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Abelian magnetic monopole dominance in quark confinement
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We prove Abelian magnetic monopole dominance in the string tension of QCD. Abelian and monopole
dominance in low-energy physics of QCD has been confirmed for various quantities by recent Monte Carlo
simulations of lattice gauge theory. In order to prove this dominance, we use the reformulation of continuum
Yang-Mills theory in the maximal Abelian gauge as a deformation of a topological field theory of magnetic
monopoles, which was proposed in the previous article by the author. This reformulation provides an efficient
way for incorporating the magnetic monopole configuration as a topological nontrivial configuration in the
functional integral. We derive a version of the non-Abelian Stokes theorem and use it to estimate the expec-
tation value of the Wilson loop. This clearly exhibits the role played by the magnetic monopole as an origin of
the Berry phase in the calculation of the Wilson loop in a manifestly gauge-invariant manner. We show that the
string tension derived from the diagon@belian) Wilson loop in topological field theorystudied in the
previous articlg converges to that of the full non-Abelian Wilson loop in the limit of a large Wilson loop.
Therefore, within the above reformulation of QCD, this restdgether with the previous resputtompletes the
proof of quark confinement in QCD based on the criterion of the area law of the full non-Abelian Wilson loop.
[S0556-282198)08420-3

PACS numbsdrs): 12.38.Aw, 12.38.Lg

[. INTRODUCTION tion of the non-Abelian gauge theory agperturbative de-
formation of a topologicalquantum field theory[T(Q)FT]

In a series of article§1—-3], we have investigated quark which describes topological nontrivial sector of the gauge
(charge confinement in four-dimensional non-Abeligh,2]  theory. This reformulation provides an efficient way for in-
(Abelian[3]) gauge theories. The main purpose of these areorporating the magnetic monopolgs,7] configuration
ticles was to clarify the mechanism of qudmhargd con-  (which appears after Abelian projectiolmas a topological
finement and to give proof of quark confinement startingnontrivial configuration in the functional integral of gauge
from quantum chromodynami¢®CD) [quantum electrody- theory. In Ref.[2] we have defined theliagonal Abelian
namics(QED)] without introducingad hocassumptions. A Wilson loop by using the gauge field variable belonging to
special gauge fixing called the maximal Abelian gaugethe maximal torus subgroup of G. We have proved that, in
(MAG) has been adopted in these investigations. For a northe TFT obtained from four-dimensional Yang-Mili¥ M)
Abelian gauge groups, the MAG implies a partial gauge theory with a gauge grou@ in the MAG, the evaluation of
fixing in which the cosetG/H is fixed with the maximal the diagonal Abelian Wilson loop is reduced to that of the
torus subgroupd being unbroken. The MAG is regarded as aequivalent two-dimensional cosés/H nonlinear sigma
field theoretical realization of the Abelian projection pro- model (NLSM). This equivalence is a consequence of the
posed by 't Hooff{4]. Parisi-Soulousdimensional reductionof four-dimensional

In the first article[1], we have proved that the QCD TFT in the MAG into the two-dimensionaG/H coset
vacuum is the dual superconductdn the sense that the NLSM. This is an exact result. This result stems from the
low-energy effective gauge theory of QCD in the MAG is supersymmetry hidden in TFT in the MAG. Moreover, we
given exactly by the dual Ginzburg-Landau theory, which wehave shown that the area law of the diagonal Wilson loop is
called Abelian-projected effective gauge thedAPEGT). derived by summing up the contribution of instanton and
This result supports magnetic monopole condensation as anti-instanton configurations in the two-dimensional NLSM.
mechanism of quark confinement. THeal superconductiv- These results lead to the linear confining static potential be-
ity in QCD gives the most intuitively appealing picture of tween quark and antiquark in the TFT sector. F@r
guark confinement. =SU(2), theequivalent model of TFT is given by the(8)

In the second articlg2], we have presented a reformula- NLSM or CP* model. Thus dimensional reduction is consid-

ered as another mechanism for quark confinement.
A similar idea can also be applied to Abelian gauge

*Email address: kondo@cuphd.nd.chiba-u.ac.jp theory. Actually, in the third articl¢3], the existence of a

According to a recent Monte Carlo simulation, the type of dualconfinement phase in the strong coupling region of QED has
superconductor as the QCD vacuum is reported to be on the bordé&deen shown in the sense that the linear static potential is
of the type II; sed5] for the definition of the type of dual super- generated between two fractional charges due to vortex con-
conductor. This will be due to the dressing of the Abelian flux densation.
connecting the quark and antiquark pair by the off-diagonal gluon As a background of Ref$1-3], it is necessary to know
components, since the Abelian dual Ginzburg-Landau theory obthat the Abelian and monopole dominan®&9] in low-
tained as the APEGT is of type (hear the London limjt[1]. energy physics in QCD has been confirmed for various quan-
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tities by recent Monte Carlo simulations of lattice gaugeout ad hocassumptions that dual superconductivity and di-
theory; see, e.g[10] and[11]. This is especially remarkable mensional reduction are exactly realized in QCD, both of
in the MAG. According to lattice Monte Carlo simulations, which lead to monopole condensations as the mechanism for
the non-Abelian string tensioar is nearly saturated by the quark confinement.

Abelian part o5, Obtained in the MAG; indeedgppe This article is organized as follows. In Sec. I, we review
= 0.920 for G=SU(2),8=2.5115[12]. This is called the the formulation of YM theory as a deformation of TKZ].
Abelian dominanceMoreover, the Abelian partra,e is  In Sec. lll, we rederive a versidi8,19 of the non-Abelian
dominated by the monopole contributiotrynopole @S~ Stokes theorentNAST) [14-21] based on the coherent state
Tmonopole=0.950apel [13]. This is called themonopole representation22—25. This clearly shows gauge invariance
dominanceHowever, it is not clear whether the Abelian and of the Wilson loop and the role played by the magnetic
monopole dominance on the lattice survives the continuunmonopole in the calculation of the Wilson loop. The NAST
limit. clarifies also the relationship between the monopole contri-

In this article, to avoid the subtle problem of taking the bution and the Berry phag@6—32. In Sec. IV, the NAST is
continuum limit of lattice gauge theory, we make use of theused to estimate the expectation value of the Wilson loop
continuum formulation introduced if2] of gauge theory to and to prove the main statement.
study the Abelian and monopole dominance in QCD. Here it
is important to remember that the criterion of quark confine-
ment should be gauge invariant, since only the gauge-
invariant concept has physical meaning in gauge theories.
Indeed, the full non-Abelian Wilson loop is gauge invariant  |n the previous articld2], we have presented the refor-
by construction and hence the expectation value is indepemnulation of the non-Abelian gauge theory as a deformation
dent of the gauge chosen. Therefore the area law of the fullf a topological field theory. In this section, we summarize
non-Abelian Wilson loop gives a gauge-independent critethe essence of this reformulation for later convenience.
rion for quark confinement. Consequently, the string tension
obtained from the area law is gauge invariant and gives the
gauge-independent linear static potential between the quark
and antiquark. Therefore, in the practical calculation of the Yang-Mills theory with a gauge grou=SU(N) on D-
full non-Abelian Wilson loop, we can adopt an adequatedimensional space-time is described by the actibr-@)
gauge so as to simplify the calculation. It turns out that such
a simplest gauge is given by the MAG.

In this article we deal with the full non-Abelian Wilson
loop and clarify the relationship between the full non-
Abelian Wilson loop and the diagonal Wilson loop intro- 1
duced and evaluated []. At first glance, it seems that the Locol A, ¢]:=— EtrG(fwfuv)J“ Wiy D [Al-m)y,
area law derived 2] from the Abelian(diagonal Wilson
loop might depend on the specific gauge fixing chosen, the 2.2
MAG. This is not the case, as shown in this article.

