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Gravitating s model solitons
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We study the axially symmetric static solitons of the O~3! nonlinears model coupled to~211!-dimensional
anti–de Sitter gravity. The obtained solutions are not self-dual under a static metric. The usual regular topo-
logical lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There
exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes

involve charged Ban˜ados-Teitelboim-Zanelli black holes without non-Abelian scalar hair.
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I. INTRODUCTION

Three-dimensional~3D! Einstein gravity is characterize
by the absence of a propagating gravitational degree@1#.
Though it is different from the nature of~311!-dimensional
gravity, 3D gravity without the graviton has attracted atte
tion in cosmology in connection with cosmic strings@2# and
in the gauge theory formulation@3#. In both contexts,~211!-
dimensional@~211!D# anti–de Sitter gravity may be intrigu
ing because it was the first example reformulated as a Ch
Simons gauge theory of the Poincare´ group @3# and its
vacuum solutions support black holes@4#.

~211!D gravity with a nonzero cosmological consta
was first studied in Ref.@5#. When a static point particle with
mass and without spin is coupled to gravity, a gene
anti–de Sitter solution was obtained:

ds25A«

S R

R0
D A«c

1S R0

R
D A«c

S R

R0
D A«c

2S R0

R
D A«c

dt2

2
4«c2~dR21R2dQ2!

uLuR2F S R

R0
D A«c

2S R0

R
D A«cG 2 , ~1.1!

wherec5124Gm and« is 61 for the negative cosmologi
cal constantL. When «511, the metric~1.1! describes a
hyperboloid with a deficit angle. Note that the effect of t
point particle at the origin appears only in the deficit angle
Eq. ~1.1!, and thereby these solutions go to vacuum soluti
in the massless limit (m→0). Later Bana˜dos-Teitelboim-
Zanelli ~BTZ! black hole solutions were reported in Ref.@4#,
and the simplest one is the Schwarzschild-type black ho
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ds25~ uLur 228GM!dt22
dr2

uLur 228GM
2r 2du2.

~1.2!

Here an integration constantM of the Einstein equation is
arbitrary; however, solutions of positiveM correspond to
BTZ black holes. Since both solutions in Eqs.~1.1! and~1.2!
are vacuum solutions in the limit of zero point particle ma
one may easily find a coordinate transformation to conn
the m50 solutions in Eq.~1.1! with the solutions in Eq.
~1.2!. As expected, the«511 case in Eq.~1.1! corresponds
to the negativeM solution in Eq.~1.2!, and the correspond
ing space is a regular hyperboloid. The«521 case results
in the exterior region of the Schwarzschild-type BTZ bla
hole @6#.

This BTZ black hole has so far attracted much interes
various classical black hole solutions@7#, in thermodynamic
and statistical properties@8,9#, and in string-related topics
@10#. In 311 dimensions, gravitating solitons and sphalero
have received considerable impetus by the discovery o
class of non-Abelian black hole solutions@11–13#. It might
be an intriguing direction to ask the same question, t
whether or not gravitating solitons in~211!D anti–de Sitter
spacetime can form solitonic BTZ black holes. In the case
global U~1! vortices, a regular configuration could make
black hole structure with two horizons similar to the charg
BTZ black hole@6#. Since the energy of a static global U~1!
vortex diverges logarithmically in flat spacetime, we he
want to address the same question to a model contai
finite energy soliton excitations. In this context the O~3! non-
linear s model may be an appropriate choice since the fi
content of the model is simple, and exact static self-d
multisoliton solutions of finite energy have been obtained
both flat @14# and curved spacetime with zero cosmologic
constant@15–17#.

In this paper, we consider both the negative cosmolog
constant and matter distribution provided by regular sta
solitons of the O~3! nonlinears model. The metric of our
consideration is static and axially symmetric. The inclusi
of a negative cosmological constant leads us to expec
©1998 The American Physical Society13-1
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YOONBAI KIM AND SEI-HOON MOON PHYSICAL REVIEW D 58 105013
induce a drastic change to solitonic physics in 211 dimen-
sions. The role it plays is effectively equivalent to the intr
duction of angular momentum under a stationary metric,
then the corresponding spacetime provides a rotating fr
to the test particle. Therefore, statics solitons in anti–de
Sitter spacetime cannot remain self-dual under the static m
ric. Even if we obtain self-duals solitons under the station
ary metric, we encounter an unphysical situation, e.g., clo
timelike curves@18#. An attractive gravitational force sound
natural in 311 dimensions for localized ordinary matter di
tributions, so that it makes the matter collapse into a bl
hole or coagulates a new localized object which does
exist in flat spacetime@11#. Since~211!D gravity itself does
not contain a propagating gravitational field, negat
vacuum energy can induce a similar effect in curved spa
time. In the O~3! nonlinears model, we present a new non
topological soliton solution of half integral winding in add
tion to the well-known topological lump solution of integr
winding. We also show that any regular topological lum
whose energy is localized near its core cannot form
spacetime of a BTZ black hole. However, nontopologi
solutions have a logarithmically divergent energy tail, so t
their spacetimes can include charged BTZ black holes
these aspects the obtained nontopological solitons rese
global U~1! vortices, but the non-Abelian scalar hair ofs
solitons do not penetrate the horizon while the scalar hai
the global U~1! vortices can be observed outside the BT
black hole.

This paper is organized as follows. In Sec. II, we intr
duce the model and obtain all possible static regular solit
with axial symmetry by solving second-order Eule
Lagrange equations. In Sec. III, the spacetime structure
cluding BTZ black holes is analyzed for the obtained gra
tating solitons. Geodesic motions are computed in Sec.
We conclude in Sec. V with a discussion.

II. MODEL AND SOLITON SOLUTIONS

The nonlinears model with O~3! symmetry is described
by the Lagrange density

L52
1

16pG
~R12L!1

1

2
gmn]mfa]nfa

2
l~x!

2
v2~fafa2v2!, ~2.1!

where the Lagrange multiplierl(x) is rescaled to a dimen
sionless quantity, and the variation of it produces a constr
for the scalar field:fafa5v2 (a51,2,3). Throughout this
paper, the dimension counting of fields is adjusted to tha
~311!-dimensional spacetime since we presume to apply
obtained results to straight, infinite strings. Then the mo
involves three mass scales, namely, the Planck scale 1/AG,
the scale of negative cosmological vacuum energyAuLu, and
the symmetry-breaking scalev. Solitonic objects of our in-
terest have axial symmetry; i.e., the corresponding str
spacetime is invariant under the rotation to, and the tran
tion along, a symmetry axis. The mass in this paper sta
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for mass per unit length along the symmetry axis. In this c
the static metric of this spacetime can be parametrized a

ds25e2N~r !B~r !dt22
dr2

B~r !
2r 2du22dz2. ~2.2!

