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We study the axially symmetric static solitons of thé8Dnonlinearc model coupled t@2+1)-dimensional
anti—de Sitter gravity. The obtained solutions are not self-dual under a static metric. The usual regular topo-
logical lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There
exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes
involve charged Baados-Teitelboim-Zanelli black holes without non-Abelian scalar hair.
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PACS numbgs): 11.27+d, 04.40—b, 04.70.Bw

I. INTRODUCTION dr2
ds’=(|A|r?—8GM)dt?— 2——r2d02.
Three-dimensional3D) Einstein gravity is characterized |Alr?—8GM
by the absence of a propagating gravitational deddde 12
Though it is different from the nature ¢8+1)-dimensional
gravity, 3D gravity without the graviton has attracted atten-Here an integration constaM of the Einstein equation is
tion in cosmology in connection with cosmic stringg and  arbitrary; however, solutions of positiviel correspond to
in the gauge theory formulatidi3]. In both contexts(2+1)-  BTZ black holes. Since both solutions in E¢$.1) and(1.2)
dimensiona[(2+1)D] anti—de Sitter gravity may be intrigu- are vacuum solutions in the limit of zero point particle mass,
ing because it was the first example reformulated as a Chermne may easily find a coordinate transformation to connect
Simons gauge theory of the Poincageoup [3] and its the m=0 solutions in Eqg.(1.1) with the solutions in Eq.
vacuum solutions support black holes. (1.2). As expected, the=+1 case in Eq(1.1) corresponds
(2+1)D gravity with a nonzero cosmological constant to the negativeM solution in Eq.(1.2), and the correspond-
was first studied in Ref5]. When a static point particle with ing space is a regular hyperboloid. The —1 case results
mass and without spin is coupled to gravity, a generaln the exterior region of the Schwarzschild-type BTZ black

anti—de Sitter solution was obtained: hole[6].
_ _ This BTZ black hole has so far attracted much interest in
R\ Y¢ [Ry\Y*© various classical black hole solutiofig], in thermodynamic
(— = and statistical propertieg3,9], and in string-related topics
ds?— \/; Ro R dt2 [10]. In 3+1 dimensipns, grav_itating solitons anq sphalerons
R\ Vec Ro Vec have received considerable impetus by the discovery of a
_) | —= class of non-Abelian black hole solutiofis1-13. It might
Ro R be an intriguing direction to ask the same question, that
5 s 2o whether or not gravitating solitons i2+1)D anti—de Sitter
4ec?(dR°+R°dO7) 11 spacetime can form solitonic BTZ black holes. In the case of
R\ Vee R\ Vec]?’ (1.9 global U) vortices, a regular configuration could make a
|A|R? (_) _(_O) black hole structure with two horizons similar to the charged
R, R BTZ black hole[6]. Since the energy of a static globa{1)

vortex diverges logarithmically in flat spacetime, we here
wherec=1—4Gmande is =1 for the negative cosmologi- want to address the same question to a model containing
cal constantA. Whene=+1, the metric(1.1) describes a finite energy soliton excitations. In this context thé8Dnon-
hyperboloid with a deficit angle. Note that the effect of thelinear o model may be an appropriate choice since the field
point particle at the origin appears only in the deficit angle incontent of the model is simple, and exact static self-dual
Eq. (1.1, and thereby these solutions go to vacuum solutiongnultisoliton solutions of finite energy have been obtained in
in the massless limitri—0). Later Bandos-Teitelboim-  both flat[14] and curved spacetime with zero cosmological
Zanelli (BTZ) black hole solutions were reported in Refl,  constan{15-17.
and the simplest one is the Schwarzschild-type black hole  In this paper, we consider both the negative cosmological
constant and matter distribution provided by regular static
solitons of the @3) nonlinearoc model. The metric of our
*Electronic address: yoonbai@cosmos.skku.ac.kr consideration is static and axially symmetric. The inclusion
"Electronic address: jeollo@zoo.snu.ac.kr of a negative cosmological constant leads us to expect to
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induce a drastic change to solitonic physics in12dimen-  for mass per unit length along the symmetry axis. In this case
sions. The role it plays is effectively equivalent to the intro-the static metric of this spacetime can be parametrized as
duction of angular momentum under a stationary metric, and
then the corresponding spacetime provides a rotating frame
to the test particle. Therefore, static solitons in anti—de
Sitter spacetime cannot remain self-dual under the static met-
ric. Even if we obtain self-duab solitons under the station- For this kind of metric all physical settings effectively reduce
ary metric, we encounter an unphysical situation, e.g., closethe hypersurface orthogonal to the symmetry axis, and the
timelike curveqd 18]. An attractive gravitational force sounds stringlike object can be viewed as a pointlike source 1.2
natural in 3+1 dimensions for localized ordinary matter dis- dimensions. Suppose that a given matter distribution is spe-
tributions, so that it makes the matter collapse into a blaciialized to the case of axially symmetric time-independent
hole or coagulates a new localized object which does nofields and the equations of motions are solved. The resulting
exist in flat spacetimgl1]. Since(2+1)D gravity itself does metric has two integration constants that are identified as the
not contain a propagating gravitational field, negativemass and angular momentddi. Since we take a static met-
vacuum energy can induce a similar effect in curved spacefic (2.2) here, it is equivalent to set the angular momentum
time. In the QS) nonlinearo model, we present a new non- zero. When we fix the boundary condition at the Origin for
topological soliton solution of half integral winding in addi- the fields and the metric, we will choose a value of the mass
tion to the well-known topological lump solution of integral parameteB(0) later. We take a stereographic projection for
winding. We also show that any regular topological lump¢® so that the ansatz for the solitons with axial symmetry is
whose energy is localized near its core cannot form the
spacetime of a BTZ black hole. However, nontopological
solutions have a logarithmically divergent energy tail, so thatE
their spacetimes can include charged BTZ black holes. | . .

: . ; tatic metric are
these aspects the obtained nontopological solitons resembie

2

dr
ds?=e?NOB(r)dt?— %—erQZ—dzz. (2.2

¢2=v(sinF(r)cosn®,sinF(r)sinnd,cosk(r)). (2.3

uler-Lagrange equations derived from the action and the

global U1) vortices, but the non-Abelian scalar hair of 2 2
. . . . dF (dN 1dB 1\dF n?
solitons do not penetrate the horizon while the scalar hair of 4|+ Z-—+>]—=——sinFcosF, (2.9
the global W1) vortices can be observed outside the BTZ dr2 \dr Bdr r/dr py2
black hole.
This paper is organized as follows. In Sec. Il, we intro- 1dN 3 ) 2
duce the model and obtain all possible static regular solitons T E‘SWGU dar | 2.9

with axial symmetry by solving second-order Euler-

Lagrange equations. In Sec. lll, the spacetime structure in- 1dB

cluding BTZ black holes is analyzed for the obtained gravi- — —=2|A|-87Gv?
tating solitons. Geodesic motions are computed in Sec. IV. rdr

We conclude in Sec. V with a discussion.

