PHYSICAL REVIEW D, VOLUME 58, 105011

Consistent perturbative light-front formulation of quantum electrodynamics
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A new light-front formulation of QED is developed, within the framework of standard perturbation theory,
in which x™ plays the role of the evolution parameter and the gauge choite s0 (light-front “temporal”
gauge. It is shown that this formulation leads to the Mandelstam-Leibbrandt causal prescription for the
noncovariant singularities in the photon propagator. Furthermore, it is proved that the dimensionally regular-
ized one loop off-shell amplitudes exactly coincide with the correct ones, as computed within the standard
approach using ordinary space-time coordindi86556-282(98)10820-2

PACS numbss): 11.10.Ef, 11.15.Bt, 12.20.Ds

I. INTRODUCTION tion theory, in the absence of deep modificatioBs. pas-
sant it is really curious and rather surprising that a non-
The light-front formulation of gauge quantum field theo- negligeable fraction of the field theorists community seems
ries has become more and more popular in the past few have nowadays not yet fully gathered and appreciated this
years. In the Abelian case, i.e., standard QED or the Abelianough breakdown of the conventional old light-front ap-
Higgs model, the renewal of the interest in this subject isproach to gauge theories. For instance, even the one loop
mainly because of two reasons. On the one hand, the lighQCD beta function does not result to be, within that context,
front Hamiltonian approach to QED appears to provide arthe correct covariant one].
alternative tool to compute the Lamb sHiff] and deal with It has been noticed some time af@® that, in order to
bound-state problem2]. On the other hand, some nonper- restore at least causality for the free propagator of the gauge
turbative aspects—such as the role of the zero mg8es  fields in the light-cone gauge, a special prescription, thereof
have first to be clearly understood in Abelian models, beforealled the Mandelstam-Leibbran¥IL) prescription, has to
going into the much more challenging non-Abelian case. be employed, in order to regulate the spurious noncovariant
The original attempts to set up canonical quantization okingularities. Shortly afterwards, it has been realized that the
QED in the framework of light-front—or null-plane— ML prescription arises from the canonical quantization in
dynamics date back to the early 197@4. In the original  standard STC, provided some special unphysighbstlike
approach, the light-cone coordinatéLCC) x*=(x°  degrees of freedom are taken into accdifit Even more, it
+x%)/v2 plays the role of the evolution parameter and thehas been proved that, within that framework, gauge theories
standard gauge choice &_=0, in such a way to stay as in the light-cone gauge are renormalizable, unitary and co-
close as possible to the axial gauge formulation of QED invariant order-by-order in perturbation thed8). It is worth-
standard space-time coordinat&T C). while to emphasize how this remarkable result crucially
After a considerable amount of work has been done alongtems from the presence of the above mentioned unphysical
this line, it was definitely discoverefb] that perturbation degrees of freedom: as soon as they are correctly taken into
theory, based upon the original light-front quantizationaccount, the equivalence between the covariant and light-
scheme for gauge theories, is inconsistent, owing to loogone gauges is established, within the standard perturbative
integrations, just because the above scheme necessarily eapproach in STC.
tails the Cauchy principal valugPV) prescription to under- The open issue, which is still there, is to find a light-front
stand the spurious noncovariant poles in the gauge particli®@rmulation for quantum gauge theories, which turns out to
vector propagator. This means that quite basic features of thge equivalent to the conventional one in ordinary STC, at
standard perturbative approach for gauge theories are loggast in perturbation theory. It is definitely clear, from the
such as power counting renormalizability, unitarity, covari-above considerations, that such a new formulation, whatever
ance and causality. In other words, the original approach tit is, must lead to the ML prescription for the noncovariant
light-front quantization of gauge theories is certainly notsingularities of the gauge particle vector propagator, at vari-
equivalent to the standard covariant formulation, already afnce with the original old one, driving instead to the patho-
the perturbative level; it is fortiori hard to believe that the logical CPV prescription.
same approach could provide useful hints beyond perturba- A first step towards this direction has been done quite
recently by McCartor and Roberts@®]. They have found an
algebraic scheme to quantize the theory on the light-front,
*Email address: morara@lamel.bo.cnr.it taking also the above mentioned unphysical degrees of free-
"Email address: soldati@bo.infn.it dom into account. However, as they use the “temporal”
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LCC as the evolution parameter and the “spatial” gauge Il. LIGHT-FRONT QUANTIZATION OF THE FREE
choiceA_=0, the above algebraic setting is done after quan- RADIATION FIELD

ti;ation of physicgl gnd unphysic;al d_egrees of freedom on Some time aggd7] it has been shown that the canonical
different characteristic surfaces, i.e., light-front hyperplanesg,»iization of the free radiation field in the light-cone gauge
Be_5|de being somewhat unnatutahis approach does not n“A,=A_=0, (n2=0), is suitably formulated using stan-
drive exactly to the standard form of the photon propagatogy,q space-time coordinatéSTC) and leads, eventually, to
with the ML prescription for the spurious singularity. It is the ML prescription for the spurious singularities in the
one of the aims of the present paper to show how the lattesropagator. It is worthwhile to stress that, in the derivation of
drawbacks in the McCartor and Robertson approach could bge above result, the unphysical components of the gauge
indeed overcome, without spoiling its correct content of anpotential play a fundamental role. On the other hand, within
enlarged light-front operator algebra. the original approach to light-front quantization using light-
In order to achieve this goal, we simply make the transi-cone coordinateLCC) [4], those unphysical degrees of
tion from the “spatial” light-cone gaugeA_=0 to the freedom turn out to satisfy constraint equations instead of
“temporal” light-cone gaugeA =0, the “temporal” LCC  genuine equations of motion. Thereby, they are eliminated
x" being kept as the evolution parameter within the light-after imposing suitable boundary conditions and, conse-
front formulation. In so doing, on the one hand the free fieldquently, only the physical degrees of freedom are indeed
operator algebra for the whole set of fields is naturally de-Submitted to canonical guantization. In so doing, unfortu-
fined on the “spatial” hyperplanes® =const. On the other nately, the spurious singularity in the vector propagator re-