The main purpose of this article is to show that the areavhere Ls( is the gauge-fixing term specified below and
law of the diagonal Wilson loop in TFT is sufficient to con-
clude the area law of the full non-Abelian Wilson loop in NZ—1
YM theory. Actually, it turns out that the string tension _ A A
omac derived from the diagonalAbelian) Wilson loop in AuX)= Azl ALCOT, 23
TFT (studied in the previous articlg2]) converges to the
string tensiono of the full non-Abelian Wilson loop in YM
theory in the limit of large Wilson loo€; that is to say, the ol
difference between two string tensions goes to zero in thu,(X) = AZl fﬂy(X)TA
large Wilson loop limit, -

II. YANG-MILLS THEORY AS A DEFORMATION OF
A TFT AND DIMENSIONAL REDUCTION

A. Separation of field variables

toct:D:J' d®x(Locol A, 1+ Lap), (2.1

2

=0, A, (X) = 3, A, (X) —ig[AL(X), A, (X) ], 2.9
oc—oyac\0 as |areqC)| "oo. (1.2

This implies Abelian and monopole dominance in the stringD“[A]:z(?#_lgA“' (2.9
tension of QCD. Moreover, within the reformulation of
gauge field theories given if2], the result(1.1) completes We adopt the following convention. The generators
the proof of quark confinement in QCD based on the criteTA(A=1, ... N2—1) of the Lie algebrag of the gauge
rion of the area law of full non-Abelian Wilson loop, since group G=SU(N) are Hermitian and satisfy{ TA, T®]
the area law for the diagonal Wilson loop, i.erape  =if*BCTC, with a normalization, tiTAT®)=3&"E. Let H
=ouac# 0, for any value of the gauge coupling®¥0) was =U(1)N"! be the maximal torus group @& and T2 be the
shown using dimensional reduction and instanton calculus igenerators in the Lie algebt H where’H is the Lie alge-
the previous articl¢2]. Under the MAG, we can show with- bra of H.
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In the following, we discuss only the case of SU(2) ex- Sgh(x)=0,
plicitly, although most of the following results can be easily
extended into SW{),N>2. For G=SU(2), TA Sa(X)=igC(X)(X), Sgh(X)=—igC(X)(X).
=(1/2)d”(A=1,2,3) with Pauli matrices® and the struc- 8 8 (2.9
ture constant i”*B¢=€*BC. The indicesa,b, ... denote N _ o
the off-diagonal parts of the matrix representation. The Car- The partition function of QCD is given by
tan decomposition of the gauge field reads
3 2 ZQCD[J]’:J [dA,I[dCI[dC][d@][dy][dy]
A, ()=, AN TA=a,(x) T3+ D, A%(x)T2.
W)= 2 A WOOTS+ 2, AL X exp{iSwct IS3h (210
(2.6

) _ with the source term,
Under the gauge transformation, the gauge fidlg(x)

tlanSIOI Nns as S = D r ~ +J ( +J (,+\] d) n n
]:_J' d X(t g \] A“ C c ¢ ] l// lll)

i
AL 00— A (%) :=U () A,(x)UT(x) + aU(X)&MUT(X)- To reformulate YM theory as a deformation of a topologi-
(2.7  calfield theory[2], we first regard the fieldd,, and as the
gauge transformation of the fieldg, and"¥:
In order to quantize YM theory, this gauge degrees of free-

dom must be fixed by the procedure of gauge fixing. The AL () =U00)V,(0UT () +Q,(x),
gauge-fixing condition is usually written & .A]=0. The .

procedure of gauge fixing must be done in such a way that b t

the gauge-fixing condition is preserved also for the gauge- Q%) '_gU(X)&”U ), (212

rotated fieIdAllf, i.e., F[.AY]=0. This is guaranteed by the

Faddeev-PopoyFP) ghost field. In the Becchi-Rouet-Stora- P(X)=U(x)¥(x), (213
Tyutin (BRST) formalism, both the gauge-fixing and the FP
terms are automatically produced using a functid@g} of

the field variables as

whereV,, and¥ are identified with the field variables in the
perturbative sector. Eurthermore, we introduce new ghost
field y, antighost fieldy, and the multiplier field3 which are
o subject to a new BRST transformatidi :
LGF::_iéBGgf[Alu,lcyc!¢]! (28) _ .
_ OV, (X) =D, [V]y(X)=3,y(X) —ig[V,.(X), ¥(X)],
where(C,C are ghost, antighost fields antlis the Lagrange

multiplier field for the gauge-fixing condition. Her&; de- ~ 1
notes the nilpotent BRST transformatidg (55=0): osy(X)=ig 5[ ¥(x),y(X)],
884, =D, [ AIC(X)1=,000) ~1g[A,(%),C(0)], By (0 =i B(X).

1 S5B(x)=0,
3sC(x) =19 5[C(x).CX)], - - _
e (x)=igy() ¥ (%), 5qu<x>=—igy<x>\lf<(xz>.1

5Bax)=i¢(x), Then the partition function is rewritten as

Zocd 91 | [aUTdCIdCIdg1 | [dm[dy][d?][d/s][d\m[d\l_f]exp{i | @Pxi-isGyi0,+ UV, U7 01

+ | j dDX{ﬁQCD[V# ,\P] - iEBégf(V,u ,’y,;ﬁ)}‘i‘ |SJ] y (215)

where
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sJ=f dOx{trgl JM(Q,+ UV ,UN) +I.C+ILC+I 4]+ pUP + P UTY (2.16

B. Maximal Abelian gauge

_ 1
A covariant choice for gauge fixing is the Lorentz gauge C(x)=ig E[C(X)’C(X)]’

F[A]:=3,A*=0. (2.17 S B x=0,

The most familiar choice 0B is B b0 =GB UX),  BadX)= — iGTO TN,
o
d‘%““”* 5‘1’”' @18 g0x)+G(x)=glC(x).C0], (2.26

which yields whereg is defined in the last equation. The BRST and anti-
BRST transformations have the following properties:

Ggf:trg

Lopi=—18Ggl A, ,C,C,¢] _ _
(88)°=0, (8g)?=0, {Jg,08}=0p8s+ Sgds=0.
(2.19 (2.27
Our choice of gauge-fixing term leads to a remarkable form

The parametew is called the gauge-fixing parameter. for the gauge-fixing part,
In the previous article§l,2], we examined the maximal

— (44
=trg| ¢pd, A*+iCo*D, [ AIC+ §¢2

Abelian gauge. FoG=SU(2), the MAG isgiven by EGF:iéBEB %AZAMa+iCaEa)
F*[A,a] ::(&“tiga”)A;ZO, (2.20
using the ¢,3) basis, :i5B5B<AZA#+iZ C+C+), (2.28
0=:=(0*+i10?)1V2. (22D which is invariant under the BRST and anti-BRST transfor-
The simplest choice dB; for the MAG in the (£,3) basis mations:
IS 5B£GF=O=gB‘CGF . (229
Ggf:E 61( F*[A,a]+ %qgt , (2.22 The choice ofG allows the separation of the variable in
* such a way
which is equivalently rewritten in the usual basis as Lop= —i5BGéf[Q,L+ UVMUT,C,atﬁ]
_ a _ = SNyA N A
Ggf:a_ElZCa(Fa[A’a]+ g, 223 = Lred 0,00 41 +HIVAMAU]
+ i—VAVBICAB[U] (2.30
FAA,a]:=(0" 8- ge®ar) A :=D+a [a]AD . 2 mn ’ '
(2.29
where we have defined
In the previous articld2], we took a slightly modified .
ChOICE, ‘CTFT:: - | 5BG§;]‘[QM ,C,C,¢]
’ _1aa-a_a -_1aa-a_a
51= ~ 05| 5 ALAR+ICC =i6505| 50,0, +iCC?), (2.31)
- EB(A;A;HZ ci6+>, 2.29 MAUT= 5505 (UTAUT)202],
— KAB[UT:=8g8e[ (UTAUT)R(UTBUT)A], 2.3
where &g is the anti-BRST transformation: [UT:= 088l a /] (232
— — - — where we have used that the action &f is trivial in the
oA, (X)=D, [ A]C(X):=0,C(x)—ig[A,(x),C(X)], perturbative sector:
SsC(X) =i (x), 88V, (X)=0= 85V, (X). (2.33
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The most basic BRST transformatidg is given by which yields

SgU(X)=igC(x)U(x), dgU(x)=igC(x)U(x), 880, (X)=D,[QIC(X), R, (X)=D,[QIC(X).
(2.39 (2.35

C. Deformation of topological field theory
The partition function of QCD is rewritten as

ZQCD[J]:f [dU][dC][da[d¢]exp{iSTFT[QM,C,a¢]+iW[U;J“,;, 7]

+if dPx trg[J“QM+JCC+JCT7+J¢,¢>]],

WLV 7] f [dm[dy][d?][dﬁ][d\lf][d\ﬂexp{ispQCD[vﬂ,w,y,Zm

+iJ dPx| VAT + 'Evﬁvﬁ/cAB[U]Hrg(Zuqu nq_fuT)H, (2.3
Spacol Vu ¥, 7,7.8]:= f d°X{ Locol VW1~ 36Cgi(V, 7, 7.8)}, (2.37)
Th=(UTIFU)A+-i M AT U], (2.39

where[dU] is the invariant measure on the groGp Here is equivalent to the —2)-dimensional coseB/H nonlin-
W[U;J#, 7,7] denotes the deformation from TFT. When €ar sigma model with an action

U=1 and M 4[U]=0=K"B[U], W[U;J* 7,7] coincides .

with th nerating functional of th nn rrelation - a a

function i the perrbative QCEPGCD with the acton SwsdUl=27 [ 7% 05010

Sracp (topological trivial sector The correlation functions

of the original fundamental fieldsl,, , i, are obtained by

differentiatingZqcpl J] with respect to the sourcds, ; 7.