2

B dF +n2 i’k 2.6

W r_ZSI . ( .6)

A physical condition for the spacetime manifold is the
reproduction of Minkowski spacetime in the limit of no mat-
ter (T#=0) and zero cosmological constant €0), and

The nonlinears model with O3) symmetry is described then an appropriate set of boundary conditions is
by the Lagrange density

IIl. MODEL AND SOLITON SOLUTIONS

B(0)=1 and N(%)=0. 2.7
1
L=———=(R+2A)+ 59""d,$%,¢> Whenn=#0, the scalar fieldp? in Eq. (2.3 being well de-
167G 2 fined forces the boundary condition at the origin such as
A(X .
- %UZ(d,ad,a_vZ), (2.1 F(0)=0 [or sinF(0)=0]. (2.8

o . . Introducing a new variable=Inr (—oo<?<oc), we rewrite
where the Lagrange multipliex(x) is rescaled to a dimen- Eq. (2.4 as

sionless quantity, and the variation of it produces a constraint

for the scala}r fielq:qbad)a:v_z(a: 1.,2,3)._ Thrpughout this . d?F (dN 1dB\dF n?

paper, the dimension counting of fields is adjusted to that in —+ Bl EschosF. (2.9
(3+1)-dimensional spacetime since we presume to apply the dr dr/dr

obtained results to straight, infinite strings. Then the model o L , .
involves three mass scales, namely, the Planck scai6,1/ After eliminating derivative terms of the metric functions by

the scale of negative cosmological vacuum enegfgy[, and use of Eqs(2.5) and(2.6), we obtain

—+
dr?

the symmetry-breaking scale Solitonic objects of our in- 2F B dF
terest have axial symmetry; i.e., the corresponding string B~ —nZsinFcosF — (2| A |e? — 87 Gu2nZsirPF) — .
spacetime is invariant under the rotation to, and the transla- dr? dr
tion along, a symmetry axis. The mass in this paper stands (2.10
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From the vanishing of the right-hand side of Q.9 at T L
spatial infinity, we read possible boundary values of the sca-
lar amplitude:

T from the sine term,
F(o)=1 /2 from the cosine term, =
a(0<asmw) fromthe 1B(w«) term.

(2.1)

The boundary condition in the last line of E®.11) comes
from the divergence oB(r) at spatial infinity. Precisely,
B(r)~|Alr? for a sufficiently larger.

Before analyzingn#0 solutions of Eq.(2.4), we will F
show that there does not exist ar=0 regular nontrivial
solution of this equation even in anti—de Sitter space. If we FIG. 1. Shape of the effective potentldiand possible motions

substitute Eqs(2.5) and(2.6) into Eq. (2.4 whenn=0, we  ©of a hypothetical particleta) overshoot solutiorithe dotted ling,
obtain (b) critical solution withF (=)= (the solid ling, and(c) under-

shoot solution withF () = 7/2 (the dashed line

3r
2

— 0. (2.12  are not self-dual in anti-de Sitter spacetime and then we

dr have to consider the second-order Euler-Lagrange equation
(2.4) directly.

SinceB(0)=1, F given by a solution of this equation con-  Since we cannot exactly solve Ed2.4), (2.5), and(2.6),

tains a logarithmic divergence at the origin, i.d(r) let us attempt a series expansion of the fields near the origin:

« [dr2eIM/r2 for a sufficiently smallr. Now that we F(r)=Fyr" (2.16

have shown the nonexistence of the=0 solution, let us o ’

look for then#0 soliton solutions of Eq92.4), (2.5, and

(2.6) satisfying the boundary conditions in Eq2.7), (2.8),

and(2.13).

d’F [2Ar 1\dF
B Ty

N(r)=~Ng+4mwGu2F3nr?", (2.17

Al

B(r)~1+|— —47G(1+n*)F381,((vr)?,
A. Topological soliton v

2.1
Solutions satisfying the boundary condition tha¢0) (218
=0 andF(«)=x are topological solitons when the base where F, and N, are constants determined by the proper
spatial manifold formed by them is topologically equivalent behavior of the fields at the asymptotic region. For large
to two-dimensional Euclidean space. These static solitons afe leading term approximation gives
characterized by topological charge,

)

Q= %f d?x €0l Eabc¢aﬁi d)baj ¢c (2.13 i r

87Gv2F2
N(r)~— —

) 2.2
= g[cosF(O)—cosF(oo)] (2.14 ré (229
16wGu?|A|F2

=n, (2.19 B(r)~|A|r?+B..+ 5 , (2.21

r

and this quantized chargerepresents a winding number of .
the secor?d homotopy gggupr,)that B,(S)=2. I%rom how whereF,, andB., are also determined by the proper func-

on we will call topological solitons of this model “topologi- tional behawo_r at the origin. ) ~ _ )
cal lumps.” If we identify F as a coordinate and as time in Eqg.

The topological lumps are known to be unique static soli-(2-10, then we can interpret this equation as a Newtonian
ton species of the @) nonlinears model in flat spacetime, €quation for the one-dimensional motion of a hypothetical
and they have been studied in curved spacetime as a candj@rticle with variable masB(r). The exerted forces are fric-
date of global cosmic stringil5—-17. Since exact soliton tion or a kind of velocity-dependent force proportional to
solutions were obtained by solving the first-order self-dualdF/dr, and the conservative force from the potentidl
equation, their existence has been automatic as far as the(n?/2)cos F (see Fig. 1
cosmological constant has not been taken into account. As If we naively read possible motions of a hypothetical par-
we shall discuss it later, static solitons under the static metriticle from the potentiall(F), then the motions satisfying
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F(r=0)=0 are classified into three sets by its initial veloc- T T T
ity which can actually be replaced by the valueFgfin Eq. sF T -
(2.16. WhenF, is larger than a critical value, the particle

reachesr at a finite timer and it corresponds to an over-
shoot shown by the dotted line in Fig. 1. WhEp is smaller Ry
than the critical value, the particle cannot reachecause of

the power loss due to the velocity-dependent terms in Eq. 1 1
(2.10 and this motion should have a turning point between
/2 and7r. The existence of the overshoot solution given by 0 , \ \
the dotted line in Fig. 1 and the undershoot solution given by 0 1 2 3 4
the dashed line in Fig. 1 guarantees, by continuity argument, vr

the existence of the topological lump solution _cor_me_cting FIG. 2. A configuration of topological lump solution when
F(r=0)=0 andF(r =)= 7 smoothly(see the solid line in  g,.c,2-0.2, |A|/v2=4.0x 10", and F,=5.896. The boundary

oy
T
1

Fig. 1. value of the topological lump solution haswith 10~ ° precision.
For the metric functionsN(r) is monotonically increas-

