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The effect of retardation on dynamical mass generation in QED in two space dimensions at finite tempera-
ture is studied in the imaginary time formalism. The photon polarization tensor is evaluated to leading order in
1/N (whereN is the number of flavods and simple approximate closed-form expressions are found for the
fully retarded longitudinal and transverse propagators, which have the cdrre€t limit. The resulting
Schwinger-Dyson equation for the fermion maasorder 1IN) has an infrared divergence associated with the
contribution of the transverse photon propagator; only the longitudinal contribution is retained, as in earlier
treatments. For solutions in which the mass is a constant, it is found that retardation reduces the value of the
parameter (the ratio of twice the mass to the critical tempera}drem about 10 to about 6, in agreement with
a similar calculation in the real-time formalism. The gap equation is then solved, allowing the mass to depend
on frequencybut not momentum thus extending the study of retardation to the variable-mass case for the first
time. Solutions forT#0 are obtained which join on smoothly to the corréet 0 solution. It is found that
there is a critical number of flavordl,, above which no mass is generated. The phase boundary M-the
plane is calculated and agrees qualitatively with that found in other variable{matssonretardedcalcula-
tions. Ther value remains close to 6. Possibilities for including the transverse photon propagator are dis-
cussed[S0556-282(198)00720-4

PACS numbgs): 11.10.Kk, 11.10.Wx, 12.20.Ds, 74.20.Mn

[. INTRODUCTION is a phase transition from the superconducting phase to the
normal phase in the model discussed 118]. In Ref.[9] a

The study of quantum electrodynamics in-2 dimen-  calculation was done using the SD equations, with the Mat-
sions is of considerable interest, due to its possible relevancaibara finite-temperature formalism, in which the fermion
to long-wavelength models of 2D condensed matter systemspassy, was taken to be constant and only thg component
particularly those which might apply to high: supercon- of the photon propagator was used in the instantaneous
ductors[13,14. Three-dimensional QED (QEp may also  approximation—that is, all frequency dependence in the pho-
give us insight into the phenomenon of dynamical symmetniton propagator was neglected. In this calculation the authors
breaking in theories such as QCD. At zero temperature, found a value of =10. If we identify the fermion mass with
considerable amount of work has been dphe§|. In Ref.  the order parameter in BCS-like theories, this value is much
[2] it was shown that, using a M/ expansion in the larger than a typical BCS value, whichris=3.5. In Ref[10]
Schwinger-DysonSD) equations, there existed a valdle  the constant-mass approximation was relaxed, and instead a
=32/7? above which no fermion mass was dynamically momentum-dependent solutio (T,p) was calculated.
generatedN denoting the number of fermion flavors in the However, once again onl, in the instantaneous approxi-
theory. This was found to be qualitatively still true to order mation was retained, and it was found that10. Ther
1/N?, N, changing by a factor of 4/85]. In Ref.[3], by  value was therefore insensitive to this refinement in the cal-
contrast, noN. was found; instead, the dynamically gener- culation, although the values df:kg and %(T=0,p=0)
ated mass fell exponentially with increasityy This work  had changed considerably. It was shown in REf] that this
adopted a more general nonperturbative approach to the S&alue of r also survives the inclusion of a form of wave
equations. On the other hand, an alternative nonperturbativieginction renormalization. In both the calculationg ©0] and
study by Atkinsonet al.[6] claimed that there was indeed a [11] the critical value ofN was N.~2. It is important to
critical number of flavors. More recently, Maifig] has con-  stress that no sucN, existed in the constar¥-case[9].
firmed the existence of a; with a value of about 3.3, more One obvious problem with the instantaneous approxima-
or less independent of the choice of vertex ansatz, by cortion in the Matsubara formalism is that it cannot reproduce
sidering the coupled SD equations for the photon and ferthe well-studied zero-temperature limit. This is because, as
mion propagators, and Kond®] has studied the problem T—0, all frequency components should be included, while
using the nonlocal gauge technique. the instantaneous approximation retains only nive0 one.

