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Effect of retardation on dynamical mass generation in two-dimensional QED
at finite temperature
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~Received 8 December 1997; published 9 October 1998!

The effect of retardation on dynamical mass generation in QED in two space dimensions at finite tempera-
ture is studied in the imaginary time formalism. The photon polarization tensor is evaluated to leading order in
1/N ~whereN is the number of flavors!, and simple approximate closed-form expressions are found for the
fully retarded longitudinal and transverse propagators, which have the correctT→0 limit. The resulting
Schwinger-Dyson equation for the fermion mass~at order 1/N) has an infrared divergence associated with the
contribution of the transverse photon propagator; only the longitudinal contribution is retained, as in earlier
treatments. For solutions in which the mass is a constant, it is found that retardation reduces the value of the
parameterr ~the ratio of twice the mass to the critical temperature! from about 10 to about 6, in agreement with
a similar calculation in the real-time formalism. The gap equation is then solved, allowing the mass to depend
on frequency~but not momentum!, thus extending the study of retardation to the variable-mass case for the first
time. Solutions forTÞ0 are obtained which join on smoothly to the correctT50 solution. It is found that
there is a critical number of flavors,Nc , above which no mass is generated. The phase boundary in theN-T
plane is calculated and agrees qualitatively with that found in other variable-mass~but nonretarded! calcula-
tions. Ther value remains close to 6. Possibilities for including the transverse photon propagator are dis-
cussed.@S0556-2821~98!00720-6#

PACS number~s!: 11.10.Kk, 11.10.Wx, 12.20.Ds, 74.20.Mn
n
m

tr
,

lly
e
er

r-

S
ti
a

o
fe

te
l a

on

er

the

at-
on

ous
ho-
ors

ch

ad a

i-

al-

e

a-
ce

, as
ile

o-
D

at
he
I. INTRODUCTION

The study of quantum electrodynamics in 211 dimen-
sions is of considerable interest, due to its possible releva
to long-wavelength models of 2D condensed matter syste
particularly those which might apply to high-Tc supercon-
ductors@13,14#. Three-dimensional QED (QED3) may also
give us insight into the phenomenon of dynamical symme
breaking in theories such as QCD. At zero temperature
considerable amount of work has been done@1–8#. In Ref.
@2# it was shown that, using a 1/N expansion in the
Schwinger-Dyson~SD! equations, there existed a valueNc

532/p2 above which no fermion mass was dynamica
generated,N denoting the number of fermion flavors in th
theory. This was found to be qualitatively still true to ord
1/N2, Nc changing by a factor of 4/3@5#. In Ref. @3#, by
contrast, noNc was found; instead, the dynamically gene
ated mass fell exponentially with increasingN. This work
adopted a more general nonperturbative approach to the
equations. On the other hand, an alternative nonperturba
study by Atkinsonet al. @6# claimed that there was indeed
critical number of flavors. More recently, Maris@7# has con-
firmed the existence of anNc with a value of about 3.3, more
or less independent of the choice of vertex ansatz, by c
sidering the coupled SD equations for the photon and
mion propagators, and Kondo@8# has studied the problem
using the nonlocal gauge technique.

It is important to extend this type of analysis to fini
temperature because of its possible relevance to physica
plications. Here the significant parameters areTc and r,
where r is the ratio of twice the zero-temperature fermi
mass to the critical temperatureTc , which is the temperature
above which chiral symmetry is restored and at which th
0556-2821/98/58~10!/105012~9!/$15.00 58 1050
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is a phase transition from the superconducting phase to
normal phase in the model discussed in@13#. In Ref. @9# a
calculation was done using the SD equations, with the M
subara finite-temperature formalism, in which the fermi
massS was taken to be constant and only theD00 component
of the photon propagator was used in the instantane
approximation—that is, all frequency dependence in the p
ton propagator was neglected. In this calculation the auth
found a value ofr .10. If we identify the fermion mass with
the order parameter in BCS-like theories, this value is mu
larger than a typical BCS value, which isr .3.5. In Ref.@10#
the constant-mass approximation was relaxed, and inste
momentum-dependent solutionS(T,p) was calculated.
However, once again onlyD00 in the instantaneous approx
mation was retained, and it was found thatr .10. The r
value was therefore insensitive to this refinement in the c
culation, although the values ofTckB and S(T50, p50)
had changed considerably. It was shown in Ref.@11# that this
value of r also survives the inclusion of a form of wav
function renormalization. In both the calculations of@10# and
@11# the critical value ofN was Nc;2. It is important to
stress that no suchNc existed in the constant-S case@9#.