ing since the right-hand side of E@2.5 is always non- F2

negative; howeven\(r) is a slowly varying function in the N(r)~ —4nGo2q—=, (2.23

asymptotic region as was shown in Eg8.20. It means that r2d

the exponential oN(r) does not affect much the structure of
spacetime. On the other hand, the functional behavior of B(r)~|A|r2+ 1-8GM,—8mwGuv?n?sirfalnr/ry,
B(r) changes drastically according to both the magnitude of (2.29
the cosmological constant and the matter distribution. There-
fore, its spacetime structure, e.g., a black hole, is determinedhereF , .. and M, are constants which have to be chosen
by reading the shape dB(r). We will discuss possible by the proper behavior df(r) andB(r) near the origin, and
spacetimes generated by variamssolitons in the next sec- ¢ stands for the core radius. Inserting the series solutions
tion. (2.22), (2.23, and(2.24) into Eq.(2.4) of the scalar field, we
In the above discussion, we neglected the effect of théave a relation for the leading term:
variable mas®8(r) in Eq. (2.10. It may be valid when the
absolute value of the cosmological constant is small. On the |AIF 4. n?
other hand, iff A|/v? is large enough, terms proportional to _Q(q—z)r—q'Z ZSina cosa. (2.2
the cosmological constant dominate even for some finite

region. In the Newtonian equatiof2.10, such terms are \yhenq+ 7/2 and 0< @<, the functional behavior of the
interpreted as the variable mass teBfr)~|A|e? and the radial coordinate forceg=2 but then the equality cannot
time-dependent coefficient of the friction|2|e* on the hold because of the vanishing of the left-hand side of Eq.
right-hand side of Eq(2.10, respectively. In this case, the (2.25. This implies the impossibility of a reguldf(«) = a
mass of the hypothetical particle can rapidly increase fosolution except th& () = 7/2 solution. When the boundary
smallr and it can forbid the existence of overshoot solutionsvalue ofF is /2, the charge defined in E.13 is a mul-
even for hugeF, values. It is indeed the case which wastiple of half, i.e., Q=n/2. Therefore, every solution of
confirmed by numerical computation. In synthesis, there exF ()= /2 is classified as a static nontopological soliton of
ists a regular topological lump solution satisfying the bound-half integral winding.

ary conditionsF(0)=0 andF(r =)= only when|A|/v? In the previous subsection we mentioned the existence of
is less than a critical value. An example of the topologicalundershoot solutions, and they should be nothing but the
lump is shown in Fig. 2. solutions of F(e)= /2. Here let us emphasize again the

impossibility of this half integral winding solution in flat
spacetime. Sincl(r)=0 andB(r)=1 in flat spacetime, Eq.
B. Nontopological soliton (2.9 depicts a one-dimensional motion of a hypothetical par-

When we discussed solutions of Eg.11) in the previous ticle with unit mass of which the position Eat timer. The
subsection, we discussed the possibility of another set ogixerted force comes only from the conservative potential
regular solutions satisfyin§(»)=a (0<a<) as given U(F) shownin Fig. 1; so a virial theorem allows two regular
in Eq. (2.11). Suppose that there exist such solutions and weolutions, i.e., the stopped motif (r)=0] or the motion

attempt a power series expansion of them for large satisfying F(r=—»)=0 and F(r=x)=s. In curved
spacetime with zero cosmological constant, the velocity-
F(r)~a— Fox (2.22 dependent force is not a friction but it pushes the hypotheti-

rd - ' cal particle outward. Moreover, the variable m&g) of

the particle decreases as timeelapses. These two factors
make turning of the hypothetical particle more difficult be-
From Egs.(2.5 and(2.6), we have fore F= and forbid the undershoot solution. Therefore,
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L T T T 1 ! ! ! !

Fy = 2.41895
0.5
My 0 -
Fy = 2.41866
-0.5

Fo = 2.4160

FIG. 3. Two types of asymptotic solutions f@ifF(r)=F(r)
— /2 when 87Gv?=0.4 and|A|/v2=0.01. The dashed line is a
solution of Eq.(2.26) whenF;=0.15 and~(r =0.01)=0.0001. The
solid line is a solution of Eq(2.27 whenFy=10 andF(r=0.3)

I Fy = 23953

Ry Il B N —

there does not exist any nontopological solitons of half inte-
gral winding in curved spacetime when the cosmological
constant vanishes. In de Sitter spacetime, the positive cosmo
logical constant term makes the situation worse; so we easily
expect no half integral winding solution similar to the case of
a zero cosmological constant. In anti—de Sitter spacetime,
the negative cosmological constant term provides a friction 0
as shown in Eq(2.10 and lets the variable ma&(r) get Fy = 1.3980
heavy for large as given in Eq(2.21). Among the solutions
classified by the value @, in Eq. (2.16), a set ofF,'s less
than the critical value for the topological lump solution pro-
vides a set of undershoot solutions with turning point be-
tween /2 and 7. Since the potentidl has a minimum at Fo = 0.1564
/2, it may oscillate arouner/2 and finally converge tar/2 z
due to the friction.

For a better understanding of the asymptotic behavior of
the scalar field=(r), let us consider a linearized equation for 0 2 4 6 8 10
SF(r) defined byF(r)=w/2+ 6F(r). As an approximation vr
of B(r) we bring up two cases: One describes the region of g\ 4. various nontopological solitons specified by the number

slowly varyingB [B(r)~§], and the other is the asymptotic of nodes when @Gv?=0.4 and|A|/v2=0.01.
region[B(r)=~|A|r?]. The former leads to

Fo =2.2373

LME]

proportionality betweerF, and the nodes. Obviously the

_d?sF déF n? maximum value of also increases ds, becomes larger.
B ar2 +3|A|rw +r_25'::0v (2.29 Now some comments dB(r) for larger are in order. The
expression(2.24) involves a logarithmic term whenx
and the latter goes to = /2, and it means resemblance between the obtained non-
topological solitons of half integral winding and the vortices
d2sF d 2 in a scalar mo_del With glqbal ()] symr_netry[G]. The ap-
|A|r2 2 +3|A|rW+_25F:°' (2.27 pearance of this logarithmic term also implies that the coor-
r r

dinater may not be a good coordinate for the expansion of

. . . ~_B(r) in the asymptotic region as has been done in the global
A representative asymptotic solution of each equation ig(1) vortices[19,20.

giVen in F|g 3 and every solution includes both oscillation It is well known that the (m) nonlinearo model in (2

and damping as expected. Note that oscillations are rapid for 1)p flat spacetime supports self-dual solitons described by
smallr but the period of each oscillation also increases rapthe first-order equation

idly asr increases. Since this smallregion of rapid oscil-
lation is covered by the soliton core, we may expect the a | abc iba 4c
possibility of a monotonic solution. It is indeed the case and dip"= igfis ¢°0;¢°, (2.28

we obtain a class of solutions specified by the number/af

points at finiter. From now on we will call this number a and any static regular topological soliton with finite energy
“node.” From the value ofF in Fig. 4 one may easily read satisfying the Euler-Lagrange equation is proved to be self-

=
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dual and to satisfy Eq2.28). Here it would be natural to ask ll. SPACETIME STRUCTURE
the question whether or not the obtained solutions in anti—de

Sitter space are self-dual. In curved spacetime, the Secongfa\t/i\i:erehﬂgr ggri?:)nne(sjollgtig;i gfr?gz)s Esec(téog) le] dp(éssmle
order equation from the self-dual equatih28 is 9 < £0:(2.9), 9.