It is important to extend this type of analysis to finite To avoid dealing with a large number of frequency compo-
temperature because of its possible relevance to physical apents, the first calculation to include retardation in the SD
plications. Here the significant parameters drg and r, equations for QEB at finite temperatur¢12] used a real-
wherer is the ratio of twice the zero-temperature fermiontime formalism, in which the correct—0 was ensured.
mass to the critical temperatufe, which is the temperature Making the constant-mass approximation, it was found that
above which chiral symmetry is restored and at which theravas significantly reduced to a value of about 6, from the
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nonretarded value of about 10. e = aw + s+ Qv (O
The calculations of12], however, did not retain the exact
expressions for the longitudinal and transverse photon self- FIG. 1. Contributions ta\ ,, to leading order in M.

energies, because of their awkward behavior near zero three-

momentum(the amplitudes are nonanalytic at the origin, atclosed form expressions to approximate those integrals in the
finite temperature Instead, a variety of simpler “average” calculation which cannot be evaluated analytically. In these
self-energies were used in order to simplify the calculatiorcalculations we shall be working in the Landau gauge, in

and to be able to compare the results more easily with thoseuclidean space. We first note that the most general photon
of [9]. In the imaginary-time formalism, this difficulty con- Propagator in the Landau gauge must take the form

cerning the nonanalytic behavior near zero momentum does

not arise, and the exact self-energies can be employed. Our A = Au By )

first aim in this paper, therefore, is to include retardation HpP+IIa(p) - pPHIIg(p)’

effects, in the constant-mass approximation, using the

imaginary-time formalism. In Sec. Il we restate for conve-"Ne€reA,, is the longitudinal projection operator aBy,, is
nience the results given i3] for I1,,, the photon polar- the transverse projection operator. To leading order h, 1/

ization tensor to leading order inK/ These results involve 1 @ndllg are the contributions from the loop diagrams
certain integrals which we first evaluate numerically angSNoWn in Fig. 1 and are related to the polarization tensor
then find simple approximate closed-form expressions whic!«» &t order 1N. The projection operators take the follow-
retain the correcT— 0 limit. In Sec. Il we shall then extend N9 forms:

the (constant-magswork done in[9] by using a fully re- 000! p? Dop
tarded longitudinal propagator. We compare the results with A;w:( 80— ”20) — ( Sov— OZV),
[12] and find rather close agreement. p= /P p

In Sec. IV we shall go further and allow the fermion mass
to depend on.th@iscrete frequency, still rgtaining t_he fuIIy_ B,,= 5Mi( 8- p._zp,) Sjy- 3
retarded longitudinal self-energy. We believe this is the first p
time that retardation has been introduced into a . _ N -
“nonconstant-mass” SD calculation at finite temperature.By using the properties of the projection operators, it is easy
Although we cannot compare our results directly witig], ~ ©© Show that the inverse propagator must be
there are interesting features which remain the same, namely, , -1,.., _ 2, P2+
N.~2 and apy/a behavior similar to that of thép|/a be- Aur (P =[P+ AP IAL(P) + 1P HB(p)]B’“’(p)'(4)
havior of the momentum-dependent solution. Our values of
2 (po=0) are found to be in rough agreement with those ofFrom this expression it is easy to relde,, to IT, andIlg
2 (p=0) in [10]. It would, of course, be interesting to in- by summing the diagrams in Fig. 1:
clude a dependence & on momentum as well as on fre-
quency, but that is a much harder problem in the retarded IT,,=TI,A,,+11gB,,. )

than in the instantaneous case. . - . .
_Then using the explicit forms &, andB,,, in Eq. (3) with

In Sec. V we shall discuss ways of introducing a trans he additional . hat 147 — btains th
verse contribution into our mass-gap equation, which we net€ additional requirement tha, I1#”=0, one obtains the

glected due to a logarithmic IR divergence in the zerothfollowing forms of T, andllg:
mode. We shall also discuss other possible extensions to our

calculation, and we conclude by looking at the plausiblity of I A=14 p_2
our calculations in the context of Qg@s a model of super- P
conductivity. ¥
0
HMg=1I;i —Ilgo 7. 6
IIl. APPROXIMATE FORM FOR THE FULL PHOTON P

PROPAGATOR TO LEADING ORDER IN 1/ N

We now proceed with the calculation &F,, at finite tem-

The Lagrangian of massless QEDith N flavors is perature using the Matsubara formalism. We work in imagi-
nary time in which both fermonic and bosonic frequencies

— are discrete. Fermionic frequencies have the fopg
L=—2/4f,,,f*"+ > yi(ib—eh)y;, (1 =(2#/B)(m+1/2), and bosonic frequencies have the form
' Pop,=(27/B)m, wherem is an integer. From now on we
shall denote the modulus of bosonic three-momentgpy

wherea,, is the vector potential and=1,2,...N. We have d that of fermionic th ¢ | lcul
also chosen a reducible representation of four-dimensiong}"® that of fermionic three-momenta by. In our calcula-
lon we need only consider the elemehls, andIl;; . Here