For this kind of metric all physical settings effectively redu
the hypersurface orthogonal to the symmetry axis, and
stringlike object can be viewed as a pointlike source in 211
dimensions. Suppose that a given matter distribution is s
cialized to the case of axially symmetric time-independ
fields and the equations of motions are solved. The resul
metric has two integration constants that are identified as
mass and angular momentum@4#. Since we take a static met
ric ~2.2! here, it is equivalent to set the angular momentu
zero. When we fix the boundary condition at the origin f
the fields and the metric, we will choose a value of the m
parameterB(0) later. We take a stereographic projection f
fa so that the ansatz for the solitons with axial symmetry

fa5v„sinF~r !cosnu,sinF~r !sinnu,cosF~r !…. ~2.3!

Euler-Lagrange equations derived from the action and
static metric are

d2F

dr2
1S dN

dr
1

1

B

dB

dr
1

1

r DdF

dr
5

n2

Br2
sinFcosF, ~2.4!

1

r

dN

dr
58pGv2S dF

dr D 2

, ~2.5!

1

r

dB

dr
52uLu28pGv2H BS dF

dr D 2

1
n2

r 2
sin2FJ . ~2.6!

A physical condition for the spacetime manifold is th
reproduction of Minkowski spacetime in the limit of no ma
ter (Tn

m50) and zero cosmological constant (L50), and
then an appropriate set of boundary conditions is

B~0!51 and N~`!50. ~2.7!

When nÞ0, the scalar fieldfa in Eq. ~2.3! being well de-
fined forces the boundary condition at the origin such as

F~0!50 @or sinF~0!50#. ~2.8!

Introducing a new variabler̃ 5 ln r (2`,r̃,`), we rewrite
Eq. ~2.4! as

d2F

dr̃2
1S dN

dr̃
1

1

B

dB

dr̃
D dF

dr̃
5

n2

B
sinFcosF. ~2.9!

After eliminating derivative terms of the metric functions b
use of Eqs.~2.5! and ~2.6!, we obtain

B
d2F

dr̃2
5n2sinFcosF2~2uLue2r̃28pGv2n2sin2F !

dF

dr̃
.

~2.10!
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GRAVITATING s MODEL SOLITONS PHYSICAL REVIEW D 58 105013
From the vanishing of the right-hand side of Eq.~2.9! at
spatial infinity, we read possible boundary values of the s
lar amplitude:

F~`!5H p from the sine term,

p/2 from the cosine term,

a~0,a<p! from the 1/B~`! term.
~2.11!

The boundary condition in the last line of Eq.~2.11! comes
from the divergence ofB(r ) at spatial infinity. Precisely
B(r )'uLur 2 for a sufficiently larger .

Before analyzingnÞ0 solutions of Eq.~2.4!, we will
show that there does not exist ann50 regular nontrivial
solution of this equation even in anti–de Sitter space. If
substitute Eqs.~2.5! and ~2.6! into Eq. ~2.4! whenn50, we
obtain

d2F

dr2
1S 2Lr

B
1

1

r DdF

dr
50. ~2.12!

SinceB(0)51, F given by a solution of this equation con
tains a logarithmic divergence at the origin, i.e.,F(r )
}*dr2e2uLur 2

/r 2 for a sufficiently smallr . Now that we
have shown the nonexistence of then50 solution, let us
look for the nÞ0 soliton solutions of Eqs.~2.4!, ~2.5!, and
~2.6! satisfying the boundary conditions in Eqs.~2.7!, ~2.8!,
and ~2.11!.

A. Topological soliton

Solutions satisfying the boundary condition thatF(0)
50 and F(`)5p are topological solitons when the ba
spatial manifold formed by them is topologically equivale
to two-dimensional Euclidean space. These static solitons
characterized by topological charge,

Q5
1

8pE d2xe0i j eabcfa] if
b] jf

c ~2.13!

5
n

2
@cosF~0!2cosF~`!# ~2.14!

5n, ~2.15!

and this quantized chargen represents a winding number o
the second homotopy group, that is,P2(S2)5Z. From now
on we will call topological solitons of this model ‘‘topologi
cal lumps.’’

The topological lumps are known to be unique static s
ton species of the O~3! nonlinears model in flat spacetime
and they have been studied in curved spacetime as a c
date of global cosmic strings@15–17#. Since exact soliton
solutions were obtained by solving the first-order self-d
equation, their existence has been automatic as far as
cosmological constant has not been taken into account
we shall discuss it later, static solitons under the static me
10501
a-

e

t
re

-

di-

l
the

s
ic

are not self-dual in anti–de Sitter spacetime and then
have to consider the second-order Euler-Lagrange equa
~2.4! directly.

Since we cannot exactly solve Eqs.~2.4!, ~2.5!, and~2.6!,
let us attempt a series expansion of the fields near the or

F~r !'F0r n, ~2.16!

N~r !'N014pGv2F0
2nr2n, ~2.17!

B~r !'11F uLu

v2
24pG~11n2!F0

2d1,nG ~vr !2,

~2.18!

where F0 and N0 are constants determined by the prop
behavior of the fields at the asymptotic region. For largr
the leading term approximation gives

F~r !'p2
F`

r 2
, ~2.19!

N~r !'2
8pGv2F`

2

r 4
, ~2.20!

B~r !'uLur 21B`1
16pGv2uLuF`

2

r 2
, ~2.21!

whereF` and B` are also determined by the proper fun
tional behavior at the origin.

If we identify F as a coordinate andr̃ as time in Eq.
~2.10!, then we can interpret this equation as a Newton
equation for the one-dimensional motion of a hypotheti
particle with variable massB(r ). The exerted forces are fric
tion or a kind of velocity-dependent force proportional
dF/dr̃, and the conservative force from the potentialU
5(n2/2)cos 2F ~see Fig. 1!.

If we naively read possible motions of a hypothetical p
ticle from the potentialU(F), then the motions satisfying

FIG. 1. Shape of the effective potentialU and possible motions
of a hypothetical particle:~a! overshoot solution~the dotted line!,
~b! critical solution withF(`)5p ~the solid line!, and ~c! under-
shoot solution withF(`)5p/2 ~the dashed line!.
3-3
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YOONBAI KIM AND SEI-HOON MOON PHYSICAL REVIEW D 58 105013
F(r 50)50 are classified into three sets by its initial velo
ity which can actually be replaced by the value ofF0 in Eq.
~2.16!. WhenF0 is larger than a critical value, the partic

reachesp at a finite timer̃ and it corresponds to an ove
shoot shown by the dotted line in Fig. 1. WhenF0 is smaller
than the critical value, the particle cannot reachp because of
the power loss due to the velocity-dependent terms in
~2.10! and this motion should have a turning point betwe
p/2 andp. The existence of the overshoot solution given
the dotted line in Fig. 1 and the undershoot solution given
the dashed line in Fig. 1 guarantees, by continuity argum
the existence of the topological lump solution connect
F(r 50)50 andF(r 5`)5p smoothly~see the solid line in
Fig. 1!.

For the metric functions,N(r ) is monotonically increas-
ing since the right-hand side of Eq.~2.5! is always non-
negative; however,N(r ) is a slowly varying function in the
asymptotic region as was shown in Eq.~2.20!. It means that
the exponential ofN(r ) does not affect much the structure
spacetime. On the other hand, the functional behavior
B(r ) changes drastically according to both the magnitude
the cosmological constant and the matter distribution. The
fore, its spacetime structure, e.g., a black hole, is determ
by reading the shape ofB(r ). We will discuss possible
spacetimes generated by variouss solitons in the next sec
tion.

