The MAG is regarded as
field theoretical realization of the Abelian projection pr
posed by ’t Hooft@4#.

In the first article @1#, we have proved that the QCD
vacuum is the dual superconductor1 in the sense that the
low-energy effective gauge theory of QCD in the MAG
given exactly by the dual Ginzburg-Landau theory, which
called Abelian-projected effective gauge theory~APEGT!.
This result supports magnetic monopole condensation
mechanism of quark confinement. Thedual superconductiv-
ity in QCD gives the most intuitively appealing picture
quark confinement.

In the second article@2#, we have presented a reformul

*Email address: kondo@cuphd.nd.chiba-u.ac.jp
1According to a recent Monte Carlo simulation, the type of du

superconductor as the QCD vacuum is reported to be on the bo
of the type II; see@5# for the definition of the type of dual super
conductor. This will be due to the dressing of the Abelian fl
connecting the quark and antiquark pair by the off-diagonal glu
components, since the Abelian dual Ginzburg-Landau theory
tained as the APEGT is of type II~near the London limit! @1#.
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tion of the non-Abelian gauge theory as a~perturbative! de-
formation of a topological~quantum! field theory@T~Q!FT#
which describes topological nontrivial sector of the gau
theory. This reformulation provides an efficient way for i
corporating the magnetic monopole@6,7# configuration
~which appears after Abelian projection! as a topological
nontrivial configuration in the functional integral of gaug
theory. In Ref.@2# we have defined thediagonal Abelian
Wilson loop by using the gauge field variable belonging
the maximal torus subgroupH of G. We have proved that, in
the TFT obtained from four-dimensional Yang-Mills~YM !
theory with a gauge groupG in the MAG, the evaluation of
the diagonal Abelian Wilson loop is reduced to that of t
equivalent two-dimensional cosetG/H nonlinear sigma
model ~NLSM!. This equivalence is a consequence of t
Parisi-Soulousdimensional reductionof four-dimensional
TFT in the MAG into the two-dimensionalG/H coset
NLSM. This is an exact result. This result stems from t
supersymmetry hidden in TFT in the MAG. Moreover, w
have shown that the area law of the diagonal Wilson loop
derived by summing up the contribution of instanton a
anti-instanton configurations in the two-dimensional NLS
These results lead to the linear confining static potential
tween quark and antiquark in the TFT sector. ForG
5SU(2), theequivalent model of TFT is given by the O~3!
NLSM or CP1 model. Thus dimensional reduction is consi
ered as another mechanism for quark confinement.

A similar idea can also be applied to Abelian gau
theory. Actually, in the third article@3#, the existence of a
confinement phase in the strong coupling region of QED
been shown in the sense that the linear static potentia
generated between two fractional charges due to vortex c
densation.

As a background of Refs.@1–3#, it is necessary to know
that the Abelian and monopole dominance@8,9# in low-
energy physics in QCD has been confirmed for various qu
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 105016
tities by recent Monte Carlo simulations of lattice gau
theory; see, e.g.,@10# and@11#. This is especially remarkabl
in the MAG. According to lattice Monte Carlo simulation
the non-Abelian string tensions is nearly saturated by th
Abelian part sAbel obtained in the MAG; indeed,sAbel
> 0.92s for G5SU(2),b52.5115@12#. This is called the
Abelian dominance. Moreover, the Abelian partsAbel is
dominated by the monopole contributionsmonopole as
smonopole>0.95sAbel @13#. This is called themonopole
dominance. However, it is not clear whether the Abelian an
monopole dominance on the lattice survives the continu
limit.

In this article, to avoid the subtle problem of taking th
continuum limit of lattice gauge theory, we make use of t
continuum formulation introduced in@2# of gauge theory to
study the Abelian and monopole dominance in QCD. Her
is important to remember that the criterion of quark confin
ment should be gauge invariant, since only the gau
invariant concept has physical meaning in gauge theor
Indeed, the full non-Abelian Wilson loop is gauge invaria
by construction and hence the expectation value is indep
dent of the gauge chosen. Therefore the area law of the
non-Abelian Wilson loop gives a gauge-independent cr
rion for quark confinement. Consequently, the string tens
obtained from the area law is gauge invariant and gives
gauge-independent linear static potential between the q
and antiquark. Therefore, in the practical calculation of
full non-Abelian Wilson loop, we can adopt an adequa
gauge so as to simplify the calculation. It turns out that su
a simplest gauge is given by the MAG.

In this article we deal with the full non-Abelian Wilso
loop and clarify the relationship between the full no
Abelian Wilson loop and the diagonal Wilson loop intr
duced and evaluated in@2#. At first glance, it seems that th
area law derived in@2# from the Abelian~diagonal! Wilson
loop might depend on the specific gauge fixing chosen,
MAG. This is not the case, as shown in this article.

The main purpose of this article is to show that the a
law of the diagonal Wilson loop in TFT is sufficient to con
clude the area law of the full non-Abelian Wilson loop
YM theory. Actually, it turns out that the string tensio
sMAG derived from the diagonal~Abelian! Wilson loop in
TFT ~studied in the previous article@2#! converges to the
string tensions of the full non-Abelian Wilson loop in YM
theory in the limit of large Wilson loopC; that is to say, the
difference between two string tensions goes to zero in
large Wilson loop limit,

s2sMAG↘0 as uarea~C!u↗`. ~1.1!

This implies Abelian and monopole dominance in the str
tension of QCD. Moreover, within the reformulation o
gauge field theories given in@2#, the result~1.1! completes
the proof of quark confinement in QCD based on the cr
rion of the area law of full non-Abelian Wilson loop, sinc
the area law for the diagonal Wilson loop, i.e.,sAbel
5sMAGÞ0, for any value of the gauge coupling (g.0) was
shown using dimensional reduction and instanton calculu
the previous article@2#. Under the MAG, we can show with
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out ad hocassumptions that dual superconductivity and
mensional reduction are exactly realized in QCD, both
which lead to monopole condensations as the mechanism
quark confinement.

This article is organized as follows. In Sec. II, we revie
the formulation of YM theory as a deformation of TFT@2#.
In Sec. III, we rederive a version@18,19# of the non-Abelian
Stokes theorem~NAST! @14–21# based on the coherent sta
representation@22–25#. This clearly shows gauge invarianc
of the Wilson loop and the role played by the magne
monopole in the calculation of the Wilson loop. The NAS
clarifies also the relationship between the monopole con
bution and the Berry phase@26–32#. In Sec. IV, the NAST is
used to estimate the expectation value of the Wilson lo
and to prove the main statement.

II. YANG-MILLS THEORY AS A DEFORMATION OF
A TFT AND DIMENSIONAL REDUCTION

In the previous article@2#, we have presented the refo
mulation of the non-Abelian gauge theory as a deformat
of a topological field theory. In this section, we summari
the essence of this reformulation for later convenience.

A. Separation of field variables

Yang-Mills theory with a gauge groupG5SU(N) on D-
dimensional space-time is described by the action (D.2)

SQCD
tot 5E dDx~LQCD@Am ,c#1LGF!, ~2.1!

LQCD@Am ,c#ª2
1

2
trG~FmnFmn!1c̄~ igmDm@A#2m!c,

~2.2!

whereLGF is the gauge-fixing term specified below and

Am~x!5 (
A51

N221

A m
A~x!TA, ~2.3!

Fmn~x!ª (
A51

N221

F mn
A ~x!TA

ª]mAn~x!2]nAm~x!2 ig@Am~x!,An~x!#, ~2.4!

Dm@A#ª]m2 igAm . ~2.5!

We adopt the following convention. The generato
TA(A51, . . . ,N221) of the Lie algebraG of the gauge
group G5SU(N) are Hermitian and satisfy@TA,TB#
5 i f ABCTC, with a normalization, tr(TATB)5 1

2 dAB. Let H
5U(1)N21 be the maximal torus group ofG andTa be the
generators in the Lie algebraG\H whereH is the Lie alge-
bra of H.
6-2
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In the following, we discuss only the case of SU(2) e
plicitly, although most of the following results can be eas
extended into SU(N),N.2. For G5SU(2), TA

5(1/2)sA(A51,2,3) with Pauli matricessA and the struc-
ture constant isf ABC5eABC. The indicesa,b, . . . denote
the off-diagonal parts of the matrix representation. The C
tan decomposition of the gauge field reads

Am~x!5 (
A51

3

A m
A~x!TA

ªam~x!T31 (
a51

2

Am
a ~x!Ta.

~2.6!

Under the gauge transformation, the gauge fieldAm(x)
transforms as

Am~x!→A m
U~x!ªU~x!Am~x!U†~x!1

i

g
U~x!]mU†~x!.

~2.7!