: : - t
matrices for the Dirac algebra. Because of the choice of rep:
resentation, Eq(1l) has continuous chiral symmetry as dis- [1go andll;; are calculated to bEL3]

cussed inf2]. 02
Following [13], we calculate the full photon propagator in Moo=115— _02b I,—11,,
this theory to leading order in /. We then look for simple- b
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H”:Hl—(alj—p—lg—J +H25|J1 (7)
Py
where
1 sin VX(1—X)
Hl(pbyﬁ,m)z%fodx\/x(l—x) WDib(i,pb,ﬁ) ],
m (1 sin(2xmar)
n2<pb,ﬁ,m>=§—ﬁ fodxﬂ—ZX)m’

a 1
H3(pb1:81m):77_ﬁ jO dx In[4Dm(X1pb1:8)]1 (8)

and

D m(X, Py, B) = cost[ BpyVX(1—x)/2] — sir’(xmar).
C)

m denotes explicit frequency dependence in the above ex-

pressions. Using the result
(10
Ob

we find thatll ,=115, [Tg=1I,+1I,. Alternatively, one can
obtain the above expressions fdr, andIlg by neglecting

IT, and settingll; =113, which is found to be a good ap-

proximation forIl;; andIlo, whenm=0. Form=0 one can
find these expressions without again using @4) by notic-
ing thatIl,(m=0)=0 andpq,=0.

In our treatment ofll,, II,, andIl;, it will be conve-
nient to consider then=0 mode separately. Fon=0 we
need only considefl; andIl3, sincell,(m=0)=0. For

IT3(m=0), which we shall denote b&[g, an accurate closed

form expression has been given[it0], namely,

16In2 T
Pl 2 el o) |
(17)

a

H2=1/8(B)

We are able to find a similar expression fﬂr‘f=1'[1(m
=0) by noting that

J
dlplB
which gives, on combining Eq$11) and (12),

0_ o

173 W) 1—eXF’<—%nz|p|B”- (13

8
We now evaluate the integral$,(py,,8.m), II,(py,B,m),

2=(|p|) s, (12)

andII;(py,,B,m) for m#0. We show the numerical results

of these as functions g§,8 andm in Figs. 2a, 2b, and 2c.
We see that botdI, andIl; vary little with the explicit
frequency indexm. Also, we are able to show that<(ll,
<(21In 2/7)(al/B). 11, andIl; are well approximated by

PHYSICAL REVIEW D 58 105012

FIG. 2. (a) II; as a function of explicitm and three-momenta
Py, - (b) IT, as a function of explicitm and three-momentp, . (c)
I15 as a function of explicitn and three-momentg,, .

had
B

for m#0 as Figs. 3a and 3b show. Sinbg is bounded by
(21In 2/7)(al/B), it is always smaller thadl, for m#0,
sincell;=(27/8)(a/B), and so we shall neglect it iHg .

We now have two expressions for the full photon propa-
gator:

1_[1:1_[3:1/8( )(pbﬁ) (14

A A#,, + B’w f 0
Vz or :,
= ToP+g(pD) [P+ IIs(pl) PP
AV 14
A= ——" +—r for pop# 0. (15)
pb+apb/8 p+apb/8

The structure of our propagator is consistent with the zero-
temperature result to order N/ II,=IIg=ap/8. One

should note that although in the zero-temperature limit the
theory is Lorenz invariant, Lorenz invariance is clearly bro-
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FIG. 3.(a) Top: numerical data points and the approximaiim,/8 for them=0 modes oflI,(m=1,p,), shown forp,B ranging from
0 to 4. Bottom: numerical data points and the approximagpg/8 for them=0 modes ofll,(m=1,p,), shown forp,B ranging from 0
to 36.(b). Top: numerical data points and the approximatip,/8 for them+0 modes oflI3(m=1,p,), shown forp,B ranging from 0

to 9. Bottom: numerical data points and the approximafpg/8 for them= 0 modes ofll;(m=1,p,), shown forp,B ranging from O to
36.

ken atT+0, as Eqs(15) show. This is, of course, because a where

preferred frame of reference is provided by the heat bath.

