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Consistent perturbative light-front formulation of quantum electrodynamics
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A new light-front formulation of QED is developed, within the framework of standard perturbation theory,
in which x1 plays the role of the evolution parameter and the gauge choice isA150 ~light-front ‘‘temporal’’
gauge!. It is shown that this formulation leads to the Mandelstam-Leibbrandt causal prescription for the
noncovariant singularities in the photon propagator. Furthermore, it is proved that the dimensionally regular-
ized one loop off-shell amplitudes exactly coincide with the correct ones, as computed within the standard
approach using ordinary space-time coordinates.@S0556-2821~98!10820-2#

PACS number~s!: 11.10.Ef, 11.15.Bt, 12.20.Ds
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I. INTRODUCTION

The light-front formulation of gauge quantum field the
ries has become more and more popular in the past
years. In the Abelian case, i.e., standard QED or the Abe
Higgs model, the renewal of the interest in this subjec
mainly because of two reasons. On the one hand, the li
front Hamiltonian approach to QED appears to provide
alternative tool to compute the Lamb shift@1# and deal with
bound-state problems@2#. On the other hand, some nonpe
turbative aspects—such as the role of the zero modes@3#—
have first to be clearly understood in Abelian models, bef
going into the much more challenging non-Abelian case.

The original attempts to set up canonical quantization
QED in the framework of light-front—or null-plane—
dynamics date back to the early 1970s@4#. In the original
approach, the light-cone coordinate~LCC! x15(x0

1x3)/& plays the role of the evolution parameter and t
standard gauge choice isA250, in such a way to stay a
close as possible to the axial gauge formulation of QED
standard space-time coordinates~STC!.

After a considerable amount of work has been done al
this line, it was definitely discovered@5# that perturbation
theory, based upon the original light-front quantizati
scheme for gauge theories, is inconsistent, owing to l
integrations, just because the above scheme necessaril
tails the Cauchy principal value~CPV! prescription to under-
stand the spurious noncovariant poles in the gauge par
vector propagator. This means that quite basic features o
standard perturbative approach for gauge theories are
such as power counting renormalizability, unitarity, cova
ance and causality. In other words, the original approac
light-front quantization of gauge theories is certainly n
equivalent to the standard covariant formulation, already
the perturbative level; it isa fortiori hard to believe that the
same approach could provide useful hints beyond pertu
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tion theory, in the absence of deep modifications.En pas-
sant, it is really curious and rather surprising that a no
negligeable fraction of the field theorists community see
to have nowadays not yet fully gathered and appreciated
rough breakdown of the conventional old light-front a
proach to gauge theories. For instance, even the one
QCD beta function does not result to be, within that conte
the correct covariant one@5#.

It has been noticed some time ago@6# that, in order to
restore at least causality for the free propagator of the ga
fields in the light-cone gauge, a special prescription, ther
called the Mandelstam-Leibbrandt~ML ! prescription, has to
be employed, in order to regulate the spurious noncovar
singularities. Shortly afterwards, it has been realized that
ML prescription arises from the canonical quantization
standard STC, provided some special unphysical~ghostlike!
degrees of freedom are taken into account@7#. Even more, it
has been proved that, within that framework, gauge theo
in the light-cone gauge are renormalizable, unitary and
variant order-by-order in perturbation theory@8#. It is worth-
while to emphasize how this remarkable result crucia
stems from the presence of the above mentioned unphy
degrees of freedom: as soon as they are correctly taken
account, the equivalence between the covariant and li
cone gauges is established, within the standard perturba
approach in STC.

The open issue, which is still there, is to find a light-fro
formulation for quantum gauge theories, which turns out
be equivalent to the conventional one in ordinary STC,
least in perturbation theory. It is definitely clear, from th
above considerations, that such a new formulation, whate
it is, must lead to the ML prescription for the noncovaria
singularities of the gauge particle vector propagator, at v
ance with the original old one, driving instead to the path
logical CPV prescription.

A first step towards this direction has been done qu
recently by McCartor and Robertson@9#. They have found an
algebraic scheme to quantize the theory on the light-fro
taking also the above mentioned unphysical degrees of f
dom into account. However, as they use the ‘‘tempora
©1998 The American Physical Society11-1
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LCC as the evolution parameter and the ‘‘spatial’’ gau
choiceA250, the above algebraic setting is done after qu
tization of physical and unphysical degrees of freedom
different characteristic surfaces, i.e., light-front hyperplan
Beside being somewhat unnatural,1 this approach does no
drive exactly to the standard form of the photon propaga
with the ML prescription for the spurious singularity. It
one of the aims of the present paper to show how the la
drawbacks in the McCartor and Robertson approach coul
indeed overcome, without spoiling its correct content of
enlarged light-front operator algebra.

In order to achieve this goal, we simply make the tran
tion from the ‘‘spatial’’ light-cone gaugeA250 to the
‘‘temporal’’ light-cone gaugeA150, the ‘‘temporal’’ LCC
x1 being kept as the evolution parameter within the lig
front formulation. In so doing, on the one hand the free fi
operator algebra for the whole set of fields is naturally
fined on the ‘‘spatial’’ hyperplanesx15const. On the other
hand, the ML prescription is exactly recovered for the pro
gator of the free radiation field.

These remarkable features allow therefore to correctly
velop perturbation theory, once the corresponding interac
Hamiltonian has been single out from constraints analysi
~pseudo-!classical QED in LCC, including unphysical de
grees of freedom~i.e., in an enlarged phase space!. This
leads to obtain the set of light-front QED Feynman’s rul
which will be shown to involve an infinite set of speci
noncovariant vertices. It is then amusing to check, at
loop, that truncated light-front Green’s functions—i.e
vacuum expectation values of light-front-time ordered pro
uct of field operators—are exactly the same as in the u
STC formulation, provided the gauge invariant dimensio
regularization scheme is embodied.