(2.6). In this section we address the question about possible
spacetime manifolds formed hy soliton configurations and
abc, 5 _ji i _Kiy pbo sc a negative vacuum energy. Among the know2+1)D
s o€l T Te) 90 b7, anti—de Sitter spacetime solutions intriguing ones are the
(2.29  regular hyperboloid and BTZ black ho[&,4]. In Ref.[6],
one of the authors showed that a static glob&l)Wortex
where V2 denotes two-dimensional Laplacian. In the staticc@n form a space with two event horizons, which resembles a

< |

1
V24— —(4PV2gP) 7= =
1%

metric (2.2), Eq. (2.29 becomes charged BTZ black hole. Specifically, what we are looking
for is the existence of a black hole horizon, which is mani-
fested by the region of nonpositigr).
BdZ_F ( Bd_N + a8 T E)d_': — n—zsinFcosF At first let us investigate the structure of spatial manifolds
dr? dr dr rjdr 2 by the topological lump solutions and show that any regular
N topological lump configuration does not form a BTZ-type
_ +£ e_( Bd_N i } d_B) nsinE (2.30 black hole even when the magnitude of the negative cosmo-
Tuor dr 2 dr ' ' logical constant is small and the symmetry-breaking scale is

of the order of the Planck mass. From the asymptotic form of
Comparing Eq.(2.30 with the Euler-Lagrange equation B(r) in Eq.(2.21), one can easily read a necessary condition
(2.4), we obtain a necessary condition for the metric, that isfo have negativé(r). WhenB., is not negative, the series

the vanishing of the right-hand side of EQ.30: expansion2.21) of B(r) is always positive for large and it
implies the impossibility of the existence of the horizon. On
dN 1 dB the other hand, Eq2.18 tells the opposite possibility that
W+ 2B azo. (2.31) B(r) of ann=1 soliton can be zero at some if 4 7G(B

+ n2)F§ is much larger than the magnitude of the cosmologi-
cal constanfA|. In order to clarify this issue let us examine
the integral equations faX(r) andB(r) obtained from Eq.
(2.5 and Eq.(2.6):

The solution of Eq(2.31) with a rescaling of the time coor-
dinate leads to

dr? " 2
dg’=dt?—dZ— B(r)—rzdaz. (2.32 N(r)=—87TGf dss(i—i) : (3.9

It is the very metric admitting self-dual stringlike solutions in r
curved spacetime with zero cosmological cons{dr,16. B(r)=eN(r)[2|A|J’ dssé'®
With the help of Eq(2.31), Egs.(2.5 and(2.6) are reduced 0
to an equation r N
—87rGu2n2jods s sin2F+eN(°)]. (3.2

dF n dF n
2|A|= —877sz( \/Ed__ —SinF) ( \/gd——l— —SinF) :
rr rr The first term in the square brackets of K8.2) describes

(233 the contribution of the negative vacuum energy and second
term the core mass. In order to obtain a negaliye) region

- ! A for somer, a small magnitude of the negative cosmological
the right-hand side of Eq2.33 vanish, we havé\ =0 as a  .qngtant is favorable. Since the third teemN(© is of order
necessary condition for anfanti-self-dual soliton. There- 1 “another necessary condition from the second term in Eq.
fore, the static stringlike topological and nontopological €ON-(3 9 is the lower bound of the symmetry-breaking scale
figurations of the @) nonlinearoc model under the static which must be the Planck mass, i.en®v2~1. To evaluate

metric (2.2)_cann0t saturate the Bogo_molnyi-type bqund iNthe value ofB.. in Eq. (2.21), we take a crude approximation
(antiode Sitter spacetime. In fact static self-dual solitons Ofsuch as

this model with a cosmological constant were proved to be
constructed only when the metric is stationary and the cos- N(r)=0 (3.3
mological constant is negatia8].

In this section we analyzed the(® nonlinearo model in gng
anti—de Sitter spacetime and found a new static soliton con-
figuration whose nature is nontopological, and its topological 0 for 0<r<r.—A,
charge is a multiple of half integer in addition to the well-
known topological lump solution. The obtained solitons are
shown to be non-self-dual. w  forr>r.+A.

Since the(anti-)self-dual solitons satisfying E¢2.28 make

F(r)={ @/2 forrc.—A<r=<r. +A, (3.9
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F(ri)>F(r%"), contradicts the monotonically increasing
property ofF(r). Therefore we arrive at a no-go conclusion
that the axially symmetric regular static topological lump
solution in the @3) nonlinear o model cannot support a
BTZ-type black hole with two horizons in anti—de Sitter

] ) . spacetime.

Since bothr. and A have the scale of the soliton core size ~ gjnce we have proved that aB(r) corresponding to a
and the ratioA/r is of order 1, we can confirm that the reqyar topological lump configuration cannot be negative,
Planck scale as a symmetry-breaking scale is necessary Qe remaining question for the nonexistence of the black hole

Inserting Eqs(3.3) and(3.4) into the integral equatiofB.2)
and comparing the result with ER.21), we obtain

A
B.~1— 167-er2n2<—). (3.5

e

exhibit the horizon of a BTZ black hole.
Now let us assume that there exists a horizomat At
each horizon a set of appropriate boundary conditions is

B(ry)=0, (3.6
U 2R (1
——sin 2F(r
dF| r . -
drf, Al v?n? ' '
H 167wGry m——zssz(rH)
My

Since B(0)=1 and B(r):f|A|r2,the region of negative

B(r) should be bounded and thereby the number of horizons
should be even. We attempt a series solution near the horizon

ry to leading order:

2n2 .
?ynZF(rH)
F(r)=F(ry)+ r=ru,
(N~F(ry) T (r=r)
mGry 17G rﬁ SIfF(ry)
(3.9
v’n? 2
?anZF(rH)
N(r)%N(rH)+327TGI’H |A| Uznz - 2
m—?SInZF(I‘H)
8(r)=8rGry| AL — U e
(r)~8wGry m_?& (ry) [(r=ry).
(3.10

Suppose that there exists a region of negal{e) bounded
by ri} andro"
tions aredB/dr|rm<O anddB/dr|raut>O, and they lead to
|A|/47G—[v?n?/(r}])?]siFF(r{)<0  and  |A]/4nG
—[v2n?(r"2]sirtF(ry")>0 by Eq.(3.10. However, now
that F(r) seems to be monotonically increasing fréng0)