In the above discussion, we neglected the effect of
variable massB(r ) in Eq. ~2.10!. It may be valid when the
absolute value of the cosmological constant is small. On
other hand, ifuLu/v2 is large enough, terms proportional
the cosmological constant dominate even for some finitr̃
region. In the Newtonian equation~2.10!, such terms are
interpreted as the variable mass termB( r̃ );uLue2r̃ and the
time-dependent coefficient of the friction 2uLue2r̃ on the
right-hand side of Eq.~2.10!, respectively. In this case, th
mass of the hypothetical particle can rapidly increase
small r and it can forbid the existence of overshoot solutio
even for hugeF0 values. It is indeed the case which w
confirmed by numerical computation. In synthesis, there
ists a regular topological lump solution satisfying the boun
ary conditionsF(0)50 andF(r 5`)5p only whenuLu/v2

is less than a critical value. An example of the topologi
lump is shown in Fig. 2.

B. Nontopological soliton

When we discussed solutions of Eq.~2.11! in the previous
subsection, we discussed the possibility of another se
regular solutions satisfyingF(`)5a (0,a,p) as given
in Eq. ~2.11!. Suppose that there exist such solutions and
attempt a power series expansion of them for larger :

F~r !;a2
Fa,`

r q
. ~2.22!

From Eqs.~2.5! and ~2.6!, we have
10501
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N~r !;24pGv2q
Fa,`

2

r 2q
, ~2.23!

B~r !;uLur 21128GMa28pGv2n2sin2a ln r /r c̃ ,
~2.24!

whereFa,` andMa are constants which have to be chos
by the proper behavior ofF(r ) andB(r ) near the origin, and
r c̃ stands for the core radius. Inserting the series soluti
~2.22!, ~2.23!, and~2.24! into Eq.~2.4! of the scalar field, we
have a relation for the leading term:

2q~q22!
uLuFa,`

r q
5

n2

r 2
sina cosa. ~2.25!

WhenaÞp/2 and 0,a,p, the functional behavior of the
radial coordinate forcesq52 but then the equality canno
hold because of the vanishing of the left-hand side of E
~2.25!. This implies the impossibility of a regularF(`)5a
solution except theF(`)5p/2 solution. When the boundar
value ofF is p/2, the charge defined in Eq.~2.13! is a mul-
tiple of half, i.e., Q5n/2. Therefore, every solution o
F(`)5p/2 is classified as a static nontopological soliton
half integral winding.

In the previous subsection we mentioned the existenc
undershoot solutions, and they should be nothing but
solutions ofF(`)5p/2. Here let us emphasize again th
impossibility of this half integral winding solution in fla
spacetime. SinceN(r )50 andB(r )51 in flat spacetime, Eq
~2.9! depicts a one-dimensional motion of a hypothetical p
ticle with unit mass of which the position isF at time r̃ . The
exerted force comes only from the conservative poten
U(F) shown in Fig. 1; so a virial theorem allows two regul
solutions, i.e., the stopped motion@F( r̃ )50# or the motion
satisfying F( r̃ 52`)50 and F( r̃ 5`)5p. In curved
spacetime with zero cosmological constant, the veloc
dependent force is not a friction but it pushes the hypoth
cal particle outward. Moreover, the variable massB(r ) of
the particle decreases as timer̃ elapses. These two factor
make turning of the hypothetical particle more difficult b
fore F5p and forbid the undershoot solution. Therefor

FIG. 2. A configuration of topological lump solution whe
8pGv250.2, uLu/v254.031026, and F055.896. The boundary
value of the topological lump solution hasp with 1026 precision.
3-4
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GRAVITATING s MODEL SOLITONS PHYSICAL REVIEW D 58 105013
there does not exist any nontopological solitons of half in
gral winding in curved spacetime when the cosmologi
constant vanishes. In de Sitter spacetime, the positive cos
logical constant term makes the situation worse; so we ea
expect no half integral winding solution similar to the case
a zero cosmological constant. In anti–de Sitter spaceti
the negative cosmological constant term provides a frict
as shown in Eq.~2.10! and lets the variable massB(r ) get
heavy for larger as given in Eq.~2.21!. Among the solutions
classified by the value ofF0 in Eq. ~2.16!, a set ofF0’s less
than the critical value for the topological lump solution pr
vides a set of undershoot solutions with turning point b
tweenp/2 andp. Since the potentialU has a minimum at
p/2, it may oscillate aroundp/2 and finally converge top/2
due to the friction.

For a better understanding of the asymptotic behavio
the scalar fieldF(r ), let us consider a linearized equation f
dF(r ) defined byF(r )5p/21dF(r ). As an approximation
of B(r ) we bring up two cases: One describes the region
slowly varyingB @B(r )'B̄#, and the other is the asymptot
region @B(r )'uLur 2#. The former leads to

B̄
d2dF

dr2
13uLur

ddF

dr
1

n2

r 2
dF50, ~2.26!

and the latter goes to

uLur 2
d2dF

dr2
13uLur

ddF

dr
1

n2

r 2
dF50. ~2.27!

A representative asymptotic solution of each equation
given in Fig. 3 and every solution includes both oscillati
and damping as expected. Note that oscillations are rapid
small r but the period of each oscillation also increases r
idly as r increases. Since this smallr region of rapid oscil-
lation is covered by the soliton core, we may expect
possibility of a monotonic solution. It is indeed the case a
we obtain a class of solutions specified by the number ofp/2
points at finiter . From now on we will call this number a
‘‘node.’’ From the value ofF0 in Fig. 4 one may easily read

FIG. 3. Two types of asymptotic solutions fordF(r )[F(r )
2p/2 when 8pGv250.4 anduLu/v250.01. The dashed line is
solution of Eq.~2.26! whenF050.15 andF(r 50.01)50.0001. The
solid line is a solution of Eq.~2.27! when F0510 andF(r 50.3)
521.
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proportionality betweenF0 and the nodes. Obviously th
maximum value ofF also increases asF0 becomes larger.

Now some comments onB(r ) for larger are in order. The
expression ~2.24! involves a logarithmic term whena
5p/2, and it means resemblance between the obtained
topological solitons of half integral winding and the vortic
in a scalar model with global U~1! symmetry@6#. The ap-
pearance of this logarithmic term also implies that the co
dinater may not be a good coordinate for the expansion
B(r ) in the asymptotic region as has been done in the glo
U~1! vortices@19,20#.