The paper is organized as follows. In Sec. II, we give
critical reading of the McCartor and Robertson approach
light-front quantization of the free radiation field. In so d
ing, we point out where this approach reveals to be unsa
factory and how to implement it, in order to reproduce t
ML form of the free propagator. In Sec. III, we briefly re
view the light-front quantization of the free Dirac’s field, i
order to also establish our notations for the light-front tre
ment of spinorial matter. In Sec. IV we perform the cano
cal light-front quantization of QED in the ‘‘temporal’’ light-
cone gaugeA150, by means of the standard Dirac
procedure for constrained systems. Section V is devote
perturbation theory: namely, we derive Feynman’s ru
and show that, up to the one loop approximation, dimens
ally regularized truncated and connected light-front Gree
functions are the same, as computed out of the standard
nonical framework in usual STC. Section VI contains so
further comments and remarks, as well as an outlook
future developments.

1Actually, in the presence of interaction, the simultaneous occ
rence of ‘‘spatial’’ and ‘‘temporal’’ light-front hyperplanes, to
specify the operator’s algebra, makes the treatment somewhat
plicated.
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II. LIGHT-FRONT QUANTIZATION OF THE FREE
RADIATION FIELD

Some time ago@7# it has been shown that the canonic
quantization of the free radiation field in the light-cone gau
nmAm[A250, (n250), is suitably formulated using stan
dard space-time coordinates~STC! and leads, eventually, to
the ML prescription for the spurious singularities in th
propagator. It is worthwhile to stress that, in the derivation
the above result, the unphysical components of the ga
potential play a fundamental role. On the other hand, wit
the original approach to light-front quantization using ligh
cone coordinates~LCC! @4#, those unphysical degrees o
freedom turn out to satisfy constraint equations instead
genuine equations of motion. Thereby, they are elimina
after imposing suitable boundary conditions and, con
quently, only the physical degrees of freedom are inde
submitted to canonical quantization. In so doing, unfor
nately, the spurious singularity in the vector propagator
sults to be prescribed as Cauchy principal valued and le
to an inconsistent meaningless perturbation theory.

It is our aim to show in this section how some light-fro
quantization scheme exists for the radiation field in LC
which drives eventually to the ML prescription for the sp
rious singularity of the vector propagator, just like the sta
dard STC formulation does. In order to achieve this goal,
will develop and improve a recent attempt@9#, in which the
above mentioned unphysical components of the gauge po
tial are retained and quantized in LCC according to a n
procedure. Let us first briefly review the main points of th
approach.

The starting point is the Lagrangian density of the fr
radiation field

Lrad52
1

4
FmnFmn2LnmAm , ~2.1!

where nm5(n1 ,n' ,n2)5(1,0,0,0), in such a way tha
nmAm5A2 , andL is a Lagrange multiplier which enforce
the gauge constraint.

The Euler-Lagrange equations lead to

]mFmn5nnL, ~2.2a!

A250. ~2.2b!

It is convenient to introduce some new field variables
follows: namely,

Aa5Ta2
]a

]'
2

w, ~2.3a!

A15
]a

]2

Ta2
]1

]'
2 w2

1

]'
2 L; ~2.3b!

then Eqs.~2.2a!,~2.2b! become

~2]1]22]'
2 !Ta50, ~2.4a!

]2w5]2L50. ~2.4b!

r-

m-
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CONSISTENT PERTURBATIVE LIGHT-FRONT . . . PHYSICAL REVIEW D 58 105011
We notice that, as the fieldsTa(x) fulfill free
D’Alembert’s equations of motion, then the inverse of t
light-front-space derivative in Eq.~2.3b! is understood here
to be (1/]2)[(2]1 /]'

2 ). Furthermore, from Eq.~2.4b! we
can easily see that the fieldsw andL do not fulfil evolution
equations—remember that here it is the LCCx1 which plays
the role of the evolution parameter—but, as previously
ticed, they satisfy constraint equations and, therefrom, c
not be canonically quantized on the null hyperplanes at c
stantx1.

Now, it has been suggested@9,10# a new light-front quan-
tization procedure, in which the transverse fieldsTa are
quantized on null hyperplanes at equalx1, according to the
original light-front recipe, while the longitudinal fieldsw and
L at equalx2. Following this procedure, one can set up t
generators of the translations on the null hyperplanesS1 and
S2 , in the limit L→` ~see Fig. 1!, and obtain, taking the
Heisenberg equations of motion~2.4a!,~2.4b! into account,
the commutation relations

@Ta~x!,Tb~y!#x15y1

52
i

4
dabd~2!~x'2y'!sgn~x22y2!, ~2.5a!

@w~x!,L~y!#x25y2

5 id~x12y1!]'
2 d~2!~x'2y'!, ~2.5b!

@Ta~x!,w~y!#5@Ta~x!,L~y!#

5@w~x!,w~y!#

5@L~x!,L~y!#50, ~2.5c!

where sgn(x) denotes the usual sign distribution. In so doin
the authors of Ref.@9# suggest that the light-cone-time o
dered product of the gauge potential operators defined b

Dmn
1 ~x2y![u~x12y1!^0uAm~x!An~y!u0&

1u~y12x1!^0uAn~y!Am~x!u0&, ~2.6!

might eventually give rise to the ML form of the gauge fie
propagator. Actually we shall show below that this is n

FIG. 1. The null hyperplanesS1 andS2.
10501
-
n-
n-

,

t

exactly true, owing to the presence of some ill-defined pr
ucts of tempered distributions.