In order to quantize YM theory, this gauge degrees of fr
dom must be fixed by the procedure of gauge fixing. T
gauge-fixing condition is usually written asF@A#50. The
procedure of gauge fixing must be done in such a way
the gauge-fixing condition is preserved also for the gau
rotated fieldA m

U , i.e., F@AU#50. This is guaranteed by th
Faddeev-Popov~FP! ghost field. In the Becchi-Rouet-Stora
Tyutin ~BRST! formalism, both the gauge-fixing and the F
terms are automatically produced using a functionalGg f of
the field variables as

LGFª2 idBGg f@Am ,C,C̄,f#, ~2.8!

whereC,C̄ are ghost, antighost fields andf is the Lagrange
multiplier field for the gauge-fixing condition. HeredB de-
notes the nilpotent BRST transformationdB (dB

2[0):

dBAm~x!5Dm@A#C~x!ª]mC~x!2 ig@Am~x!,C~x!#,

dBC~x!5 ig
1

2
@C~x!,C~x!#,

dBC̄~x!5 if~x!,
10501
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dBf~x!50,

dBc~x!5 igC~x!c~x!, dBc̄~x!52 igC~x!c̄~x!.
~2.9!

The partition function of QCD is given by

ZQCD@J#ªE @dAm#@dC#@dC̄#@df#@dc#@dc̄#

3exp$ iStot1 iSJ%, ~2.10!

with the source term,

SJªE dDx~ trG@JmAm1JcC1Jc̄C̄1Jff#1h̄c1hc̄!.

~2.11!

To reformulate YM theory as a deformation of a topolog
cal field theory@2#, we first regard the fieldAm andc as the
gauge transformation of the fieldsVm andC:

Am~x!ªU~x!Vm~x!U†~x!1Vm~x!,

Vm~x!ª
i

g
U~x!]mU†~x!, ~2.12!

c~x!ªU~x!C~x!, ~2.13!

whereVm andC are identified with the field variables in th
perturbative sector. Furthermore, we introduce new gh
field g, antighost fieldḡ, and the multiplier fieldb which are
subject to a new BRST transformationd̃B :

d̃BVm~x!5Dm@V#g~x!ª]mg~x!2 ig@Vm~x!,g~x!#,

d̃Bg~x!5 ig
1

2
@g~x!,g~x!#,

d̃Bḡ~x!5 ib~x!,

d̃Bb~x!50,

d̃BC~x!5 igg~x!C~x!, d̃BC̄~x!52 igg~x!C̄~x!.
~2.14!

Then the partition function is rewritten as
ZQCD@J#5E @dU#@dC#@dC̄#@df#E @dVm#@dg#@dḡ #@db#@dC#@dC̄#expH i E dDx$2 idBGg f@Vm1UV mU†,C,C̄,f#%

1 i E dDx$LQCD@Vm ,C#2 i d̃BG̃g f~Vm ,g,ḡ,b!%1 iSJJ , ~2.15!

where
6-3
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SJ5E dDx$trG@Jm~Vm1UV mU†!1JcC1Jc̄C̄1Jff#1h̄UC1hC̄U†%. ~2.16!
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B. Maximal Abelian gauge

A covariant choice for gauge fixing is the Lorentz gau

F@A#ª]mA m50. ~2.17!

The most familiar choice ofGg f is

Gg f5trGF C̄S ]mA m1
a

2
f D G , ~2.18!

which yields

LGFª2 idBGg f@Am ,C,C̄,f#

5trGFf]mA m1 i C̄]mDm@A#C1
a

2
f2G . ~2.19!

The parametera is called the gauge-fixing parameter.
In the previous articles@1,2#, we examined the maxima

Abelian gauge. ForG5SU(2), the MAG isgiven by

F6@A,a#ª~]m6 igam!Am
650, ~2.20!

using the (6,3) basis,

O6
ª~O 16 iO 2!/A2. ~2.21!

The simplest choice ofGg f for the MAG in the (6,3) basis
is

Gg f5(
6

C̄7S F6@A,a#1
a

2
f6D , ~2.22!

which is equivalently rewritten in the usual basis as

Gg f5 (
a51,2

C̄aS Fa@A,a#1
a

2
faD , ~2.23!

Fa@A,a#ª~]mdab2geab3am!Am
b
ªDmab @a#Am

b .
~2.24!

In the previous article@2#, we took a slightly modified
choice,

Gg f8 52 d̄BS 1

2
Am

a Ama1 iCaC̄aD
52 d̄BS Am

1Am
21 i(

6
C6C̄7D , ~2.25!

whered̄B is the anti-BRST transformation:

d̄BAm~x!5Dm@A#C̄~x!ª]mC̄~x!2 ig@Am~x!,C̄~x!#,

d̄BC~x!5 i f̄~x!,
10501
d̄BC̄~x!5 ig
1

2
@ C̄~x!,C̄~x!#,

d̄Bf̄~x!50,

d̄Bc~x!5 ig C̄~x!c~x!, d̄Bc̄~x!52 ig C̄~x!c̄~x!,

f~x!1f̄~x!5g@C~x!,C̄~x!#, ~2.26!

wheref̄ is defined in the last equation. The BRST and an
BRST transformations have the following properties:

~dB!250, ~ d̄B!250, $dB ,d̄B%ªdBd̄B1 d̄BdB50.
~2.27!

Our choice of gauge-fixing term leads to a remarkable fo
for the gauge-fixing part,

LGF5 idBd̄BS 1

2
Am

a Ama1 iCaC̄aD
5 idBd̄BS Am

1Am
21 i(

6
C6C̄7D , ~2.28!

which is invariant under the BRST and anti-BRST transf
mations:

dBLGF505 d̄BLGF . ~2.29!

The choice ofGg f8 allows the separation of the variable
such a way

LGF52 idBGg f8 @Vm1UV mU†,C,C̄,f#

5LTFT@Vm ,C,C̄,f#1 iV m
AM m

A@U#

1
i

2
V m

AV m
BK AB@U#, ~2.30!

where we have defined

LTFTª2 idBGg f8 @Vm ,C,C̄,f#

5 idBd̄BS 1

2
Vm

a Vm
a 1 iCaC̄aD , ~2.31!

M m
A@U#ªdBd̄B@~UTAU†!aVm

a #,

K AB@U#ªdBd̄B@~UTAU†!a~UTBU†!a#, ~2.32!

where we have used that the action ofdB is trivial in the
perturbative sector:

dBVm~x!505 d̄BVm~x!. ~2.33!
6-4



ABELIAN MAGNETIC MONOPOLE DOMINANCE IN . . . PHYSICAL REVIEW D58 105016
The most basic BRST transformationdB is given by

dBU~x!5 igC~x!U~x!, d̄BU~x!5 ig C̄~x!U~x!,
~2.34!
n
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10501
which yields

dBVm~x!5Dm@V#C~x!, d̄BVm~x!5Dm@V#C̄~x!.
~2.35!
C. Deformation of topological field theory

The partition function of QCD is rewritten as

ZQCD@J#ªE @dU#@dC#@dC̄#@df#expH iSTFT@Vm ,C,C̄,f#1 iW@U;Jm,h̄,h#

1 i E dDx trG@JmVm1JcC1Jc̄C̄1Jff#J ,

eiW[U;Jm,h̄,h]
ªE @dVm#@dg#@dḡ #@db#@dC#@dC̄#expH iSpQCD@Vm ,C,g,ḡ,b#

1 i E dDxFV m
AJ m

A1
i

2
V m

AV m
BK AB@U#1trG~ h̄UC1hC̄U†!G J , ~2.36!

SpQCD@Vm ,C,g,ḡ,b#ªE dDx$LQCD@V,C#2 i d̃BG̃g f~Vm ,g,ḡ,b!%, ~2.37!

J m
A
ª~U†JmU !A1 iM m

A@U#, ~2.38!
p
in
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where@dU# is the invariant measure on the groupG. Here
W@U;Jm,h̄,h# denotes the deformation from TFT. Whe
U[1 andM m

A@U#[0[K AB@U#, W@U;Jm,h̄,h# coincides
with the generating functional of the connected correlat
function in the perturbative QCD~PQCD! with the action
SPQCD ~topological trivial sector!. The correlation functions
of the original fundamental fieldsAm ,c,c̄ are obtained by
differentiatingZQCD@J# with respect to the sourcesJm ,h̄,h.
The sector written in terms of the TFT fields (U,C,C̄,f)
should be treated nonperturbatively. The perturbative exp
sion around the TFT means integration over the new fie
(Vm ,g,ḡ,b) based on the perturbative expansion in pow
of the coupling constantg. The deformationW@U;Jm,h̄,h#
should be calculated according to ordinary perturbat
theory in the coupling constantg, keeping the variableU
untouched. An interpretation of this reformulation was giv
from the viewpoint of the background field method@33#.