It is well known that the O~3! nonlinears model in ~2
11!D flat spacetime supports self-dual solitons described
the first-order equation

] if
a56

1

v
e i

j«abcfb] jf
c, ~2.28!

and any static regular topological soliton with finite ener
satisfying the Euler-Lagrange equation is proved to be s

FIG. 4. Various nontopological solitons specified by the num
of nodes when 8pGv250.4 anduLu/v250.01.
3-5
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YOONBAI KIM AND SEI-HOON MOON PHYSICAL REVIEW D 58 105013
dual and to satisfy Eq.~2.28!. Here it would be natural to as
the question whether or not the obtained solutions in anti
Sitter space are self-dual. In curved spacetime, the sec
order equation from the self-dual equation~2.28! is

¹2fa2
1

v2
~fb¹2fb!fa56

1

v
«abc~] je

j i 1G jk
j eki!fb] if

c,

~2.29!

where¹2 denotes two-dimensional Laplacian. In the sta
metric ~2.2!, Eq. ~2.29! becomes

B
d2F

dr2
1S B

dN

dr
1

dB

dr
1

B

r DdF

dr
2

n2

r 2
sinFcosF

56
1

v
eN

r S B
dN

dr
1

1

2

dB

dr DnsinF. ~2.30!

Comparing Eq.~2.30! with the Euler-Lagrange equatio
~2.4!, we obtain a necessary condition for the metric, that
the vanishing of the right-hand side of Eq.~2.30!:

dN

dr
1

1

2B

dB

dr
50. ~2.31!

The solution of Eq.~2.31! with a rescaling of the time coor
dinate leads to

ds25dt22dz22
dr2

B~r !
2r 2du2. ~2.32!

It is the very metric admitting self-dual stringlike solutions
curved spacetime with zero cosmological constant@15,16#.
With the help of Eq.~2.31!, Eqs.~2.5! and~2.6! are reduced
to an equation

2uLu528pGv2SAB
dF

dr
2

n

r
sinF D SAB

dF

dr
1

n

r
sinF D .

~2.33!

Since the~anti-!self-dual solitons satisfying Eq.~2.28! make
the right-hand side of Eq.~2.33! vanish, we haveL50 as a
necessary condition for any~anti-!self-dual soliton. There-
fore, the static stringlike topological and nontopological co
figurations of the O~3! nonlinears model under the static
metric ~2.2! cannot saturate the Bogomolnyi-type bound
~anti–!de Sitter spacetime. In fact static self-dual solitons
this model with a cosmological constant were proved to
constructed only when the metric is stationary and the c
mological constant is negative@18#.

In this section we analyzed the O~3! nonlinears model in
anti–de Sitter spacetime and found a new static soliton c
figuration whose nature is nontopological, and its topologi
charge is a multiple of half integer in addition to the we
known topological lump solution. The obtained solitons a
shown to be non-self-dual.
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III. SPACETIME STRUCTURE

We have obtained in the previous section all possi
static regular soliton solutions of Eq.~2.4!, Eq.~2.5!, and Eq.
~2.6!. In this section we address the question about poss
spacetime manifolds formed bys soliton configurations and
a negative vacuum energy. Among the known~211!D
anti–de Sitter spacetime solutions intriguing ones are
regular hyperboloid and BTZ black hole@5,4#. In Ref. @6#,
one of the authors showed that a static global U~1! vortex
can form a space with two event horizons, which resemble
charged BTZ black hole. Specifically, what we are looki
for is the existence of a black hole horizon, which is ma
fested by the region of nonpositiveB(r ).

At first let us investigate the structure of spatial manifol
by the topological lump solutions and show that any regu
topological lump configuration does not form a BTZ-typ
black hole even when the magnitude of the negative cos
logical constant is small and the symmetry-breaking scal
of the order of the Planck mass. From the asymptotic form
B(r ) in Eq. ~2.21!, one can easily read a necessary condit
to have negativeB(r ). WhenB` is not negative, the serie
expansion~2.21! of B(r ) is always positive for larger and it
implies the impossibility of the existence of the horizon. O
the other hand, Eq.~2.18! tells the opposite possibility tha
B(r ) of an n51 soliton can be zero at somer , if 4pG(B0

1n2)F0
2 is much larger than the magnitude of the cosmolo

cal constantuLu. In order to clarify this issue let us examin
the integral equations forN(r ) andB(r ) obtained from Eq.
~2.5! and Eq.~2.6!:

N~r !528pGE
r

`

dssS dF

dsD 2

, ~3.1!

B~r !5e2N~r !H 2uLu E
0

r

dsseN~s!

28pGv2n2E
0

r

ds
eN~s!

s
sin2F1eN~0!J . ~3.2!

The first term in the square brackets of Eq.~3.2! describes
the contribution of the negative vacuum energy and sec
term the core mass. In order to obtain a negativeB(r ) region
for somer , a small magnitude of the negative cosmologic
constant is favorable. Since the third terme2N(0) is of order
1, another necessary condition from the second term in
~3.2! is the lower bound of the symmetry-breaking scalev
which must be the Planck mass, i.e., 8pGv2;1. To evaluate
the value ofB` in Eq. ~2.21!, we take a crude approximatio
such as

N~r !50 ~3.3!

and

F~r !5H 0 for 0,r ,r c2D,

p/2 for r c2D<r<r c1D,

p for r .r c1D.

~3.4!
3-6
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Inserting Eqs.~3.3! and~3.4! into the integral equation~3.2!
and comparing the result with Eq.~2.21!, we obtain

B`;1216pGv2n2S D

r c
D . ~3.5!

Since bothr c and D have the scale of the soliton core si
and the ratioD/r c is of order 1, we can confirm that th
Planck scale as a symmetry-breaking scale is necessa
exhibit the horizon of a BTZ black hole.

Now let us assume that there exists a horizon atr H . At
each horizon a set of appropriate boundary conditions is

B~r H!50, ~3.6!

dF

dr U
r H

5

v2n2

r H
2

sin 2F~r H!

16pGrHS uLu
4pG

2
v2n2

r H
2

sin2F~r H!D . ~3.7!

Since B(0)51 and B(r )
r→`

→ uLur 2,the region of negative
B(r ) should be bounded and thereby the number of horiz
should be even. We attempt a series solution near the hor
r H to leading order:

F~r !'F~r H!1

v2n2

r H
2

sin 2F~r H!

16pGrHS uLu
4pG

2
v2n2

r H
2

sin2F~r H!D ~r 2r H!,

~3.8!

N~r !'N~r H!1
1

32pGrH

S v2n2

r H
2

sin 2F~r H!D 2

S uLu
4pG

2
v2n2

r H
2

sin2F~r H!D 2

3~r 2r H!, ~3.9!

B~r !'8pGrHS uLu
4pG

2
v2n2

r H
2

sin2F~r H!D ~r 2r H!.

~3.10!

Suppose that there exists a region of negativeB(r ) bounded
by r H

in andr H
out (r H

in,r ,r H
out). Then other necessary cond

tions aredB/drur
H
in,0 anddB/drur

H
out.0, and they lead to

uLu/4pG2@v2n2/(r H
in)2#sin2F(rH

in),0 and uLu/4pG
2@v2n2/(r H

out)2#sin2F(rH
out).0 by Eq.~3.10!. However, now

that F(r ) seems to be monotonically increasing fromF(0)
50 to F(`)5p according to the argument on the termino
ogy of Newtonian mechanics and the results of the numer
analysis, the negativity of the numerator of the second te
in Eq. ~3.8! forces a condition toF(r ), that the value of
F(r H

in) should be larger thanp/2 and that ofF(r H
out) should

be smaller thanp/2. Therefore the above conclusion, i.e
10501
to
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F(r H
in).F(r H

out), contradicts the monotonically increasin
property ofF(r ). Therefore we arrive at a no-go conclusio
that the axially symmetric regular static topological lum
solution in the O~3! nonlinear s model cannot support a
BTZ-type black hole with two horizons in anti–de Sitte
spacetime.