One obvious problem with the instantaneous approxim
tion in the Matsubara formalism is that it cannot reprodu
the well-studied zero-temperature limit. This is because
T→0, all frequency components should be included, wh
the instantaneous approximation retains only then50 one.
To avoid dealing with a large number of frequency comp
nents, the first calculation to include retardation in the S
equations for QED3 at finite temperature@12# used a real-
time formalism, in which the correctT→0 was ensured.
Making the constant-mass approximation, it was found thr
was significantly reduced to a value of about 6, from t
©1998 The American Physical Society12-1
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D. J. LEE PHYSICAL REVIEW D 58 105012
nonretarded value of about 10.
The calculations of@12#, however, did not retain the exac

expressions for the longitudinal and transverse photon s
energies, because of their awkward behavior near zero th
momentum~the amplitudes are nonanalytic at the origin,
finite temperature!. Instead, a variety of simpler ‘‘average
self-energies were used in order to simplify the calculat
and to be able to compare the results more easily with th
of @9#. In the imaginary-time formalism, this difficulty con
cerning the nonanalytic behavior near zero momentum d
not arise, and the exact self-energies can be employed.
first aim in this paper, therefore, is to include retardat
effects, in the constant-mass approximation, using
imaginary-time formalism. In Sec. II we restate for conv
nience the results given in@13# for Pmn , the photon polar-
ization tensor to leading order in 1/N. These results involve
certain integrals which we first evaluate numerically a
then find simple approximate closed-form expressions wh
retain the correctT→0 limit. In Sec. III we shall then extend
the ~constant-mass! work done in @9# by using a fully re-
tarded longitudinal propagator. We compare the results w
@12# and find rather close agreement.

In Sec. IV we shall go further and allow the fermion ma
to depend on the~discrete! frequency, still retaining the fully
retarded longitudinal self-energy. We believe this is the fi
time that retardation has been introduced into
‘‘nonconstant-mass’’ SD calculation at finite temperatu
Although we cannot compare our results directly with@10#,
there are interesting features which remain the same, nam
Nc;2 and ap0 /a behavior similar to that of theupu/a be-
havior of the momentum-dependent solution. Our values
S(p050) are found to be in rough agreement with those
S(p50) in @10#. It would, of course, be interesting to in
clude a dependence ofS on momentum as well as on fre
quency, but that is a much harder problem in the retar
than in the instantaneous case.

In Sec. V we shall discuss ways of introducing a tran
verse contribution into our mass-gap equation, which we
glected due to a logarithmic IR divergence in the zer
mode. We shall also discuss other possible extensions to
calculation, and we conclude by looking at the plausiblity
our calculations in the context of QED3 as a model of super
conductivity.

II. APPROXIMATE FORM FOR THE FULL PHOTON
PROPAGATOR TO LEADING ORDER IN 1/ N

The Lagrangian of massless QED3 with N flavors is

L521/4f mn f mn1(
i

c̄ i~ i ]”2ea” !c i , ~1!

wheream is the vector potential andi 51,2, . . . ,N. We have
also chosen a reducible representation of four-dimensio
matrices for the Dirac algebra. Because of the choice of r
resentation, Eq.~1! has continuous chiral symmetry as di
cussed in@2#.

Following @13#, we calculate the full photon propagator
this theory to leading order in 1/N. We then look for simple-
10501
lf-
e-

t

n
se

es
ur

e
-

h

th

t
a
.

ly,

f
f

d

-
e-
h
ur
f

al
p-

closed form expressions to approximate those integrals in
calculation which cannot be evaluated analytically. In the
calculations we shall be working in the Landau gauge,
Euclidean space. We first note that the most general pho
propagator in the Landau gauge must take the form

Dmn5
Amn

p21PA~p!
1

Bmn

p21PB~p!
, ~2!

whereAmn is the longitudinal projection operator andBmn is
the transverse projection operator. To leading order in 1N,
PA and PB are the contributions from the loop diagram
shown in Fig. 1 and are related to the polarization ten
Pmn at order 1/N. The projection operators take the follow
ing forms:

Amn5S dm02
pmp0

p2 D p2

p2 S d0n2
p0pn

p2 D ,

Bmn5dm i S d i j 2
pi ,pj

p2 D d j n . ~3!

By using the properties of the projection operators, it is e
to show that the inverse propagator must be

Dmn
21~p!5@p21PA~p!#Amn~p!1@p21PB~p!#Bmn~p!.

~4!

From this expression it is easy to relatePmn to PA andPB
by summing the diagrams in Fig. 1:

Pmn5PAAmn1PBBmn . ~5!