D. Dimensional reduction to the NLSM

For a while, we neglect the perturbative contributionW
and consider only the TFT part. Owing to the gauge cho
of MAG, Parisi-Soulas dimensional reduction occurs
TFT. Consequently,D-dimensional TFT with the action

STFT@Vm ,C,C̄,f#

5E dDxidBd̄BS 1

2
Vm

a ~x!Vm
a ~x!1 iCa~x!C̄a~x! D

~2.39!
n

n-
s
s

n

e
r

is equivalent to the (D22)-dimensional cosetG/H nonlin-
ear sigma model with an action

SNLSM@U#52pE dD22z
1

2
Vm

a ~z!Vm
a ~z!

FVm~z!ª
i

g
U~z!]mU†~z!G

5
b

2E dD22z trG\H@]mU~z!]mU†~z!#

Fbª2p

g2 G . ~2.40!

Therefore, the TFT part of four-dimensional SU~2! non-
Abelian gauge theory is reduced to the two-dimensional O~3!
NLSM. Hence, the calculation of the diagonal Wilson loo
for the four-dimensional topological part is reduced to that
the two-dimensional O~3! NLSM or equivalent CP1 model.

In the previous article@2#, the area law decay of the ex
pectation value of the Wilson loop in four-dimensional TF
~as a topological nontrivial sector of four-dimensional Y
theory! has been deduced by summing up the instanton
anti-instanton configurations in the two-dimensional equi
lent NLSM and the linear confining static potential betwe
quark and antiquark in the TFT sector is derived. In th
article, we show that the area law of the diagonal Wils
loop in TFT is sufficient to conclude the area law of the fu
non-Abelian Wilson loop in YM theory. This completes th
6-5
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proof of quark confinement based on the criterion of
Wilson loop in four-dimensional YM theory.

III. NON-ABELIAN STOKES THEOREM

The Wilson loop operator is defined as a path-orde
product of an exponent along a closed loopC. In the Abelian
case, due to the ordinary Stokes theorem, it is rewritten
surface integral on the surfaceSwhose boundary is given b
C. In contrast to the ordinary Stokes theorem, there may
many possibilities for the non-Abelian Stokes theorem@14–
21#. In this article we treat a version of the NAST derived
Diakonov and Petrov@18,19#. This version of the NAST is
able to remove path ordering from the expression of the n
Abelian Wilson loop. Instead, we must perform the fun
tional integration. First of all, we rederive the NAST for th
gauge groupG5SU(2) using the path integral formalism i
the spin coherent state representation. Moreover, we cla
the relationship between the induced magnetic monopole
the Berry phase which appear in the NAST. Second, we g
the general NAST for any compact Lie groupG. The NAST
is manifestly gauge invariant as in the Wilson loop. In t
next section, we use it to prove the Abelian monopole do
nance in the string tension of QCD.

A. Path integral in the coherent state representation

We consider the formal expression

Z@ t,0#ªtr PtexpF2 i E
0

t

dtH~t!G , ~3.1!

wherePt is thet-ordering~or path-ordering! operator and the
‘‘Hamiltonian’’ H is specified later. We can make it we
defined by taking the limit of discretization:

Z@ t,0#5 lim
N→`,e→0

tr Pt )
n50

N21

@12 i eH~tn!#, ~3.2!

where e5t/N is the time step andtn5ne is the discrete
time. The limit is taken keepingNe5t const. For a given
Hamiltonian in the representationJ, we would like to obtain
a path integral representation of the partition function fo
spin system.

We make use of the spin coherent state to write the p
integral representation ofZ@ t,0#. Consider the group SU~2!
and an irreducible representation characterized by hig
spin J. Let u0& denote the maximally polarized stateu0&
5uJ,J& which is the highest weight state of a spin-J repre-
sentation$uJ,M &% of SU~2! whereM labels the eigenvalue o
J3 :

J2uJ,M &5J~J11!uJ,M & ~2J<M<J!,

J3uJ,M &5M uJ,M &. ~3.3!

The stateuJ,M & is an eigenvector of both the diagonal ge
eratorJ3 ~Cartan subalgebra! and the quadratic Casimir in
variant J2. Spin coherent sates are a family of spin st
10501
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$un&% which is obtained by applying the rotation operatorR
to the maximally polarized stateu0&:

un&ªR~x,u,w!uJ,J&5eiJ3weiJ2ueiJ3xuJ,J&, ~3.4!

where JA(A51,2,3) are three generators of SU~2! and
(x,w,u) are Euler angles and the unit vectorn parametrizes
the spin coherent state. We have the freedom to definx
arbitrary. This is a U~1! gauge freedom. We can eliminate
by fixing x. This is the gauge fixing for the residual gaug
group H5U(1). The states are in one-to-one correspo
dence with the~right! coset SU~2!/U~1! where U~1! is gen-
erated byJ3 ~rotation about thez axis!. In the language of
differential geometry, the coherent states form a Hermit
line bundle associated with the Hopf, or monopole, princi
bundle.

The diagonal matrix element of the generators reads

^nuJAun&5JnA, ~3.5!

where

n~x!5„n1~x!,n2~x!,n3~x!…

5„sin u~x!cosw~x!,sin u~x!sin w~x!,cosu~x!….

~3.6!

It is known @22,25# that the coherent states are not orthog
nal. The overlap, i.e., the inner product of any two coher
states, is evaluated as

^nun8&5S 11n•n8

2 D J

e2 iJF~n,n8!, ~3.7!

F~n,n8!ª2 arctanH cos@ 1
2 ~u1u8!#

cos@ 1
2 ~u2u8!#

tanS w2w8

2 D J
1x2x8, ~3.8!

wherex,x8 depend on the gauge fixing.
The coherent states span the space of states of spinJ. The

measure of integration over the group parameters is defi
by

dm~n!ª
2J11

4p
d~n•n21!d3n5

2J11

4p
sin ududw.

~3.9!

This is a Haar measure of the coset SU~2!/U~1!; in other
words, it is the area element on the two-sphereS2. The state
un& can be expanded in a complete basis of the spin-J irre-
ducible representation$uJ,M &%. The coefficients of the ex-
pansion are the representation matrix

un&5 (
M52J

1J

uJ,M &DMJ
~J! ~n!. ~3.10!

The resolution of unity is given by
6-6
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E dm~n!un&^nu5 (
M52J

1J

uJ,M &^J,M u5I , ~3.11!

whereI is an identity operator. Hence the coherent stateun& forms the complete set, although it is not orthogonal. Thus
coherent states form an overcomplete basis.

In particular, for J5 1
2 , an element U(x)PSU(2) is written as follows by introducing three local field variabl

„u(x),w(x),x(x)… corresponding to the Euler angles:

R~w,u,x!5U~x!5eiw~x!s3/2eiu~x!s2/2eix~x!s3/25S e~ i /2![w~x!1x~x!]cos
u~x!

2
2e~ i /2![w~x!2x~x!]sin

u~x!

2

e2~ i /2![w~x!2x~x!]sin
u~x!

2
e2~ i /2![w~x!1x~x!]cos

u~x!

2

D ,

uP@0,p#, wP@0,2p#, xP@0,2p#, ~3.12!
k

e-

a

an

er-
and Eq.~3.4! reads

un&5R~x,u,w!S 1

0D 5e~ i /2!x~x!S e~ i /2!w~x!cos
u~x!

2

e2~ i /2!w~x!sin
u~x!

2

D .

~3.13!

By making use of the explicit representation, we can ma
sure that the formulas~3.5!, ~3.8!, and ~3.11! hold for J
51/2.

InsertingN resolutions of unit~3.11! between the factors
in Eq. ~3.2!, we obtain

Z@ t,0#5 lim
N→`,e→0

)
n51

N

dm„n~tn!…)
t5e

t

^n~t!un~t2e!&

3@12 i eH~t!#, ~3.14!

where the ‘‘classical’’ Hamiltonian is defined by

H~t!ª
^n~t!uH~t!un~t2e!&

^n~t!un~t2e!&
, ~3.15!

and the periodic boundary condition is adopted:

n~ t !5n~0!. ~3.16!

In the limit N→`, we replace the differences by the corr
sponding derivatives:

n~t1e!2n~t!→eṅ~t!1O~e2!. ~3.17!

For a more rigorous treatment, see@22,23#.
Using Eq. ~3.8!, the overlap between coherent states

nearby steps to leading order ine reads
10501
e

t

)
t5e

t

^n~t1e!un~t!&5expH 2 iJ(
t5e

t

F„n~t1e!,n~t!…

1J(
t5e

t

lnF11n~t!•n~t2e!

2 G J .

~3.18!

Making use of Eq.~3.8!, we obtain

F„n~t1e!,n~t!…>e@ẇ~t!cosu~t!1ẋ~t!#, ~3.19!

whereas Eq.~3.17! leads to

lnF11n~t!•n~t2e!

2 G> lnF12
e2

4
~]tn!2G>2

e2

4
~]tn!2.