Since we have proved that anyB(r ) corresponding to a
regular topological lump configuration cannot be negati
the remaining question for the nonexistence of the black h
horizon is to show the positivity of the minimum ofB(r ).
Again, let us assume that there exists a pointr H such that
B(r H)50 and this is the minimum value ofB. Then the
position of the horizonr H and the value ofF(r H) are deter-
mined in a closed form from Eqs.~2.4! and ~2.6!:

r H5A4pGv2n2

uLu
and F~r H!5

p

2
. ~3.11!

If there exists a regular solution to haveB(r H)50, one can
try a series expansion around the horizonr H such as

F~r !'
p

2
1 f 1~r 2r H!1 f 2~r 2r H!21 f 3~r 2r H!31•••,

~3.12!

B~r !'B2~r 2r H!21B3~r 2r H!31•••. ~3.13!

After replacing theN(r )-dependent term in Eq.~2.4! by use
of Eq. ~2.5!, we substitute Eq.~3.12! and Eq.~3.12! into the
modified equations~2.4! and ~2.6!. A comparison of both
sides of the equations results in the flatness of regularF(r ),
i.e., 05 f 15 f 25 f 35•••. Since the scalar amplitude of th
topological lump connectsF(0)50 and F(`)5p in this
coordinate system, this flatness suggests the impossibilit
the existence of any regular topological lump through
position of the horizonr H such that F(r H)5p/2 and
dB/druH50. However, Eqs.~3.12! and~3.13! do not exclude
configurations of whichF and dF/dr are continuous at the
horizon but not necessarily have continuous higher der
tives. The topological lumps obtained by numerical wor
are unlikely to be these examples. However, the case of n
topological solitons seems to be different since our num
cal works show thatF is constant outside the horizon, i.e
F(r )5p/2 for anyr which is equal to or larger thanr H . The
nontopological soliton, therefore, can be free from the ab
argument which was applied to the regular topologi
lumps, and forms an extremal black hole withF(r H)5p/2
which will lead to the phenomenon of no scalar hair. Co
bining with the previous proof, we conclude that any regu
topological lump of the O~3! nonlinears model does not
form the spacetime of a BTZ black hole irrespective of t
values ofuLu/v2 and 8pGv2. Therefore, the shapes ofB(r )
from the regular topological lump solutions are classifi
into two categories: one is monotonically increasingB(r )
and the other is convex downB(r ) ~see Fig. 5!.

The behavior ofB(r ) given in Fig. 5 describes the struc
ture of the spatial hypersurface of the~211!-dimensional
spacetime. Since the metric is static, the spatial manifold
characterized by the circumferencel (r )[2pr and the radial
3-7
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YOONBAI KIM AND SEI-HOON MOON PHYSICAL REVIEW D 58 105013
distanceR(r )5*0
r dr/AB(r ). We embed it into a three

dimensional hyperbolic space by introducing a third axisZ
such thatR 252Z21r 2/Bm , where Z>0 and Bm is the
minimum of B(r ). For sufficiently larger , B(r );uLur 2

1B` as given in Eq.~2.21!. Introducing variables such a
AuLu/B`r 5sinhx andAB`u5Q, we obtain the asymptotic
metric

ds2'
1

uLu ~dx21sinh2xdQ2!. ~3.14!

The asymptotic region of the two-dimensional spatial ma
fold given by Eq.~3.14! is a hyperboloid with deficit angle
2p(12AB`). By use of Eq.~3.5! we estimate the defici
angle to be 16p2Gv2n2. This can easily be understood b
the nonexistence of a long tail term in the energy-momen
tensor. Since nonvanishing independent components of i

Tt
t5

v2

2
BS dF

dr D 2

1
n2v2

2r 2
sin2F, ~3.15!

FIG. 5. Two characteristic shapes ofB(r ) formed by the topo-
logical lumps:~a! a monotonically increasingB(r ) when 8pGv2

5831028, uLu/v250.04, andF051250, and~b! a convex down
B(r ) when 8pGv250.2, uLu/v254.031026, andF055.896.
10501
i-
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Tr
r52

v2

2
BS dF

dr D 2

1
n2v2

2r 2
sin2F,

~3.16!

they look to include a long tail term. However, substitutin
Eq. ~2.19! into Eqs.~3.15! and~3.16!, we read that the lead
ing term is theO(1/r 4) term which does not affect the
asymptotic region of the two-dimensional spatial manifold

As we can expect from Fig. 5, the spatial manifold on t
core of the topological lump is involved in one of two ca
egories. When the absolute value of the negative cosmol
cal constant is large enough, i.e.,uLu/v2.8pGF0

2d1n and
Bm51, the relation betweenZ and r near the origin isdZ
'Aar 2/(11ar 2)dr where a[uLu28pGv2F0

2d1n . Then
the core region of this soliton is also hyperbolic, (Z
11/Aa)22r 251/a. On the other hand, whenB(r ) is de-
creasing near the origin, i.e.,uLu/v2,8pGF0

2d1n and 0
,Bm,1, the relation betweenZ and r 8([r /ABm) is given
in the following:

Z~r !'5 A12Bmr 8S 11
ar 82

6~12Bm!
D for small r 8,

A B`

uLuBm
1r 822A B`

uLuBm

for large r 8,

~3.17!

and

dZ'ABm2~r 82r m8 !dr8 around r 85r m8 ~[r m /ABm!,
~3.18!

whereBm2 is the coefficient of the second-order term in t
series ofB(r ) aroundr m . Sincea is negative, the first line
in Eq. ~3.17! tells us that the core region is convex up.
order to connect smoothly the core and asymptotic region
the spatial manifold, there should exist an inflection po
about the minimum pointr m of B(r ) as given in Eq.~3.18!.

From now on let us look into the possible structure o
spacetime manifold formed by the nontopological soliton
half integral winding. Recalling the asymptotic form ofB(r )
in Eq. ~2.24!, one may easily notice a difference between t
equation and Eq.~2.21! for the topological lump: The
asymptotic space of the half integral winding soliton i
cludes a logarithmic term with negative coefficient. Th
metric function is the same as that of a global U~1! vortex
@6#. In the model of a complex scalar field the very logarit
mic term has played a crucial role to constitute a vortex B
black hole with two horizons. On the other hand, our non
pologicals solitons are distinguished from global U~1! vor-
tices by the following points. For a given model with fixe
model parameters, the global U~1! vortex solution is unique;
however, there are many nontopologicals soliton solutions
characterized by the maximum value of the scalar amplit
which is larger thanp/2 but smaller thanp. About the shape
of scalar amplitude, the former is a monotonically increas
3-8
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GRAVITATING s MODEL SOLITONS PHYSICAL REVIEW D 58 105013
function from zero to the vacuum expectation value but
latter can contain oscillatory behavior as shown in Fig.
Therefore, nontopologicals solitons with the same topologi
cal charge are classified into many subclasses by the num
of nodes.