Then using the explicit forms ofAmn andBmn in Eq. ~3! with
the additional requirement thatpmPmn50, one obtains the
following forms of PA andPB :

PA5P00

p2

p2

PB5P i i 2P00

p0
2

p2 . ~6!

We now proceed with the calculation ofPmn at finite tem-
perature using the Matsubara formalism. We work in ima
nary time in which both fermonic and bosonic frequenc
are discrete. Fermionic frequencies have the formp0 f
5(2p/b)(m11/2), and bosonic frequencies have the fo
p0b5(2p/b)m, where m is an integer. From now on we
shall denote the modulus of bosonic three-momenta bypb
and that of fermionic three-momenta bypf . In our calcula-
tion we need only consider the elementsP00 andP i j . Here
P00 andP i j are calculated to be@13#

P005P32
p0b

2

pb
2 P12P2 ,

FIG. 1. Contributions toDmn to leading order in 1/N.
2-2
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EFFECT OF RETARDATION ON DYNAMICAL MASS . . . PHYSICAL REVIEW D 58 105012
P i j 5P12S d i j 2
pipj

pb
2 D 1P2d i j , ~7!

where

P1~pb ,b,m!5
apb

2p E
0

1

dxAx~12x!
sinh@pbbAx~12x!#

Dm~x,pb ,b!
,

P2~pb ,b,m!5
am

2b E
0

1

dx~122x!
sin~2xmp!

Dm~x,pb ,b!
,

P3~pb ,b,m!5
a

pb E
0

1

dx ln@4Dm~x,pb ,b!#, ~8!

and

Dm~x,pb ,b!5cosh2@bpbAx~12x!/2#2sin2~xmp!.
~9!

m denotes explicit frequency dependence in the above
pressions. Using the result

P35P11
pb

2

p0b
2 P2 , ~10!

we find thatPA5P3 , PB5P11P2 . Alternatively, one can
obtain the above expressions forPA and PB by neglecting
P2 and settingP15P3 , which is found to be a good ap
proximation forP i j andP00 whenmÞ0. Form50 one can
find these expressions without again using Eq.~10! by notic-
ing thatP2(m50)50 andp0b50.

In our treatment ofP1 , P2 , and P3 , it will be conve-
nient to consider them50 mode separately. Form50 we
need only considerP1 and P3 , since P2(m50)50. For
P3(m50), which we shall denote byP3

0, an accurate closed
form expression has been given in@10#, namely,

P3
051/8S a

b D F upub1
16 ln 2

p
expS 2

p

16 ln 2
upub D G .

~11!

We are able to find a similar expression forP1
05P1(m

50) by noting that

P1
05~ upu!

]

]upub
P3

0, ~12!

which gives, on combining Eqs.~11! and ~12!,

P1
05

a

b S upub
8 D F12expS 2

p

16 ln 2
upub D G . ~13!

We now evaluate the integralsP1(pb ,b,m), P2(pb ,b,m),
andP3(pb ,b,m) for mÞ0. We show the numerical result
of these as functions ofpbb andm in Figs. 2a, 2b, and 2c
We see that bothP1 and P3 vary little with the explicit
frequency indexm. Also, we are able to show that 0,P2
,(2 ln 2/p)(a/b). P1 andP3 are well approximated by
10501
x-

P15P3.1/8S a

b D ~pbb! ~14!

for mÞ0 as Figs. 3a and 3b show. SinceP2 is bounded by
(2 ln 2/p)(a/b), it is always smaller thanP1 for mÞ0,
sinceP1>(2p/8)(a/b), and so we shall neglect it inPB .

We now have two expressions for the full photon prop
gator:

Dmn.
Amn

upu21P3
0~ upu!

1
Bmn

upu21P1
0~ upu!

for p0b50,

Dmn.
Amn

pb
21apb/8

1
Bmn

p21apb/8
for p0bÞ0. ~15!

The structure of our propagator is consistent with the ze
temperature result to order 1/N: PA5PB5ap/8. One
should note that although in the zero-temperature limit
theory is Lorenz invariant, Lorenz invariance is clearly br

FIG. 2. ~a! P1 as a function of explicitm and three-momenta
pb . ~b! P2 as a function of explicitm and three-momentapb . ~c!
P3 as a function of explicitm and three-momentapb .
2-3



D. J. LEE PHYSICAL REVIEW D 58 105012
FIG. 3. ~a! Top: numerical data points and the approximationbpb/8 for themÞ0 modes ofP1(m51,pb), shown forpbb ranging from
0 to 4. Bottom: numerical data points and the approximationbpb/8 for themÞ0 modes ofP1(m51,pb), shown forpbb ranging from 0
to 36. ~b!. Top: numerical data points and the approximationbpb/8 for themÞ0 modes ofP3(m51,pb), shown forpbb ranging from 0
to 9. Bottom: numerical data points and the approximationbpb/8 for themÞ0 modes ofP3(m51,pb), shown forpbb ranging from 0 to
36.
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ken atTÞ0, as Eqs.~15! show. This is, of course, because
preferred frame of reference is provided by the heat bath