hand, the ML prescription is exactly recovered for the propaSUlts to be prescribed as Cauchy principal valued and leads
gator of the free radiation field. to an inconsistent meaningless perturbation theory.

These remarkable features allow therefore to correctly de- It Its' OLt‘.r am tr? show n :h'? setchtlon T;.)V\;. sor?.elgght—f[%rg
velop perturbation theory, once the corresponding interactioffuanuzation scneme exists for the radiation fieid in ’

Hamiltonian has been single out from constraints analysis o\th'Ch drives eventually to the ML prescription for the spu-

. . ) ) : rious singularity of the vector propagator, just like the stan-
E]F;Zigdgidf?sgg:rlr(?eEDir:nahcglalpgctlaljjdIgr?a:gpgg}:gﬂisde- dard STC formulation does. In order to achieve this goal, we

. ) X will develop and improve a recent atten@il, in which the
Lsﬁi?:i t\(,)v”cl)btt)zlnsrt::)%vrs]etoofir:l\?or;\t/—;ro;r;[ %Ifzir?it'e:esyerlmoa;nss élé:gf’above mentioned unphysical components of the gauge poten-
) . . ; P tial are retained and guantized in LCC according to a new
noncovariant vertices. It is then amusing to check, at on

loop, that truncated light-front Green's functions—i.e., rocedure. Let us first briefly review the main points of this

. . ; approach.
vacuum expectation values of light-front-time ordered prod- pPI’he starting point is the Lagrangian density of the free

uct of field operators—are exactly the same as in the usual, ;... =
STC formulation, provided the gauge invariant dimensionaal}'l’ld'&ltlon field
regularization scheme is embodied.

The paper is organized as follows. In Sec. Il, we give a Loiad™ — 1 FuFY—=Ank A, (2.1
critical reading of the McCartor and Robertson approach to
light-front quantization of the free radiation field. In so do- \yhere n,=(n,,n,,n_)=(1,0,0,0), in such a way that

ing, we point out where this approach reveals to be unsatisﬁMAM:Af , andA is a Lagrange multiplier which enforces
factory and how to implement it, in order to reproduce theyhe gauge constraint.

ML form of the free propagator. In Sec. Ill, we briefly re-  1pe Euler-Lagrange equations lead to
view the light-front quantization of the free Dirac’s field, in

order to also establish our notations for the light-front treat- d,Fr’=n"A, (2.29
ment of spinorial matter. In Sec. IV we perform the canoni-
cal light-front quantization of QED in the “temporal” light- A_=0. (2.2b

cone gaugeA,.=0, by means of the standard Dirac's ) ) ] )
procedure for constrained systems. Section V is devoted tf§ 1S convenient to introduce some new field variables as
perturbation theory: namely, we derive Feynman’s ruledollows: namely,

and show that, up to the one loop approximation, dimension-

ally regularized truncated and connected light-front Green’s A =T — % P (2.33
functions are the same, as computed out of the standard ca- * e g2 '
nonical framework in usual STC. Section VI contains some

€L

further comments and remarks, as well as an outlook on Ay dy 1
future developments. Ar=—T,— 5 e—5A; (2.3b
- i a

then Egs(2.29,(2.2b become
Actually, in the presence of interaction, the simultaneous occur-

rence of “spatial” and “temporal”’ light-front hyperplanes, to (20,9-—32)T,=0, (249
specify the operator’s algebra, makes the treatment somewhat com-
plicated. d_e=d_A=0. (2.4b
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xO exactly true, owing to the presence of some ill-defined prod-
a 4 + ucts of tempered distributions.
X X As a matter of fact, if we consider the transversal physical
part of the vector potential, namely,
Z_. 2+ ﬁa
L > . T,LL:(T-FEETDUTﬁyT—:O 1 a’,B:l,Z, (273
_L _x:S
¥ then it has been well known for a long tinjd] that the
- x*-ordered product of two such physical components leads,
in momentum space, to the expression
To00=—— K,+n,k
FIG. 1. The null hyperplanes, andX _. Tulk)= k2+is ~ Ot (Nt k)
We notice that, as the fieldsT,(x) fulfill free 1 ) 1
D’Alembert’'s equations of motion, then the inverse of the xXCP k_ —n.n, =~ (2.7

light-front-space derivative in Eq2.3b is understood here

to be (16_)=(24. /4?). Furthermore, from Eq2.4) we  \ye notice,en passantthat the first term in the right-hand

can easily see that the fielgsand A do not fulfil evolution  gjge(RHS) of Eq. (2.7 is a well defined tempered distribu-

equations—remember that here it is the LE€Cwhich plays  tion, whereas it is not necessary to specify any prescription

the role of the evolution parameter—but, as previously Noyg gefiné the very last contactor “instantaneous’ term,

ticed, they sqtisfy Constr_aint equations and, therefrom, carsgyse it is also well known since the early 19785that a

not be canonically quantized on the null hyperplanes at coneomplete algebraic cancellation indeed occurs, in perturba-

stantx*.' ) tion theory for QED, just between those contact terms and
Now, it has been suggesté@,10] a new light-front quan-  the corresponding ones arising from the spinor interaction

tization procedure, in which the transverse fiellls are  Hamiltonian.