As a matter of fact, if we consider the transversal physi
part of the vector potential, namely,

Tm5S T1[
]a

]2
Ta ,Tb ,T250D , a,b51,2, ~2.7a!

then it has been well known for a long time@4# that the
x1-ordered product of two such physical components lea
in momentum space, to the expression

T̃mn~k!5
i

k21 i«
H 2gmn1~nmkn1nnkm!

3CPVS 1

k2
D J 2 inmnn

1

k2
2

. ~2.7b!

We notice,en passant, that the first term in the right-hand
side~RHS! of Eq. ~2.7b! is a well defined tempered distribu
tion, whereas it is not necessary to specify any prescrip
to define2 the very last contact~or ‘‘instantaneous’’! term,
cause it is also well known since the early 1970s@4# that a
complete algebraic cancellation indeed occurs, in pertur
tion theory for QED, just between those contact terms a
the corresponding ones arising from the spinor interact
Hamiltonian.

On the other hand, if we consider the longitudinal co
ponents of the gauge potential, namely,

Gm52
1

]'
2 ~]mw1nmL!, ~2.8a!

then a straightforward calculation yields

^0uGm~x!Gn~y!u0&5E d4k

~2p!3
eik~x2y!u~2k1!

3d~k2!
nmkn1nnkm

k'
2

. ~2.8b!

After multiplication, for instance, withu(x12y1) and tak-
ing the Fourier transform we formally get the convolution

E
2`

0 dj

2p i

d~k2!

~k12j!2 i e
3Fnmkn1nnkm

k'
2 G

k15j

. ~2.8c!

One can easily convince himself that the above expres
does not define a tempered distribution—owing to the lo
rithmic and linear divergences in thej-integration—which
means, in turn, that the propagator in Eq.~2.6! is not prop-
erly understood from the mathematical point of view, as it

2Nevertheless, one can always define it in the sense of temp
distributions as, for instance, minus the derivative with respec
k2 of CPV (1/k2).
1-3



de

s
ea
h
eb

o
s

t t

s
o

as
ll

nc

eby
in-

in

e

l to

-
of

ge

lds

u
p

b

MICHELE MORARA AND ROBERTO SOLDATI PHYSICAL REVIEW D58 105011
obtained summing up a well defined distribution~the trans-
versal part! and a meaningless quantity~the longitudinal
part!.

Nonetheless, it is indeed remarkable that the main i
behind the quantization procedure in Ref.@9#, i.e., the en-
larged algebra on the characteristic surfaces in order to
isfy causality, is suggestive, albeit troubles arise when d
ing with the evolution. It should be apparent that, in fact, t
very same reasons preventing us from specifying the alg
of the longitudinal field operators at equalx1, also prevent
us from propagating the unphysical degrees of freed
alongx1. The simplest way to circumvent these difficultie
and to build up a consistent light-front dynamics turns ou
be a change of the null gauge vector,3 i.e., we replace
nm°nm* [(0,0,0,1) in such a way thatn* mAm5A150.

Let us therefore consider the new Lagrangian density

Lrad52
1

4
FmnFmn2Ln* mAm ; ~2.9!

as the whole set of fields now satisfies genuine equation
motion, it is convenient to proceed within the framework
Dirac’s canonical quantization@11#.

The canonical momenta are@Arad[*d4xLrad(x)#

p2[
dArad

d]1A2
5F12 , ~2.10a!

pa[
dArad

d]1Aa
5F2a , ~2.10b!

p1[
dArad

d]1A1
50, ~2.10c!

pL[
dArad

d]1L
50, ~2.10d!

whence it follows that there are two primary second cl
constraints~2.10b! originating from the use of LCC, as we
as two primary first class constraints~2.10c!,~2.10d!.

The canonical Hamiltonian becomes

H rad5E d3xH 1

2
~p2!21

1

4
FabFab

2A1~]apa1]2p22L!J , ~2.11!

and, consequently, from the light-front-temporal consiste
of the first class constraints~2.10c!,~2.10d! we derive the
secondary constraints

3Actually, an equivalent way to proceed is to keep the previo
light-cone gauge choice unaltered and to change the evolution
rameter~the light-front-time! from x1 to x2, the key point being
that the light-front-time and the light-cone gauge vector have to
parallel.
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A150, ~2.12a!

]apa1]2p22L50. ~2.12b!

The full set of constraints is now second class and ther
we can compute the Dirac’s brackets. After choosing as
dependent fields the following ones,

f15A1 , f25A2 , f35A2 , f45p2, ~2.13!

we eventually obtain the Dirac’s brackets matrix

Fab~x,y![$fa~x!,fb~y!%Dux15y1, a, b51,2,3,4,

whose matrix elements are integro-differential operators
terms of light-front-space coordinatesx5(x1,x2,x2):
namely,

Fab~x,y!U 21/2]2 0 0 ]1/2]2

0 21/2]2 0 ]2/2]2

0 0 0 1

2]1/2]2 2]2/2]2 21 ]'
2 /2]2

U . ~2.14!

Here the identity1 means the productd(x22y2)d (2)(x'

2y'), whilst the kernels (1/]2) and (]a /]2) are short-
hands for 1

2d
(2)(x'2y')sgn(x22y2) and 1

2(]ad (2))(x'

2y')sgn(x22y2), respectively. It should be noticed that th
sign distribution is such to enforce standard~anti-!symmetry
properties of Dirac’s brackets.