III. SCHWINGER-DYSON EQUATION AND ITS
SOLUTION FOR CONSTANT S

The full Schwinger-Dyson equation for the fermio
propagator at nonzero temperaturekBT51/b is given by

SF
21~pf !5SF

~0!21~pf !2
e

b (
n52`

` E d2k

~2p!2 gnSF~kf !

3Dmn~kf2pf !G
m~kf2pf ,kf !. ~16!

We now truncate Eq.~16! by working to leading order in
1/N, in which caseGn is replaced by its bare valueegn and
we use our form forDmn , the full photon propagator, give
in Eqs.~15!. As before@9#, we neglect wave function renor
malization; we comment further on this in the next sectio
On taking the trace of Eq.~16!, we get the following equa-
tion for the mass-gap functionS:

S~pf !5
a

Nb (
n52`

` E d2k

~2p!2 Dmm~kf2pf !
S~kf !

kf
21S2~kf !

,

~17!
10501
.

where

Dmm~qb 5kf2pf !

5
1

uqu2P1
0~ uqu!

1
1

uqu21P3
0~ uqu!

for q0b50,

Dmm~qb!5
2

qb
21aqb/8

for q0bÞ0, ~18!

and a5Ne2. Now we make the approximation thatS is
frequency as well as momentum independent. We can t
remove a factor ofS from each side of the equation an
write the argument ofDmm in Eq. ~17! as (2np/b,k). We
now do the angular integration, which is trivial. Rearrangi
terms gives

15
a

2Np
@SL~a,s!1ST~a,s!#. ~19!

ST is the transverse contribution, which is expressed as
rgent.
ST~a,s!5E
0

`

x dx
1

x21b2P1
0

1

x21p21a2s2 1 (
m51

` S 1

x21~2pm!210.125a@x21~2pm!2#1/2D
3S 1

x21@2p~m11/2!#21a2s2 1
1

x21@2p~m21/2!#21a2s2D , ~20!

wherex5buku, a5ab, ands5S/a. HereSL is the longitudinal contribution and is exactly the same, except forP1
0 being

replaced byP3
0. It is now important to notice that the integral for the zeroth transverse mode is logarithmically IR dive
2-4
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This can be seen by observing that asbuku→0, P1
0→(a/b)(p/128 ln 2)uku2b2. From now on, we shall retain only th

longitudinal mode; in our Conclusion, we shall discuss ways of including the transverse mode in our calculations.
So we consider the equation

15
a

2pN
SL~a,s!. ~21!

The integral for themÞ0 modes can be done analytically. We introduce functions of the form

I ~d,a,c!5E
0

` x dx

~x21d2!1a~x21d2!1/2

1

x21c2 . ~22!

Doing the integral on the right-hand side~RHS! of Eq. ~22! gives us the following closed form expressions forI (d,a,c):

I ~d,a,c!5
1

2~a21c22d2!
lnS c2

~d1a!2D1
a

~c22d2!1/2~a21c22d2!
arctanS ~c22d2!1/2

d D . ~23!

With the use of these functions, we are able to writeSL(a,s) as

SL~a,s!5 (
m51

`

I „2pm,0.125a,$a2s21@2p~m11/2!#2%1/2
…1I „2pm,0.125a,$a2s21@2p~m21/2!#2%1/2

…

1E
0

` x dx

@x21P3
0~x!b2#~x21p21a2s2!

. ~24!
.
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We now solve Eq.~21! numerically. We do this by fixinga
andN and varyings5S/a until the RHS is equal to unity
We note the value ofs for which Eq. ~21! is satisfied for
those values ofN anda. We then choose new values ofa and
N and repeat the process. If Eq.~21! is not satisfied for anys
at the values ofa andN chosen, the only solution to Eq.~17!
for constant mass is the trivial ones50. It is important to
note that, in these calculations, the infinite sums are ev
ated numerically usingMATHEMATICA : the convergence is
very slow if an attempt is made to truncate them at a~large
but! finite number of terms.

In our analysis we also require the zero-temperature li
of Eq. ~21!, which is found to be

15
1

~2p!2N E
0

` x dx

~x21s2!~x10.125!
, ~25!

wherex5uku/a. On doing the integration on the RHS, on
obtains the equation

~2p!2N/25S 12
~0.125!2

~0.125!21s2D p

2s

2
~0.125!