~3.20!

Within the same approximation, the classical Hamiltoni
can be evaluated at equal times:

H~t!→^n~t!uH~t!un~t!&1O~e!. ~3.21!

By exponentiating the Hamiltonian and discarding high
order terms ine, the formal continuum limit of Eq.~3.14! is
obtained:

Z@ t,0#5E @dmC~n!#exp~ iS@n# !, ~3.22!

S@n#ª2E
0

t

dtH@n#2g~ t !1
J

4
eE

0

t

dt~]tn!2,

~3.23!

H@n#ª^n~t!uH~t!un~t!&, ~3.24!

g~ t !ªJE
0

t

dt@ẇ~t!cosu~t!1ẋ~t!#, ~3.25!

where
6-7
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@dmC~n!#ª lim
N→`,e→0

)
n51

N

dm„n~tn!…. ~3.26!

The first term, the Hamiltonian, is specified belo
Though the last term inS@n# vanishes in the continuum limi
e→0, it plays the role of a regularization. Without it, th
‘‘action’’ S@n# has no ‘‘kinetic term’’ for the fieldn.

The second termg(t) depends on the trajectory ofn(t)
on the sphere and not on its explicit time dependence.
geometric. The phaseg(t) is called theBerry phaseor geo-
metric phaseof the spin history@26,27#. The Berry phase
measures the area enclosed by the pathn(t) on the unit
sphere. The area increment is a spherical triangle with ve
ces atn(t), n(t1e), and (0,0,1) whose area is given by

vª@12cosu~t!#dw~t!. ~3.27!

Hence the total area enclosed by the closed orbit is equ

R
G
vªE

0

t

dt@12cosu~t!#ẇ~t!. ~3.28!

The Berry phase

g~ t !5JV5J R
G
v54pJQ ~3.29!

is expressed in a gauge-invariant form.
We can introduce a vector potential

VªE
0

t

dtA~t!•
d

dt
n~t!, ~3.30!

producing a unit magnetic monopole whose line integ
over the orbitn(t) is equal to the solid angleV subtended
by that orbit. For example, in the domain

USªS22South Pole5$~u,w!PS2;uÞp%, ~3.31!

UNªS22North Pole5$~u,w!PS2;uÞ0%,
~3.32!

UMªS22Meridian5$~u,w!PS2;uÞ0,p,wÞ0%,
~3.33!

the vector potential is, respectively, given by

ASª2
12cosu

r sin u
ŵ52S 2

y

r ~r 1z!
,

x

r ~r 1z!
,0D ,

ANª
11cosu

r sin u
ŵ5S 2

y

r ~r 2z!
,

x

r ~r 2z!
,0D ,

AMª
cosu

r sin u
ŵ5S 2

yz

r ~r 22z2!
,

xz

r ~r 22z2!
,0D , ~3.34!

where ŵ is a unit vector in the direction ofw. The corre-
sponding connection one-formv is given~for a choice ofx)
by
10501
is

ti-

to

l

vSªJ~2cosu11!dw52J sin2
u

2
dw ~x52w!,

vNªJ~2cosu21!dw522J cos2
u

2
dw ~x51w!,

vMª2J cosudw ~x50!. ~3.35!

Note thatvN andvS are interrelated by the gauge transfo
mation

vS5vN12Jdw. ~3.36!

The connection one-form is related to the curvature tw
form by the ordinary Stokes theorem

R
G
v5E

S
dv, G5]S. ~3.37!

The curvature two-formdv does not depend on the choice
the connection one-form~3.35!, since

dv5J sin udu`dw. ~3.38!

The Berry phase measures the flux of magnetic monop
through the areaSof S2 bounded by the trajectoryG of n(t).

Perform the contour integral along theu5const line for
Eq. ~3.36!:

R
C
vS5 R

C
vN12J R

C
dw5 R

C
vN14pJ. ~3.39!

This implies

expS i R
C
vSD 5expS i R

C
vND exp~ i4pJ! ~3.40!

andei4pJ51, i.e., 4pJ52pn. Thus the quantization of the
spin J5n/2 is obtained as a topological invariant. Incide
tally, the connection one-formvS ,vN is written using the
unit vector as

v~x!5J
n1~x!dn2~x!2n2~x!dn1~x!

16n3~x!
. ~3.41!

B. Non-Abelian Stokes theorem forG5SU„2…

Now we apply the above result to evaluate the Wils
loop operator. We consider the Hamiltonian

H~ t !5A~ t !ªAm~x!
dxm

dt
5A A~ t !TA5A m

A~x!TA
dxm

dt
,

~3.42!

whereA(t) is the tangent component of the YM field alon
the loop~see the next subsection for a more precise defi
tion!. Using Eq.~3.5!, we obtain

H@n#5 iJA A~ t !nA~ t !5J tr@s3UAU†# ~3.43!

and
6-8
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E
0

t

dtH@n#5JE
0

t

dt tr@s3UAU†#, ~3.44!

where s3 is the third Pauli matrix and we have used t
adjoint orbit representation forn:

nA~x!TA5U†~x!T3U~x!. ~3.45!

Using Eq.~3.12!, we can see that the unit vectorn(x) de-
fined by Eq.~3.45! is equal to Eq.~3.6!.

On the other hand, using Eq.~3.12! the Berry phase is
rewritten as

g~ t !5JE
0

t

dt trS s3iU
d

dt
U†D , ~3.46!
op
o

th

he

10501
where the functionalg(t) denotes the phase acquired by
spin that aligns with an adiabatically rotating external fieldAW
which is parallel ton(t). Finally we have shown

Z@ t,0#5tr PCexpF2 i R
C
dxmAm~x!G

5E @dm~n!#exp~ iS@n# !, ~3.47!

S@n#ªJE
0

t

dt trH s3S UAU†1 iU
d

dt
U†D J .

~3.48!

For the gauge groupG5SU(2), we have obtained th
non-Abelian Wilson loop in the path integral representatio
WC@A#ªtrFP expS i R
C
A m

A~x!TAdxmD G5E @dmC~n!#expS iJ R
C
dxm trH s3FUAm~x!U†1

i

g
U]mU†G J D

5E @dmC~n!#expS iJ R dt trH s3FUA~ t !U†1
i

g
U

d

dt
U†G J D , ~3.49!
the

h

whereJ is the spin of the representation of the Wilson lo
considered. This is a special case of the NAST of Diakon
and Petrov which will be explained in the next section.

C. Non-Abelian Stokes theorem in the general case

We give the results of Diakonov and Petrov@18,19# in the
most general form in the following.

Definition. Let C be a given curvexm5xm(t) param-
etrized bytP@ t1,t2# where the values of the parametert1 ,t2
correspond to the end points of the curve. We define
path-ordered exponent~POE! of the YM field Am(x)
ªA m

A(x)TA by

Wa,b
C ~ t2 ,t1!ªFP expS i E

x~ t1!

x~ t2!

A m
A~x!TAdxmD G

a,b

.

~3.50!

Introducing the tangent component of the YM field along t
loop,

A~ t !ªAm~x!
dxm

dt
5A m

A~x!TA
dxm

dt
, ~3.51!
v

e

we can write the POE as

Wa,b
C ~ t2 ,t1!ªFP expS i E

t1

t2
A~ t !dtD G

a,b

. ~3.52!

The POE~3.50! is defined by the power-series expansion

Wa,b
C ~ t2 ,t1!5 (

n50

` E dt1•••E dtn@ iA~t1!••• iA~tn!#a,b ,

~3.53!

wheret2>t1>•••>tn>t1 .
Theorem@18,19#. Consider the non-Abelian groupG and

the maximal torus groupH of G. DefineTA to be the gen-
erators of the representationJ: TATA5J(J11). Let Hi( i
51, . . . ,r ) be the generators of the Cartan subalgebra of
Lie algebraG of G and ther-dimensional vectorm be the
highest weight of the representationJ with r being the rank
of the gauge groupG. Then the POE is written in the pat
integral form
6-9
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Wa,b
C ~ t2 ,t1!5E dU1E dU2 (

J8,M8
~2J811!DaM8

~J8!
~U2

†!DM8b
~J8!

~U1!

3E
U~ t1!5U1

U~ t2!5U2
@dU~ t !#expS iJE

x~ t1!

x~ t2!

dxm trH miHiFUAm~x!U†1
i

g
U]mU†G J D

5E dU1E dU2 (
J8,M8

~2J811!DaM8
~J8!

~U2
†!DM8b

~J8!
~U1!

3E
U~ t1!5U1

U~ t2!5U2
@dU~ t !#expS iJE

t1

t2
dt trH miHiFUA~ t !U†1

i

g
U

d

dt
U†G J D . ~3.54!

HeredU is the invariant Haar measure onG/H andDMM8
T (U) are the WignerD function which expresses finite rotation in th

representationJ:

R~U !uJ,M &5 (
M852J

1J

uJ,M 8&DM8M
~J!