After setting the secondary constraints strongly equa
zero in the Hamiltonian~2.11!, we obtain the Dirac’s form

HD5E d3xH 1

2
~p2!21

1

4
Fab FabJ . ~2.15!

Now, in order to simplify the equations of motion, it is con
venient to make the change of variables similar to the one
Eqs.~2.3a!,~2.3b! but tailored to the present light-cone gau
choiceA150: namely,

Aa5Ta2
]a

]'
2

w, ~2.16a!

A25
2]2

]'
2 ]aTa2

]2

]'
2 w2

1

]'
2 L;

~2.16b!

p25]aTa . ~2.16c!

The Dirac’s brackets among the new independent fie
read

Fab8 ~x,y!5U21/2]2 0 0 0

0 21/2]2 0 0

0 0 0 ]'
2

0 0 2]'
2 0

U , ~2.17!

where we have set

s
a-

e

1-4
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f185T1 , f285T2 , f385w, f485L, ~2.18!

and the canonical Hamiltonian takes its final Dirac’s form

HD8 [E d3xH 1

2
]bTa]bTaJ , ~2.19!

whence we obtain the genuine equations of motion

]1Ta5
]'

2

2]2
Ta , ~2.20a!

]1w50, ~2.20b!

]1L50. ~2.20c!

The transition to the quantum theory is accomplished
der replacement of the Dirac’s brackets with canonical eq
light-front-time commutation relations, which read

@Ta~x!,Tb~y!#x15y1

52
i

4
dabd~2!~x'2y'!sgn~x22y2!, ~2.21a!

@w~x!,L~y!#x15y1

5 id~x22y2!]'
2 d~2!~x'2y'!, ~2.21b!

@Ta~x!,w~y!#5@Ta~x!,L~y!#

5@w~x!,w~y!#

5@L~x!,L~y!#50. ~2.21c!

It is important to notice that the above canonical commu
tion relations~CCR! have the very same form as in the M
Cartor and Robertson quantization scheme, see Eqs.~2.5a!–
~2.5c!, up to the crucial difference that now the quantizati
characteristic surface is the same for all the fields.

Let us now search for the solutions, in the framework
the tempered distributions, of the equations of motion in
Fourier space. To this aim, it is convenient to introduce ag
the longitudinal ~unphysical! components of the radiatio
field

Gm52
1

]'
2 ~]mw1nm* L!, ~2.22!

in such a way that

Tm~x![Am~x!2Gm~x!. ~2.23!

For the transverse components we easily get

Tm~x!5E d2k'dk2

~2p!3/2

u~k2!

A2k2

«m
~a!~k' ,k2!

3$aa~k' ,k2!e2 ikx

1aa
†~k' ,k2!eikx%k15k

'
2 /2k2

, ~2.24!
10501
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where the~real! polarization vectors are given by

«m
~1!~k' ,k2!5U 0

1
0

2k1k2 /k'
2
U ,

«m
~2!~k' ,k2!5U 0

0
1

2k2k2/k'
2
U , ~2.25!

whilst the longitudinal components read

Gm~x!5E d2k'dk2

~2p!3/2

u~k2!

Ak'

3H F2
km

k'

f ~k' ,k2!1nm* g~k' ,k2!G
3e2 ikx1H.c.J

k150

, ~2.26!

where k'[Ak1
21k2

2. The canonical commutation relation
~2.21a!–~2.21c! entail the following algebra of the creation
annihilation operators: namely,

@aa~k' ,k2!,ab
†~p' ,p2!#5dabd~2!~k'2p'!d~k22p2!,

~2.27a!

@ f ~k' ,k2!,g†~p' ,p2!#5d~2!~k'2p'!d~k22p2!,
~2.27b!

@g~k' ,k2!, f †~p' ,p2!#5d~2!~k'2p'!d~k22p2!,
~2.27c!

all the other commutators vanishing.
The canonical commutation relations~2.27b!,~2.27c!

show that the theory involves an indefinite metric space
states. The physical subspaceVphys, whose metric turns ou
to be positive semidefinite, is defined through the condit
@7#

g~k' ,k2!uv&50, ;uv&PVphys. ~2.28!

It should be noted that, as

^wuL~x!uv&50, ;uw&,uv&PVphys, ~2.29!

the Gauss law is indeed satisfied inVphys.
Let us finally compute the free vector propagator

Dmn
1 ~x2y![u~x12y1!^0uAm~x!An~y!u0&

1u~y12x1!^0uAn~y!Am~x!u0&,

~2.30!

which, after the gauge fixing condition~2.12a!, turns out to
be properly defined from the mathematical point of vie
i.e., the product of the distributions in Eq.~2.30! does indeed
1-5
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exist. Separating the transverse and longitudinal compone
setting amn(k)[nm* kn1nn* km and going to the momentum
space we eventually get

D̃mn
T ~k!5

i

k21 i e
F2gmagn

a1
2k2

k'
2

amn~0,k' ,k2!G ,

~2.31!

D̃mn
G ~k!52 i

k2

k1k21 i e

amn~0,k' ,k2!

k'
2

. ~2.32!

Taking into account that

2k2

k'
2 S 1

k21 i e
2

1

2k2k11 i e D 5
1

k21 i e

1

@k1#
, ~2.33!

where

1

@k1#
[

1

k11 i e sgn~k2!