~0.125!21s2 lnS s

0.125D . ~26!

Now, if s!0.125, we get the approximate solutions
.0.25 exp(2p2N/4), in agreement with@1#, remembering
that we are including only the longitudinal self-energ
which contributes one-half of the total contribution at ze
temperature, so that our ‘‘2N’’ corresponds to Pisarski’s
10501
u-

it

,

‘‘ N.’’ In fact, we have found that a more accurate fit to t
exact numerical solution of Eq.~25! is provided by

s.0.25 exp~20.96pN!. ~27!

With the zero-temperature result and our data forTÞ0, we
are able to plot solutions of Eq.~21! as a function of 1/a
5kBT/a for different values ofN, as shown in Fig. 4. It is
important to see that unlike previous calculations our ze
temperature results join on smoothly to our finit
temperature results. This is because we have used a reta
form of the photon propagator with the correctT→0 limit,
and not the instantaneous form used in@9#. Another thing to
note is that the shapes of the solutions as functions ofkBT/a
are markedly different from those of@9#, @10#, and@11#; they
seem more to resemble the shape of the BCS constant m
gap solution. We also plotTckB /a againstN in Fig. 5. Here
TckB falls off exponentially and takes the following form, t
very high accuracy:

~TckB!/a.0.081 exp~20.96pN!. ~28!

FIG. 4. Numerical results for the constant mass calculation
functions ofT/kBa for N50.5, 1, 1.5.
2-5



g

u
n

.

th

e
l-

-

ly

h
oton

xi-
son
-

rela-
n-
of
a-
e-
un-
lts
SD

he
e

t it
D

at
to

in
the

ctor

s

as

;

D. J. LEE PHYSICAL REVIEW D 58 105012
From Eqs. ~27! and ~28! we can calculater, where r
52S(T50)/TckB ; we find r 56.17.

In this calculation there is therefore noNc . The reason for
this can be seen as follows. We first note that increasins
and decreasinga ~increasingT! causes the RHS of Eq.~21!,
(a/2pN)SL , to get smaller. The condition determiningNc is
that lima→`(aSL),2pNc for all s, since then Eq.~21! can
no longer be satisfied, and the only solution to the gap eq
tion is s50. SinceSL is a monotonically decreasing functio
of s, we need only show that lima→`@aSL(s50)# is finite to
establish the existence ofNc . But one easily sees from Eq
~26! that lima→`@aSL(s50)# is actually infinite, and soNc
does not exist.

In @9# the instantaneous approximation was used with
constant-gap approximation, giving a higher valuer, r .10.
There is good agreement between our results and thos
@12#, in which retardation was included in a real-time forma
ism. For example, in@12#, using the ‘‘best average self
energy’’ (PR1 in the notation of @12#! s had the value
0.01205 forN52, corresponding to a value ofs50.1225
from Eq. ~27! with N51, and (kBTc)/a was 0.0376, corre-
sponding to 0.0397 from Eq.~28!. These values lead tor
56.41 in @12# as compared to our value of 6.17. The on
other difference between our results and those of@12#—not a
large one—is that we see very little change ofr with N,
whereas@12# found a small variation withN.

FIG. 5. Plot ofkBTc /a vs N for the constant-mass calculation
the points are the numerical values calculated from Eq.~21!, and
the curve is an approximate form forTc(N) as given by Eq.~28!.
10501
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In the following section we shall look at solutions whic
are frequency dependent and contain the retarded ph
propagator calculated in Sec. II.

IV. FREQUENCY-DEPENDENT GAP EQUATION

In this section we depart from the constant-gap appro
mation and attempt to solve the retarded Schwinger-Dy
equation~17!, allowing the gap function to depend on fre
quency only. Frequency dependence can be introduced
tively easily into the equation, unlike momentum depe
dence which leads to a highly nontrivial angular integral
the kernel of our equation, which is unlikely to have an an
lytic result. The resulting computational complexity has d
terred us from including momentum dependence. This is
fortunate, for it would be interesting to compare resu
calculated with a full retarded momentum-dependent
equation with the results of@10#. While this is true, introduc-
ing frequency dependence will give us new insight into t
nature of the gap, and as in@10#, we shall be able to calculat
a value ofNc . In the spirit of @10#, we again neglect wave
function renormalization. It has been pointed out in@3# that
wave function renormalization should be introduced, bu
has been found in@11# that for a momentum-dependent S
gap equation, there still exists anNc and r is little affected.