The existence of the logarithmic term in the asympto
form ~2.24! of the metric functionB(r ) lets us ask an intrigu-
ing question about the generation of BTZ black holes fo
small magnitude of the cosmological constant and relativ
large symmetry-breaking scale as happened in gravita
global U~1! vortices with a negative cosmological consta
The results of the numerical analysis are summarized in F
4 and 6. Figure 6 shows the metricB as a function ofr for
various numbers of nodes. As the number of nodes incre
@or equivalently the value ofF0 in Eq. ~2.16! increases#, the
value of the minimum ofB decreases. It is also natural th
the behavior ofB is as like as Fig. 6 as the symmetr
breaking scale is increased with a fixed value ofF0 . The
nontopologicals soliton solutions are seen to tend towar
black hole solutions as the symmetry-breaking scalev or the
number of nodes is increased, as might be expected. A
ference from the behavior ofB for global U~1! vortices can
be noticed: In case of the global U~1! vortices, one bump
was dug and such a minimum ofB finally touched a zero
value @6#; however, several bumps are developed for non
pologicals solitons and the outmost one becomes the m
mum of B and then this position tends to be a horizon
shown in Fig. 6. The graphs in Fig. 4 show that wiggles
the scalar field tend to subside to the boundary valuep/2
outside the location of the minimum ofB.

Within our numerical precision, a careful analysis of s
lutions near the transition to a black hole indicates that
nontopologicals soliton loses its scalar amplitude hair as
develops a horizon. In fact, it is predictable from Eq.~3.8!:
When F(r H)5p/2, the actual value ofdF/drur H

vanishes
for any extremal black hole. Here let us write down the a

FIG. 6. Plots ofB(r ) for various F0’s for uLu/v250.01 and
8pGv250.4: ~a! zero node,~b! one node,~c! two nodes, and~d!
extremal (F052.41902 up to 1026 precision!.
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tion ~2.1! in terms of stereographically projected variable
i.e., fa5v„sinF cos(Q1h),sinF cos(Q1h),cosF…, where
the multivaluedQ represents the topological sector and t
single-valued functionh the Goldstone degree for a give
topological sector. Then, in~211!D flat spacetime, we ob-
tain

L5
v2

2
@]mF]mF1sin2F]m~Q1h!]m~Q1h!#.

~3.19!

By use of a duality transformation in 211 dimensions@21#,
one can easily show in the context of the path integral f
mulation that the above theory~3.19! is equivalent to that of
a U~1! vector fieldAm :

L5
v2

2
]mF]mF2

1

4

FmnFmn

sin2F
1

v
2

emnrFmn]rQ,

~3.20!

whereFmn5]mAn2]nAm . If the scalar amplitude is frozen
to beF5p/2, outside the black hole horizon, then the mat
field action ~3.20! is nothing but the sum of the Maxwe
term and the minimal interaction between the gauge field
point particle. Now we understand the reason why as soli-
ton black hole looks just like a charged BTZ black ho
outside the horizon@4#. Therefore, nontopologicals solitons
in the O~3! nonlinears model do not break the no-hair theo
rem. This phenomenon seems universal for our nontopol
cal soliton solutions since it happens for a wide range of
symmetry-breaking scalev and the negative cosmologica
constantL. In this aspect, the regular nontopologicals soli-
tons are also distinctive from the topological global U~1!
vortices with scalar hair@6#, but resemble the case of regul
gravitating magnetic monopoles in 311 dimensions@12#.
We can imitate the case of an exact singular monopole s
tion whose metric is the Reissner-Nordstro¨m black hole@22#.
Specifically,F(r )5p/2, Q5nu, andh50, everywhere and
the corresponding black hole spacetime is a charged B
type. More plausible singular configurations may be obtain
by changing the boundary condition of the metric function
the origin, i.e.,B(0)Þ1, similar to the monopole black hol
@12#. Since the singularity of the fields which is presumab
at the origin can be hidden behind a horizon, we may
exclude the possibility that singular solutions can form sm
BTZ black holes lying within a nontopologicals soliton.
Since no non-Abelian scalar hair can penetrate the hori
for regular solitons, we can evaluate the position of the
rizon by using Eqs.~2.4! and~2.6!, and it is nothing but the
formula ~3.11!. The values of the horizon obtained by n
merical analysis coincide with those from Eq.~3.11! within
precision.

As usual, the matter distribution is reflected to the sca
curvature which is given by

R526L216pGTm
m . ~3.21!
3-9
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For smallr , Eq. ~3.21! for both the topological lump and th
nontopological soliton becomes

R'6uLu28pGn2v2F0
2@21~ uLu28pGv2F0

2d1,n!r 2#r 2n22.
~3.22!
ly

o

a
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o
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e
ha

h
a-
ss

10501
When n51, the curvature can be negative due to the ac

mulation of matter at the core of the soliton at the Plan

scale. For larger , the behavior of the scalar curvature d

pends on the characteristic of the solitons:
we
btained
unctions
R'5 6uLu232pGv2F`
2 uLu

1

r 4
for the topological lump,

6uLu28pGv2n2
1

r 2
232pGv2uLuFp/2,̀

2 1

r 4
for the nontopological soliton.

~3.23!

As expected, the space is curved at larger for the nontopological soliton, while it is not for the topological lump. Although
have charged BTZ black holes from some half integral winding soliton configurations, we may expect that all the o
spacetimes do not contain a physical curvature singularity due to the regularity of the matter fields and the metric f
everywhere. It is easily checked, by the Kretschmann scalar:

RmnrsRmnrs54GmnGmn54TrFdiagS 2
1

2r

dB

dr
,2

1

2r

dB

dr
2

B

r

dN

dr
,2

1

2

d2B

dr2
2

3

2

dB

dr

dN

dr
2B

d2N

dr2
2BS dN

dr D 2D G .

~3.24!
to
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When bothN(r ) andB(r ) are regular everywhere, the on
possible singularity can be at the origin in Eq.~3.24!; how-
ever, it is also regular at the origin due to the behaviors
those metric functions at the origin as given in Eqs.~2.17!
and ~2.18!. Then, the spacetime formed by the topologic
lump or the nontopological soliton is always regular eve
where irrespective of the existence of the black hole horiz

As mentioned previously, we have many nontopologi
soliton excitations classified by the number of nodes fo
f

l
-
n.
l
a

given topological sector of the theory so that we have
discuss stability among these classical solutions carry
with the same topological charge. A good method is to co
pare their masses. Since the obtained spacetime is no
ymptotically flat but is hyperbolic, the usual Arnowitt-Dese
Misner mass is not obtained in the limitr→`. For the
energy per unit length of infinitely long axially symmetr
systems, known expressions are theC energy@23# and the
conserved quasilocal mass@24#. Here we use the latter, th
expression of which for the static observer is given by
Mq[
1

4G
Ae2N~r !B~r !@AuLur 2112AB~r !#, ~3.25!