~U !, DMM8
~J!

~U !ª^J,M uR~U !uJ,M 8&. ~3.55!

In particular, in the spinor representationDMM8
1/2 (U)5UMM8 .

According to the above theorem, the POE is written as a functional integral over all gauge transformationsU(t) of the
given potentialA(t), projected onto the matrix representationa,b. From the above theorem, a version of the NAST is giv
as follows. The Wilson loop, i.e., the trace of POE along a closed loopC, has the form

WC@A#ªtrFP expS i R
C
A m

A~x!TAdxmD G
5E @dU~ t !#expS iJ R

C
dxm trH miHiFUAm~x!U†1

i

g
U]mU†G J D

5E @dU~ t !#expS iJ R dt trH miHiFUA~ t !U†1
i

g
U

d

dt
U†G J D . ~3.56!
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For G5SU(2), this reduces to Eq.~3.49!. The formula is
manifestly gauge invariant, as is the Wilson loop itself.

IV. ABELIAN AND MONOPOLE DOMINANCE

Now we show that the Abelian and monopole dominan
is deduced from the NAST in the formulation@2# of YM
theory as a deformation of MAG TFT. Making use of th
NAST, we will clarify the meaning of Abelian dominanc
and monopole dominance in low-energy physics in QCD

The full non-Abelian Wilson loop is defined as the pat
ordered exponent. In the version of the NAST derived in
previous section, the path ordering has been removed f
the expression. Instead, we must average over the Haar
sure onG/H. The removal of path ordering is very welcom
since it is rather difficult to treat the path ordering. As
result, there appears the field tensor introduced by ’t Ho
and Polyakov in connection with magnetic monopoles. T
indicates an intimate connection between the magn
monopole and quark confinement. In what follows, expli
calculations are performed only forG5SU(2). However,
the generalization toG5SU(N) is straightforward.
10501
e

e
m
ea-

ft
s
ic
t

A. Magnetic monopole in YM theory

The nonperturbative study of YM theory in the MAG
goes as follows; see@1# for more details. First of all, gauge
field configurations are constructed by performing the lo
gauge transformation~2.7! such that the gauge-rotated fie
A m

U(x) minimizes the functionalR@AU# where

R@A#ªE dDx trG\HF1

2
Am~x!Am~x!G . ~4.1!

Here the trace is taken over the Lie algebraG\H. In the
differential form, this implies thatA m

U(x) satisfies the gauge
fixing condition~2.20!. Next, the Abelian~or diagonal! field
am

U and its field strengthf rs are extracted from the non
Abelian gauge field according to

am
U~x!ªtr@T3A m

U~x!#, ~4.2!

f mn
U ~x!ª]man

U~x!2]nam
U~x!. ~4.3!

The magnetic currentkm is defined from the diagonal part b
6-10
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km~x!5]n f̃ mn
U ~x!, f̃ mn~x!ª

1

2
emnrs f rs~x!. ~4.4!

The magnetic charge is calculated from the magnetic c
rent as

gm~V~3!!5E
V~3!

d3smkm

5E
V~3!

d3sm]n f̃ mn
V 5E

S~2!5]V~3!
d2smn f̃ mn

V .

~4.5!

In the usual Abelian gauge theory~i.e., Maxwell theory!, the
magnetic monopole current vanishes identically due to
Bianchi identity,

emnrs]m f rs~x![0, f mn~x!ª]man~x!2]nam~x!,
~4.6!

as long as the field variableam(x) is nonsingular. In other
words, in order to obtain a nontrivial magnetic current
Abelian gauge theory, we need to introduce the singula
into the Abelian gauge theory. This fact is well known fro
the study of Dirac magnetic monopole. In the non-Abeli
gauge theory, the singularity is produced by partially fixi
the gaugeG/H and leaving the Abelian subgroupH of the
original non-Abelian gauge groupG unbroken. The partia
gauge fixing leads to a singularity which is sufficient to ge
erate the magnetic monopole. This is an idea of Abel
projection by ’t Hooft @4#. The MAG leaves the maxima
torus groupH5U(1)N21 unbroken. This is why YM theory
can have magnetic monopoles even in the absence o
Higgs scalar field. It is well known that YM theory in Eu
clidean space has instanton solutions, although pure
theory does not have any nontrivial classical~stable! soliton
solution in four-dimensional Minkowski spacetime. It is st
in dispute whether the instanton configuration alone can p
duce sufficient string tension for quark confinement. The
lationship between the magnetic monopole and instanton
been discussed in@1,2#; see also references cited therein.

Substituting Eq.~2.7! into Eq. ~4.3!, we have

am
U~x!ªtr@T3A m

U~x!#5nA~x!A m
A~x!1am

V~x!, ~4.7!

where we have used Eq.~3.45! and defined

am
V~x!ªVm

3 ~x!ªtr@T3Vm~x!#, Vm~x!ª
i

g
U~x!]mU†~x!.

~4.8!

Note that Eq.~4.7! has the same form as the argument
the exponent in the NAST~3.49!. Therefore the NAST
~3.49! for the Wilson loop is rewritten as

WC@A#5E @dmC~n!#expS iJ R
C
dxmam

U~x! D , ~4.9!

and the expectation value of the the Wilson loop is given
10501
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e
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^WC@A#&Y M5E @dmC~n!#K expS iJ R
C
dxmam

U~x! D L
Y M

.

~4.10!

In the previous article@2# we have calculated the expec
tation value

^WC@aV#&Y M5K expS iJ R
C
dxmam

V~x! D L
Y M

~4.11!

of the diagonal Wilson loop:

WC@aV#5expS iJ R
C
dxmam

V~x! D , am
V~x!ªVm

3 ~x!.

~4.12!

Now, the difference between the Abelian~diagonal! Wilson
loop ~4.12! and the full non-Abelian Wilson loop~4.9! has
become clear. The diagonal Wilson loop is obtained from
full non-Abelian Wilson loop by neglecting thenA(x)A m

A(x)
part and the functional integral*@dm(n)# along the loopC.
Therefore, the deviation of the diagonal Wilson loop fro
the full Wilson loop can be determined by estimating t
effect fromnA(x)V m

A(x).
If the gauge fieldAm(x) is not singular, the first piece

U(x)Am(x)U†(x) of A m
U(x) is nonsingular and does no

give rise to magnetic current. On the contrary, the sec
pieceVm(x) does give the nonvanishing magnetic monop
current~see, e.g.,@1#!. According to Monte Carlo simulations
on the lattice@10#, the magnetic monopole part gives th
most dominant contribution in various quantities characte
ing the low-energy physics of QCD, e.g., string tension, c
ral condensate, topological charge, etc. This phenomeno
called the magnetic monopole dominance.

Therefore, it is expected that the most important degr
of freedom for the low-energy physics comes from the s
ond piece Vm(x) of A m

U(x) rather than the first piece
U(x)Am(x)U†(x). Therefore, we have decomposed Y
theory into two parts, i.e., the contribution from the pa
Vm(x) and the remaining part in Sec. II.

From this viewpoint, we recall the calculation of the Ab
lian ~diagonal! field strength in four-dimensional YM theory
The identity@1# for Vm ,

]mVn~x!2]nVm~x!

5 ig@Vm~x!,Vn~x!#1
i

g
U~x!@]m ,]n#U†~x!, ~4.13!

leads to

f mn
V ~x!ª]mVn

3~x!2]nVm
3 ~x!

5Cmn
[V]~x!1

i

g
„U~x!@]m ,]n#U†~x!…~3!,

~4.14!

where
6-11
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Cmn
[V]

ª~ ig@Vm ,Vn#!~3!

5geab3Vm
a Vn

b5 ig~Vm
1Vn

22Vm
2Vn

1! ~4.15!

5
1

g
sin u~]mu]nw2]mw]nu!. ~4.16!

Note that Cmn
[V] is generated from the off-diagonal gluo

fields Vm
1 ,Vm

2 .
We can identify the first and second parts of right-ha

side ~RHS! of Eq. ~4.14! with the magnetic monopole an
the Dirac string contributions, respectively. This is clea
seen by writing Eq.~4.14! explicitly using Euler angles:

f mn
V 52

1

g
sin u~]mu]nw2]mw]nu!

1
1

g
~@]m ,]n#x1cosu@]m ,]n#w!. ~4.17!

The magnetic charge is given by

gm~V~3!!5
1

2gES~2!
d2srsemnrssin u~]mu]nw2]mw]nu!.

~4.18!

The magnetic charge~4.18! is quantized@1#, since the inte-
grand is the Jacobian fromS2 to S2 and

P2„SU~2!/U~1!…5P2~S2!5Z. ~4.19!

Then the magnetic chargegm satisfies the Dirac quantizatio
condition

gm5
2pn

g
or ggm52pn ~nPZ!. ~4.20!