We start our study of the frequency-dependent solution
Eqs.~17! and ~18!. We shall restrict ourselves again only
the longitudinal mode; this is because the IR divergence
the transverse mode is still present, although only in
mode for whichq0b5k0 f2p0 f50. We see that becauseS is
now frequency dependent, we can no longer remove a fa
of S from each side of Eq.~17!, andDmm is now dependent
on p0 f5(2p/b)(n11/2). But the angular integration i
again trivial. On rearrangement we get

s~n!5
a

2pN
SL

n~a,s!, ~29!

where as befores5S/a and a5ab. Here SL
n is the

frequency-dependent longitudinal contribution, expressed
SL
n
„a,s~n!…5E

0

`

x dx
s~n!

~x21b2P3
0!$x21@2p~n11/2!#21a2s~n!%

1 (
mÞn

`
s~m!

x21@2p~m2n!#210.125a$x21@2p~m2n!#2%1/2

1

x21@2p~m11/2!#21a2s2~m!
, ~30!

wherex5buku. The first term represents them5n mode, whereq0b50. Again, it is possible to do thex integration. Using
the functionsI (d,a,c), we are able to expressSL

n as

SL
n
„a,s~n!…5 (

mÞn

`

s~m!I „2pum2nu,0.125a,$a2s2~m!1@p~2m11!#2%1/2
…1E

0

` x dx

x21b2P3
0

s~n!

x21@2p~n11/2!#21a2s2~n!
.

~31!

Equation~29! represents an infinite system of nonlinear coupled integral equations, one for each mode,m. We can reduce the
number of equations that need to be considered by the following particle-antiparticle symmetry property:

s~m!5s~2m21! where m>0. ~32!
2-6
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It is important that the RHS of Eq.~32! is s(2m21) and nots(2m), sinces(m) is a fermionic quantity;p0 f is related tom
by p0 f5(2p/b)(m11/2). Thereforem and2m21 representp0 f and2p0 f , respectively. Using Eq.~32!, it is possible to
castSL

m
„a,s(n)… into a final form convenient for numerical calculations:

SL
n~a,s!5 (

mÞn>0

`

s~m!@ I „2pum2nu,0.125a,$a2s2~m!1@p~2m11!#2%1/2
…

1I „2pu1n11u,0.125a,$a2s2~m!1@p~2m11!#2%1/2
…#1E

0

` x dx s~n!

@x21b2P3
0~x!#x21@p~2n11!#21a2s2~n!

1s~n!I „2p~2n11!,0.125a,$a2s2~n!1@p~2n11!#2%1/2
…, ~33!
qu

a
n
-
h

ha

ea

n

e
q.
ze

w
.

a

r-
e
he

s
II

d
n

.

ra-

by

-

ugh

e

ion
the last term being then52m21 mode in Eq.~31!. Al-
though Eq.~33! looks cumbersome compared with Eq.~31!,
the advantage is now that only positive values ofn and m
need be considered, thereby reducing the number of e
tions in the system~29!.

In our numerical calculation we will want to limit the
number of equations to a finite numberM. We can think of
Eq. ~29! as a sort of nonlinear matrix problem, where inste
of an infinite matrix, we will restrict ourselves to a
M3M matrix. The justification for doing this is sim
ple: we expect our solution to fall off monotonically wit
n, and asn→`, we expects(n)→0. The effective limitM
on the matrix size is determined by the requirement t
s(n215M ) be one-tenth the size ofs(0), which is the
maximum value ofs as a function ofn. In choosing this size
of matrix, the contribution from modes for whichn21.M
has a very small effect upon our solution. Note that wher
in the constant-mass case~Sec. III! we had to include all
frequencies in our summations, when the mass is freque
dependent a natural cutoff emerges.

The method we shall normally adopt~‘‘method I’’ ! in
solving Eq.~29! will be to start with a trial function having
the correctn→` limit, namely,s(n)→0. We insert this trial
function into Eq.~33!. Then we work out the resultant valu
of s(n) using Eq.~29! and reinsert the result back into E
~33!. After several such iterations we check if our matrix si
is sufficient by seeing ifs(n21)<0.1s(0); if it is apprecia-
bly larger, we increase the size of our matrix. To do this,
increase the value ofm at which we truncate the sum in Eq
~33! and we increase the number of equations in Eq.~29! we
must solve. When we are satisfied with the size of our m
trix, we keep iterating untils(n) changes by less than 1%
over ten iterations~or more depending on the rate of conve
gence to the exact solution!. It should be appreciated that th
nonlinearity of the system of equations requires this furt
iteration, even after deciding on the size of the matrix.