quantized on null hyperplanes at equal, according to the On the other hand, if we consider the longitudinal com-

original light-front recipe, while the longitudinal fieldsand ponents of the gauge potential, namely,

A at equalx™. Following this procedure, one can set up the

generators of the translations on the null hyperplahesand 1
3 _, in the limit L—o (see Fig. 1, and obtain, taking the Fy==—=(detn,A), (2.89
Heisenberg equations of motid@.49,(2.4b into account, J1

the commutation relations then a straightforward calculation yields

[Ta(x)iTﬁ(y)]x+=y+ 4
dk ik(x—y)
i <0|F#<X)Fv(y)|0>=f 5 X Yo(—ky)
== 7 0updP (X —y )sgrix —y), (253 (2m)
< 8(k n.k,+nk, (2.8
(000, AW -y ke @
=io(x" -y a8 -y, (2.5 After multiplication, for instance, with9(x*—y*) and tak-

ing the Fourier transform we formally get the convolution
[Ta(X),@(Y)]1=[Ta(X),A(Y)]
fo dé¢ S(k_) n,k,+nk,

=[eo(x),0(y)] =T a N
=[A(x),A(y)]=0, (2.50 L=

One can easily convince himself that the above expression
does not define a tempered distribution—owing to the loga-
rithmic and linear divergences in th&integration—which
means, in turn, that the propagator in E8.6) is not prop-
erly understood from the mathematical point of view, as it is

. (2.80

where sgrnX) denotes the usual sign distribution. In so doing,
the authors of Ref[9] suggest that the light-cone-time or-
dered product of the gauge potential operators defined by

D, (x=y)=0(x" =y )(0|A,(x)A,(y)|0)

+0(y" —x")(0|A,(Y)AL(X)|0), (2.6
2Nevertheless, one can always define it in the sense of tempered
might eventually give rise to the ML form of the gauge field distributions as, for instance, minus the derivative with respect to
propagator. Actually we shall show below that this is notk_ of CPV (1k_).
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obtained summing up a well defined distributi@the trans- A, =0, (2.123

versal part and a meaningless quantifghe longitudinal

pard. dme+ad_m —A=0. (2.12h
Nonetheless, it is indeed remarkable that the main idea

behind the quantization procedure in REJ], i.e., the en- The full set of constraints is now second class and thereby

larged algebra on the characteristic surfaces in order to sae can compute the Dirac’s brackets. After choosing as in-
isfy causality, is suggestive, albeit troubles arise when dealdependent fields the following ones,
ing with the evolution. It should be apparent that, in fact, the _ _ _ _ -
very same reasons preventing us from specifying the algebra G1=A1, =Ry P3=A-, dy=m, (213
of the longitudinal _f|eld operators at equal, also prevent we eventually obtain the Dirac’s brackets matrix
us from propagating the unphysical degrees of freedom
alongx*. ‘The simplest way to circumvent these difficulties @, (x,y)={¢a(X),dp(Y)}plx+=y+, @ b=1,2,34,
and to build up a consistent light-front dynamics turns out to
be a change of the null gauge veclore., we replace Whose matrix elements are integro-differential operators in
n,—n*=(0,0,0,1) in such a way that**A,=A, =0. terms of light-front-space coordinatex= (x*,x%,x7):
Let us therefore consider the new Lagrangian density nhamely,

1 —1/29_ 0 0 94/20_
Lraq= = 7 FuF*' = An*FA,; (2.9 0 —U20. 0 a2
Dap(Xy) 0 0 0 1 |- @14
as the whole set of fields now satisfies genuine equations of )
motion, it is convenient to proceed within the framework of —01/29_  —3,020- =1 97129

Dirac’s canonical quantizatiofl1].

. . — —_ 2
The canonical momenta afel .= [ d*XLyag(X) ] Here the identityl means the producs(x™ —y~) 8@ (x*