The sector written in terms of the TFT field& (C,C, ¢)

s_hould be treated nonperturbgtively. '_I'he perturbative expan- B[ oo R
sion around the TFT means integration over the new fields = 5[ d= "z trg [ d*U(2)9*U'(2)]
(V,.,7v,v.B) based on the perturbative expansion in powers
of the coupling constarg. The deformatior\/\l[U;J“,;, 7]
should be calculated according to ordinary perturbation
theory in the coupling constanf, keeping the variabléJ
untouched. An interpretation of this reformulation was given
from the viewpoint of the background field meth[@B].

Q,(2) ::IaU(z)ﬂMUT(z)

2

Therefore, the TFT part of four-dimensional &)Y non-
Abelian gauge theory is reduced to the two-dimension&) O
NLSM. Hence, the calculation of the diagonal Wilson loop
D. Dimensional reduction to the NLSM for the four-dimensional topological part is reduced to that in
For a while, we neglect the perturbative contributien  the two-dimensional (3) NLSM or equivalent CPmodel.
and consider only the TFT part. Owing to the gauge choice !N the previous articl¢2], the area law decay of the ex-
of MAG, Parisi-Soulas dimensional reduction occurs forPectation value of the Wilson loop in four-dimensional TFT

TFT. ConsequentlyD-dimensional TFT with the action (as a topological nontrivial sector of four-dimensional YM
theory) has been deduced by summing up the instanton and
SrerlQ, ,C,a¢] anti-instanton configurations in the two-dimensional equiva-

lent NLSM and the linear confining static potential between

1 quark and antiquark in the TFT sector is derived. In this

B Duis 7|+ a a A \a article, we show that the area law of the diagonal Wilson
_f d XléBéB( Q00,0 +HICTOCH0) loop in TFT is sufficient to conclude the area law of the full
(2.39 non-Abelian Wilson loop in YM theory. This completes the
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proof of quark confinement based on the criterion of the{|n>} which is obtained by applying the rotation operakor
Wilson loop in four-dimensional YM theory. to the maximally polarized stal®):

lIl. NON-ABELIAN STOKES THEOREM InY:=R(x,8,¢)|d,3)=e7°¢e¥%e3°x 3 3), (3.9

The Wilson loop operator is defined as a path-ordereq,here JA(A=1,2,3) are three generators of @V and
product of an exponent along a closed Idopln the Abelian (x,¢,6) are Euler angles and the unit vectoparametrizes
case, due to the ordinary Stokes theorem, it is rewritten as g o spin coherent state. We have the freedom to define
surface integral on the surfa@whose boundary is given by gpitrary. This is a (1) gauge freedom. We can eliminate it
C. In contrast to the ordinary Stokes theorem, there may bg, fiing . This is the gauge fixing for the residual gauge
many possibilities for the non-Abelian Stokes theordi— group H=U(1). The states are in one-to-one correspon-
21]. In this article we treat a version of the NAST derived by dence with the(right) coset SW2)/U(1) where U1) is gen-
Diakonov and Petro&l&lg. This version of th.e NAST IS grated byJ; (rotation about the axig). In the language of
able to remove path ordering from the expression of the NONgjterential geometry, the coherent states form a Hermitian

Abelian Wilson loop. Instead, we must perform the func-jjhe pndie associated with the Hopf, or monopole, principal
tional integration. First of all, we rederive the NAST for the bundle. P, po'e. p P

gauge grougs=SU(2) using the path integral formalism in e giagonal matrix element of the generators reads
the spin coherent state representation. Moreover, we clarify
the relationship between the induced magnetic monopole and (n|IAny=Jn?, (3.5
the Berry phase which appear in the NAST. Second, we give
the general NAST for any compact Lie gro@ The NAST  \where
is manifestly gauge invariant as in the Wilson loop. In the
next section, we use it to prove the Abelian monopole domi- n(x)=(n%(x),n?(x),n3(x))
nance in the string tension of QCD.
= (sin #(x)cos ¢(x),sin #(x)sin ¢(x),cos (x)).
A. Path integral in the coherent state representation (3.6)

We consider the formal expression It is known[22,25 that the coherent states are not orthogo-
nal. The overlap, i.e., the inner product of any two coherent

, (3.1 states, is evaluated as

Z[t,0]:=tr PTexp{ —i fthH( 7)
0

1+n-n’
2

whereP_ is thet-ordering(or path-orderingoperator and the (n|n")=
“Hamiltonian” H is specified later. We can make it well
defined by taking the limit of discretization:

'{cos{g(me')] r<¢_¢/)]
N-1 ®d(n,n’):=2 arcta T —ta 5
Z[t,0]= lim trPTHO [1-ieH(r)], (3.2 cog; (6—6")]

N—x,e—0

J
) e—iJ(I)(n,n’), (37)

+x—x', (3.8
where e=t/N is the time step and,=ne is the discrete
time. The limit is taken keepingle=t const. For a given
Hamiltonian in the representatiain we would like to obtain
a path integral representation of the partition function for

wherey,x’ depend on the gauge fixing.
The coherent states span the space of states oflsfjine
measure of integration over the group parameters is defined

spin system. y
We make use of the spin coherent state to write the path 23+1 2J+1
integral representation af[t,0]. Consider the group SQ) du(n):=———=8(n-n—1)d3n= sin 6d6de.
and an irreducible representation characterized by highest 4m am
spin J. Let |0) denote the maximally polarized stat) (3.9

=1J,J) which is the highest weight state of a sgirmepre-

sentation{|J,M)} of SU(2) whereM labels the eigenvalue of This is a Haar measure of the coset(ZU(1); in other

words, it is the area element on the two-sph&feThe state

Ja! In) can be expanded in a complete basis of the Jpime-
PI,MY=J(I+1)|I M)  (—I=M<J) ducible representatiofiJ,M)}. The coefficients of the ex-
’ ’ ’ pansion are the representation matrix
J3|J,M>:M|J,M> (33) +J
. . : = M)D(n). 1
The statgJ,M) is an eigenvector of both the diagonal gen- I M;J [9:M)Dag(m) (310

eratorJ; (Cartan subalgebyaand the quadratic Casimir in-
variant J2. Spin coherent sates are a family of spin stateThe resolution of unity is given by
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+J

| duminel= 3 myami-, (311

==

wherel is an identity operator. Hence the coherent stageforms the complete set, although it is not orthogonal. Thus the
coherent states form an overcomplete basis.