A =k;—

Ill. SCHWINGER-DYSON EQUATION AND ITS unl @b =Ke=Pr)
SOLUTION FOR CONSTANT 3

1 1
The full Schwinger-Dyson equation for the fermion = T30 5 for qop=0,
propagator at nonzero temperatgel = 1/38 is given by lal*Li(lal) * |al*+5(]al)
e < d%k 2
S l(p)=SO1py— — J_ 'S (k - -
1P =S X(py) ﬁn;w G2 ¥ Sek) MO0 = 7o for dos 0, (18)

XA, (Ke=p) T#(Ke—ps ,Ke)- (16)

We now truncate Eq(16) by working to leading order in

1/N, in which casd™" is replaced by its bare valuey” and  remove a factor off, from each side of the equation and

we use our form fon,,,, the full photon propagator, given write the argument o\ ,,, in Eq. (17) as (na/B,k). We
in Egs.(15). As before[9], we neglect wave function renor-

malization; we comment further on this in the next sectionterms gives
On taking the trace of Eq16), we get the following equa-
tion for the mass-gap functiob:

2 (ky)
2(pf): Na £ f (2 )2 A,u,,u(kf pf) k2+22f(k )

(17 St is the transverse contribution, which is expressed as

and a=Ne’. Now we make the approximation that is

a
= onn [SL(@s) +5r(a,s)]. (19)

1
X2+ (2mm)2+0.128[ X2+ (2mm) 2] 72

Sr(a,s)= OX Xx2+,821'[(1’x2+772+a252 m=1

1 1

N 2m(me U277 a2+ X [2m(m—112) ]2+ aPs?

(20

wherex=g|k|, a=aB, ands=3/a. HereS, is the longitudinal contribution and is exactly the same, excepfﬂ‘blbeing

frequency as well as momentum independent. We can then

now do the angular integration, which is trivial. Rearranging

replaced byl'[g. It is now important to notice that the integral for the zeroth transverse mode is logarithmically IR divergent.
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This can be seen by observing that @i&k|— 0, T19— (a/8)(7/128 In 2)k|?B%. From now on, we shall retain only the
longitudinal mode; in our Conclusion, we shall discuss ways of including the transverse mode in our calculations.
So we consider the equation

a

1= 27N

S (a,s). (21

The integral for then#0 modes can be done analytically. We introduce functions of the form

i _foc X dx 1
(d,a,c)= o CrdDTar a2

(22

Doing the integral on the right-hand sideHS) of Eq. (22) gives us the following closed form expressions f¢d,a,c):

. a . (C2_ d2) 1/2 (23)
(=) @+ c2—d?) arcta —da

C2

(d+a)?

I(d,a,c)=

2@+ =) "

With the use of these functions, we are able to w8{¢a,s) as

S.(a,s)= 21 | (27rm,0.125,{a?s?+ [ 2m(m+1/2) 129 +1(27m,0.12%,{a’s?+ [ 27(m— 1/2)]?}*?)

+F x dx (24)

o DP+TI(x)B2](x%+ w2+ as?)

We now solve Eq(21) numerically. We do this by fixingg ~ “N.” In fact, we have found that a more accurate fit to the
andN and varyings=3/a until the RHS is equal to unity. exact numerical solution of Eq25) is provided by

We note the value of for which Eq.(21) is satisfied for

those values o anda. We then choose new valuesaénd s=0.25 exfg—0.967N). (27

N and repeat the process. If HQJ) is not satisfied for ang i

at the values o& andN chosen, the only solution to E(L7) With the zero—tempergture result and our data_'ffe‘rO, we

for constant mass is the trivial ore=0. It is important to ~ &ré able to plot solutions of Ed21) as a function of B
note that, in these calculations, the infinite sums are evalu= KeT/« for different values oiN, as shown in Fig. 4. It is
ated numerically USINGIATHEMATICA: the convergence is important to see that unlike previous calculations our zero-

very slow if an attempt is made to truncate them dlaage temperature results join on smoothly to our finite-

but) finite number of terms. temperature results. This is because we have used a retarded
In our analysis we also require the zero-temperature limiform of the photon propagator with the corréct-0 limit,
of Eg. (21), which is found to be and not the instantaneous form used9m Another thing to
note is that the shapes of the solutions as functiong®f
1 o X dx are markedly different from those 0], [10], and[11]; they
1= 2m)?N fo X5 (x+0.125 " (25 seem more to resemble the shape of the BCS constant mass-

gap solution. We also pldE.kg/a againstN in Fig. 5. Here

) . , T.kg falls off exponentially and takes the following form, to
wherex=|k|/a. On doing the integration on the RHS, one very high accuracy:

obtains the equation

(TcKg)/@=0.081 expp—0.967N). (29)
o 2N/2= | 1 (0.125% \ =
(2m)°Ni2= (0.1252+s2) 2s 000} . _._. ——N—03
0.05 Tl TRTIS
(0.125 S 004t RS
 (0.125%+¢2 | 5125 (26) Z o0
0.02 \'\‘
Now, if s<0.125, we get the approximate solutian 0.01 F~~mr Y
=0.25 expt- 7°N/4), in agreement witf1], remembering o .\0605 e kT

that we are including only the longitudinal self-energy,
which contributes one-half of the total contribution at zero  FIG. 4. Numerical results for the constant mass calculation as
temperature, so that our ‘N’ corresponds to Pisarski’s functions of T/kgae for N=0.5, 1, 1.5.
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In the following section we shall look at solutions which

32157,2 are frequency dependent and contain the retarded photon
0.0125 propagator calculated in Sec. Il.

kT 0.0100
g'gggg' IV. FREQUENCY-DEPENDENT GAP EQUATION
0-0025 In this section we depart from the constant-gap approxi-
0 06 08 Lo 1z 14 " mation and attempt to solve the retarded Schwinger-Dyson

_ equation(17), allowing the gap function to depend on fre-
FIG_. 5. Plot ofkgT./a vs N for the constant-mass calculation; quency only. Frequency dependence can be introduced rela-
the pomts.are the numerlcal values calculate.d from 24), and tively easily into the equation, unlike momentum depen-
the curve is an approximate form fdt(N) as given by Eq(28).  dence which leads to a highly nontrivial angular integral of
the kernel of our equation, which is unlikely to have an ana-
From Egs. (27) and (28) we can calculater, where r Iytic result. The resulting computational complexity has de-
=23(T=0)/Tkg; we findr=6.17. terred us from including momentum dependence. This is un-
In this calculation there is therefore iy . The reason for fortunate, for it would be interesting to compare results
this can be seen as follows. We first note that increasing calculated with a full retarded momentum-dependent SD
and decreasing (increasingT) causes the RHS of Eq1), ~ equation with the results ¢1.0]. While this is true, introduc-
(a/2mN)S, , to get smaller. The condition determiniftg is  ing frequency dependence will give us new insight into the
that lim, ...(aS,)<2#7N, for all s, since then Eq(21) can nature of the gap, and a_s_ﬁihO], we shall be _able to calculate
no longer be satisfied, and the only solution to the gap equ%value ofNc. In the spirit of[10], we again neglect wave

tion is s=0. SinceS, is a monotonically decreasing function 'Unction renormalization. It has been pointed ou{3f that
of 5, we need only show that lig...[aS, (s=0)] is finite to wave function renormalization should be introduced, but it

establish the existence &f.. But one easily sees from Eq. has been found ifi11] that for a momentum-dependent SD

. - . L gap equation, there still exists &, andr is little affected.
fj%(zstt:‘%tt Iler‘:(%;[w[a&(s— 0)1is actually infinite, and st We start our study of the frequency-dependent solution at

. Eqgs.(17) and(18). We shall restrict ourselves again only to

She longitudinal mode; this is because the IR divergence in

%ﬂe transverse mode is still present, although only in the
ode for whichqg,= kot — pos= 0. We see that becau&eis

now frequency dependent, we can no longer remove a factor

of X from each side of Eq.17), andA ,, is now dependent

on pos=(27/B)(n+1/2). But the angular integration is

again trivial. On rearrangement we get

constant-gap approximation, giving a higher vatuye=10.
There is good agreement between our results and those
[12], in which retardation was included in a real-time formal-
ism. For example, iM12], using the “best average self-
energy” (IIR! in the notation of[12]) s had the value
0.01205 forN=2, corresponding to a value &f=0.1225
from Eq. (27) with N=1, and kgT.)/« was 0.0376, corre-
sponding to 0.0397 from Eq28). These values lead to a

=6.41 in[12] as compared to our value of 6.17. The only s(n)=5_§ SL(@s), (29
other difference between our results and thosgl @F—not a

large one—is that we see very little changerofvith N,  where as befores=3/a and a=aB. Here S| is the
wheread12] found a small variation withN. frequency-dependent longitudinal contribution, expressed as

s(n)
(X%+ BRI {x?+[27(n+1/2)]>+a’s(n)}

S’j(a,s(n))=J0mx dx
- s(m) 1

+m¢n X2+ [2m(m—n)]?+0.125{x>+ [ 2w(m—n)]?}2 x?+ [27r(m+ 1/2)]?+ a’s?(m) ’