—y*), whilst the kernels I/9_) and (,/9_) are short-

A hands for 26 (x-—y')sgn&k —y~) and %(4,6@)(x"
m= o —Fe (2108  —yt)sgnk —y"), respectively. It should be noticed that the
A sign distribution is such to enforce stand&agti-)symmetry
SA properties of Dirac’s brackets.
= rad =F_,, (2.109 After setting the secondary constraints strongly equal to
09+ Aq zero in the Hamiltoniar{2.11), we obtain the Dirac’s form
SA 1 1
at= 5(9+Zd+=0, (2.109 HD:f dSX[E(W)Z-FZFaBFaﬁ . (2.19
o A Now, in order to simplify the equations of motion, it is con-
=S =0, (2.100  venient to make the change of variables similar to the one of
+ Egs.(2.33,(2.3b but tailored to the present light-cone gauge

whence it follows that there are two primary second clas&N0ICeA+=0: namely,

constraintg2.10b originating from the use of LCC, as well

as two primary first class constrair(3.109,(2.100d. A=T,——o (2.163
The canonical Hamiltonian becomes R
1 5.1 29_ J- 1
Hradzf 3| 5 (77) 2+ 5 FapFap A= 0T~ o A
2 4 2 Cale 2 2
1 1 1
(2.16b
—A+(¢9a77“+ﬂ_77_—A)], (2.11)
7 =0a,T,. (2.160

and, consequently, from the light-front-temporal cpnsistency The Dirac’s brackets among the new independent fields
of the first class constraint®.100,(2.100 we derive the (gaq

secondary constraints

—-1/20_ 0 0 0
0 —1/29_ 0
3actually, an equivalent way to proceed is to keep the previousP,,(X,Y)= 2| (2.17

. . : 0 0 0 47
light-cone gauge choice unaltered and to change the evolution pa-
rameter(the light-front-timg from x* to x~, the key point being 0 0 - ﬁf 0
that the light-front-time and the light-cone gauge vector have to be
parallel. where we have set
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d\=T1, ¢=T,, Is=e, ¢,=A, (219 Where the(real) polarization vectors are given by

and the canonical Hamiltonian takes its final Dirac’s form 0
1
HE fds (1 IpT 45T } (2.19 el k)= o |
= X{= 98T ol s .
b P 2k,k_ /K2
whence we obtain the genuine equations of motion 0
9 @ B 0
9,T,= 25 T, (2.20a e, (k k)= 1 : (2.25
- 2kok /K2
3, ¢=0, (2.20pH

whilst the longitudinal components read

d?k, dk_ 6(k_
rﬂ(x)zf Fdic o)

(277)3/2 \/E

d+A=0. (2.209

The transition to the quantum theory is accomplished un-
der replacement of the Dirac’s brackets with canonical equal

light-front-time commutation relations, which read . k_M F(k, ,k,)+n:;g(kl k)
[Ta00,Ta(¥) ]t =y )
i o X e I+ H.c. , (2.26
== 7 8ap0P (Xt —yHsgrixT—y7), (2213 K, =0
[o(X), A(Y)]x+=y+ wherek, = Jk?+ k2. The canonical commutation relations
' Ty (2.213—(2.219 entail the following algebra of the creation-
=io(x" =y )d* 5D (xt—yh), (2.219  annihilation operators: namely,
[Ta(X), () ]=[Ta(x),A(Y)] [aa(Ky k-),ah(Py p-)]=8as6® (k. —p,) (k- —p-),
(2.273
2.27
=[e(x),0(y)] ) "
f(k, k), p)]=89k —p )k —p_),
It is important to notice that the above canonical commuta- t — D _ B
tion relations(CCR) have the very same form as in the Mc- [otky k), f TPy, p-)]= 0%k, —p.) k- p*g’z 279

Cartor and Robertson quantization scheme, see s —
(2.50, up to the crucial difference that now the quantizationg|| the other commutators vanishing.
characteristic surface is the same for all the fields. The canonical commutation relation€.27h,(2.279

Let us now search for the solutions, in the framework ofshow that the theory involves an indefinite metric space of
the tempered distributions, of the equations of motion in thestates. The physical subspakg,s, whose metric turns out

Fourier space. To this aim, it is convenient to introduce agaiflo be positive semidefinite, is defined through the condition
the longitudinal (unphysical components of the radiation [7]

field
gk, ,k,)|V>=O, V|V> EVphys- (2.28
1
Iy,=- 7 (up+n;A), (2.22 It should be noted that, as
1
(WIA()[V)=0, V|w),|v)e Vs, (2.29

in such a way that
the Gauss law is indeed satisfied)igys.

T 00=AL0) =T 4(x). (2.23 Let us finally compute the free vector propagator
For the transverse components we easily get DI (x—y)=0(x"—y*)(0|A,(X)A,(y)|0)
2% " v
d?k, dk_ O(k_ +0(y*t—x*){0|A A (X)|0),
T, (0= J S die 9D ok, k) (y* =x")(0]AL(y)AL(x)|0)
(2m)32 2k _ (2.30
x{a,(k, k_)e 'k which, after the gauge fixing conditiof®.123, turns out to
i be properly defined from the mathematical point of view,
t k
gk, k)€ X}k+=kf’2k—’ (2.24 i.e., the product of the distributions in E@.30 does indeed
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exist. Separating the transverse and longitudinal componentgeneralized in the next section, where Bose fields are also

settinga,,,(k)=n%k,+n}k, and going to the momentum included.

space we eventually get Within the framework of the light-front quantization, it is
customary to introduce the following representation of the

~ i 2k_ Dirac’s matrices: namely,
D, (k)= 000+ —a,,(0k k_)|,

w0 Kerie| owed k? ur O 0 O —ig?2 0

+: =
239 Y ‘\/fol 0” 0 —io?