In particular, forJ=3, an element W) e SU(2) is written as follows by introducing three local field variables
(0(x),o(x), x(x)) corresponding to the Euler angles:

e(i/2>[¢<x>+x<x>1co%x) _e<i/2>[¢<x>fx<x>]sin%x)

R( 0, 01X) =U (X) — ei <p(x)03/2ei H(X)0'2/2ei)((x)0'3/2:

e—(i/2>[¢<x>—x<x)]sin@ e—(ilz)[cp<x>+x<x>1cose(2_x)

0e[0,7], ¢e[0,2r], xe[0,27], (3.12

and Eq.(3.4) reads t t
IT (n(r+ e)|n(r))=exp{ —i32 ®(n(7+e€),n(7))

. 6(x) e
(i/2)p(X)
1 _ € COST t 1+n(7)-n(t—e€)
Iny=R(x,0,¢)| |=ePxx . +J> In .
0 _d _6(x) = 2
e (|/2)‘P(X)S|n_
2 (3.18
(3.13
Making use of Eq(3.8), we obtain
By making use of the explicit representation, we can make ) .
sure that the formulag3.5), (3.8), and (3.11) hold for J d(n(7+¢€),n(7))=€l o(7)cOSO(7)+ x(7)], (3.19
=1/2.
InsertingN resolutions of uni(3.11) between the factors Whereas Eq(3.17) leads to
in Eqg. (3.2), we obtain
a.(3.2 | 1+n(7)-n(t—e) ~inl1 €2 ol € )
N . n 5 =In|1— Z(ﬁfn) =—Z((9Tn) .
Z[t,0]= lim dun(r )] (n(7)|n(7—€)) (320
N—o,e—0N=1 T=€
Within the same approximation, the classical Hamiltonian
X[1—ieH(7)], (3.149  can be evaluated at equal times:
where the “classical” Hamiltonian is defined by H(7)—(n(7)[H(7)|n(7))+O(e). (3.23)

By exponentiating the Hamiltonian and discarding higher-
H(T):=<”( )| H(7)[n(7—¢€)) (3.15 order terms ire, the formal continuum limit of Eq(3.14) is
(n(n)|n(r—e)) ' obtained:

and the periodic boundary condition is adopted: Z[t,0]=f [duc(n)]exp(iS[n]), (3.22

n(t)=n(0). (3.16 ¢ 3t
Sn]:=— J drH[n]—y(t)+ Zef dr(d,n)?,

In the limit N— o, we replace the differences by the corre- 0 ° (3.23
sponding derivatives: '

_ H[Nn]:=(n(7)|H(7)|n(7)), (3.29
n(7+e)—n(7)— en(7)+ O(€?). (3.19
t . .
t):=J| d o(r)+ , 3.2
For a more rigorous treatment, sg?,23. Y fo e(n)cos () +x(7)] (3.29
Using Eq.(3.8), the overlap between coherent states at
nearby steps to leading order énreads where
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N
6
[duc(n)]:= lim du(n(r,)). (3.26) wg=J(—cosf+1)de=2J sin2§d<p (x=-9),
1

N—o0,e—0N=

The first term, the Hamiltonian, is specified below. 1 _ — f _

Though the last term i§] n] vanishes in the continuum limit on=J(~cosf-1)de 2] COSZZd(p (x="+e),

e—0, it plays the role of a regularization. Without it, the

“action” S[n] has no “kinetic term” for the fieldn. wy=—Jcosfde (x=0). (3.39
The second termy(t) depends on the trajectory of 7)

on the sphere and not on its explicit time dependence. It i

geometric. The phasg(t) is called theBerry phaseor geo-

metric phaseof the spin history{26,27. The Berry phase ws=wy+2Jde. (3.39

measures the area enclosed by the p#th) on the unit

sphere. The area increment is a spherical triangle with vertiThe connection one-form is related to the curvature two-

ces atn(7), n(7+e€), and (0,0,1) whose area is given by form by the ordinary Stokes theorem

w::[l—COSH(T)]dQD(T)- (327) % a):de1 r
r S

Hence the total area enclosed by the closed orbit is equal to

¢ The curvature two-forndw does not depend on the choice of
fﬁ w::f dr1—cos(7)]e(7). (3.289  the connection one-forr(8.35), since
r 0

dw=J sin 6d6/\de. (3.39

é\lote thatwy and wg are interrelated by the gauge transfor-
mation

=0JS. (3.37

The Berry phase
The Berry phase measures the flux of magnetic monopole

i _ through the are& of S? bounded by the trajectody of n(t).
Y()=J0=J iw_A'WJQ (329 Perform the contour integral along the= const line for
Eq. (3.36:
is expressed in a gauge-invariant form.
We can introduce a vector potential § ws= § wy+2J 3§ do= 35 wyt4md. (3.39
. d C C C C
Q:= deTA(T)' 37, (330 This implies
producing a unit magnetic monopole whose line integral exr{i § w5)=exp(i § wN)eXKi4ﬂ-J) (3.40
over the orbitn(7) is equal to the solid angl@ subtended c c

by that orbit. For example, in the domain . ) o
ande'*™=1, i.e., 4rJ=2mn. Thus the quantization of the

Ug:=S?—South Pole={(8,¢) € S%;0# 7}, (3.3D) spinJ=n/2 is obtained as a topological invariant. Inciden-
tally, the connection one-formmg,wy is written using the

Uy:=S?—North Pole={( 8, ¢) € S*; 6+ 0}, unit vector as
(3.32
n(x)dn?(x) —n?(x)dn(x)
Uy :=S?—Meridian={(6,¢) € S% 6+0,7,¢+ 0}, w(x)=J 1+ ng(%) . (341
(3.33
the vector potential is, respectively, given by B. Non-Abelian Stokes theorem forG=SU(2)
1 Now we apply the above result to evaluate the Wilson
—cosf. y X ) P
Agi=— ————@=—| — ———, 0], loop operator. We consider the Hamiltonian
r sin@ r(r+z)’r(r+2z)
dx* A A A Adxlu
1+cosé. y X H(t)=A(t)==AM(x)W=A (HT=AL0T e
N sin g (p:(_r(r—z)'r(r—z)’o)' (3.42

cosé . ( yz X7 ) where A(t) is the tangent component of the YM fie_ld alon_g_
Ayi=———0¢=| — 7,3 —,0], (3.39  the loop(see the next subsection for a more precise defini-
Fsing r(re=29"r(r’-=2% tion). Using Eq.(3.5), we obtain
where ¢ is a unit vector in the direction of. The corre- H[n]=iJAAt)NA(t)=J to3UAUT] (3.43
sponding connection one-form is given(for a choice ofy)
by and
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where the functionaly(t) denotes the phase acquired by a

spin that aligns with an adiabatically rotating external fidld
which is parallel ton(7). Finally we have shown

ftdrH[n]=JJtdr togUAUT], (3.44
0 0

where g3 is the third Pauli matrix and we have used the
adjoint orbit representation for: Z[t,0]=tr PcexF{ —i % dx“ A (X)
) 13
c

A A_qt 3
NA(X)TA=UT(x)T°U(x). (3.45 :f [du(m) Jexp(iS[n]). (3.47

Using Eq.(3.12, we can see that the unit vecto(x) de-
fined by Eq.(3.45 is equal to Eq(3.6). t d

On the other hand, using E¢3.12 the Berry phase is 5[n]==~]f thf{ 03(UAUT+iU d—TUT)J-
rewritten as 0

(3.48
y(t):Jj drtr( 05U — d ) (3.46 For the gauge grou=SU(2), we have obtained the
dt non-Abelian Wilson loop in the path integral representation:

W[ A]:=tr

Pexp(i iAﬁ(x)TMx") =f [d,uc(n)]exp(iJ 3€Cdxﬂ tr(og
f[d,uc n)]ex;{ﬂ 3§dt tr{as

i
uvztﬂ(x)uwauaﬂuT

)

d
UADUT+ — udtu*H) (3.49

whereJ is the spin of the representation of the Wilson loopwe can write the POE as
considered. This is a special case of the NAST of Diakonov
and Petrov which will be explained in the next section.

ch(t21t1)==

a,

(3.52

P exp(i t2A(t)olt)
ty

C. Non-Abelian Stokes theorem in the general case

We give the results of Diakonov and Pet{d8,19 in the
most general form in the following. The POE(3.50 is defined by the power-series expansion
Definition. Let C be a given curvex,=x,(t) param-
etrized byt € [t4,t,] where the values of the parametert, .
correspond to the end points of the curve. We define the _ . .
path-ordered exponentPOB of the YM field A,(x) WS,E(tZ'tl)_go dry--- | drp[iA(7y) - - TA(T0) Ja g

=ANX)TA by (3.53

a,B

WE p(to ty) =

a, wheret,=m=- .- =7,=t,.