(r}ﬂ<r<rﬂ“t). Then other necessary condi-

horizon is to show the positivity of the minimum &f(r).
Again, let us assume that there exists a pojptsuch that
B(ry)=0 and this is the minimum value d. Then the
position of the horizomy and the value of(r) are deter-
mined in a closed form from Eq$2.4) and (2.6):

B 47Gu°n? dE o a1
rm=1\/ A an (ry)= > (3.11

If there exists a regular solution to hai€r,) =0, one can
try a series expansion around the horizgnsuch as

™

F(n~

Hf(r—ry)+fo(r—rg)2+fa(r—ry)3+-- -,
(3.12
(3.13

After replacing theN(r)-dependent term in Eq2.4) by use

of Eq. (2.5), we substitute Eq(3.12 and Eq.(3.12) into the
modified equationg2.4) and (2.6). A comparison of both
sides of the equations results in the flatness of redtfay,

ie.,, 0=f,=f,=f;=-... Since the scalar amplitude of the
topological lump connect&(0)=0 and F(«)= in this
coordinate system, this flatness suggests the impossibility of
the existence of any regular topological lump through the
position of the horizonry such thatF(ry)==/2 and
dB/dr|;=0. However, Eqs(3.12 and(3.13 do not exclude
configurations of whict- anddF/dr are continuous at the
horizon but not necessarily have continuous higher deriva-
tives. The topological lumps obtained by numerical works
are unlikely to be these examples. However, the case of non-
topological solitons seems to be different since our numeri-
cal works show thaF is constant outside the horizon, i.e.,
F(r)= /2 for anyr which is equal to or larger than, . The
nontopological soliton, therefore, can be free from the above
argument which was applied to the regular topological
lumps, and forms an extremal black hole wklir)= /2
which will lead to the phenomenon of no scalar hair. Com-
bining with the previous proof, we conclude that any regular
topological lump of the @) nonlinearo model does not
form the spacetime of a BTZ black hole irrespective of the
values of|A|/v? and 87Guv?. Therefore, the shapes B{r)
from the regular topological lump solutions are classified

B(r)=~B,(r—ry)?+Ba(r—ry)3+---.

=0 to F(«) = according to the argument on the terminol- into two categories: one is monotonically increasi(r)
ogy of Newtonian mechanics and the results of the numericadnd the other is convex dowBi(r) (see Fig. 5.
analysis, the negativity of the numerator of the second term The behavior oB(r) given in Fig. 5 describes the struc-

in Eq. (3.8) forces a condition td=(r), that the value of
F(r{}) should be larger tham/2 and that ofF (rP") should

ture of the spatial hypersurface of th{g+1)-dimensional
spacetime. Since the metric is static, the spatial manifold is

be smaller thanz/2. Therefore the above conclusion, i.e., characterized by the circumferenide)=2=r and the radial
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10

vr

FIG. 5. Two characteristic shapes Bfr) formed by the topo-
logical lumps:(a) a monotonically increasing(r) when 87Guv?
=8x108, |A|/v?=0.04, andF,=1250, and(b) a convex down
B(r) when 87Gv2=0.2,|A|/v?=4.0x 10 ®, andF,=5.896.

distance R(r)= fodr/\/B(r). We embed it into a three-
dimensional hyperbolic space by introducing a third axis
such thatR?=—Z?+r?/B,,, whereZ=0 and B,, is the
minimum of B(r). For sufficiently larger, B(r)~|A|r2
+B., as given in Eq.(2.2]). Introducing variables such as
JJA|/B..r=sinhy and \B..6=©, we obtain the asymptotic
metric

1

A~ 37

dx?+sinfyd®?). (3.149

The asymptotic region of the two-dimensional spatial mani
fold given by Eq.(3.19 is a hyperboloid with deficit angle
2m(1—B..). By use of Eq.(3.5 we estimate the deficit
angle to be 16°Guv?n?. This can easily be understood by
the nonexistence of a long tail term in the energy-momentu

tensor. Since nonvanishing independent components of it al

v2

Ttt: ?B

2
+

n%v

2r?

dF 2

ar Sir’F,

(3.19

|
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|

they look to include a long tail term. However, substituting
Eqg. (2.19 into Egs.(3.195 and(3.16, we read that the lead-
ing term is theO(1/r% term which does not affect the
asymptotic region of the two-dimensional spatial manifold.
As we can expect from Fig. 5, the spatial manifold on the
core of the topological lump is involved in one of two cat-
egories. When the absolute value of the negative cosmologi-
cal constant is large enough, i.¢A|/v?>87GF2é;, and
B,=1, the relation betweed andr near the origin idZ
~\ar?/(1+ ar?)dr where a=|A|-87Gv?F26,,. Then
the core region of this soliton is also hyperbolicZ (
+1/a)?—r?=1/a. On the other hand, wheB(r) is de-
creasing near the origin, i.e|A|/v?<87wGF26;, and 0
<B,,<1, the relation betwee# andr’(=r/\B,,) is given
in the following:

02

2
+

202

2r?

dF
dr

n

T, SirPF,

(3.19

— ar’ for small r’,
V1—B,r (1+—6(1—Bm))
Z(r)=~
B:x: ! BOC !
— 4y 2 /———— forlarger’,
[A|Bm [A|Bm
(3.17
and

around r’=r/ (=rm/\Bp),
(3.18

dZ~\Bpmo(r'—r.)dr’

whereB,,, is the coefficient of the second-order term in the
series ofB(r) aroundr,,. Sincea is negative, the first line
in Eq. (3.17 tells us that the core region is convex up. In
order to connect smoothly the core and asymptotic regions of
the spatial manifold, there should exist an inflection point
about the minimum point,, of B(r) as given in Eq(3.18).
From now on let us look into the possible structure of a
spacetime manifold formed by the nontopological soliton of
half integral winding. Recalling the asymptotic form Bfr)
in Eq.(2.24), one may easily notice a difference between this
equation and Eq.2.21) for the topological lump: The
asymptotic space of the half integral winding soliton in-
cludes a logarithmic term with negative coefficient. This
metric function is the same as that of a globdllUvortex
[6]. In the model of a complex scalar field the very logarith-
mic term has played a crucial role to constitute a vortex BTZ
black hole with two horizons. On the other hand, our nonto-

n[i)ologicalcr solitons are distinguished from global1) vor-

lIl'eces by the following points. For a given model with fixed
model parameters, the global1) vortex solution is unique;
however, there are many nontopologieakoliton solutions
characterized by the maximum value of the scalar amplitude
which is larger thanr/2 but smaller thanr. About the shape

of scalar amplitude, the former is a monotonically increasing
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1.2 : : . — tion (2.1) in terms of stereographically projected variables,

i.e., ¢?=v(sinFcos@+ 7),sinF cos®+ 75),cosF), where
the multivalued® represents the topological sector and the
single-valued functiony the Goldstone degree for a given
topological sector. Then, i2+1)D flat spacetime, we ob-
tain