~ k_ a V(O,ki,k,) 1 0 0 ‘/? 1
Dry(k):_l i fad ) (232 2 lo —_ g

“ ki k_+ie k2 Y o —iod?” Zlo oI’ (3.2

Taking into account that and we write the four-component Dirac’s spinor as
2k _ 1 1 1 |
k2 \K2+ie 2k-kitie] K2+ielks]

with ¢, x two-components complex spinors. Herd, i

where =1,2,3 are the Pauli’'s matrices and we also set
1 _ 1 =03 72=il,. 3.3
[ki] ki+iesgnk.) _ , . ,
Therefore, the Lagrangian density for the free Dirac’s field
k- _
“kkotie 239 Lo="(iy*d,~m)¥, (3.4

which is nothing but the Mandelstam-Leibbrandt distribu-WhereW="%"°, y°=27"44y*+7), may be rewritten as

tion, we finally get the propagator in the momentum space . . .
y9 propag P Lo= V20, xTivVIa_x+ ' (i7%T9,~ mat) x

~ i nyk,+nik (179 — mot 3
DY (K)=—— | —g,,+ L2 2" (2.39 x' (i7%9,—ma) i, (3.5
e kK’+ie a [n*K] .
whence the canonical momenta read
It has to be stressed that, more than being mathematically = —ivay' (3.69

well defined, the present form of the free vector propagator

exactly coincides with the one obtained in the framework of ot _

ordinary time canonical quantization of RET]. This means 7 =0, (3.6
that the light-front operator algebfa.213—(2.219 together e

with light-front-time propagation are completely equivalent, =0, (3.60
at the level of the free field theory, to the ordinary time T

canonical quantization and standard chronological pairing, at m* =0. (3.60

variance with the old light-front formulation of Rg#]. This

nontrivial result, which arises as the correct implementation !t follows that we have two primary second class con-
of the original ideas of Ref9], will survive after the switch-  Straints(3.6a,(3.6b and two primary first class constraints
ing on of the interaction with spinor matter, as we shall dis-(3-69,(3.6d. The canonical Hamiltonian turns out to be

cuss below.
H:f d3{—xTiv2zo_x—y'(ir9,— mot) x
lIl. LIGHT-FRONT QUANTIZATION OF THE FREE
DIRAC FIELD —x"(i7%9,—ma?)y} (3.7

Before going to the treatment of QED it is useful t0 gng the light-front-temporal consistency of the first class

briefly review the canonical light-front quantization of the ¢onstraints lead to the onset of the secondary constraints
free Dirac field and, in so doing, establish our conventions

and notations. First we recall that, in order to obtain the iv2a_xT+iapt r T+ myTat=0, (3.89
correct canonical anticommutation relations from Dirac’s
procedure, it is convenient to consider the system at the iv2a_x+(i7%9,—mot)y=0. (3.8b

(pseudaclassical level. This means that we start from spinor

fields in terms of Grassmann-valued fields satisfying the Now, the whole set of constraints being second class, the
graded version of the canonical Poisson’s and Dirac’s brackgraded Dirac’s bracket can be consistently defined and tak-
ets(see, for instance, RefL2]). The same formalism will be ing ¢ and " as independent fields we readily find
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1
{¢r(x)=¢:/(y)}D|x+=y+: 5 5rr’5<2)(XL_yL)5(Xi_y7)y

rr'=12, (3.9
all the other graded Dirac’s brackets vanishing.

After solving the secondary constraint3.89,(3.8b in
terms of the independent fields ' the canonical Hamil-
tonian (3.7) can be cast into Dirac’s form: namely,

(3.10

92 — m?
i 3 t 1
Hp n/ifdx{w 55 z//},

from which we obtain the canonical equations of motion

92 —m?
Jeth=—2— 14, (3.113
_ 7t —m’ t
ﬁ+ 'r//r - 20 l/,r ’ (311b

showing that the independent fielgsy' correctly fulfill the
Klein-Gordon equation.

PHYSICAL REVIEW D 58 105011

[Sap(X=Y)]rr = 0(x" =y )0, (X) B;+(¥)]0)
—0(y" =x")(0| B+ (y) a(x)[0);
(3.16

then the propagatof3.15 can be cast into a matrix form:
namely,

s’ ot s’ ot
. X vy
iSt(x-y)=| _, (3.17

1]
SXXTO-

+
S)(z//TU

The only independent light-front pairing turns out to be

Syt (x—y)=mV20_D(x=y;m), (318
where
D(x—y'm)=f d*% ! ek (3.19
, 2m*Kk2—m?+ie

is the free propagator of the massive real scalar field. Then,
from the constraint$3.83,(3.8b we eventually obtain

deggnip%);ﬁ)t?gslon into normal modes leads to the standard S;XT(X—y)Z(iT“T0a+m(rl)D(x—y;m), (3.203
Sk ok) S, 1 (x=y)=(i 79, +ma!)D(x—y;m), (3.200
X)= - - 7 web.(k, ,k_ e ikx
W) f (2m)32 214 5:21/2{ s(ki k=) P
-m
: + o _ .2 1 .
+wsdl(k, k) g2 imaac s (312 St(X—y)=7V2 —=— D(x—y;m)
and Hermitian conjugate, where the polarization vectors are 5 . o, 1 Y
simply given by =729, D(X—y;m)+ir I s (x—y).
1 0 (3.200
WS: ]./2E 0‘ , WS: —]./2E ‘ . (313

As it is well known the graded Dirac's bracke(8.9
entail the canonical operator algebra

{be(ky ,k-),bL () ,p_)}= 8.9 6P (k, —p,)d(k_—p_),
(3.143

{ds(k, ko),dl(py,po)t=6eg 8P (k, —pL)d(k_—p_),
(3.14b

all the other anticommutators vanishing.