Theorem18,19. Consider the non-Abelian group and
the maximal torus groupl of G. Define TA to be the gen-
erators of the representatiah TATA=J(J+1). Let H;(i
=1,...r) be the generators of the Cartan subalgebra of the
Lie algebrag of G and ther-dimensional vectom be the

Ay A highest weight of the representatidrwith r being the rank
L 2 A AT of the gauge grougs. Then the POE is written in the path

A=A, 00 = ALC0T dt ’ (3.5 integral form

X(ty
P exp(' A (x)TAdx")

X(tg)

“* 350

Introducing the tangent component of the YM field along the
loop,
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WE sttt = [ dUy [ au; 3 237+ 1D UDDE Uy
J' M’

U(ty)=U5 ] X(to) i
xf [dU(t)]exp(.Jf dx* tr[ miHi[UAM(x)UW—UaMUT
U(ty)=U, x(tq) g

)

=Jdu1fdu2 > (23'+1)DS) (UDDY.L(Uy)
J' M’

U(tp)=Up . to
Xf [dU(t)]exp{Uf dt tr[ m; H,;
U(ty)=U, ty
HeredU is the invariant Haar measure @&iH and DI,'M,(U) are the WignebD function which expresses finite rotation in the
representationd:

UA(t)UT-I—igU%UT“). (3.59

+J
RUWILM)= X [3,M)Dy),(U), Dy (U):=(3,M|R(U)|J,M"). (3.59
M'=-J
In particular, in the spinor representatiaﬂi,,,(U)= Uum: -
According to the above theorem, the POE is written as a functional integral over all gauge transforitdgtijon$ the
given potential4(t), projected onto the matrix representati®r3. From the above theorem, a version of the NAST is given
as follows. The Wilson loop, i.e., the trace of POE along a closed @opas the form

WC[ A]:=tr| P exp(i fﬁ Aﬁ(x)TAdx“)
c

]

=J [dU(t)]exp(iJ idxﬂ trlmiHi[UAM(x)UTJrIaUa#UT

i d
=f [dU(t)]exp(iJ fﬁdt tr(miHi[UA(t)U“rgUaUT“). (3.56
|
For G=SU(2), this reduces to Eq(3.49. The formula is A. Magnetic monopole in YM theory
manifestly gauge invariant, as is the Wilson loop itself. The nonperturbative study of YM theory in the MAG

goes as follows; segl] for more details. First of all, gauge
field configurations are constructed by performing the local
IV. ABELIAN AND MONOPOLE DOMINANCE gauge transformatio(2.7) such that the gauge-rotated field
A3 (x) minimizes the functionaR[.4"] where
Now we show that the Abelian and monopole dominance
is deduced from the NAST in the formulatid2] of YM R[A] ::f d®x tr
theory as a deformation of MAG TFT. Making use of the oA
NAST, we will clarify the meaning of Abelian dominance
and monopole dominance in low-energy physics in QCD. ere the trace is taken over the Lie algelgiai. In the
The full non-Abelian Wilson loop is defined as the path- iterential form, this implies that Y(x) satisfies the gauge-
ordered exponent. In the version of the NAST derived in theﬁxing condition (2.20.. Next, the AGeIiar(or diagonal field

previous section, the path ordering has been removed frolu 514 its field strengtlf ,, are extracted from the non-
the expression. Instead, we must average over the Haar meA{E)elian gauge field accor&ing to

sure onG/H. The removal of path ordering is very welcome,

since it is rather difficult to treat the path ordering. As a U 3 U

result, there appears the field tensor introduced by 't Hooft a,(x):=tr[T°A ,(xX)], 4.2
and Polyakov in connection with magnetic monopoles. This

1
FAC0AM] (4D

indicates an intimate connection between the magnetic u o AUruy o U

monopole and quark confinement. In what follows, explicit Fn(X)=0,,8, 00 = 3,2, (). 4.3
calculations are performed only f@=SU(2). However,

the generalization t&= SU(N) is straightforward. The magnetic currerkt,, is defined from the diagonal part by
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~ ~ 1
ku()=0,F,00, Tu(0=5€mpolpo(¥). 44 (WLADyy= J[d,uc(n)]<exp(i3 jgcdx“a2<x>)>

YM

4.1
The magnetic charge is calculated from the magnetic cur- (410
rent as In the previous articl¢2] we have calculated the expec-
tation value
3)\ — 3
Im(V®) = J'V(z)d ok,

<Wc[aﬂ]>vm=<exrl<i3 ﬁdx’*aﬁ(x)» (4.11)

~ ~ YM
=f d3a&f9=f d?a,, T2, .
uwovlpy wvlpy . .
Ve =Vt of the diagonal Wilson loop:

(4.9
— ; 0 Q0 ._ 03
In the usual Abelian gauge theofiye., Maxwell theory, the Wc[a”]—exr( 1J idx“aﬂ(x) A (0)=00(%).
magnetic monopole current vanishes identically due to the (4.12

Bianchi identity,

Now, the difference between the Abeliéiagonal Wilson
€uvpcd”TP7(X)=0, f,,(X):=d,a,(X)—d,a,(X), loop (4.12 and the full non-Abelian Wilson loog4.9) has
become clear. The diagonal Wilson loop is obtained from the

full non-Abelian Wilson loop by neglecting the“(x)AfL(x)
art and the functional integrdl du(n)] along the loopC.
herefore, the deviation of the diagonal Wilson loop from

as long as the field variable,(x) is nonsingular. In other
words, in order to obtain a nontrivial magnetic current inP
Abelian gauge theory, we need to introduce the singularit ) : Lo
into the Abelian gauge theory. This fact is well known from r}? fU|f| W"SQ” Io%p can be determined by estimating the
the study of Dirac magnetic monopole. In the non-Abelian€€Ct FoMn“(X)V,(x). , o
gauge theory, the singularity is produced by partially fixing T the gauge f'eldAuL(JX) is not singular, the first piece
the gaugeG/H and leaving the Abelian subgroup of the ~ Y(X)AL(X)UT(x) of A (x) is nonsingular and does not
original non-Abelian gauge grou@ unbroken. The partial 9ive rise to magnetic current. Or) the contrary, the second
gauge fixing leads to a singularity which is sufficient to gen-Piece(2,(x) does give the nonvanishing magnetic monopole
erate the magnetic monopole. This is an idea of Abeliarfurrent(see, e.g}1]). According to Monte Carlo simulations
projection by 't Hooft[4]. The MAG leaves the maximal ©n the lattice[10], the magnetic monopole part gives the
torus groupH =U(1)N~1 unbroken. This is why YM theory most dominant contribution in various quantities characteriz-
can have magnetic monopoles even in the absence of tH@d the low-energy physics of QCD, e.g., string tension, chi-
Higgs scalar field. It is well known that YM theory in Eu- ral condensate, to_pologlcal charge,_etc. This phenomenon is
clidean space has instanton solutions, although pure Ynfalled the magnetic monopole dominance.
theory does not have any nontrivial classitstable soliton Therefore, it is expected that the' most important degrees
solution in four-dimensional Minkowski spacetime. It is still Of freedom for the Iow-eUnergy physics comes from the sec-
in dispute whether the instanton configuration alone can proPnd p|eceQ#(x) of A,(x) rather than the first piece
duce sufficient string tension for quark confinement. The reU(X)A,(x)U'(x). Therefore, we have decomposed YM
lationship between the magnetic monopole and instanton hd§eory into two parts, i.e., the contribution from the part
been discussed ifl,2]; see also references cited therein.  2,(X) and the remaining part in Sec. Il.

Substituting Eq(2.7) into Eq. (4.3, we have From this viewpoint, we recall the calculation of the Abe-

lian (diagona) field strength in four-dimensional YM theory.
a}‘f(x) ==tr[T3Al‘f(x)]:nA(x)Aﬁ(x)+aﬁ(x), (4.7  The identity[1] for Q,,

where we have used E(3.45 and defined 3,0 ,(X) = 3,0 ,(X)
Q 3 i i i T
a, (X) =0 (X) =t 730,01, Q,(%) ==§U(X)3MUT(X)- =ig[Q,(x),Q,(x)]+ aU(X)[ﬁM ,0,JUN(x), (4.13
(4.8
leads to
Note that Eq(4.7) has the same form as the argument of
the exponent in the NAST3.49. Therefore the NAST f2,(%)=d,03(x)—3,03(x)

(3.49 for the Wilson loop is rewritten as |
=C00+ 5 U0, 3,0UT00) )

\/\/C[A]:f [d,udn)]exp(iJ fﬁcdx"aﬁ(x)>, (4.9 1

and the expectation value of the the Wilson loop is given bywhere
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[91 Ti=(ig[Q,, Q)@ Actually, the two description$4.18 and (4.21) are equiva-
lent and the above argument can be generalized to a more
=ge®0200=ig(0, 0, -0,0;) (419  general gauge group, as suggested from

1 IL,(SUN)/U(DNH =TT, (U H=2ZN""%
= asm 0(9,00,0—3,¢3,0). (4.16 (4.24)

Note thatC[?! is generated from the off-diagonal gluon Equation(4.13 implies

fields 02,02 U o -

We can |dentify the first and second parts of right-hand Fun(¥)=0u,00 = ,00,00 ~1g102,00,2,(3)]
side (RHS) of Eq. (4.14 with the magnetic monopole and
the Dirac string contributions, respectively. This is clearly
seen by writing Eq(4.14) explicitly using Euler angles:

IEU(X)[& ,3,]JUT(x), (4.25
1 if the contribution fromU(x)Aﬂ(x)UT(x) is completely ne-
fg]}:__sin 0(9,00,0—3,9d,0) glected. Here the RHS is identified with the contribution
from the Dirac string. The existence of Dirac string in the
1 RHS of Eq.(4.29 reflects the fact that the field strength
+=([d,,d,]x+cos6[d,,d,]¢). (417  F,(x) does contain the magnetic monopole contribution.
g Thus we have obtained a gauge theory with magnetic mono-
poles starting from YM theorywithout any scalar field
Therefore, the MAG enables us to deduce the magnetic
monopole without introducing the scalar field, in contrast to

The magnetic charge is given by

1
3)y_ 2 - ;
gm( V¢ >)_E S<2)d O o€ puvpeSin 0(9,00,0—0,9d,0). the 't Hooft—Polyakov monopolg34,35.
(4.18 ) )
B. Magnetic monopole and non-Abelian Stokes theorem
The magnetic char_geﬂf.l&éés quazntlzedl], since the inte- We show that the magnetic monopole does appear in the
grand is the Jacobian fro" to S” and gauge-invariant Wilson loop of YM theory through the

NAST. The NAST gives a gauge-invariant description of the
magnetic monopole in YM theory.

The second term in the expongi3t49 can be rewritten
as a surface integral inside the closed contour of the Wilson
loop. The parametrization of the $2) matrix U by the Euler
2mn angles leads to

gm:T or ggn=2mn (neZ). (4.20

I1,(SU(2)/U(1))=I1,(S*)=2Z. (4.19

Then the magnetic chargg, satisfies the Dirac quantization
condition

i
Qi(x)::tr( US—U(x)aﬂuT(x))

We can give the second definition of the magnetic chatge 9
as the contribution from the Dirac string: 1
L =§[6MX(X)+COS 0(x)d,e(x)].  (4.20
Ios(V)=5-| d%0,.€

29J)s2 e Then the second term in the exponent of E2149 reads

X([d,,d,]x+cos0[d,,d,]¢). (4.2])

i
203 (%) =i “ — T
If we choosey=—¢ (x=+¢) using residual (1) gauge 1 jgcdx Q)= 3gcdx tr( U3gU(X)‘7MU (X))
invariance, then the Dirac string appears on the negative
(positive Z axis, i.e.,6=m (6=0). In this case, the surface

J
=j— "
integral (4.21) reduces to a line integral around the string: ! g ﬁ;dx [9ux(X)+€0S 6(X) 3, ¢ (X)].

1 (4.27
gDS(V ) 2 da—uve,u,vpo[(gp ,(90]¢(X) L. X ) .
9 This is rewritten as a surface integral using the standard Abe-
1 lian Stokes theorem:

T 29 S(1>d0ﬂw6;wpa¢9p(p(x). (4.22

J §£ dx* Qi(x)=iaf d%z €,,(3,05-9,00)
This gives the same resu{#.18 but with a minus sign, c S
which is inconsistent with

—i 2 Q
M3(U(1)=2. (4.23 ) Ld Z €unf - (4.28
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By making use of a unit vectar, this is further rewritten as

[2]

J
iJ écdxﬂﬂi(x)ﬂ 5Ld22 €"8%%,,n*9,nBg,n°

5
=i afsd Z €,,n-(d,nX3,n)

. 8mJ

g QS7 (429)

where Q is the topological charge of the field [2] in the
areaS:

1
— 2
Qs=g_ Sd Z €,,n-(d,nX3d,n)

_ 1 d? X
e T4y N-(9,NX3,N).

(4.30

On the other hand, the first term in the exponé&ht9 is
rewritten as

i3 jgdx“ tr{og[UV,(x) U]}

=iJ fﬁ dx= VA(x)nA(x)=iJ 3§ dt VA)NA(L).
(4.31)

Thus we obtain another version of the NAST:

3£ dx nA(x)V(x)
c

|

jl; dt A (t)VA(L)
C

WC[A]=J’ [d,u(n)]exp‘iJ

1 2
+ Efsd o N (d,nX3a,n)

=f [d,u(n)]exp[iJ

1 2
+ EJsd o N (d,nX3a,n)

J : (4.3

PHYSICAL REVIEW D58 105016

WC[A]= j [d,u(n)]exp[ i %Ldzcr’”GW(x)] ,

(4.34
with the gauge-invariant tensor fiel@6]
G,.,(X) =3, (MM (X) V(X)) = 3,(MA(X) V(X))
1
— an(x) [d,n(x)X3d,n(x)]. (4.39

This is nothing but the 't Hooft tens§B84—3€ if we identify
n” with the direction of the elementary Higgs field:

dR=gP B, | pl=\ PP . (4.36

The tensoK4.35 gives a SW2) gauge-invariant definition
for the electromagnetic field tensor, since using the covariant
derivative,
AB,_ AB_ ABC 4 C
D, :=3,0""—ge"" A,

(4.37)

it is rewritten as

G (%) ==nA<x>f,’iV<x>—éeABCnA<x>(Dﬂn<x>)B(Dm(x))c

(4.39
1
=t n(x) F,,(X) — an(x)(DMn(x))(Dyn(X))}
(4.39
where we have used
[0”,08]=2ie"BCoC, tr(c"oB)=26"5,
tr(c”aBo)=2i e"BC. (4.40

Note that both terms in Eq4.39 are gauge invariant, be-
cause under the gauge transformatig(x), D ,n(x), and
F.,(x) transform as the adjoint representation,

n(x)—U)n)U*(x),
D ,.n(x)—U(x)D ,n(x)UT(x),

FunX) = U ) F,,()UT (). (4.42)

Furthermore, the first term in the exponent is rewritten as The Wilson loop is the evolution operator for s@din in a

iJ jgcdx”“ nA(x)VA5(x)

1
=iJ Ldza“”z[au(nA(x)Vﬁ(x))—r?v(nA(x)Vﬁ(x))].
(4.33

time-dependent “externalmagnetig field” V,(t), and the
Wess-Zumino term

Swzi= f d?g,,n-(d,nX3d,N) (4.42
fixes the representation to which the spin belongs. The non-
Abelian Wilson loop measures the flux of magnetic mono-
pole through the are@enclosed by the Wilson loop where

Therefore, a manifestly gauge-invariant formula of the nonthe magnetic monopole is generated from the topological

Abelian Wilson loop has been obtaingtB, 19,

nontrivial configuration oh(x).
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Unlike the usual electromagnetic field tensor, the tensor 5 2mn
(4.35 has a dual with nonzero divergence, i.e., nonvanishing gm:f (3)d X k0=T. (4.49
magnetic monopole current; v

In the region wheren=(0,0,1), the 't Hooft tensor reads

kM=§eMVpU(9”GP”
_ 3 3
GLy(X)=3,V5(X) =3,V ,(X), (4.49
=Eewp,,a”n~(apn><a,,n) and the magnetic current vanishes identicatly=0.
— Eeuvwﬁy[n' ((9pn>< a,n)]. (4.43 C. Abelian magnetic monopole dominance

Note that we can replacd,, [appearing in the argument

The monopole currerk,, is a conserved topological current, Of the exponent in the NAST3.49] with V), which has been
"k, =0. Although thek,, is written as a total divergence, it defined in the reformulation of YM theory. This is shown as

can give nonvanishing magnetic chardel8: follows. If A, (x) is the gauge rotation of,(x) by U(x),

A, (x):=0(x)V,(x)0T(x)+ 'aﬁ(x)aﬂﬁ T(x)= VE(x), (4.46
then

AL(x)=U(x)A,(x)UT(x) + I§U(X)z9,LUT(X)= U)Tx))V,(x)Ux)U(x) T+ Ia(U(X)U(X))aﬂ(U(X)U(X))T=V,LiO(X>-
(4.47)

As the new matrixUU is also an element o6, we can absorb this change into the invariant Haar megsimg(n)].
Therefore we can write the NAS®.48 as