2

M < v .
L= 7[a#|:aﬂ|:+sm2|:aﬂ(®+ 70O+ 7n)].
: (3.19
By use of a duality transformation in42l dimensiong21],
. one can easily show in the context of the path integral for-
mulation that the above theof$.19 is equivalent to that of
a U(1) vector fieldA,:
10
2 nv
v 1F,F ,
FIG. 6. Plots ofB(r) for variousFy's for |A|/v?=0.01 and L==53d,Fo'F=7 e toe PF 10,0,
87Gv?=0.4: (a) zero node(b) one nodec) two nodes, andd) (3.20
extremal F,=2.41902 up to 10° precision. )

function from zero to the vacuum expectation value but the[vghgéiFM”:ﬂ“A”_aVA“' If the scalar amplitude is frozen

latter can contain oscillatory behavior as shown in Fig. 4. = m/2, outside the black hole horizon, then the matter

: . . . field action (3.20 is nothing but the sum of the Maxwell
Therefore, nontopologicat solitons with the same topologi- term and thé mi(r?imal intera%tion between the gauge field and
cal charge are classified into many subclasses by the numbg(r)rmt particle. Now we understand the reason why sol
of nodes. . . ; .
: — . ._ton black hole looks just like a charged BTZ black hole

The existence of the Ioga_rlthmlc term in the a"N."ymptmlcoutside the horizop4]. 'Jl'herefore, nonto%ologicai solitons
form (2.24) of the metric functiorB(r) lets us ask an intrigu- in the Q3) nonlinearc model do not break the no-hair theo-
ing question about the generation of BTZ black holes for a
small magnitude of thg cosmological constant gnd relqtivgl); al soliton solutions since it happens for a wide range of the
large symmetry-breaking scale as happened in grawtatm@ mmetry-breaking scale and the negative cosmological
global U1) vortices with a negative cosmological constant. y y 9 9 9

The results of the numerical analysis are summarized in Figsc,.onStamA' In th|§ gspc_act, the regular nontopologloakoh-
4 and 6. Figure 6 shows the meticas a function ofr for tons are :_;\Iso distinctive from the topological global1)J
: é{grtlces with scalar haii6], but resemble the case of regular

gravitating magnetic monopoles in+3 dimensions[12].

We can imitate the case of an exact singular monopole solu-
tion whose metric is the Reissner-Nordstrblack hole[22].
Specifically,F(r)==/2, ® =n6, and =0, everywhere and
the corresponding black hole spacetime is a charged BTZ-
type. More plausible singular configurations may be obtained
]tgy changing the boundary condition of the metric function at
the origin, i.e.,B(0)# 1, similar to the monopole black hole
[12]. Since the singularity of the fields which is presumably
at the origin can be hidden behind a horizon, we may not

was dug and such a minimum & finally touched a zero L . )
value[6]; however, several bumps are developed for n()mo_exclude the possibility that singular solutions can form small
| ' BTZ black holes lying within a nontopologicat soliton.

pological o solitons and the outmost one becomes the mini-

mum of B and then this position tends to be a horizon aSSlnce no non-Abelian scalar hair can penetrate the horizon

shown in Fig. 6. The graphs in Fig. 4 show that wiggles Offor regular solitons, we can evaluate the position of the ho-

: . rizon by using Eqs(2.4) and(2.6), and it is nothing but the
:)huetsisc;::I?hreﬁlilga':i?;doiothseutrﬁlr?ialtj?ntg}? boundary vahi2 formula (3.11). The values of the horizon obtained by nu-

Within our numerical precision, a careful analysis of So_men_ca_ll analysis coincide with those from H§.11) within
lutions near the transition to a black hole indicates that thé co oo o
nontopologicalo soliton loses its scalar amplitude hair as it As usual, Fhe matter distribution is reflected to the scalar
develops a horizon. In fact, it is predictable from E8.8): curvature which is given by
When F(ry) = /2, the actual value otiF/dr|rH vanishes

for any extremal black hole. Here let us write down the ac- R=—-6A—-167GT),. (3.21

[or equivalently the value df, in Eq. (2.16) increasek the
value of the minimum oB decreases. It is also natural that
the behavior ofB is as like as Fig. 6 as the symmetry-
breaking scale is increased with a fixed valueFgf. The
nontopologicalo soliton solutions are seen to tend towards
black hole solutions as the symmetry-breaking soate the
number of nodes is increased, as might be expected. A di
ference from the behavior @ for global U(1) vortices can
be noticed: In case of the global(l) vortices, one bump
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For smallr, Eq.(3.21) for both the topological lump and the Whenn=1, the curvature can be negative due to the accu-

nontopological soliton becomes mulation of matter at the core of the soliton at the Planck

R~6|A|—87-an2u2F§[2+(|A|—87-er2F§51Vn)r2]r2”‘2. scale. For large, the behavior of the scalar curvature de-
(3.22  pends on the characteristic of the solitons:

1
6/A| —327Gv?FZ|A| for the topological lump,
r

R~ 1 1 (3.23
6/A| -87Gv®n?— —327Gv?|A|F%,,,— for the nontopological soliton.
r “r

As expected, the space is curved at larder the nontopological soliton, while it is not for the topological lump. Although we

have charged BTZ black holes from some half integral winding soliton configurations, we may expect that all the obtained
spacetimes do not contain a physical curvature singularity due to the regularity of the matter fields and the metric functions
everywhere. It is easily checked, by the Kretschmann scalar:

RuupeRHP7=4G,,,G* = 4Tr

nypo

g 1dB 1dB BdN 1d°B 3dBdN BdZN BolN2
'a S2rdr’ 2rdr rdr’ 2g2 2drdr g2 \dr) ||

(3.29

When bothN(r) andB(r) are regular everywhere, the only given topological sector of the theory so that we have to
possible singularity can be at the origin in E§.24; how-  discuss stability among these classical solutions carrying
ever, it is also regular at the origin due to the behaviors ofith the same topological charge. A good method is to com-
those metric functions at the origin as given in E(&17) pare their masses. Since the obtained spacetime is not as-

and (2.18. Then, the spacetim.e formed by the topologicalKﬂgg:'csgigafsbﬁgts ggg?;k;zhcihtrt]ﬁeu?ilrﬁltégl.ovl\gétrDtﬁzer
lump or the nontopological soliton is always regular eVelY-energy per unit length of infinitely long axially symmetric
where irrespective of the existence of the black hole horizonsystemS, known expressions are theenergy[23] and the
As mentioned previously, we have many nontopologicalconserved quasilocal maga4]. Here we use the latter, the
soliton excitations classified by the number of nodes for axpression of which for the static observer is given by