[
k2

k2k11 i e
, ~2.34!

which is nothing but the Mandelstam-Leibbrandt distrib
tion, we finally get the propagator in the momentum spa

D̃mn
1 ~k!5

i

k21 i e
F2gmn1

nm* kn1nn* km

@n* k#
G . ~2.35!

It has to be stressed that, more than being mathematic
well defined, the present form of the free vector propaga
exactly coincides with the one obtained in the framework
ordinary time canonical quantization of Ref.@7#. This means
that the light-front operator algebra~2.21a!–~2.21c! together
with light-front-time propagation are completely equivale
at the level of the free field theory, to the ordinary tim
canonical quantization and standard chronological pairing
variance with the old light-front formulation of Ref.@4#. This
nontrivial result, which arises as the correct implementat
of the original ideas of Ref.@9#, will survive after the switch-
ing on of the interaction with spinor matter, as we shall d
cuss below.

III. LIGHT-FRONT QUANTIZATION OF THE FREE
DIRAC FIELD

Before going to the treatment of QED it is useful
briefly review the canonical light-front quantization of th
free Dirac field and, in so doing, establish our conventio
and notations. First we recall that, in order to obtain
correct canonical anticommutation relations from Dira
procedure, it is convenient to consider the system at
~pseudo!classical level. This means that we start from spin
fields in terms of Grassmann-valued fields satisfying
graded version of the canonical Poisson’s and Dirac’s bra
ets~see, for instance, Ref.@12#!. The same formalism will be
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generalized in the next section, where Bose fields are
included.

Within the framework of the light-front quantization, it i
customary to introduce the following representation of t
Dirac’s matrices: namely,

g15U 0 0

&s1 0
Ug15U2 is2 0

0 2 is2U
g25U is1 0

0 2 is1Ug25U0 &s1

0 0
U, ~3.1!

and we write the four-component Dirac’s spinor as

C[UcxU, ~3.2!

with c, x two-components complex spinors. Heres i , i
51,2,3 are the Pauli’s matrices and we also set

t1[s3, t2[ i12 . ~3.3!

Therefore, the Lagrangian density for the free Dirac’s fie

LD5C̄~ igm]m2m!C, ~3.4!

whereC̄[C†g0, g05221/2(g11g2), may be rewritten as

LD5c†i&]1c1x†i&]2x1c†~ i ta†]a2ms1!x

1x†~ i ta]a2ms1!c, ~3.5!

whence the canonical momenta read

pc52 i&c†, ~3.6a!

pc†
50, ~3.6b!

px50, ~3.6c!

px†
50. ~3.6d!

It follows that we have two primary second class co
straints~3.6a!,~3.6b! and two primary first class constrain
~3.6c!,~3.6d!. The canonical Hamiltonian turns out to be

H5E d3x$2x†i&]2x2c†~ i ta†]a2ms1!x

2x†~ i ta]a2ms1!c% ~3.7!

and the light-front-temporal consistency of the first cla
constraints lead to the onset of the secondary constraint

i&]2x†1 i ]ac†ta†1mc†s150, ~3.8a!

i&]2x1~ i ta]a2ms1!c50. ~3.8b!

Now, the whole set of constraints being second class,
graded Dirac’s bracket can be consistently defined and
ing c andc† as independent fields we readily find
1-6
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$c r~x!,c r 8
†

~y!%Dux15y15
1

&
d rr 8d

~2!~x'2y'!d~x22y2!,

r ,r 851,2, ~3.9!

all the other graded Dirac’s brackets vanishing.
After solving the secondary constraints~3.8a!,~3.8b! in

terms of the independent fieldsc, c† the canonical Hamil-
tonian ~3.7! can be cast into Dirac’s form: namely,

HD5 i&E d3xH c†
]'

2 2m2

2]2
cJ , ~3.10!

from which we obtain the canonical equations of motion

]1c r5
]'

2 2m2

2]2
c r , ~3.11a!

]1c r
†5

]'
2 2m2

2]2
c r

† , ~3.11b!

showing that the independent fieldsc, c† correctly fulfill the
Klein-Gordon equation.

The expansion into normal modes leads to the stand
decomposition

c~x!5E d3k

~2p!3/2

u~k2!

21/4 (
s561/2

$wsbs~k' ,k2!e2 ikx

1w2sds
†~k' ,k2!eikx%k15~k

'
2 1m2!/2k2

, ~3.12!

and Hermitian conjugate, where the polarization vectors
simply given by

ws51/2[U10U, ws521/2[U01U. ~3.13!

As it is well known the graded Dirac’s brackets~3.9!
entail the canonical operator algebra

$bs~k' ,k2!,bs8
†

~p' ,p2!%5dss8d
~2!~k'2p'!d~k22p2!,

~3.14a!

$ds~k' ,k2!,ds8
†

~p' ,p2!%5dss8d
~2!~k'2p'!d~k22p2!,

~3.14b!

all the other anticommutators vanishing.
We are now ready to compute the free light-front fermi

propagator which is defined to be

iS1~x2y![u~x12y1!^0uC~x!C̄~y!u0&

2u~y12x1!^0uC̄~y!C~x!u0&. ~3.15!

To this aim, it is convenient to introduce the light-front pa
ing between any two-component spinorsa r ,b r 8 , r, r 851,2,
in such a way that
10501
rd

re

@Sab
1 ~x2y!# rr 8[u~x12y1!^0ua r~x!b r 8~y!u0&

2u~y12x1!^0ub r 8~y!a r~x!u0&;

~3.16!

then the propagator~3.15! can be cast into a matrix form
namely,

iS1~x2y!5UScx†
1 s1 Scc†

1 s1

Sxx†
1 s1 Sxc†

1 s1U . ~3.17!