If the rate of convergence is very slow, which is the ca
near a phase transition, we use ‘‘method II.’’ In method
we choose two trial functions. One of them,s̃↓ is chosen to
decrease in magnitude with each iteration using metho
the other,s̃↑ , to increase in magnitude with each iteratio
We then average the two functions together,s50.5(s̃↑
1 s̃↓). Then we use method I ons̃ for ten iterations or more
If s̃ increases in magnitude, we sets̃↑(n)5 s̃(n); if s̃ de-
10501
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creases in magnitude, we sets̃↓(n)5 s̃(n), and we average
again. We repeat the process untils̃↑ and s̃↓ vary little from
each other.

An important technical difficulty is that asT gets smaller
the size of our matrix increases: asT→0, M→`, and the
largerM is, the slower the calculation ofs(n). Fortunately,
most of the interesting behavior lies in a region of tempe
ture where the matrix sizeM is manageable. Although we
cannot approach close to theT→0 limit from our finite-
temperature calculations, we can get around this difficulty
including an analyticT→0 limit to Eq. ~28!:

sS p0 f

a D5
1

~2p!2N E
0

`

dy s~y!

3F I S y2
p0 f

a
,1/8,Ay21s~y! D

1I S y1
p0 f

a
,1/8,Ay21s~y! D G , ~34!

where y5k0 f /a. Again, we have used the antiparticle
particle symmetry property of the gap,s(p0 f)5s(2p0 f), to
reduce the number of equations we need consider. Altho
the range of integration is infinite, the kernel of Eq.~34!
provides an effective cutoffL, whereL,1. Therefore we
need only considers(p0 f /a) from s(0) to s(L) in doing
numerical calculations.L is chosen in the same way asM,
namely, at a point wheres(L) is sufficiently small so that
the contributions fromp0 f.L are negligible. OurTÞ0 re-
sults and ourT50 results are sufficient to provide all th
information that we require.

FIG. 6. Numerical results for the frequency-dependent solut
S(p0 f ,T) as a function ofp0 f for variouskBT/a at N51.
2-7
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We show the results of both ourT50 andTÞ0 calcula-
tions as functions ofp0 f /a for N51 in Fig. 6. One can see
that theT50 curve joins smoothly onto theTÞ0 solutions.
One should observe that although we plot theTÞ0 solutions
as continuous curves, they are actually discrete points w
p0 f5(2p/b)(n11/2). As functions ofp0 f /a, these func-
tions fall off rapidly for p0 f /a,0.1. This behavior is
roughly the same as was seen in momentum-dependen
culations@10#, where for 0.02,upu/a,0.1 the solutions fell
rapidly in upu/a. It is this behavior—the rapid fall in
s(p0 f /a) for p0 f /a,0.1—which makesS(T50, p0 f50)
considerably smaller thanS(T50)const, our result from the
previous section, as shown in Fig. 7. HereS(T50, p0 f
50) is roughly the same asS(T50, p50) in @10#. This
suggests that the constant-mass-gap approximation is n
good one, except as an order of magnitude calculation for
quantity r. In Fig. 8~a! we show them50 mode of these
solutions for variousN as functions ofkBT/a, and in Fig.
8~b! we show them50 mode of these solutions for variou
kBT/a as functions ofN. One notices that the shape of th
solutions in Fig. 8~a! is the same as that of the constan
mass-gap solution~Fig. 4!, which we have characterized a

FIG. 7. Comparison ofSconst, the mass for the constant-ma
calculation, withS freq(m50, T50), the zero-frequency mass fo
the frequency-dependent calculation, as functions ofN.

FIG. 8. ~a! Numerical results for the frequency-dependent m
calculation as functions ofT/kBa for N50.5, 0.7, 1.~b! Numerical
results for the frequency-dependent mass calculation as functio
N for TkB /a50, 0.001, 0.002, 0.004, used to estimateNc in the
case ofTkB /a50.
10501
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BCS like. By looking at Fig. 8~b! one can see that as well a
a critical temperatureTc there is also a critical numberNc .
Here Nc is the value ofN above whichs50 for all T and
p0 f , and this can be found from Fig. 8~b! by locating the
point where the gradient of theT50 curve tends to infinity.
We only need consider them50 mode atT50, sinces(m)
is a monotonically decreasing function of both frequency a
temperature. So ifs(T50, p0 f50)50, this condition must
be true for anyT andp0 f . We find thatNc lies in the range
Nc;1.8– 2. In Fig. 9 we show anN-T phase diagram,
where we have included the valueNc51.8. Here we see tha
the phase boundary agrees qualitatively with that calcula
in @10#.