We can give the second definition of the magnetic chargegm
as the contribution from the Dirac string:

gDS~V~3!!5
1

2gES~2!
d2srsemnrs

3~@]m ,]n#x1cosu@]m ,]n#w!. ~4.21!

If we choosex52w (x51w) using residual U~1! gauge
invariance, then the Dirac string appears on the nega
~positive! Z axis, i.e.,u5p (u50). In this case, the surfac
integral ~4.21! reduces to a line integral around the string

gDS~V~3!!5
1

2gES~2!
dsmnemnrs@]r ,]s#w~x!

52
1

2gES~1!
dsmnremnrs]rw~x!. ~4.22!

This gives the same result~4.18! but with a minus sign,
which is inconsistent with

P1„U~1!…5Z. ~4.23!
10501
d

e

Actually, the two descriptions~4.18! and ~4.21! are equiva-
lent and the above argument can be generalized to a m
general gauge group, as suggested from

P2„SU~N!/U~1!N21
…5P1„U~1!N21

…5ZN21.
~4.24!

Equation~4.13! implies

F mn
U ~x!ª]mVn~x!2]nVm~x!2 ig@Vm~x!,Vn~x!#

[
i

g
U~x!@]m ,]n#U†~x!, ~4.25!

if the contribution fromU(x)Am(x)U†(x) is completely ne-
glected. Here the RHS is identified with the contributio
from the Dirac string. The existence of Dirac string in th
RHS of Eq. ~4.25! reflects the fact that the field streng
F mn

U (x) does contain the magnetic monopole contributio
Thus we have obtained a gauge theory with magnetic mo
poles starting from YM theory~without any scalar field!.
Therefore, the MAG enables us to deduce the magn
monopole without introducing the scalar field, in contrast
the ’t Hooft–Polyakov monopole@34,35#.

B. Magnetic monopole and non-Abelian Stokes theorem

We show that the magnetic monopole does appear in
gauge-invariant Wilson loop of YM theory through th
NAST. The NAST gives a gauge-invariant description of t
magnetic monopole in YM theory.

The second term in the exponent~3.49! can be rewritten
as a surface integral inside the closed contour of the Wil
loop. The parametrization of the SU~2! matrix U by the Euler
angles leads to

Vm
3 ~x!ªtrS s3

i

g
U~x!]mU†~x! D

5
1

g
@]mx~x!1cosu~x!]mw~x!#. ~4.26!

Then the second term in the exponent of Eq.~3.49! reads

iJ R
C
dxmVm

3 ~x!5 iJ R
C
dxmtrS s3

i

g
U~x!]mU†~x! D

5 i
J

g R
C
dxm@]mx~x!1cosu~x!]mw~x!#.

~4.27!

This is rewritten as a surface integral using the standard A
lian Stokes theorem:

iJ R
C
dxm Vm

3 ~x!5 iJE
S
d2z emn~]mVn

32]nVm
3 !

5 iJE
S
d2z emn f mn

V . ~4.28!
6-12
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By making use of a unit vectorn, this is further rewritten as
@2#

iJ R
C
dxmVm

3 ~x!5 i
J

gES
d2z eABCemnnA]mnB]nnC

5 i
J

gES
d2z emnn•~]mn3]nn!

5 i
8pJ

g
QS , ~4.29!

whereQ is the topological charge of then field @2# in the
areaS:

QSª
1

8pES
d2z emnn•~]mn3]nn!

5
1

4pES
d2smn n•~]mn3]nn!. ~4.30!

On the other hand, the first term in the exponent~3.49! is
rewritten as

iJ R dxm tr$s3@UVm~x!U†#%

5 iJ R dxm V m
A~x!nA~x!5 iJ R dt V A~ t !nA~ t !.

~4.31!

Thus we obtain another version of the NAST:

WC@A#5E @dm~n!#expH iJF R
C
dxm nA~x!V m

A~x!

1
1

gES
d2smnn•~]mn3]nn!G J

5E @dm~n!#expH iJF R
C
dt nA~ t !V A~ t !

1
1

gES
d2smnn•~]mn3]nn!G J . ~4.32!

Furthermore, the first term in the exponent is rewritten

iJ R
C
dxm nA~x!V m

A~x!

5 iJE
S
d2smn

1

2
@]m„n

A~x!V n
A~x!…2]n„n

A~x!V m
A~x!…#.

~4.33!

Therefore, a manifestly gauge-invariant formula of the no
Abelian Wilson loop has been obtained@18,19#,
10501
s

-

WC@A#5E @dm~n!#expH i
J

2ES
d2smnGmn~x!J ,

~4.34!

with the gauge-invariant tensor field@36#

Gmn~x!ª]m„n
A~x!V n

A~x!…2]n„n
A~x!V m

A~x!…

2
1

g
n~x!•@]mn~x!3]nn~x!#. ~4.35!

This is nothing but the ’t Hooft tensor@34–36# if we identify
nA with the direction of the elementary Higgs field:

f̂A
ªfA/ufu, ufuªAfAfA. ~4.36!

The tensor~4.35! gives a SU~2! gauge-invariant definition
for the electromagnetic field tensor, since using the covar
derivative,

Dm
AB
ª]mdAB2geABCA m

C , ~4.37!

it is rewritten as

Gmn~x!ªnA~x!F mn
A ~x!2

1

g
eABCnA~x!„Dmn~x!…B„Dnn~x!…C

~4.38!

5trFn~x!Fmn~x!2
1

g
n~x!„Dmn~x!…„Dnn~x!…G ,

~4.39!

where we have used

@sA,sB#52i eABCsC, tr~sAsB!52dAB,

tr~sAsBsC!52i eABC. ~4.40!

Note that both terms in Eq.~4.39! are gauge invariant, be
cause under the gauge transformationn(x), Dmn(x), and
Fmn(x) transform as the adjoint representation,

n~x!→U~x!n~x!U†~x!,

Dmn~x!→U~x!Dmn~x!U†~x!,

Fmn~x!→U~x!Fmn~x!U†~x!. ~4.41!

The Wilson loop is the evolution operator for spinJn in a
time-dependent ‘‘external~magnetic! field’’ Vm(t), and the
Wess-Zumino term

SWZªE d2smnn•~]mn3]nn! ~4.42!

fixes the representation to which the spin belongs. The n
Abelian Wilson loop measures the flux of magnetic mon
pole through the areaSenclosed by the Wilson loopC where
the magnetic monopole is generated from the topolog
nontrivial configuration ofn(x).
6-13



so
in

t,
it

t

as

KEI-ICHI KONDO PHYSICAL REVIEW D 58 105016
Unlike the usual electromagnetic field tensor, the ten
~4.35! has a dual with nonzero divergence, i.e., nonvanish
magnetic monopole current:

km5
1

2
emnrs]nGrs

5
1

2g
emnrs]nn•~]rn3]sn!

5
1

2g
emnrs]n@n•~]rn3]sn!#. ~4.43!

The monopole currentkm is a conserved topological curren
]mkm[0. Although thekm is written as a total divergence,
can give nonvanishing magnetic charge~4.18!:
10501
r
g gm5E

V~3!
d3x k05

2pn

g
. ~4.44!

In the region wheren5(0,0,1), the ’t Hooft tensor reads

Gmn~x!5]mV n
3~x!2]nV m

3 ~x!, ~4.45!

and the magnetic current vanishes identically,km[0.

C. Abelian magnetic monopole dominance

Note that we can replaceAm @appearing in the argumen
of the exponent in the NAST~3.49!# with Vm which has been
defined in the reformulation of YM theory. This is shown
follows. If Am(x) is the gauge rotation ofVm(x) by Ũ(x),
Am~x!ªŨ~x!Vm~x!Ũ†~x!1
i

g
Ũ~x!]mŨ†~x!5V m

Ũ~x!, ~4.46!

then

A m
U~x!ªU~x!Am~x!U†~x!1

i

g
U~x!]mU†~x!5„U~x!Ũ~x!…Vm~x!„U~x!Ũ~x!…†1

i

g
„U~x!Ũ~x!…]m„U~x!Ũ~x!…†5V m

UŨ~x!.

~4.47!