Pexp(i ffﬁCAﬁ(x)TAdxM)
=J [d,uc(n)]ex;{i‘] fﬁcdx" tr[ o3
=f [d,uc(n)]ex;<i\] fﬁdttr(og

and the expectation value of the Wilson loop reads

WC A]:=tr

i
uvﬂ(x)uwguaﬁuT

]

)

UVtUT+iUdUT
(t) gVt

dx* nA(x)V4 +1 d? 9,nX4
; x* n(X) ﬂ(x) als Z€,,n-(d,nXa,n)

(WA ym= f nd(n)< expiJ > , (4.49

where the expectation value is written according to 936 as

<exp[ iJ[ ﬁ:dxf‘ nA)VA(X) + éfsdzz €,,N- (d,NX <9Vn)”>

:Z;'\l"f [dU][dCI[dC][dp]eSTFT 'C'E"S]exr{iéjsdzz €,,n-(d,nX ayn))f [dVM][dy][d;][dﬁ]

YM

, i
|VﬁMﬁ[U]+§VﬁVﬁICAB[U])

Xexp(iSpYM[V,y,;B])ex;{iJ dPx exp(iJ fﬁcdx"nA(x)Vﬁ(x)). (4.50

The denominator, i.e., the partition functidy y,, is equal to
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[
zYM=<<exp[if de( iVAMAUT+ EvﬁvﬁchB[U]) > ZpYM> ZreT, (4.51)
pYM TFT
whereZ,y, is the partition function of perturbative sector of YM theory,
Zpyw= J [dV,J[dylldy][dBlexpiSyyl V,7.v.8]), (4.52
andZr g+ is the partition function of TFT,
Zreri= f [dU][dC][dCI[d$]exp(iSterd 2, ,C.C, D). (4.53

The numerator is equal to

<<exp[ij de(iVﬁMﬁ[U]Jr%VﬁVﬁICAB[U]) exp(iJ %Cdx“nA(x)V,‘)(x)» Zoym

pYM

. J 2

X ex |§Ld Z €,,n-(d,nX3I,0N) Z1ET- (4.59
TFT

The expectation value of the Wilson loop is given by the rédi®4)/(4.5]). In Eq. (4.51), the argument of the exponential
including M 4[U] and K*B[U], Eq. (2.32), is written in the BRST exact form

. : i :
epo de(lvﬁMﬁ[U]+EVﬁVﬁIC“‘[U]) =exp(i{Qg,*}). (4.55
Expanding this exponential and using the fact that
QE:QBy Qsl0)rer=0, QEZO, (4.56

we see that the partition function in tladssence of external sourcbas the decomposition
Zym=ZpymLTFT- (4.57

Thus the expectation value of the Wilson loop is written as

(WL Al)yym= < <ex+f dDX<WﬁM ALUT+ %VﬁV;Ei’CAB[U]) ex;{ iJ jgcdx”nA(x)Vﬁ(x)>>
pYM
0,
X ex |6Ld Z €,,n-(d,nX3d,n) . (4.58
TFT
By repeating similar arguments, the Wilson loop is cast into the form
J
<WC[A]>YM=< <exp{iJ % dx“nA(x)Vﬁ(x))> exp{i—j d?z €,,n- (d,nX ayn)>> ) (4.59
¢ pYM 97s TFT

The perturbative part is expanded into

1
<exp(iJ fﬁcdxﬂn‘\(x)vf}(x)» =1—§J2 ﬁjdxﬂ ?gcdyVnA(x)nB(y)<vﬁ(x)vE(y)>pYM+0(94), (4.60
pY

M

where we have use(ovﬁ(x))pYM=0. Then we can write
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(WE[A]) = < ex;{ i %jsdzz €,,N-(9,nX ﬂpn)) >

TFT

A B i 2 .
<n (xX)n (y)ex%lgfsd Z €,,n-(d,nX3,n)
. J 2
<exp<|§fsd Z €,,n-(d,nX3d,n) >TFT
(4.61

Owing to the dimensional reduction, the expectation value of the diagonal Wilson (lexqpi(J/g) S0’z €,n-(d,Nn
X d,n)])ret on the RHS of Eq(4.6]) in the four-dimensional TFT2.39 is reduced to that in the two-dimensional NLSM
(2.40, whenC is planar:

Q - I ) ) = p(-i 2 . )
(W a ])TFT4 <exp(|gfsd Z €,,n-(d,nX3d,n) - ex Igfsd Z €,,n-(d,nX3d,n) . (4.62

NLSM,

TFT+O(g4) .

1 2 A B
x| 1-=J jg dx* fﬁ dy"(V,()V5(Y))pym
2 c c

The quantityQ4 n] defined by Then we obtain

1 ) , WCT A = (g(J/9)87Qg[n]
Qs[n]==ﬁj d?z eWn~(aMn><(9Vn)=nT_nT, (WAL ym=( >NLSM2
S

(4.63

is an integer, and counts the instanton—anti-instanton charge
(n!—n'") inside the Wilson loop. By summing up the in- i(J1g)8 704 n]

.. . . . . Sl
stanton and anti-instanton contributions in the two- X(n(x) n(y)e INLSM, +0(g"
dimensional NLSM, we have obtained the area law for the (el(V98mQdlnly | 9
diagonal Wilson loop in the previous artid2]: 2

1
X|1-5J2 3€ dxt § dy*G(X,y)
2 c c

(4.68
<WC[aQ]>TFT :(ei(\]/g)sﬂ'QS[n]>NLSM EeiUAbe}A(C),
) ? (4.64) where we have used dimensional reducfidhfor the corre-
' lation function,

whereA(C) is the area enclosed by the Wilson loGp We

i(J/g)8
call the coefficient in the area decay, the Abelian string (n(x)-n(y)e' Ve o p
tension. The naive instanton calculus based on the dilute in- . i(/g)87Qgn]
stanton gas approximatid] leads to =(n(x)-n(y)e >NLSM2’
s 2 4772 X,y e C=dSCR?, (4.69
Tape=2Be 1 1—co T , 312?, (4.65

for the planar Wilson loof.

where B is a constant with the mass-squared dimendlon A naive estimate for the expectation value in the NLSM
Nmi and S, =42/g? is the action for one instanton. Here IS 9ivVen by considering the instanton contribution. The in-

we have neglected to write the perimeter decay part Whicﬁt""_nton solution in the NLSM is given by the f|)eld _co_nﬂgu-

can be generated by instantons and anti-instantons locat&@tionn such than approaches the same vaio® at infin-

just on the perimeter of the Wilson loop. ity (see[2]):
Now we proceed to estimate the remaining terms. To sim-

plify the perturbation calculation on the RHS of E¢.61),

we take the Feynman gauge in the perturbative sector whe

the propagator reads

n(x)—n®  (|x| =), (4.70

Wheren(® is any unit vectorn(©@.n(®=1. Therefore, for a
large non-intersecting Wilson lodp,

A B —
(VaV3(y)pym=8"%5,,G(x.y), (4.66 n(x)-n(y)—n@.n@=1 (x,yeC=49). (4.7
B I PO o Here the configuratiom®=(0,0,1) corresponds to the to-
G(x,y)= elP Y == \ g , _
’ (2m)* p? 4n? [x—y[* pological trivial caseQ=0. A precise estimate of E¢4.69

(4.67 can be done using the largd expansion for the Q)
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NLSM. In fact, for not so largeéx—y|, the two-point corre- Hence the deviation of the string tension comes from the

lation function behaves asee, e.9.[37]) finite size effect of the Wilson loop. For a sufficiently large
N=2 1 [x—y|]N-DIN-2) (non-intersectipg p_Ian}akNiIson I<_)0p,<r> T Abel an.d the off-
() -n(Ynism=|1- —=— = y , diagonal contribution to the string tension vanisheRab
M 27 B € —o. In the large Wilson loop limitR, T—o, the Abelian

(4.72 string tension coincides exactly with the full non-Abelian
string tensiong = o - Thus Abelian and monopole domi-
nance for the string tension can be proved under the MAG
Iaccording to the formulation of YM theory as a deformation
of TFT. It is rather straightforward to extend the above strat-
egy to the caseG=SU(N),N=3.

wheree is a short distance cutoff.