1
Mq=35 Ve B(VIA[r?+1-VB(r)], (3.29
A .
2wn2v2( ) for the topological lump,
r: co;e \ (3.26
mn?p? In( + 23in?,3( ) for the nontopological soliton,
rcore rcore

where Eq.(2.21) was used on the right-hand side of the vortex and the nontopological soliton in thé3Dnonlinearo
above expression. The mass for the topological lump hamodel, whose leading long-range term is the same, Ti.,
only the constant term. It is obvious because this lump is-1/r? for larger.

localized around its core without a long-range tail term. The For then=1 class of solutions we compare the values of
nontopological soliton of half integral winding has a loga- the quasilocal mas$.25 of the no-node solution, one-node
rithmically divergent mass term in addition to the core masssolution, two-node solution, the solution of an extremal
It shows some resemblance between the static glolfal U black hole, and charged BTZ black hole at a sufficiently
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TABLE I. The values of the quasilocal mass of various nodestatic Killing vectord/dt; so two corresponding constants of
solutions and the extremal charged BTZ black hole at a large dismotion along geodesics are
tancevr =50 with 8wG= 0.4 and|A|=0.01.

d 0 2 | B on dt d L 29 4.2
=Be"— an =r<—, .

node 1 extrema Y ds ds

v=1 0.01245 0.01918 0.02056 0.02080

v=15 0.02144 0.02625 0.02646 0.02647 Wheresis an affine parameter along the geodesic. Since the

v=2 0.02664 0.02840 0.02841 0.02841 Space is not asymptotically flat, the constgntcannot be

interpreted as the local energy of the test particle at infinity.
The radial geodesic equation is

large distanceyr =50 as a function ot with fixed 87G
=0.4 and|A|=0.01 (see Table )l The tendency that the lidric 1 Bl m2+ — Y
quasilocal mass increases for higher node solutions looks 2\ds/ 2 (r) r2|  @2N(r)
universal, and further numerical studies for vari@is|A|, (4.2
andv also keep the same behavior. Therefore, the no-node
solution is the lowest energy solitonic excitation amongwhere the mass of the test particle can be rescaled-as
those with a given charge/2. Since(2+1)D Einstein grav-  for timelike geodesics anahi=0 for null geodesics. We ana-
ity does not have any attractive propagating gravitational detyze the trajectories of test particles for the topological lump
gree, it seems natural. All half integral winding solitons arebackground and the nontopological soliton background sepa-
nontopological; so excited spectra may decay into the norately, and they are divided into four categories according to
node soliton of the lowest energy. This procedure may prewhether they have massi&1) or not (n=0), or whether
sumably be correct for solitons in the space of a regulatheir motions are purely radialL&0) or rotating (#0).
hyperboloid because the system has massless Goldstone ggs shown in Fig. 5 and Fig. 6, the geometry of spatial mani-
grees. Now, if we recall that the no-node solution withfolds of our ¢ model solitons is similar to those of global
monotonically increasing (r) cannot form a black hole ho- (1) vortices[6]. Here we briefly mention different points.
rizon, then an intriguing question is raised about the stability
of an extremal BTZ-type black hole. It3l dimensions, the
attractive gravitational force usually makes a matter distribu-
tion with mass larger than the critical value unstable and The main character of the spacetime structure of topologi-
leads to gravitational collapse where the destination is th€al lumps is the absence of a black hole. Because of this
formation of a black hole. It seems unlikely for ou3p character, the geodesic motions are simple. It is qualitatively
nonlineare model in (2+1)D anti—de Sitter spacetime. On Similar to the regular hyperboloids by global1) vortices
the other hand, there may be an opposite procedure, that &6l
extremal BTZ-type black hole is produced but it is energeti- For the radial motion I(=0) of a massless test particle
cally unfavorable and then the horizon disappears. Howeve{m=0), theB(r) dependence disappears in the effective po-
we need further study on the stability of nontopological soli-tential V(r). The allowed motion is an unbounded motion
tons to settle this issue. Now a comment about the criticawith speeddr/ds=y/\/2 at spatial infinity, only wheny
symmetry-breaking scale is in order. In any natural environ<+0. SinceN(r) is monotonically increasing, this massless
ment the magnitude of the negative cosmological constant itest particle in a radial motion always feels the attractive
much lower than the symmetry-breaking scaleand the force.
very symmetry-breaking scale is much lower than the For the rotational motionsL( 0) of a massless test par-
Planck scale. For example, if we consider the present uniticle (m=0), the effective potential includes the centrifugal
verse with an extremely small bound of the negative cosmoforce termL2B(r)/2r? which forbids the test particle to ac-
logical constant |(\|~10"8 GeV?), the critical value of cess the soliton core. Therefore, any allowed rotational mo-
the symmetry breaking not to form a BTZ-type black stringtion should have the minimum value of radiug;, that r
is about 102 eV which is a very low energy. Of course, the =r ;. Since the value of the effective potential js\(L?
above estimation is far from the realistic situation before we— y?)/2 at spatial infinity, any allowed motion should be
take into account the anisotropy in the cosmic ray backbounded by the minimum radius,;, and the maximum ra-
ground and other cosmological fluctuations. dius rpax When |A|L?> 2 However, we cannot see this
easily due to the smallness pk|. When|A|L?<+?, the
motions are also divided into two classes by the peak speed:
IV. GEODESIC MOTIONS One is the class with the peak speed at infinity, and the other
és that with the peak speed at a finite radius.
The effective potential for the radial motioih. €0) of a
assive test particlenf=1) is

2 2

2 1

=—V(r),

A. Topological soliton

The study of timelike and null geodesics is an adequat
way to visualize the form of interaction on the soliton and
the feature of its spacetime. Let us analyze possible geodes’fe
motions and clarify whether a test particle experiences attrac- 2
. . X . 1 0%
tion or repulsion due to the soliton. The geometry depicted V(r)= _( B(r)— _) (4.3
by Eq.(2.2) admits the rotational Killing vecta#/ 96 and the 2 e2N(r)
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For larger, it is approximated as

A 1
ur2+ 5(Bum ¥?)+O(1Ir?),

V(r)= 5

(4.4

PHYSICAL REVIEW D 58 105013

B. Nontopological soliton

As we have discussed in the previous section, there exist
black hole solutions for some nontopological solitons. For
some regular solutions, e.ga) and(b) in Fig. 6, the geode-
sic motions are not so much different from those of topologi-

and then all possible motions are bounded. Since the pow&@l solitons. There are differeit’s with several bumps as

series expansion of(r) for smallr is
1
V()= (1-y%e 2N

+ r2—|-...

1
(§|A| — 4’7TG1)2F(2)(1— y2e2NO)

(4.9

we divide the shapes of the potent{dl3) into two classes.

shown in graphgc) and(d) in Fig. 6. One may suspect that
theseB’s generate different geodesic motions, e.g., two iso-
lated radial regions in the effective potentiglr). However,
our numerical works show that there is no such effective
potential, so that the character of geodesic motions for regu-
lar nontopological solitons is the same as that for topological
lumps. The only difference is the rapid variation g{r)
near the origin, due to rapidly increasihgr). Note that Eq.
(2.5 reflects the rapid increasing bf(r) for many nodes of
our nontopological soliton.