As the new matrixUŨ is also an element ofG, we can absorb this change into the invariant Haar measure@dmC(n)#.
Therefore we can write the NAST~4.48! as

WC@A#ªtrFP expS i R
C
A m

A~x!TAdxmD G
5E @dmC~n!#expS iJ R

C
dxm trH s3FUVm~x!U†1

i

g
U]mU†G J D

5E @dmC~n!#expS iJ R dt trH s3FUV~ t !U†1
i

g
U

d

dt
U†G J D , ~4.48!

and the expectation value of the Wilson loop reads

^WC@A#&Y M5E dmC~n!K exp iJF R
C
dxm nA~x!V m

A~x!1
1

gES
d2z emnn•~]mn3]nn!G L , ~4.49!

where the expectation value is written according to Eq.~2.36! as

K expH iJF R
C
dxm nA~x!V m

A~x!1
1

gES
d2z emnn•~]mn3]nn!G J L

Y M

5ZY M
21 E @dU#@dC#@dC̄#@df#eiSTFT[Vm ,C,C̄,f]expS i

J

gES
d2z emnn•~]mn3]nn! D E @dVm#@dg#@dḡ #@db#

3exp~ iSpY M@V,g,ḡ,b#!expF i E dDxS iV m
AM m

A@U#1
i

2
V m

AV m
BK AB@U# D GexpS iJ R

C
dxmnA~x!V m

A~x! D . ~4.50!

The denominator, i.e., the partition functionZY M , is equal to
6-14
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ZY M5K K expF i E dDxS iV m
AM m

A@U#1
i

2
V m

AV m
BK AB@U# D G L

pY M

ZpY ML
TFT

ZTFT , ~4.51!

whereZpY M is the partition function of perturbative sector of YM theory,

ZpY MªE @dVm#@dg#@dḡ #@db#exp~ iSpY M@V,g,ḡ,b#!, ~4.52!

andZTFT is the partition function of TFT,

ZTFTªE @dU#@dC#@dC̄#@df#exp~ iSTFT@Vm ,C,C̄,f#!. ~4.53!

The numerator is equal to

K K expF i E dDxS iV m
AM m

A@U#1
i

2
V m

AV m
BK AB@U# D GexpS iJ R

C
dxmnA~x!V m

A~x! D L
pY M

ZpY M

3expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

ZTFT . ~4.54!

The expectation value of the Wilson loop is given by the ratio~4.54!/~4.51!. In Eq. ~4.51!, the argument of the exponentia
includingM m

A@U# andK AB@U#, Eq. ~2.32!, is written in the BRST exact form

expF i E dDxS iV m
AM m

A@U#1
i

2
V m

AV m
BK AB@U# D G5exp~ i $QB ,* %!. ~4.55!

Expanding this exponential and using the fact that

QB
†5QB , QBu0&TFT50, QB

250, ~4.56!

we see that the partition function in theabsence of external sourceshas the decomposition

ZY M5ZpY MZTFT . ~4.57!

Thus the expectation value of the Wilson loop is written as

^WC@A#&Y M5K K expF i E dDxS iV m
AM m

A@U#1
i

2
V m

AV m
BK AB@U# D GexpS iJ R

C
dxmnA~x!V m

A~x! D L
pY M

3expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

. ~4.58!

By repeating similar arguments, the Wilson loop is cast into the form

^WC@A#&Y M5K K expS iJ R
C
dxmnA~x!V m

A~x! D L
pY M

expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

. ~4.59!

The perturbative part is expanded into

K expS iJ R
C
dxmnA~x!V m

A~x! D L
pY M

512
1

2
J2 R

C
dxm R

C
dynnA~x!nB~y!^V m

A~x!V n
B~y!&pY M1O~g4!, ~4.60!

where we have used̂V m
A(x)&pY M50. Then we can write
105016-15
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^WC@A#&5K expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

3F 12
1

2
J2 R

C
dxm R

C
dyn^V m

A~x!V n
B~y!&pY M

K nA~x!nB~y!expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

K expS i
J

gES
d2z emnn•~]mn3]nn! D L

TFT

1O~g4!G .

~4.61!

Owing to the dimensional reduction, the expectation value of the diagonal Wilson loop^exp@i(J/g)*Sd
2z emnn•(]mn

3]nn)] &TFT on the RHS of Eq.~4.61! in the four-dimensional TFT~2.39! is reduced to that in the two-dimensional NLS
~2.40!, whenC is planar:

^WC@aV#&TFT4
5K expS i

J

gES
d2z emnn•~]mn3]nn! D L

TFT4

5K expS i
J

gES
d2z emnn•~]mn3]nn! D L

NLSM2

. ~4.62!
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The quantityQS@n# defined by

QS@n#ª
1

8pES
d2z emnn•~]mn3]nn!5n1

in2n2
in ,

~4.63!

is an integer, and counts the instanton–anti-instanton ch
(n1

in2n2
in) inside the Wilson loop. By summing up the in

stanton and anti-instanton contributions in the tw
dimensional NLSM, we have obtained the area law for
diagonal Wilson loop in the previous article@2#:

^WC@aV#&TFT4
5^ei ~J/g!8pQS[n]&NLSM2

>e2sAbelA~C!,
~4.64!

whereA(C) is the area enclosed by the Wilson loopC. We
call the coefficient in the area decaysAbel the Abelian string
tension. The naive instanton calculus based on the dilute
stanton gas approximation@2# leads to

sAbel52Be2S1F12cosS 2pJ

g D G , S15
4p2

g2 , ~4.65!

where B is a constant with the mass-squared dimensionB
;mA

2 andS154p2/g2 is the action for one instanton. Her
we have neglected to write the perimeter decay part wh
can be generated by instantons and anti-instantons loc
just on the perimeter of the Wilson loop.

Now we proceed to estimate the remaining terms. To s
plify the perturbation calculation on the RHS of Eq.~4.61!,
we take the Feynman gauge in the perturbative sector w
the propagator reads

^V m
A~x!V n

B~y!&pY M5dABdmnG~x,y!, ~4.66!

G~x,y!5E d4p

~2p!4eip~x2y!
g2

p25
g2

4p2

1

ux2yu2 .

~4.67!
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Then we obtain

^WC@A#&Y M5^ei ~J/g!8pQS[n]&NLSM2

3F 12
1

2
J2 R

C
dxm R

C
dymG~x,y!

3
^n~x!•n~y!ei ~J/g!8pQS[n]&NLSM2

^ei ~J/g!8pQS[n]&NLSM2

1O~g4!G ,

~4.68!

where we have used dimensional reduction@2# for the corre-
lation function,

^n~x!•n~y!ei ~J/g!8pQS[n]&TFT4

5^n~x!•n~y!ei ~J/g!8pQS[n]&NLSM2
,

x,yPC5]S,R2, ~4.69!

for the planar Wilson loopC.
A naive estimate for the expectation value in the NLSM2

is given by considering the instanton contribution. The
stanton solution in the NLSM is given by the field config
ration n such thatn approaches the same valuen(0) at infin-
ity ~see@2#!:

n~x!→n~0! ~ uxu→`!, ~4.70!

wheren(0) is any unit vector,n(0)
•n(0)51. Therefore, for a

large non-intersecting Wilson loopC,

n~x!•n~y!→n~0!
•n~0!51 ~x,yPC5]S!. ~4.71!

Here the configurationn(0)[(0,0,1) corresponds to the to
pological trivial caseQ50. A precise estimate of Eq.~4.69!
can be done using the largeN expansion for the O(N)
6-16



q.
o

ti
to
se

ie

g

r a

a
e-
di

G
ll

the
e

n
i-
AG
on
at-

the

e

t
pe-

-
n
y

rts
as

d

ge

ntri-
an

nd
cal

nd
y
al
-

i-

lies
e-
to-

as

ABELIAN MAGNETIC MONOPOLE DOMINANCE IN . . . PHYSICAL REVIEW D58 105016
NLSM. In fact, for not so largeux2yu, the two-point corre-
lation function behaves as~see, e.g.,@37#!

^n~x!•n~y!&NLSM2
5F12

N22

2p

1

b
ln

ux2yu
e G ~N21!/~N22!

,

~4.72!

wheree is a short distance cutoff.
It turns out that the contribution of the last term in E

~4.68! gives the perimeter law correction to the area law. F
largeT@R@1, we have~see the Appendix and@38–43#!

2
1

2 R
C
dxm R

C
dymG~x,y!

>2
g2

2p2

T1R

e
1

g2

4p

T

R
1

g2

2p2 ln
R

e
. ~4.73!

It should be remarked that the perimeter decay in Eq.~4.73!
comes from the contribution of the coincident point,x5y
~after regularization,ux2yu>e!1; see the Appendix!. Simi-
larly we can evaluate the higher-order terms which give
running coupling constant consistent with the asympto
freedom. These contributions from the perturbative sec
should be compared with the conventional calculation ba
on perturbative QCD@38#.