→
r→`H 2pn2v2S D

r core
D for the topological lump,

pn2v2F lnS r

r core
D12sin2bS D

r core
D G for the nontopological soliton,

~3.26!
,

of
e
al
tly
where Eq.~2.21! was used on the right-hand side of th
above expression. The mass for the topological lump
only the constant term. It is obvious because this lump
localized around its core without a long-range tail term. T
nontopological soliton of half integral winding has a log
rithmically divergent mass term in addition to the core ma
It shows some resemblance between the static global U~1!
s
is
e

.

vortex and the nontopological soliton in the O~3! nonlinears
model, whose leading long-range term is the same, i.e.Tt

t

;1/r 2 for large r .
For then51 class of solutions we compare the values

the quasilocal mass~3.25! of the no-node solution, one-nod
solution, two-node solution, the solution of an extrem
black hole, and charged BTZ black hole at a sufficien
3-10
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GRAVITATING s MODEL SOLITONS PHYSICAL REVIEW D 58 105013
large distancevr 550 as a function ofv with fixed 8pG
50.4 and uLu50.01 ~see Table I!. The tendency that the
quasilocal mass increases for higher node solutions lo
universal, and further numerical studies for variousG, uLu,
and v also keep the same behavior. Therefore, the no-n
solution is the lowest energy solitonic excitation amo
those with a given chargen/2. Since~211!D Einstein grav-
ity does not have any attractive propagating gravitational
gree, it seems natural. All half integral winding solitons a
nontopological; so excited spectra may decay into the
node soliton of the lowest energy. This procedure may p
sumably be correct for solitons in the space of a regu
hyperboloid because the system has massless Goldston
grees. Now, if we recall that the no-node solution w
monotonically increasingF(r ) cannot form a black hole ho
rizon, then an intriguing question is raised about the stab
of an extremal BTZ-type black hole. In 311 dimensions, the
attractive gravitational force usually makes a matter distri
tion with mass larger than the critical value unstable a
leads to gravitational collapse where the destination is
formation of a black hole. It seems unlikely for our O~3!
nonlinears model in ~211!D anti–de Sitter spacetime. O
the other hand, there may be an opposite procedure, tha
extremal BTZ-type black hole is produced but it is energe
cally unfavorable and then the horizon disappears. Howe
we need further study on the stability of nontopological so
tons to settle this issue. Now a comment about the crit
symmetry-breaking scale is in order. In any natural envir
ment the magnitude of the negative cosmological consta
much lower than the symmetry-breaking scalev, and the
very symmetry-breaking scalev is much lower than the
Planck scale. For example, if we consider the present
verse with an extremely small bound of the negative cosm
logical constant (uLu;10283 GeV2), the critical value of
the symmetry breaking not to form a BTZ-type black stri
is about 1022 eV which is a very low energy. Of course, th
above estimation is far from the realistic situation before
take into account the anisotropy in the cosmic ray ba
ground and other cosmological fluctuations.

IV. GEODESIC MOTIONS

The study of timelike and null geodesics is an adequ
way to visualize the form of interaction on the soliton a
the feature of its spacetime. Let us analyze possible geod
motions and clarify whether a test particle experiences att
tion or repulsion due to the soliton. The geometry depic
by Eq.~2.2! admits the rotational Killing vector]/]u and the

TABLE I. The values of the quasilocal mass of various no
solutions and the extremal charged BTZ black hole at a large
tancevr 550 with 8pG50.4 anduLu50.01.

node 0 1 2 extremal

v51 0.01245 0.01918 0.02056 0.02080
v51.5 0.02144 0.02625 0.02646 0.02647
v52 0.02664 0.02840 0.02841 0.02841
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static Killing vector]/]t; so two corresponding constants
motion along geodesics are

g5Be2N
dt

ds
and L5r 2

du

ds
, ~4.1!

wheres is an affine parameter along the geodesic. Since
space is not asymptotically flat, the constantg cannot be
interpreted as the local energy of the test particle at infin
The radial geodesic equation is

1

2S dr

dsD
2

52
1

2FB~r !S m21
L2

r 2 D 2
g2

e2N~r !G52V~r !,

~4.2!

where the mass of the test particle can be rescaled asm51
for timelike geodesics andm50 for null geodesics. We ana
lyze the trajectories of test particles for the topological lum
background and the nontopological soliton background se
rately, and they are divided into four categories according
whether they have mass (m51) or not (m50), or whether
their motions are purely radial (L50) or rotating (LÞ0).
As shown in Fig. 5 and Fig. 6, the geometry of spatial ma
folds of our s model solitons is similar to those of globa
U~1! vortices@6#. Here we briefly mention different points.

A. Topological soliton

The main character of the spacetime structure of topolo
cal lumps is the absence of a black hole. Because of
character, the geodesic motions are simple. It is qualitativ
similar to the regular hyperboloids by global U~1! vortices
@6#.

For the radial motion (L50) of a massless test particl
(m50), theB(r ) dependence disappears in the effective p
tential V(r ). The allowed motion is an unbounded motio
with speeddr/ds5g/A2 at spatial infinity, only wheng
Þ0. SinceN(r ) is monotonically increasing, this massle
test particle in a radial motion always feels the attract
force.

For the rotational motions (LÞ0) of a massless test pa
ticle (m50), the effective potential includes the centrifug
force termL2B(r )/2r 2 which forbids the test particle to ac
cess the soliton core. Therefore, any allowed rotational m
tion should have the minimum value of radiusr min that r
>r min . Since the value of the effective potential is (uLuL2

2g2)/2 at spatial infinity, any allowed motion should b
bounded by the minimum radiusr min and the maximum ra-
dius r max when uLuL2.g2. However, we cannot see thi
easily due to the smallness ofuLu. When uLuL2<g2, the
motions are also divided into two classes by the peak sp
One is the class with the peak speed at infinity, and the o
is that with the peak speed at a finite radius.

The effective potential for the radial motion (L50) of a
massive test particle (m51) is

V~r !5
1

2S B~r !2
g2

e2N~r !D . ~4.3!

s-
3-11
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For larger , it is approximated as

V~r !'
uLu
2

r 21
1

2
~B`2g2!1O~1/r 2!, ~4.4!

and then all possible motions are bounded. Since the po
series expansion ofV(r ) for small r is

V~r !'
1

2
~12g2e22N~0!!

1F S 1

2
uLu24pGv2F0

2~12g2e22N~0!! D r 2G1•••,

~4.5!

we divide the shapes of the potential~4.3! into two classes.
When the negative vacuum energy dominates the repul
force of the scalar field even at the core of the soliton, i
uLu/224pGv2F0

2(12g2e22N(0))>0, V(r ) is monotonically
increasing and thereby the force is attractive everywh
Then the minimum of the effective potential is at the orig
and its value isuLu/16pGv2F0

2 . The leading constant term
in Eq. ~4.3!, which is the minimum ofV(r ), tells us that
radial motions are allowed only wheng>eN(0). On the other
hand, whenuLu/224pGv2F0

2(12g2e22N(0))<0, the test
particle with g smaller than the critical valuegcr (gcr

5eN(0)A12uLu/16pGv2F0
2) feels the repulsive force at th

core of the soliton. The allowed value ofV(0) lies between
uLu/16pGv2F0

2 and 1/2. One may expect that there exist
negative region ofV(r ) betweenr min and r max; however,
our numerical work shows the absence of such a reg
Possible motions are~i! the stopped motion,~ii ! the oscilla-
tion between the minimum radius and the maximum rad
and ~iii ! rolling to the origin, asg decreases.