(30

wherex=g|k|. The first term represents time=n mode, whereg,,=0. Again, it is possible to do theintegration. Using
the functionsl (d,a,c), we are able to expresy' as

o

Sl@s(n)= 3 sm)l2m|m-n]|,0.12%,{a?(m) +[m(2m+1)]2?) + J: L T
m#n

X2+ B3 x*+[27(n+1/2)]°+as?(n)
(3D

Equation(29) represents an infinite system of nonlinear coupled integral equations, one for eachhm@ée can reduce the
number of equations that need to be considered by the following particle-antiparticle symmetry property:

s(m)=s(—m—1) where m=0. (32

105012-6



EFFECT OF RETARDATION ON DYNAMICAL MASS . .. PHYSICAL REVIEW D 58 105012

It is important that the RHS of E¢32) is s(—m—1) and nots(—m), sinces(m) is a fermionic quantityp; is related tam
by posr=(27/B)(m+1/2). Thereforem and —m—1 represenpy; and —pys, respectively. Using Eq32), it is possible to
castS['(a,s(n)) into a final form convenient for numerical calculations:

o

S'(a,s)= > . s(m)[1 (27|m—n],0.12%,{a2s%(m) + [ m(2m+1)]?}1?)
m#n=

22 2 - x dx sn)
+1(27|+n+1],0.12%,{a’s*(m) + [ m(2m+1)]%} 2)]+f0 T B0+ [m(2n+ D+ a252(n)

+s(n)l(27(2n+1),0.12%,{a’s?(n) +[ m(2n+ 1)]?}?), (33

the last term being the=—m—1 mode in Eq.(31). Al- creases in magnitude, we §q(n)=7s(n), and we average
though Eq.(33) looks cumbersome compared with E§1), again. We repeat the process uE;iIandEi vary little from
the advantage is now that only positive valuesnaindm  each other.
need be considered, thereby reducing the number of equa- An important technical difficulty is that a6 gets smaller
tions in the systeni29). the size of our matrix increases: #as-0, M—o, and the

In our numerical calculation we will want to limit the largerM is, the slower the calculation @{(n). Fortunately,
number of equations to a finite numblér We can think of ~ most of the interesting behavior lies in a region of tempera-

Eq. (29) as a sort of nonlinear matrix problem, where insteadfuré where the matrix sizé is manageable. Although we
of an infinite matrix, we will restrict ourselves to an cannot approach close to the—0 limit from our finite-

MXM matrix. The justification for doing this is sim- temperature calculations, we can get around this difficulty by

ple: we expect our solution to fall off monotonically with ncluding an analytict—0 limit to Eq. (28):
n, and asn—, we expects(n)—0. The effective limitM

on the matrix size is determined by the requirement that
s(n—1=M) be one-tenth the size of(0), which is the
maximum value ok as a function oh. In choosing this size

of matrix, the contribution from modes for whiech—1>M

Por| 1 *
"o fy o e

y— %,1/8,w2+ s(y))

has a very small effect upon our solution. Note that whereas x|
in the constant-mass ca¢8ec. Il) we had to include all
frequencies in our summations, when the mass is frequency Pot
; +1|y+—,1/8,/y?+s , 34
dependent a natural cutoff emerges. y a yots(y) (34

The method we shall normally adogtmethod I”) in
solving Eq.(29) will be to start with a trial function having \where y=ky/a. Again, we have used the antiparticle-
the correch— o limit, namely,s(n)—0. We insert this trial  particle symmetry property of the gas(pos) =S(— Po), t0
function into Eq.(33). Then we work out the resultant value reduce the number of equations we need consider. Although
of s(n) using Eq.(29) and reinsert the result back into Eq. the range of integration is infinite, the kernel of E§4)
(33). After several such iterations we check if our matrix sizeprovides an effective cutof, where A<1. Therefore we
is sufficient by seeing i6(n—1)=<0.1s(0); if it is apprecia- need only consides(po;/@) from s(0) to s(A) in doing
bly larger, we increase the size of our matrix. To do this, Wenymerical calculationsA is chosen in the same way &
increase the value oh at which we truncate the sum in Eq. namely, at a point whers(A) is sufficiently small so that

(33) and we increase the number of equations in®8 we  the contributions fronpy>A are negligible. OuT#0 re-
must solve. When we are satisfied with the size of our magits and ourT=0 results are sufficient to provide all the

trix, we keep iterating untis(n) changes by less than 1% jnformation that we require.
over ten iterationgor more depending on the rate of conver-
gence to the exact solutiprit should be appreciated that the
nonlinearity of the system of equations requires this further
iteration, even after deciding on the size of the matrix.