The only independent light-front pairing turns out to be

Scc†
1

~x2y!5t2&]2D~x2y;m!, ~3.18!

where

D~x2y;m!5E d4k

~2p!4

i

k22m21 i e
eik~x2y! ~3.19!

is the free propagator of the massive real scalar field. Th
from the constraints~3.8a!,~3.8b! we eventually obtain

Scx†
1

~x2y!5~ i ta†]a1ms1!D~x2y;m!, ~3.20a!

Sxc†
1

~x2y!5~ i ta]a1ms1!D~x2y;m!, ~3.20b!

Sxx†
1

~x2y!5t2&
]'

2 2m2

2]2
D~x2y;m!

5t2&]1D~x2y;m!1 i t2
1

&]2

d~4!~x2y!.

~3.20c!

As a consequence, from Eq.~3.17! and taking Eq.~3.1! into
account, the free fermion light-front propagator can be w
ten in the form

iS1~x2y!5~ igm]m1m!D~x2y;m!2
g1

2]2
d~4!~x2y!,

~3.21!

where the first term in the RHS is the usual covariant f
mion propagator

Scov~x2y!5E d4k

~2p!4

m2gmkm

k22m21 i e
eik~x2y!, ~3.22!

whilst the second one is the so called ‘‘instantaneous’’
‘‘contact’’ term, which is generated by the propagation alo
the light-cone generating lines. The role of those term will
further elucidated in the next sections; in particular, it will b
clear that there is no need to specify any prescription
define the light-front-space antiderivative]2

21 which appears
in Eq. ~3.21!.
1-7
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IV. LIGHT-FRONT QED IN THE LIGHT-CONE
TEMPORAL GAUGE

We are now ready to discuss the main subject, i.e.,
perturbative light-front formulation of spinor QED, in whic
the LCCx1 plays the role of evolution parameter, within th
light-cone gauge choiceA150. Owing to this pattern~the
controvariant LCCx1 just corresponds to the covariant com
ponentA1 of the Abelian vector potential!, this formulation
will be naturally referred to as light-front QED in the ligh
cone temporal gauge.

The starting point is obviously the Lagrangian density

L52
1

4
FmnFmn2LA11C̄~ igm]m2m!C1eAmC̄gmC,

~4.1!

which can be rewritten, using the notations of the previo
section, in the form

L52
1

4
FmnFmn2LA11c†i&]1c1x†i&]2x

1c†~ i ta†]a2ms1!x1x†~ i ta]a2ms1!c

1eA1&c†c

1eAa~c†ta†x1x†tac!1eA2&x†x. ~4.2!

As the interaction does not contain derivative couplin
the definitions of the canonical momenta do not change w
respect to the free case: then we have

p25F12 , ~4.3a!

pa5F2a , ~4.3b!

p150, ~4.3c!

pL50, ~4.3d!

pc52 i&c†, ~4.3e!

pc†
50, ~4.3f!

px50, ~4.3g!

px†
50, ~4.3h!

where, again, Eqs.~4.3b!,~4.3e!,~4.3f! are primary second
class constraints whilst the remaining ones, but Eq.~4.3a!,
are primary first class. The canonical Hamiltonian reads
10501
e
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H5E d3xH 1

2
~p2!21

1

4
FabFab

2A1~]apa1]2p22L!2x†i&]2x

2c†~ i ta†]a2ms1!x2x†~ i ta]a2ms1!c

2eA1&c†c2eAa~c†ta†x1x†tac!

1eA2&x†xJ ~4.4!

and from the light-front temporal consistency of the prima
first class constraints the following secondary constra
arise: namely,

A150, ~4.5a!

]apa1]2p22L2e&c†c50, ~4.5b!

i&D2* x†1 iD a* c†ta†1mc†s150, ~4.5c!

i&D2x1~ i taDa2ms1!c50, ~4.5d!

where, as usual, we have setDm[5]m2 ieAm .
The whole set of primary and secondary constraints

now second class and we can proceed to the calculatio
graded Dirac’s brackets. To this aim, however, it is better
make a preliminary observation. From the constraint eq
tions ~4.5c!, ~4.5d! it is apparent that, if we want to expres
the two-components spinorsx and x† as functionals of the
independent onesc andc†, we have to invert the differentia
operatorD25]22 ieA2 . In the present context the corre
sponding Green’s function will be understood as a form
series: namely,

1

D2
[

1

]2
(
n50

` S ieA2

1

]2
D n

, ~4.6!

where each antiderivative acts upon all the factors on
right.

As it will be clear later on, we remark that it is neithe
necessary nor convenient to specify any kind of prescripti
in order to properly define the antiderivative itself. Furthe
more, it is unavoidable that the Dirac’s Hamiltonian,
which all the constraints are solved in terms of the indep
dent fields, would result into a formal~infinite! power series
of the dimensionless electric chargee.

Let us turn now to the calculation of the graded Dirac
brackets. As the actual inversion of the constraints matri
a little bit complicated in the present case, it is convenien
operate iteratively and compute some sequences of pre
nary brackets~eventually four sequences!. After taking

j1[A1 , j2[A2 , j3[A2 ,

j4[p2, j5[c, j6[c†, ~4.7!

as independent fields, a straightforward although very
dious calculation leads to the following result: namely,
1-8
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Jab~x,y!5U 21/2]2 0 0 ]1/2]2 0 0

0 21/2]2 0 ]2/2]2 0 0

0 0 0 1 0 0

2]1/2]2 2]2/2]2 21 ]'
2 /2]2 0 0

0 0 0 0 0 2 i /&

0 0 0 0 2 i /& 0

U , ~4.8!
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where, once again, we have denoted the Dirac’s brac
matrix as

Jab~x,y![$ja~x!,jb~y!%Dux15y1, a, b51, . . . ,6.