We are now ready to compute the free light-front fermion

propagator which is defined to be

iS*(x—y)=0(x"—y")(0| ¥ (x)¥(y)|0)
— 6y —x*) (0| W(y)¥(x)]0). (3.15

As a consequence, from E(.17) and taking Eq(3.1) into
account, the free fermion light-front propagator can be writ-
ten in the form

+

IS*(x=y)=(i7#9, + MD(x—y:m)~ 5 5(x-y),

(3.21
where the first term in the RHS is the usual covariant fer-
mion propagator

d*k m- YK,
(2m)* k2—m’+ie

S°°"(x—y)=f e =y (3.29

whilst the second one is the so called “instantaneous” or
“contact” term, which is generated by the propagation along
the light-cone generating lines. The role of those term will be
further elucidated in the next sections; in particular, it will be

To this aim, it is convenient to introduce the light-front pair- clear that there is no need to specify any prescription to

ing between any two-component spiners,3,:, r,r'=1,2,
in such a way that

define the light-front-space antiderivative* which appears
in Eq. (3.2).
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IV. LIGHT-FRONT QED IN THE LIGHT-CONE 1 1
TEMPORAL GAUGE H= f d3X[§ (m7)%+ 1 FasFagp

We are now ready to discuss the main subject, i.e., the
perturbative light-front formulation of spinor QED, in which
the LCCx™ plays the role of evolution parameter, within the
light-cone gauge choicé&, =0. Owing to this patterrithe
controvariant LCC™ just corresponds to the covariant com-
ponentA, of the Abelian vector potentiglthis formulation
will be naturally referred to as light-front QED in the light-
cone temporal gauge.

The starting point is obviously the Lagrangian density

A (9,7 +d_m —AN)—xTIvV2a_x
M (i 779, —mat) x—x'(i %9, — mat)
—eAVZY y—eA (Y Ty + xTry)

+ek1f2XTX] (4.4

and from the light-front temporal consistency of the primary
first class constraints the following secondary constraints

1 — — arise: namely,
F o Fer— AAL+W(iy 0, —m)W +eA, W ys W, y

— Z v

d,m+o_m —A—ev2yly=0, (4.5b

L=

which can be rewritten, using the notations of the previous

section, in the form ivZD* ' +iD* ¢ T+ mytol=0, (4.50

H e 1 —
,C:—‘l—lFWF“V—AA++z//Ti\/i&+z//+XTi\/iﬁ,X VDX (DT M)y =0, (4.5
where, as usual, we have @}, ==4,—ieA,,.
+yt (i, —mat) x+ x(i 79, — mat) ¥ The whole set of primary and secondary constraints is

+ now second class and we can proceed to the calculation of
+eAV2YTY graded Dirac’s brackets. To this aim, however, it is better to
t_at T a t make a preliminary observation. From the constraint equa-
FeAUITIX XTI HeAVIX X 42 tions (4.50, (4.5d it is apparent that, if we want to express
the two-components spinorsand x' as functionals of the
As the interaction does not contain derivative couplingsindependent oneg andy', we have to invert the differential
the definitions of the canonical momenta do not change witlhperatorD _=g_—ieA_ . In the present context the corre-
respect to the free case: then we have sponding Green’s function will be understood as a formal
series: namely,

T =F,_, 4.3 -
R (4.39 L1 (o L) y
D &) 49
T=F_,, (4.3b
where each antiderivative acts upon all the factors on its
+=0, 439 nght. o
4 (4.39 As it will be clear later on, we remark that it is neither
necessary nor convenient to specify any kind of prescription,
7A=0, (4.30 in order to properly define the antiderivative itself. Further-
more, it is unavoidable that the Dirac’s Hamiltonian, in
o : which all the constraints are solved in terms of the indepen-
m'=—iv2y, (4.3¢9 dent fields, would result into a forméhfinite) power series
of the dimensionless electric charge
o Let us turn now to the calculation of the graded Dirac’s
" =0, (4.30) brackets. As the actual inversion of the constraints matrix is
a little bit complicated in the present case, it is convenient to
X=0 (4.39 operate iteratively and compute some sequences of prelimi-
' ' nary bracketgeventually four sequencesAfter taking
=0, (4.3h §=A1, 6H=Ay, E=A_,

where, again, Eqs(4.3b,(4.39,(4.3f) are primary second

class constraints whilst the remaining ones, but @33,

are primary first class. The canonical Hamiltonian reads

b=m, &=y, &=y, 4.7

as independent fields, a straightforward although very te-
dious calculation leads to the following result: namely,
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—129_ 0 0 /2. O 0
0 —120. 0 ay20. O 0
0 0 o 1 0 0
Fap(}¥)= | _ wl20_ —a20- —1 &l29_ 0 o |’ 4.8
0 0 0 0 0 -inv2
0 0 0 0 —ivZ o

where, once again, we have denoted the Dirac’s brackedoes indeed contribute to the interaction Hamiltonian
matrix as through the two terms:

Ean(X,y)={&a(X),é(Y)}plx+=y+» @, b=1,...,6.