Exponentiating the contributions from the power-ser
expansion@38#, we obtain, forg small,

^WC@A#&Y M>^ei ~J/g!8pQ&NLSM2
e2Cg2~R1T!1~g2/4p! T/R 1C8

5e2sAbelRT2Cg2~R1T!1~g2/4p! T/R 1C8, ~4.74!

whereC and C8 are constants. The full non-Abelian strin
tension is defined by

sª2 lim
A~C!→`

1

A~C!
ln^WC@A#&Y M , ~4.75!

whereA(C) is the area enclosed by the Wilson loop. Fo
rectangular loop with side lengthsR andT, A(C)5RT. The
above result shows that the Abelian~diagonal! Wilson loop
obeys the same area law as the non-Abelian Wilson loop
that the area law of the full non-Abelian Wilson loop is d
duced from the magnetic monopole contribution for the
agonal Wilson loop,̂ei (J/g)8pQ&TFT . This implies monopole
dominance in the string tension of QCD under the MA
The deviation of the Abelian string tension from the fu
non-Abelian string tension is given by

s2sAbel52 lim
A~C!→`

1

A~C!
ln^WC@A#&Y M

1 lim
A~C!→`

1

A~C!
ln^ei ~J/g!8pQ&TFT

5 lim
R,T→`

Cg2~R1T!2
g2

4p

T

R
2C8

RT
50.

~4.76!
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Hence the deviation of the string tension comes from
finite size effect of the Wilson loop. For a sufficiently larg
~non-intersecting planar! Wilson loop,s.sAbel and the off-
diagonal contribution to the string tension vanishes asR,T
→`. In the large Wilson loop limitR,T→`, the Abelian
string tension coincides exactly with the full non-Abelia
string tension,s5sAbel . Thus Abelian and monopole dom
nance for the string tension can be proved under the M
according to the formulation of YM theory as a deformati
of TFT. It is rather straightforward to extend the above str
egy to the case,G5SU(N),N>3.

It should be remarked that, if the massive decay of
correlation function ~4.72! for large separationux2yu
@1 (x,yPC) is incorporated in the above evaluation, th
Coulomb part (g2/4p)T/R in Eq. ~4.73! will be replaced by
the Yukawa part (g2/4p)(T/R)e2mR, wherem is the mass
of the n field of the NLSM. However, this effect does no
change the conclusion for the string tension. In fact, the
rimeter part is generated from the coincidence limitux2yu
!1. Furthermore, if we averagedn(x)•n(y) over all pos-
sible configurations, we would have obtained

E dmC~n!n~x!•n~y!5d~2!~x2y!, ~4.77!

from a fact thatn(x) andn(y) are independent for the mea
suredmC(n). Consequently, only the coincident contributio
survives in Eq.~4.68!, which leads to the perimeter deca
correction alone in Eq.~4.76! ~without the Coulomb or
Yukawa part!.

Monte Carlo simulation of lattice gauge theory suppo
the finite size effect as a deviation of the string tension,
argued by Suganumaet al. @44# using a computer-assiste
analytical study.

D. Abelian dominance

According to the NAST, one must average over all gau
transformation in the coset SU~2!/U~1!. Abelian dominance
is the statement that in the true quantum vacuum, the co
butions to then average are approximated by the Abeli
projection. This replacesnA(x)V m

A(x) with n3(x)V m
3 (x).

From our standpoint, the contribution to the area law a
nonvanishing string tension comes from the topologi
term, i.e., the second term in the exponent~4.32!, because
the first term can only give a perturbative correction arou
the nontrivial topological sector. Actually, the first term ma
give a long-range Coulomb potential in the topologic
trivial sector Q50. Therefore, according to the reformula
tion of YM theory as a deformation of MAG TFT, the dom
nance of the topological nontrivial term~the second term! is
an immediate consequence of the formulation. This imp
monopole dominance in the string tension. In addition, Ab
lian dominance is an immediate consequence of APEGT
gether with the above considerations.

Here it should be remarked that the Abelian~diagonal!
Wilson loop in non-Abelian gauge theory is not the same
the Wilson loop in Abelian gauge theory. In Abelian U~1!
gauge theory, the Wilson loop is given by@3#
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WC@a#ªexpS iq R
C
am~x!dxmD

5expS iq R
C
dxm Fvm~x!1

i

g
U]mU†G D ,

U~x!5eiw~x!PU~1!. ~4.78!

E. Gluon self-interactions in the perturbative sector

In the new reformulation of gauge theory@2#, QCD has
been identified with a perturbative deformation of TQFT.
this reformulation the nonperturbative dynamics of QCD
saturated by TQFT. This identification will be meaningful
least in the low-energy physics~including the quark confine
ment! by the following reasons. In principle, of course, a
ditional nonperturbative dynamics could possibly come fr
the self-interaction among the gluon fields, reflecting
non-Abelian nature of the gauge group. However, additio
nonperturbative contributions to quark confinement are
pected to be rather small, if any. This is because recent
merical simulations@9,10# of lattice gauge theory with the
maximal Abelian gauge fixing have confirmed magne
monopole dominance as well as Abelian dominance in lo
energy physics of QCD for various quantities including t
string tension.

Another reason from a theoretical viewpoint is as follow
As shown in@1#, we can integrate out the off-diagonal gluo
fields in QCD to obtain the low-energy effective gau
theory of QCD, i.e., APEGT. Note that APEGT is Abelia
gauge theory. Hence, at this stage, we do not worry so s
ously about the remaining gluon self-interactions which
identified as the perturbative deformation to TQFT in t
reformulation of QCD. Then nonvanishing magnetic mon
pole currentkm(x) is generated from the diagonal Abelia
part am

V(x) according to@1#. In addition, the result of the
previous article@2# shows that condensation of magne
monopoles in four-dimensional QCD is deduced from inst
ton ~or vortex! condensation in the two-dimensional NLS
obtained from the dimensional reduction of four-dimensio
TQFT. Therefore, the low-energy dynamics of QCD in t
MAG is considered to be described well by TQFT or
dimensional reduction, i.e., the NLSM. In the low-ener
region where APEGT is meaningful, therefore, quark co
finement will follow from these considerations without mu
difficulties by combining the results of the previous articl
@1,2# with the result of this article.
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APPENDIX: EVALUATION OF THE WILSON INTEGRAL

In order to evaluate the Wilson integral, we choose a re
angular contour with side lengthsR andT. Then we have

R
C
dxm R

C
dym

1

ux2yu2522E
0

T

dt8E
0

T

dt9
1

R21~ t82t9!2

22E
0

R

dr8E
0

R

dr9
1

T21~r 82r 9!2

12E
0

T

dt8E
0

T

dt9
1

~ t82t9!2

12E
0

R

dr8E
0

R

dr9
1

~r 82r 9!2
.

~A1!

Note that dxmdym implies that only integrations betwee
parallel sides give a contribution, i.e., no contribution b
tween neighboring sides wheredxmdym50. In the line inte-
grals in the first~second! lines of Eq.~A1!, x andy run over
opposite~same! sides of the rectangle. The integral over t
opposite side is

E
0

T

dt8E
0

T

dt9
1

R21~ t82t9!2
5

2T

R
arctan

T

R
2 lnS 11

T2

R2D .

~A2!

On the other hand, the integrals over the same sides dive
So we omit the integral around the singularity by introduci
the infinitesimal parametere:

E
0

T

dt8E
0

T

dt9
1

~ t82t9!2
52E

0

T2e

dt8E
t81e

T

dt9
1

~ t82t9!2

52
T2e

e
12 ln

e

T
. ~A3!

Summing all terms yields

R
C
dxm R

C
dym

1

ux2yu2

522F2T

R
arctan

T

R
1

2R

T
arctan

R

T
2 lnS 11

T2

R2D
2 lnS 11

R2

T2D22
T1R22e

e
22 ln

e

T
22 ln

e

RG . ~A4!

For simplicity, we consider a rectangle which is much larg
in the temporal direction than the spatial direction,T@R
(@e):

R
C
dxm R

C
dym

1

ux2yu2>22Fp T

R
12 ln

R

e
22

T1R22e

e G .
~A5!
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Then we obtain

2
1

2 R
C
dxm R

C
dym

g2

4p2

1

ux2yu2
>2

g2

2p2

T1R

e
1

g2

4p

T

R
1

g2

2p2 ln
R

e
. ~A6!

On the RHS of Eq.~A6! the first term exhibits the perimeter law. The second term corresponds to the Coulomb law
constant term represents the self-energy of a regularized point charge. This should be subtracted during the course
malization. On the lattice,e is replaced with the lattice spacing. The last logarithmic divergent term does not occur for th
C with a continuous tangent@43#.

In Abelian gauge theory, the static potential is given by

V~R!ª2 lim
T→`

1

T
ln ^WC@v#&52 lim

T→`

1

T
lnK expF i R

C
dxmvm~x!G L

pU~1!

52 lim
T→`

1

T
ln expF2

1

2 R
C
dxm R

C
dyn^vm~x!vn~y!&pU1G

52 lim
T→`

1

T
ln expS 2

1

2 R
C
dxm R

C
dym

g2

4p2

1

ux2yu2D >
g2

2p2

1

e
2

g2

4p

1

R
, ~A7!

where the last term gives the Coulomb potential. The above evaluation of the Wilson loop shows that the perime
follows from the contributionx5y. For more details, see@38–43#.
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