It is important to realize that the set of the independ
interacting fieldsja(x), a51, . . . ,6, doobey the very same
algebra as the corresponding independent free fields,
withstanding the fact that the secondary constraints are q
different in the two cases. This feature, as we shall see in
sequel, is of crucial importance in setting up the perturbat
theory. Moreover, it has to be gathered that the above p
erty does not hold in general for an arbitrary constrain
system, but it depends, in the present case, upon a cl
choice of the independent fields.

Finally, after solving the secondary constraints in terms
the independent fieldsja(x), a51, . . . ,6, theHamiltonian
~4.4! takes its Dirac’s form which becomes

HD5E d3xH 1

2
~p2!21

1

4
FabFab

2~ i ]ac†ta†1mc†s12eAac†ta†!
1

i&D2

3~ i ta]ac2ms1c1eAatac!J , ~4.9!

which is the starting point to develop perturbation theory
we discuss in the next section.

V. PERTURBATION THEORY

In order to separate the interaction Hamiltonian in a c
strained system, one has to be very careful in the choic
the independent canonical variables: as a matter of fact,
basic criterion to select the latter ones is eventually dicta
by the structure of the Dirac’s brackets of the interact
theory.

On the one hand, after choosingja(x), a51, . . . ,6 as
independent fields, we see that the first line of the RHS
Eq. ~4.9! does not contain the coupling constante and, con-
sequently, does not contribute to the interaction Hamilton
On the other hand, had we chosen as independent field
set A1 , A2 , A2 , L, c, c†, which is a perfectly legitimate
choice, then, after solvingp2 as a functional of the abov
variables, we find that the first line in the RHS of Eq.~4.9!
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does indeed contribute to the interaction Hamiltoni
through the two terms:

2e&H 2]aAa1
1

]2
~]'

2 A21L!J 1

]2
~c†c!

1e2H 1

]2
~c†c!J 2

,

whence, thereby, a quite different kind of perturbation the
does follow.

In view of the above remark, one could be eventually l
to the conclusion that perturbation theory for constrain
systems is not univocally determined, owing to the fact t
it depends upon the specific choice of the independent fie
in terms of which the constraints are solved. Actually, th
apparent ambiguity is not there. As a matter of fact, we re
that perturbation theory stems from the assumption of
existence, at least formally, of the so called evolution ope
tor, which implements the time-dependent unitary transf
mation relating the interacting to the free fields—see,
instance,@13#.

On the other hand, we know that a unitary operator
such to preserve the canonical equal time field algebra. T
means that, in the case of constrained systems, the sui
independent interacting fields must satisfy the very sa
equal time operator algebra as the corresponding free fi
do. In terms of those, and only those, independent interac
fields the interaction Hamiltonian has to be expressed
perturbation theory will be safely and consistently dev
oped.

From the constraints~4.3b!,~4.5b! and the Dirac’s brack-
ets ~4.8!, it is an easy exercise to show that

$L~x!,c~y!%Dux15y15 iec~x!d~3!~x2y!, ~5.1!

whereas, in the free field case, the corresponding Dira
bracket vanishes. As a consequence, the construction o
interaction Hamiltonian as a functional of the field
A1 , A2 , A2 , L, c, c† does not make sense in order to set
perturbation theory. The interaction Hamiltonian is e
pressed in terms of the set of independent fieldsja(x), a
51, . . . ,6,whose Dirac’s brackets~4.8! do not depend upon
the electric chargee, what makes it now clear why the abov
algebra~4.8! has been precisely put forward.

We now consider the second line of the Hamiltoni
~4.9!. As all the field operators in the interaction pictu
evolve according to free equations of motion, it is conveni
1-9
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to replace withx and x† those linear combinations of th
fieldsc andc†, which coincide with the solutions of the fre
constraint equations~3.8a!,~3.8b!. After this, we can rewrite
the Hamiltonian~4.9! in the form

HD5E d3xH 1

2
~p2!21

1

4
FabFab

1~ i&]2x†1eAac†ta†!
1

i&D2

3~2 i&]2x1eAatac!J . ~5.2!

If we now perform, within the second line of the abov
equation, the following replacements: namely,

x°
1

2
g1g2C, ~5.3a!

tac °
1

&
g1gaC, ~5.3b!

x†°
1

&
C̄g2, ~5.3c!

c†ta†°
1

2
C̄gag1g2, ~5.3d!

we eventually obtain

HD5E d3xH 1

2
~p2!21

1

4
FabFab1C̄g2i ]2C

2eAmC̄gmC1
e2

2
AmC̄gm

1

iD 2
AngnCJ . ~5.4!

It is evident, from the above final form of the Dirac
Hamiltonian, that the interaction Hamiltonian density, up
which perturbation theory is set, reads

Hint52eAmC̄gmC1
e2

2
AmC̄gm

g1

iD 2
AngnC. ~5.5!