It is important to realize that the set of the independent
interacting fieldst,(x), a=1,...,6, doobey the very same 5
algebra as the corresponding independent free fields, not- +e
withstanding the fact that the secondary constraints are quite
different in the two cases. This feature, as we shall see in th@hence, thereby, a quite different kind of perturbation theory
sequel, is of crucial importance in setting up the perturbatioryoes follow.
theory. Moreover, it has to be gathered that the above prop- |n view of the above remark, one could be eventually led
erty does not hold in general for an arbitrary constrainedo the conclusion that perturbation theory for constrained
system, but it depends, in the present case, upon a cleveystems is not univocally determined, owing to the fact that

1
7 (¢

1
—efz( —0aPat (FPA_+A)

1, 2
I(lﬂl/f)],

choice of the independent fields. it depends upon the specific choice of the independent fields,
Finally, after solving the secondary constraints in terms ofin terms of which the constraints are solved. Actually, this

the independent field§,(x),a=1,...,6, theHamiltonian  apparent ambiguity is not there. As a matter of fact, we recall

(4.4) takes its Dirac’s form which becomes that perturbation theory stems from the assumption of the

existence, at least formally, of the so called evolution opera-

(sl tor, which implements the time-dependent unitary transfor-
HD_J d*x 2 (m )"+ 4 FapFap mation relating the interacting to the free fields—see, for

instance[13].

On the other hand, we know that a unitary operator is
such to preserve the canonical equal time field algebra. This
means that, in the case of constrained systems, the suitable
independent interacting fields must satisfy the very same

X (i 779 . p—moly+eA, )t (4.9  equal time operator algebra as the corresponding free fields
do. In terms of those, and only those, independent interacting
fields the interaction Hamiltonian has to be expressed and

which is the starting point to develop perturbation theory aserturbation theory will be safely and consistently devel-

_(i(?alﬂTTaT‘l' mlpTo.l_eAal//TTaT)

iv2D_

we discuss in the next section. oped.
From the constrainté4.3b),(4.5b and the Dirac’s brack-
V. PERTURBATION THEORY ets(4.8), it is an easy exercise to show that
In order to separate the interaction Hamiltonian in a con- {A(X),t//(y)}Dlx+=y+=iez,b(x)5<3)(x—y), (5.1

strained system, one has to be very careful in the choice of

the independent canonical variables: as a matter of fact, thehereas, in the free field case, the corresponding Dirac’s
basic criterion to select the latter ones is eventually dictatetiracket vanishes. As a consequence, the construction of the
by the structure of the Dirac’s brackets of the interactinginteraction Hamiltonian as a functional of the fields

theory. A, Ay, A_, A, ¢, " does not make sense in order to set up
On the one hand, after choosirig(x),a=1,...,6 as perturbation theory. The interaction Hamiltonian is ex-

independent fields, we see that the first line of the RHS ofressed in terms of the set of independent figdgkx), a

Eq. (4.9 does not contain the coupling constarnd, con- =1, ...,6,whose Dirac's bracket&.8) do not depend upon

sequently, does not contribute to the interaction Hamiltonianthe electric charge, what makes it now clear why the above
On the other hand, had we chosen as independent fields tladgebra(4.8) has been precisely put forward.
setA;, Ay, A_, A, ¢, 4", which is a perfectly legitimate We now consider the second line of the Hamiltonian
choice, then, after solvingg~ as a functional of the above (4.9). As all the field operators in the interaction picture
variables, we find that the first line in the RHS of E4.9) evolve according to free equations of motion, it is convenient
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to replace withy and x' those linear combinations of the ) )
fields yand ", which coincide with the solutions of the free () 20
constraint equation€3.83,(3.8b). After this, we can rewrite

the Hamiltonian(4.9) in the form

— > = s
3 1 2 1
IID dXZ(H ) qlaﬁlaﬁ

________ = D,
+(iv2o_x"+eAy T “
— T
X V2D _
— = —— - — - =S
d
X(—i\/ié’XJreAaT“z//)]. (5.2 @
If we now perform, within the second line of the above SR
equation, the following replacements: namely, (e)
1
X5 Yty W, (5.33
> - - >
{®
a¢ 1 + anp (5 3b)
T — , .
v Y | . |
1 @
s — Wy (5.30
X v )
—— e e ey
1— {h)
Yot S WytytyT, (5.30
FIG. 2. Feynman'’s rules.
we eventually obtain L ) .
To this aim, let us first obtain the Feynman’s rules. From
the definition(4.6) together with the identity
Hsz dsx{l(ﬂ-)erEF Fapt Wy io W y* y* y*
2 4 aptab 7 A_ 27 A,,)’V 7: (56)

2

— e — 1
—eAVy*" W+ — A Vy* — A y"Vi. (5.4 . . — .
ATy 2 "wEY ip_ ™Y 64 we can formally expand the interaction Hamiltonian density
as
It is evident, from the above final form of the Dirac’s
Hamiltonian, that the interaction Hamiltonian density, upon
which perturbation theory is set, reads +