. . . 0.0025

If the rate of convergence is very slow, which is the case

near a phase transition, we use “method I.” In method I @3332
we choose two trial functions. One of theB), is chosen to PO
decrease in magnitude with each iteration using method I 000056
the others;, to increase in magnitude with each iteration.
We then average the two functions together 0.5(§T
+5)). Then we use method | Gfor ten iterations or more. FIG. 6. Numerical results for the frequency-dependent solution
If S increases in magnitude, we $&t(n)=5(n); if 'S de-  S(py,T) as a function ofpy for variouskgT/a at N=1.

0.0030
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FIG. 7. Comparison of .. the mass for the constant-mass  FIG. 9. Phase diagram for the frequency-dependent solution,
calculation, with¢(m=0,T=0), the zero-frequency mass for showing the boundary between the massless and massive fermion
the frequency-dependent calculation, as functionil.of phases in th&l-T plane.

We show the results of both olir=0 andT=0 calcula- BCS like. By looking at Fig. &) one can see that as well as
tions as functions opy;/a for N=1 in Fig. 6. One can see a critical.temperaturaC there is alsq a critical numbe, .
that theT=0 curve joins smoothly onto thE=0 solutions. Here N is the value ofN above whichs=0 for all T and
One should observe that although we plot The0 solutions ~ Por» @nd this can be found from Fig(i by locating the
as continuous curves, they are actually discrete points witROINt where the gradient of thE=0 curve tends to infinity.
Por= (27 B)(n+1/2). As functions ofpy /e, these func- Y€ only need consider thm=0 mode afl =0, sinces(m)
tions fall off rapidly for poi/@<0.1. This behavior is |samonoton|cally_ decreasing function o_f both fr_e_quency and
roughly the same as was seen in momentum-dependent cigmperature. So i6(T=0, py;=0)=0, this condition must
culations[10], where for 0.0 |p|/a<0.1 the solutions fell P€ true for anyl andpo;. We find thatN, lies in the range
rapidly in |p|//e. It is this behavior—the rapid fall in Nc~1.8—2. In Fig. 9 we show aMN-T phase diagram,
S(pot/a) for poi/a<0.1—which makesS (T=0, py;=0) where we have included the vaIU§=.1.8. nge we see that
considerably smaller thak (T=0)yns, OUr result from the f[he phase boundary agrees qualitatively with that calculated
previous section, as shown in Fig. 7. He¥T=0,p,; N[0 .
—0) is roughly the same a&(T=0,p=0) in [10]. This The existence of. leads us to the _conclusmn that any
suggests that the constant-mass-gap approximation is not/gduéncy or momentum dependence in the mass-gap equa-
good one, except as an order of magnitude calculation for théion induces a value oN. Our calculated value oN.
quantityr. In Fig. 8@ we show them=0 mode of these 29r€€S vyell with[10], but [1.0] uses the llnlstantaneous ap-
solutions for variousN as functions ofkgT/a, and in Fig. Proximation and so has the incorréct- 0 limit. When com-
8(b) we show them=0 mode of these solutions for various pared with the correcT—0 I|.m|t of the three—momentL_Jm—
keT/a as functions olN. One notices that the shape of the dePendent mass-gap equation [@i, our value forN, is
solutions in Fig. &) is the same as that of the constant-SMaller.(In [2], No was calculated to be 3)2. From our

mass-gap solutioFig. 4), which we have characterized as results we are able to calculate a table of values feach at
different values oN, as shown in Table I. These values are

not much different from the value~6 calculated in Sec. II,

e R R ZIINCZo? but now there is a significant dependenceroén N; the

00258 Tl TN values ofr are seen to fall with increasirg. The insensitiv-
Somt) o oF N ity of the r values to the introduction of a momentum depen-
I N dence in the SD equation was seerj10], although for the

RN Y instantaneous approximation; again, this is roughly seen to

0.008 N o be the case with the introduction of frequency dependence as
(a) - shown by our results.

This completes our analysis of the frequency-dependent
solutions. In the next section we discuss ways of handling
the transverse mode and other ways of extending our calcu-
lation.