For the circular motions (LÞ0) of a massive test particl
(m51), the effective potential takes general form@see Eq.
~4.2!#. Since the centrifugal force term dominates at smalr ,
V(r ) for small r resembles that of the case of a rotati
motion of a massless test particle, and there exists a pe
lion r min . For larger , all motions are bounded by an ap
elion r max because of the negative cosmological const
term. The allowed motions are~i! the circular orbit atr circ
wheng5gcirc and ~ii ! the bounded orbit between the pe
helion r min and aphelionr max when g is larger thangcirc .
Noticing the vanishing ofV(r ) at both r min and r max, one
may suspect that the comoving time defined by

t5E dr
g

A22V~r !
~4.6!

diverges when the test particle approaches those po
However, since the denominator in Eq.~4.6! is proportional
to 1/Ar 2r min ~or 1/Ar 2r max), it takes finite comoving time
to reach a boundary and so does the coordinate time de
by dt/dt5g/Be22N since there is no black hole horizon
i.e., B(r ).0 for all r .
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B. Nontopological soliton

As we have discussed in the previous section, there e
black hole solutions for some nontopological solitons. F
some regular solutions, e.g.,~a! and~b! in Fig. 6, the geode-
sic motions are not so much different from those of topolo
cal solitons. There are differentB’s with several bumps as
shown in graphs~c! and~d! in Fig. 6. One may suspect tha
theseB’s generate different geodesic motions, e.g., two i
lated radial regions in the effective potentialV(r ). However,
our numerical works show that there is no such effect
potential, so that the character of geodesic motions for re
lar nontopological solitons is the same as that for topolog
lumps. The only difference is the rapid variation ofV(r )
near the origin, due to rapidly increasingN(r ). Note that Eq.
~2.5! reflects the rapid increasing ofN(r ) for many nodes of
our nontopological soliton.

From Eqs.~4.1! and~4.2!, the elapsed coordinate timet of
a test particle which moves fromr 0 to r is

t5E
r

r 0 dr

B~r !eN~r !A12
1

g2S m21
L2

r 2 D B~r !e2N~r !

.

~4.7!

It diverges when the test particle approaches a point wh
B(r ) vanishes at least linearly. As we expected, the spa
time with horizons depicts that of a black hole. For the bla
hole solutions, our geodesic motions outside the horizon
intrinsically the same with that of a charged BTZ black ho
since any scalar hair does not penetrate the horizon but
logarithmic Goldstone sector.

V. CONCLUSION AND DISCUSSION

In this paper we have studied static soliton solutions
the O~3! nonlinears model coupled to Einstein gravity with
a negative cosmological constant. It has been shown that
regular static soliton configuration with an axially symmet
static metric is not self-dual in this anti–de Sitter spacetim
By examining second-order Euler-Lagrange equations,
obtained a new class of nontopological soliton solutio
whose winding number is a multiple of half integer in add
tion to the well-known topological lumps with integral topo
logical charge. The scalar amplitude of the topological lum
solution is monotonically increasing according to numeri
results, which interpolates the symmetric vacuum and
broken vacua, and its energy density, the time-time com
nent of energy-momentum tenser, is localized around
soliton core. The lack of a long tail term in the energy de
sity at the asymptotic region leads to the nonexistence o
BTZ-type black hole irrespective of the symmetry-breaki
scale. The only spatial structure formed by the topologi
lump is a regular hyperboloid with a deficit angle.

On the other hand, the asymptotic behavior of the non
pological solitons shows an oscillation around its bound
valuep/2, and these solutions are characterized by the n
ber of nodes for a given parameter set of the model. T
3-12
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energy expressions of these nontopological solitons inclu
logarithmic term at the asymptotic region, and this prope
resembles that of global U~1! vortices. According to the scal
of the negative cosmological constant, we obtained the
lowing spacetimes: One of them is a regular hyperbol
with a deficit angle and the other is a charged BTZ bla
hole. The conserved quasilocal mass of the BTZ black h
is composed of two terms; i.e., one of them is the finite c
mass and the other is a logarithmically divergent term.

Here we have several comments on some resembl
and difference between our half integral windings solitons
and the global U~1! vortices. First, the former solutions ar
nontopological, but the latter solutions are topologic
Therefore, the energetics of our nontopological solito
should be checked to confirm their stability, which may p
vide a clue to distinguish one from the other. Second,
global U~1! vortex is a unique regular soliton configuratio
with monotonically increasing scalar amplitude for a giv
set of model parameters. On the other hand, a numbe
nontopological solitons exist in a given model, which a
characterized by the number of oscillations in the scalar
plitude. Third, both solitons carry a long range ter
(;1/r 2) in the expressions of their energy density due to
nontrivial phase winding sector of Goldstone modes. T
solutions have been seen to tend towards black holes a
symmetry-breaking scale increases and the magnitude o
negative cosmological constant becomes small. The b
hole generated by a nontopologicals soliton is a charged
BTZ black hole without non-Abelian scalar hair, while
small BTZ black hole lying within a global U~1! vortex is
available where a nontrivial scalar field exists outside
horizon.

Since Einstein gravity in 211 dimensions does not hav
propagating degrees of freedom, the introduction of a ne
tive vacuum energy plays a drastic role for making the s
ton excitations rich in scalar theories. It made the global U~1!
vortices free from the physical curvature singularity in t
model of a spontaneously broken global U~1! symmetry. In
J.
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our O~3! nonlinears model this attractive force supports th
nontopological solitons, which have never been obtain
without adding a gauge field and an explicit symmet
breaking scalar potential@25# except for some unstable
spherically symmetric solitons in~311!D de Sitter spacetime
@26#. The obtained spacetimes include charged BTZ bla
holes. In this context it may also be intriguing to ask t
same question of local vortices in the Abelian Higgs mo
@27,28#. When we consider the stability of the obtained s
lutions or general straight infinite cosmic strings, vario
forms of the metric can also be taken into account, e.g
metric with boost invariance along the string direction,ds2

5e2N(r )B(r )(dt22dz2)2dr2/B(r )2r 2du2, or the general
form of static metric, ds25e2N(r )B(r )@dt2C(r )dz#2

2dr2/B(r )2r 2du22D(r )dz2, or even a stationary one
ds25e2N(r )B(r )@dt2E(r )rdu#22dr2/B(r )2r 2du2.

Throughout this paper we have considered cases w
the deficit angle is smaller than 2p. If we recall that super-
massive local vortices produced various geometrical str
tures including an analogue of Kasner spacetime, a cylin
or a two-sphere@28,29#, we may expect some drastic chan
of ~anti–de Sitter! spacetime formed by the topologica
lumps in the Planck scale. In relation to time-dependent s
ton configurations, once the stationaryQ-lump solution is
generated and forms a black hole structure@30#, it must be a
spinning black hole in 211 dimensions.

Note added.After submitting this paper we became awa
of Ref. @31#, which is closely related to this paper.
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