: L= =Y. y
i Hinn=1eA,Vy*¥—ieA, Vy* 25 ieA,y"¥

2 +
Hi= — ATy + = A Wy 2 A,y"F. (5.5 on T 1l
int w2 Y 2 Mu Y iD_ yY *- . —|eAM‘I'y“ 29 |eApyp 25
+ +
It is now apparent that, besides the usual covariant vertex of XieA "W —ieA Tyk Y A v R
QED, we have to consider, taking the formal definitidnb) v " 29 P 24_
into account, an infinite number of noncovariant vertices. On "
the other hand, we have seen that also the free Dirac’s propa- XieA,y" A ieA,y" W+ (5.7)
gator (3.21) exhibits a noncovariant term besides the usual 7729 !

one. What happens, as we shall here explicitly show up to

the one loop order, is that in dimensionally regularized trunwhere the antiderivative@ntegral operatopsact upon all the
cated Green’s functions all those noncovariant terms cancefactors on their right.

leaving us with the very same renormalizable one loop struc- From Egs.(2.39), (3.21) and(5.7), we get the Feynman’s
tures, as found in the standard STC framew{@k rules listed in Fig. 2.
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involves a further analytic tool. Owing to the above cancel-
lation mechanisms, either algebraic or due to dimensional
(a) regularization of integrals over transverse momenta, it be-
comes clear why it is immaterial to specify any prescription
to understand noncovariant denominators in fermions propa-
gators as well as in the interaction vertices, at least in per-
turbation theory.

To sum up, we have shown that, concerning one loop
dimensionally regularized truncated Green’s functions, the
light-front formulation of QED in the light-cone temporal
gauge actually reproduces the very same result as in the stan-
dard STC renormalizable angerturbatively unitary ap-

;TN . : : : "
Q ) m ) u . proach[8], in which noncovariant singularities are regulated
N /

[
*L

A

(b)

1

by means of the ML prescription.

/ ™,
- S V...
© @ oo VI. CONCLUSION

A consistent light-front formulation of perturbative QED
has been worked out in the light-cone gaufje=0, in
which the LCCx™ plays the role of the evolution parameter.
Owing to this, it is natural, by analogy with the ordinary STC

that in the one loop truncated Green'’s functions, but photoﬁormulatlon, to refer our choice as to “temporal” light-cone

self-energy diagram, all the noncovariant terms cancel alged2uge, altemative to the original “axial” choiok_=0. By
braically. consistent, we understand that the quantization scheme here

For instance, taking two covariant vertidggg. 2e)] and  developed reproduces, at least up to the one loop order, the
a second order noncovariant offéig. 2f)], we reconstruct Same off-shell amplitudes as computed from the conven-
the full one loop electron self-energgee Fig. 8a)], which,  tional correct approach in usual STC,8], which embodies
after the removal of the external legs, turns out to be thdéhe ML prescription to define the spurious noncovariant sin-
correct renormalizable one of the standard STC approach. gularities of the free photon propagator.

Moreover, the one loop renormalizable electron-positron-  This result is nontrivial and, in turn, also rather surprising.
photon proper vertex can be reconstrucfede Fig. )] As a matter of fact, it has been thoroughly unravelléd]
taking the covariant vertices of Fig(el as well as first and that in the quantization of gauge theories in ordinary STC,
second order noncovariant vertices of Figé) and Zg) into  the use of the tempordbr Weyl) subsidiary conditionA,

FIG. 3. (a) One loop electron self-energgh) One loop electron-
positron-photon vertexc) One loop photon self-energy.

Using these rules, it is not difficult to check graphically

account. =0 is undoubtedly much more troublesome than the axial
_Let us come now to the photon one loop self-energy ofone A;=0, which is in turn also affected by subtle math-
Fig. 3(c). ematical pathologie§l5]. Eventually, in spite of the huge

After summation of the relevant VerticeS, we see that, benumber of attempts and effortsl the prob'em of Setting up a
side the correct standard diagram, a further noncovariant|ly consistent perturbation theory in the temporal gauge is
graph is there, whose corresponding intedmal2w space-  still to be solved.
time dimensionkis provided by On the contrary, within the light-front perturbative formu-

lation of QED, the “temporal” gauge choick, =0 appears
to be the safe one, which naturally leads to the ML prescrip-
d?el ) o - y* tion and thereby to the equivalence with the convention ap-
(zw)szr Y20 +p) Y 20 | proach in STC, whilst the “spatial” choicé_=0 drives to
(5.9 inconsistency5]. _ _ _

A further comment is deserved to the gauge invariace of
the regularization methods in perturbation theory. It clearly
appears that, in the present context, the use of dimensional
regularization is crucial, in order to provide an infinite set of
diagrams cancellation, in the absence of which gauge invari-

J d2w|:f d|+f dI*J d?=2 ance of QED would be lost. Things are not so lucky for
cut-off or Pauli-Villars regularizations, which, thereof, turn
out to be quite inconvenient within the perturbative light-

we immediately see that integration over transverse momentaont approach.

in Eq. (5.8 gives a vanishing result. This is the only point, It should be noticed that the presence of an infinite num-
up to the one loop approximation, in which the cancellationber of noncovariant vertices, switching on order-by-order in
of noncovariant vertices does not take place algebraically butght-front perturbation theory, closely figures the structure

IP"(p_>=(ie>2f

However, since
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of counterterms for the 1Pl vertices in the standard ST(paper, together with the generalization of the present treat-
approach to the light-cone gaugs]. This feature is prob- ment to the non-Abelian case.

ably connected to the specific properties of the ML propaga-
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