It turns out that the contribution of the last term in Eg.
(4.68 gives the perimeter law correction to the area law. Fo
large T>R> 1, we have(see the Appendix anB88-43)

1 It should be remarked that, if the massive decay of the
) 3§CdX’L écdy“G(x,y) correlation function (4.72 for large separation|x—y|
>1 (x,yeC) is incorporated in the above evaluation, the
9> T+R ¢*>T ¢°> R Coulomb part ¢?/47) T/R in Eq. (4.73 will be replaced by
=52 Ti-rT 22" (473 the Yukawa part §%/4m)(T/R)e ™R wherem is the mass

of the n field of the NLSM. However, this effect does not
It should be remarked that the perimeter decay in(Bf3  change the conclusion for the string tension. In fact, the pe-
comes from the contribution of the coincident poirtry  rimeter part is generated from the coincidence lifwit-y|
(after regularizationx—y|=e<1; see the Append)xSimi-  <1. Furthermore, if we averageu(x)-n(y) over all pos-
larly we can evaluate the higher-order terms which give asible configurations, we would have obtained
running coupling constant consistent with the asymptotic
freedom. These contributions from the perturbative sector
should be compared with the conventional calculation based f duc(nn(x)-n(y)= 62 (x-y), (4.77
on perturbative QC)38].

Equnentiating the F:ontributions from the power-serieSyom a fact than(x) andn(y) are independent for the mea-
expansior{38], we obtain, forg small, sureduc(n). Consequently, only the coincident contribution

c =(e'(V/987Q ~C@?(R+T)+(g%4m) TIR+C' survives in Eq.(4.68, which leads to the perimeter decay
WTADvw=(e >NLSMZe correction alone in Eq(4.76 (without the Coulomb or
— @~ AbeRT-CG*(R+T)+(g%4m) TIR +C' (4.74 Yukawa par}.

Monte Carlo simulation of lattice gauge theory supports
whereC and C’ are constants. The full non-Abelian String the finite size effect as a deviation of the String tenSion, as
tension is defined by argued by Suganumet al. [44] using a computer-assisted

analytical study.

1
o=— lim ——In(W[A)yu, (4.7
A(C)—o A(C) D. Abelian dominance

whereA(C) is the area enclosed by the Wilson loop. For a  According to the NAST, one must average over all gauge
rectangular loop with side lengtigandT, A(C)=RT. The transformation in the coset $2)/U(1). Abelian dominance
above result shows that the Abeliégiagona) Wilson loop  is the statement that in the true quantum vacuum, the contri-
obeys the same area law as the non-Abelian Wilson loop anlutions to then average are approximated by the Abelian
that the area law of the full non-Abelian Wilson loop is de- projection. This replacemA(x)vﬁ(x) with n3(x)vi(x).
duced from the magnetic monopole contribution for the di-From our standpoint, the contribution to the area law and
agonal Wilson loop{e'/987Q) . This implies monopole nonvanishing string tension comes from the topological
dominance in the string tension of QCD under the MAG.term, i.e., the second term in the exponéht32, because
The deviation of the Abelian string tension from the full the first term can only give a perturbative correction around

non-Abelian string tension is given by the nontrivial topological sector. Actually, the first term may
1 give a long-range Coulomb potential in the topological
_ T - C trivial sectorQ=0. Therefore, according to the reformula-
77 TAbel A(Ic|gn_m A(C) In(W-TAD vu tion of YM theory as a deformation of MAG TFT, the domi-
nance of the topological nontrivial terthe second terjnis
+ lim |n<ei(J/g)87TQ>TFT an immediate consequence of _the formulation. Thi_s implies
AC) e A(C) monopole dominance in the string tension. In addition, Abe-
5 lian dominance is an immediate consequence of APEGT to-
CE(R+T)— g c’ gether with the above considerations.
) 47 R Here it should be remarked that the Abeliadiagona)
=R|'II'TOO RT =0. Wilson loop in non-Abelian gauge theory is not the same as

the Wilson loop in Abelian gauge theory. In Abeliar(1y
(4.76 gauge theory, the Wilson loop is given b§]
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APPENDIX: EVALUATION OF THE WILSON INTEGRAL
Wc[a]::exr(iq % aM(x)dx">
c

=ex;{ iq fﬁ dx*
C

In order to evaluate the Wilson integral, we choose a rect-
angular contour with side lengti®andT. Then we have

§ 1 T T 1
dx %d —I—Zf dt’f dt'———
c “Je y“|><—y|2 0 0 RZ4(t'—t")2

i
vﬂ(x)+auaﬂu*

Ux)=e'*®eU(l). (4.79

R R 1
E. Gluon self-interactions in the perturbative sector 2.[0 dr fo dr T2+ (r'— r”)2
In the new reformulation of gauge theof#], QCD has
been identified with a perturbative deformation of TQFT. In T T 1
this reformulation the nonperturbative dynamics of QCD is +2f dt'J dt”—, e
saturated by TQFT. This identification will be meaningful at o Jo (-t
least in the low-energy physi¢scluding the quark confine-
mend by the following reasons. In principle, of course, ad- Ro(R,., 1
ditional nonperturbative dynamics could possibly come from +2J dr J dr (pr_m2’
: ; , : 0 o (r'=r")
the self-interaction among the gluon fields, reflecting the (A1)
non-Abelian nature of the gauge group. However, additional
nonperturbative contributions to quark confinement are exNote thatdx,dy, implies that only integrations between
pected to be rather small, if any. This is because recent nyarallel sides give a contribution, i.e., no contribution be-
merical simulationg9,10] of lattice gauge theory with the tween neighboring sides wheds, dy,=0. In the line inte-
maximal Abelian gauge fixing have confirmed magneticgrals in the first(second lines of Eq.(A1), x andy run over
monopole dominance as well as Abelian dominance in lowopposite(same sides of the rectangle. The integral over the
energy physics of QCD for various quantities including theopposite side is
string tension.

Another reason from a theoretical viewpoint is as follows. LN 1 2T T T?
As shown in[1], we can integrate out the off-diagonal gluon f dt f dt'——— == garctag —In| 1+ =/.
: ; . X 0 0 R +(t'—t")
fields in QCD to obtain the low-energy effective gauge (A2)

theory of QCD, i.e., APEGT. Note that APEGT is Abelian

gauge theory. Hence, at this stage, we do not worry so serpn the other hand, the integrals over the same sides diverge.
ously about the remaining gluon self-interactions which areso we omit the integral around the singularity by introducing
identified as the perturbative deformation to TQFT in thethe infinitesimal parameter:
reformulation of QCD. Then nonvanishing magnetic mono-

pole currentk,(x) is generated from the diagonal Abelian T T 1 T-e T
part a;;(x) according to[1]. In addition, the result of the f dt'f dt”,—”2=2f dt'f
previous article[2] shows that condensation of magnetic o (=t ‘
monopoles in four-dimensional QCD is deduced from instan- T—¢
ton (or vortex condensation in the two-dimensional NLSM =2
obtained from the dimensional reduction of four-dimensional

TQFT. Therefore, the low-energy dynamics of QCD in theSumming all terms yields
MAG is considered to be described well by TQFT or its

dimensional reduction, i.e., the NLSM. In the low-energy

region where APEGT is meaningful, therefore, quark con- chM ﬁ:dyﬂ
finement will follow from these considerations without much

difficulties by combining the results of the previous articles

[1,2] with the result of this article. =—2

4

0 0 "te (t/_t//)Z

€
+2 InT. (A3)

1
x—yl?

2T ) T+2R ) R I
Rarctang+ —arctanz—In

R? T+R—2e € €
1+? —2f—2 |n?—2 |n§. (A4)

T2
L7
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Then we obtain

1§;d g g> 1 N g2T+R+ng+g2|R A6
T2 R R 22 e 4R 2a2"e (A6)

On the RHS of Eq(A6) the first term exhibits the perimeter law. The second term corresponds to the Coulomb law. The
constant term represents the self-energy of a regularized point charge. This should be subtracted during the course of renor-
malization. On the lattices is replaced with the lattice spacing. The last logarithmic divergent term does not occur for the path
C with a continuous tangeht3].
In Abelian gauge theory, the static potential is given by
> pU(L)

1 c o 1 ) .
Tln (W-[v]y=—lim Tln exp i ﬁ:dx v, (X)

T—x

V(R):=— lim

T—oo

1 1 " ”
=—lim ?In exp — 5 écdx écdy (v (X)V,(¥))pur

T

=—1i 1I 1j€d f{)d 92 ! = A7
=-lm Finexp =5 ¢ du P gz k2| Za2 e an R (A7)

T

where the last term gives the Coulomb potential. The above evaluation of the Wilson loop shows that the perimeter law
follows from the contributiork=y. For more details, s€f88-43.
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