It is now apparent that, besides the usual covariant verte
QED, we have to consider, taking the formal definition~4.6!
into account, an infinite number of noncovariant vertices.
the other hand, we have seen that also the free Dirac’s pr
gator ~3.21! exhibits a noncovariant term besides the us
one. What happens, as we shall here explicitly show up
the one loop order, is that in dimensionally regularized tru
cated Green’s functions all those noncovariant terms can
leaving us with the very same renormalizable one loop str
tures, as found in the standard STC framework@8#.
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To this aim, let us first obtain the Feynman’s rules. Fro
the definition~4.6! together with the identity

g1

2
A25

g1

2
Angn

g1

2
, ~5.6!

we can formally expand the interaction Hamiltonian dens
as

iHint5 ieAmC̄gmC2 ieAmC̄gm
g1

2]2
ieAngnC

2 ieAmC̄gm
g1

2]2
ieArgr

g1

2]2

3 ieAngnC2 ieAmC̄gm
g1

2]2
ieArgr

g1

2]2

3 ieAsgs
g1

2]2
ieAngnC1••• , ~5.7!

where the antiderivatives~integral operators! act upon all the
factors on their right.

From Eqs.~2.35!, ~3.21! and~5.7!, we get the Feynman’s
rules listed in Fig. 2.

FIG. 2. Feynman’s rules.
1-10
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Using these rules, it is not difficult to check graphica
that in the one loop truncated Green’s functions, but pho
self-energy diagram, all the noncovariant terms cancel a
braically.

For instance, taking two covariant vertices@Fig. 2~e!# and
a second order noncovariant one@Fig. 2~f!#, we reconstruct
the full one loop electron self-energy@see Fig. 3~a!#, which,
after the removal of the external legs, turns out to be
correct renormalizable one of the standard STC approac

Moreover, the one loop renormalizable electron-positr
photon proper vertex can be reconstructed@see Fig. 3~b!#
taking the covariant vertices of Fig. 2~e! as well as first and
second order noncovariant vertices of Figs. 2~f! and 2~g! into
account.

Let us come now to the photon one loop self-energy
Fig. 3~c!.

After summation of the relevant vertices, we see that,
side the correct standard diagram, a further noncovar
graph is there, whose corresponding integral~in 2v space-
time dimensions! is provided by

I rs~p2!5~ ie!2E d2vl

~2p!2v
TrH gr

g1

2i ~ l 21p2!
gs

g1

2i l 2
J .

~5.8!

However, since

E d2vl 5E dl1E dl2E d2v22l' ,

we immediately see that integration over transverse mom
in Eq. ~5.8! gives a vanishing result. This is the only poin
up to the one loop approximation, in which the cancellat
of noncovariant vertices does not take place algebraically

FIG. 3. ~a! One loop electron self-energy.~b! One loop electron-
positron-photon vertex.~c! One loop photon self-energy.
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involves a further analytic tool. Owing to the above canc
lation mechanisms, either algebraic or due to dimensio
regularization of integrals over transverse momenta, it
comes clear why it is immaterial to specify any prescripti
to understand noncovariant denominators in fermions pro
gators as well as in the interaction vertices, at least in p
turbation theory.

To sum up, we have shown that, concerning one lo
dimensionally regularized truncated Green’s functions,
light-front formulation of QED in the light-cone tempora
gauge actually reproduces the very same result as in the
dard STC renormalizable and~perturbatively! unitary ap-
proach@8#, in which noncovariant singularities are regulat
by means of the ML prescription.

VI. CONCLUSION

A consistent light-front formulation of perturbative QE
has been worked out in the light-cone gaugeA150, in
which the LCCx1 plays the role of the evolution paramete
Owing to this, it is natural, by analogy with the ordinary ST
formulation, to refer our choice as to ‘‘temporal’’ light-con
gauge, alternative to the original ‘‘axial’’ choiceA250. By
consistent, we understand that the quantization scheme
developed reproduces, at least up to the one loop order
same off-shell amplitudes as computed from the conv
tional correct approach in usual STC@7,8#, which embodies
the ML prescription to define the spurious noncovariant s
gularities of the free photon propagator.

This result is nontrivial and, in turn, also rather surprisin
As a matter of fact, it has been thoroughly unravelled@14#
that in the quantization of gauge theories in ordinary ST
the use of the temporal~or Weyl! subsidiary conditionA0

50 is undoubtedly much more troublesome than the a
one A350, which is in turn also affected by subtle mat
ematical pathologies@15#. Eventually, in spite of the huge
number of attempts and efforts, the problem of setting u
fully consistent perturbation theory in the temporal gauge
still to be solved.

On the contrary, within the light-front perturbative formu
lation of QED, the ‘‘temporal’’ gauge choiceA150 appears
to be the safe one, which naturally leads to the ML presc
tion and thereby to the equivalence with the convention
proach in STC, whilst the ‘‘spatial’’ choiceA250 drives to
inconsistency@5#.

A further comment is deserved to the gauge invariace
the regularization methods in perturbation theory. It clea
appears that, in the present context, the use of dimensi
regularization is crucial, in order to provide an infinite set
diagrams cancellation, in the absence of which gauge inv
ance of QED would be lost. Things are not so lucky f
cut-off or Pauli-Villars regularizations, which, thereof, tur
out to be quite inconvenient within the perturbative ligh
front approach.

It should be noticed that the presence of an infinite nu
ber of noncovariant vertices, switching on order-by-order
light-front perturbation theory, closely figures the structu
1-11
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of counterterms for the 1PI vertices in the standard S
approach to the light-cone gauges@8#. This feature is prob-
ably connected to the specific properties of the ML propa
tor, i.e., to the kind of structures it generates after loop in
grations.

Although graphically transparent, a formal gene
proof—which is basically by induction—that the cancell
tion mechanism for noncovariant terms persists, to all or
in perturbation theory, will be presented in a forthcomi
d

t

s.

10501
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paper, together with the generalization of the present tr
ment to the non-Abelian case.
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