The existence ofNc leads us to the conclusion that an
frequency or momentum dependence in the mass-gap e
tion induces a value ofNc . Our calculated value ofNc
agrees well with@10#, but @10# uses the instantaneous a
proximation and so has the incorrectT→0 limit. When com-
pared with the correctT→0 limit of the three-momentum-
dependent mass-gap equation of@2#, our value for Nc is
smaller. ~In @2#, Nc was calculated to be 3.2.! From our
results we are able to calculate a table of values forr, each at
different values ofN, as shown in Table I. These values a
not much different from the valuer;6 calculated in Sec. II,
but now there is a significant dependence ofr on N; the
values ofr are seen to fall with increasingN. The insensitiv-
ity of the r values to the introduction of a momentum depe
dence in the SD equation was seen in@10#, although for the
instantaneous approximation; again, this is roughly seen
be the case with the introduction of frequency dependenc
shown by our results.

This completes our analysis of the frequency-depend
solutions. In the next section we discuss ways of handl
the transverse mode and other ways of extending our ca
lation.

s

of

FIG. 9. Phase diagram for the frequency-dependent solut
showing the boundary between the massless and massive fer
phases in theN-T plane.

TABLE I. Values ofr calculated for variousN in the frequency-
dependent mass calculation.

N r

0.50 5.60
0.70 5.30
0.74 5.20
0.90 4.90
1.00 4.80
2-8
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V. CONCLUSION

As we have seen already in Sec. IV, the constant-m
gap approximation is not a good one to make except poss
for the calculation ofr, which is little changed by frequenc
dependence for the range ofN values considered here. Also
we have seen that frequency dependence induces anNc . Our
result differs from@2#, for we have been unable to introduc
frequency and momentum dependence into our calculat
while preserving a smoothT→0 limit and also because w
have no transverse contribution to the mass-gap equa
The reason why the introduction of momentum depende
is a hard problem atTÞ0 is that three-dimensional Loren
invariance is lost, since frequency dependence becomes
cretized~in the imaginary-time formalism!. At T50 one can
do the angular integration with full three-momentum dep
dence, because one can exploit the three-dimensional s
metry. At TÞ0 this is not possible, due to the preferre
~frequency! direction; instead, we are faced with an integ
in two-dimensional momentum space, exactly the integ
which is discussed at the beginning of Sec. IV.

Up to now in our analysis we have chosen not to disc
the transverse contribution and have neglected it from
calculations due to the IR divergence in its zeroth mode. I
important to stress that the IR divergence is present o
when TÞ0. At T50, the effect of the transverse mode
merely to double the number of flavors, giving us anNc in
the range 3.8–4. To treat the IR divergence atTÞ0, one
needs to regulate the integral in Eq.~20!. A reasonable way
to do this might be to introduce massive fermion propaga
into our calculation ofPmn , the mass of the fermion propa
gators being calculated self-consistently in Eq.~19!. A major
problem with this refinement would be the requirement
self-consistency in our calculation of the photon propaga
when we have any frequency or momentum dependenc
the fermion mass. Nevertheless, it might be worth consid
ing the simpler problem of a constant mass in this sort
calculation; this may not give us reliable values ofS(T
50) andkBTc , but the value ofr it gives might not change
very much if frequency or momentum dependence were
.

et
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be included. To tackle the harder problem of including fr
quency or momentum dependence in this extension to
work, we may be forced either to consider our calculation
Pmn as a separate integral equation, so that the calculat
would involve two integral equations coupled together, n
one, or we may have to use an ansatz for our expected f
of the fermion mass.

As well as the above extension to our work involving t
transverse contributions, another important step will be
introduce momentum dependence. Although we have st
that this is difficult due to the computational complexity, o
may be able to approximate the kernel in such a way a
simplify the problem. One of the major goals in this series
numerical calculations forTÞ0 should be to join on with the
results of@2# in a smoothT→0 limit, and this necessitates
successful treatment of momentum dependence.

As to the question of QED3 as a model of superconduc
tivity in the context of our calculations, consider the ca
N51. If we crudely double the number of flavors so as
account for the transverse mode, this will effectively count
N52, which is the value required for QED3 in a model of
high-Tc superconductivity @13#. We find that kBTc
;1023a, in agreement with@10#, once rescaled to agre
with @2# as regardsNc . As pointed out in@10#, this gives a
value ofa of the order of 8 eV forTc;100 K. As stated in
@10#, this is still much higher than the typical Heisenbe
exchange energies, but might be acceptable by a suit
rescaling of the fermion lattice operators in the lattice mo
of @13#. It is interesting to note as a concluding remark th
our suggested way to treat the IR divergence in the ze
mode of the transverse contribution may effectively reduca
by an order of magnitude or more; so on this basis alone
a calculation worth considering.
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