TABLE I. Values ofr calculated for variou$l in the frequency-
dependent mass calculation.

N r
-12f
(b) 0.50 5.60
FIG. 8. () Numerical results for the frequency-dependent mass 0.70 5.30
calculation as functions df/kga for N=0.5, 0.7, 1.(b) Numerical 0.74 5.20
results for the frequency-dependent mass calculation as functions of 0.90 4.90
N for Tkg/a=0, 0.001, 0.002, 0.004, used to estimalgin the 1.00 4.80

case ofTkg/a=0.
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V. CONCLUSION be included. To tackle the harder problem of including fre-

guency or momentum dependence in this extension to our

aAZ Wfot](ﬁxzti?)?ﬁrs] r?gf :d%c':j gr?g.tcl)vrﬁ;rl](i ggg:tatmt;z;gﬁlbork, we may be forced either to consider our calculation of
gap app 9 PP YIM as a separate integral equation, so that the calculations

for the calculation of , which is little changed by frequency would involve two integral equations coupled together, not

Sveepﬁg\(/jsggi rl:otrhgﬁr;arl;geiEfv;laueeigggigienrggcher:ﬁ)ﬁlrso, one, or we may have to use an ansatz for our expected form
q y dep Bk of the fermion mass.

result differs from[2], for we have been unable to introduce As well as the above extension to our work involving the

aiﬂ:engls;r\]/?nmgrgﬁ]nég?ﬁi%pﬁﬁfgﬁz '(:I?OobugC(;ilggls\}gor}?ansverse contributions, another important step will be to
P 9 introduce momentum dependence. Although we have stated

have no transverse pontrlbut!on to the mass-gap equatlo%at this is difficult due to the computational complexity, one
The reason why the introduction of momentum dependenc<|3hay be able to approximate the kernel in such a way as to

!f] Zrh:r:gep'rstl)olitm sa:::&eofrles th:rtlcthrgg'g'r%izi'gnbag;%igz d.si_mplify the problem. One of the major goals in this series of
nvarl : St quency dep Rumerical calculations foF 0 should be to join on with the

cretized(in the imaginary-time formalisj At T=0 one can results of[2] in a smoothT—0 limit, and this necessitates a

do the angular integration with full three-momentum depen-Successful treatment of momentum dependence.

T e el i As o e uesion of QEpas a e of supercandc-
(fre )L/J.ency direction: insteadpwe are,faced with ar? inte raltivity in the context of our calculations, consider the case
q ' ' 9 I\I= 1. If we crudely double the number of flavors so as to

in two-dimensional momentum space, exactly the Integraaccount for the transverse mode, this will effectively count as

which is d|scu_ssed at the pegmmng of Sec. IV. . N=2, which is the value required for QEDn a model of
Up to now in our analysis we have chosen not to dlscus?nigh-TC superconductivity [13]. We find that kgT,

the transverse contribution and have neglected it from our’ 102, in agreement wit{10], once rescaled to agree
calculations due to the IR divergence in its zeroth mode. It IS th [2] as regardl,. As pointed out i 10], this gives a

important to stress that the IR divergence is present onl\// .
_ . value of @ of the order of 8 eV folT.~100 K. As stated in
V:]Z?QIJzzodoﬁtbL_tr?é t:uem%f(faicct)fC}Tat]()er;r%?\fi\r/gies I‘r;;i?]e 1S [10], this is still much higher than the typical Heisenberg
' exchange energies, but might be acceptable by a suitable

the range 3.8—4. To treat the IR divergenceTa0, one i f the f ion latti i the lati del
needs to regulate the integral in EG0). A reasonable way rescaling of the fermion lattice operators in the lattice mode
’ of [13]. It is interesting to note as a concluding remark that

to do this might pe to introduce massive fermlon.propagator%ur suggested way to treat the IR divergence in the zeroth
into our calculation oflI ,,,, the mass of the fermion propa-

ators being calculated self-consistently in Exg). A major mode of the transverse contribution may effectively reduce
9 g caic . y - A mal by an order of magnitude or more; so on this basis alone it is
problem with this refinement would be the requirement of

, i . a calculation worth considering.
self-consistency in our calculation of the photon propagator
when we have any frequency or momentum dependence in

Fhe ferm|9n mass. Nevertheless, it might be vvprth .conS|der— ACKNOWLEDGMENTS
ing the simpler problem of a constant mass in this sort of
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