From Eqs(4.1) and(4.2), the elapsed coordinate timef

When the negative vacuum energy dominates the repulsive test particle which moves fromy to r is
force of the scalar field even at the core of the soliton, i.e.,

|A|/2— 47Gu?F3(1— y?e 2Ny =0, V(r) is monotonically

increasing and thereby the force is attractive everywhere.
Then the minimum of the effective potential is at the origin

and its value i§A|/167Gv?F3. The leading constant term
in Eqg. (4.3), which is the minimum ofV(r), tells us that
radial motions are allowed only wheye=eN(®), On the other
hand, when|A|/2—47Gv?F3(1—y?e 2NO)<0, the test
particle with y smaller than the critical valuey., (v,
=eNO/1-|A|/167Gv?F}) feels the repulsive force at the
core of the soliton. The allowed value ¥{0) lies between

dr

fo
- |
' 1 L?
B(r)eN™ 1-— m2+—2 B(r)e?\™)
r

Y
4.7

It diverges when the test particle approaches a point where
B(r) vanishes at least linearly. As we expected, the space-
time with horizons depicts that of a black hole. For the black

hole solutions, our geodesic motions outside the horizon are

|A|/167Gu2F§ and 1/2. One may expect that there exists antrinsically the same with that of a charged BTZ black hole,

negative region oV (r) betweenr,,;, andr.4; however,

since any scalar hair does not penetrate the horizon but the

our numerical work shows the absence of such a regiorogarithmic Goldstone sector.

Possible motions ar@) the stopped motion(ji) the oscilla-

tion between the minimum radius and the maximum radius,

and (iii ) rolling to the origin, asy decreases.

For the circular motionsl(#+ 0) of a massive test particle
(m=1), the effective potential takes general fofsee Eq.
(4.2)]. Since the centrifugal force term dominates at small

V. CONCLUSION AND DISCUSSION

In this paper we have studied static soliton solutions of
the 3) nonlinearc model coupled to Einstein gravity with
a negative cosmological constant. It has been shown that any

V(r) for small r resembles that of the case of a rotatingregular static soliton configuration with an axially symmetric
motion of a massless test particle, and there exists a perihetatic metric is not self-dual in this anti—de Sitter spacetime.
lion r i, For larger, all motions are bounded by an aph- By examining second-order Euler-Lagrange equations, we
elion r,c because of the negative cosmological constanbbtained a new class of nontopological soliton solutions
term. The allowed motions ang) the circular orbit atr whose winding number is a multiple of half integer in addi-
when y= v, and (i) the bounded orbit between the peri- tion to the well-known topological lumps with integral topo-
helionr ,;, and apheliorr ,,,x When y is larger thany,; . logical charge. The scalar amplitude of the topological lump
Noticing the vanishing oW/(r) at bothr,;, andr ., One  solution is monotonically increasing according to numerical
may suspect that the comoving time defined by results, which interpolates the symmetric vacuum and the
broken vacua, and its energy density, the time-time compo-
y nent of energy-momentum tenser, is localized around the
sz dr ———— soliton core. The lack of a long tail term in the energy den-
V—2V(r) sity at the asymptotic region leads to the nonexistence of a
BTZ-type black hole irrespective of the symmetry-breaking
diverges when the test particle approaches those pointscale. The only spatial structure formed by the topological
However, since the denominator in Eg.6) is proportional  lump is a regular hyperboloid with a deficit angle.
t0 LAr —r i (OF 1Nr —r 44, it takes finite comoving time On the other hand, the asymptotic behavior of the nonto-
to reach a boundary and so does the coordinate time defingublogical solitons shows an oscillation around its boundary
by dt/d7=y/Be 2N since there is no black hole horizon, value /2, and these solutions are characterized by the num-
i.e.,B(r)>0 for allr. ber of nodes for a given parameter set of the model. The

(4.6)
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energy expressions of these nontopological solitons include aur O(3) nonlinearoc model this attractive force supports the
logarithmic term at the asymptotic region, and this propertynontopological solitons, which have never been obtained
resembles that of global(W) vortices. According to the scale without adding a gauge field and an explicit symmetry-
of the negative cosmological constant, we obtained the folbreaking scalar potentidl25] except for some unstable,
lowing spacetimes: One of them is a regular hyperboloidspherically symmetric solitons i3+ 1)D de Sitter spacetime
with a deficit angle and the other is a charged BTZ black26]. The obtained spacetimes include charged BTZ black
hole. The conserved quasilocal mass of the BTZ black holéoles. In this context it may also be intriguing to ask the
is composed of two terms; i.e., one of them is the finite coresame question of local vortices in the Abelian Higgs model
mass and the other is a logarithmically divergent term. [27,28. When we consider the stability of the obtained so-

Here we have several comments on some resemblandgtions or general straight infinite cosmic strings, various
and difference between our half integral windiogsolitons  forms of the metric can also be taken into account, e.g., a
and the global (L) vortices. First, the former solutions are metric with boost invariance along the string directiols?
nontopological, but the latter solutions are topological.=e?N("B(r)(dt?—dz?)—dr?/B(r)—r?dé?, or the general
Therefore, the energetics of our nontopological solitongorm of static metric, ds?>=e?NB(r)[dt— C(r)dz]?
should be checked to confirm their stability, which may pro-—dr2/B(r)—r?d#?>—D(r)dz?, or even a stationary one,
vide a clue to distinguish one from the other. Second, thejs?=e2N(NB(r)[dt—E(r)rd §]>—dr%/B(r)—r2d 6>

global U1) vortex is a unique regular soliton configuration  Throughout this paper we have considered cases where
with monotonically increasing scalar amplitude for a giventhe deficit angle is smaller thans2 If we recall that super-
set of model parameters. On the other hand, a number ghassive local vortices produced various geometrical struc-
nontopological solitons exist in a given model, which aretyres including an analogue of Kasner spacetime, a cylinder,
characterized by the number of oscillations in the scalar amgr g two-spher¢28,29, we may expect some drastic change
plitude. Third, both solitons carry a long range termof (anti-de Sitter spacetime formed by the topological
(~1/r?) in the expressions of their energy density due to thqumps in the Planck scale. In relation to time-dependent soli-
nontrivial phase winding sector of Goldstone modes. Theon configurations, once the stationa@lump solution is
solutions have been seen to tend towards black holes as t@@nerated and forms a black hole structi8@), it must be a
symmetry-breaking scale increases and the magnitude of thginning black hole in 21 dimensions.

negative cosmological constant becomes small. The black Note addedAfter submitting this paper we became aware

hole generated by a nontopologicalsoliton is a charged of Ref.[31], which is closely related to this paper.
BTZ black hole without non-Abelian scalar hair, while a

small BTZ black hole lying within a global (1) vortex is
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