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Evaluation of glueball masses from supergravity
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In the framework of the conjectured duality relation between largeN gauge theory and supergravity the
spectra of masses in largeN gauge theory can be determined by solving certain eigenvalue problems in
supergravity. In this paper we study the eigenmass problem given by Witten as a possible approximation for
masses in QCD without supersymmetry. We place a particular emphasis on the treatment of the horizon and
related boundary conditions. We construct exact expressions for the analytic expansions of the wave functions
both at the horizon and at infinity and show that requiring smoothness at the horizon and normalizability gives
a well defined eigenvalue problem. We show, for example, that there are no smooth solutions with a vanishing
derivative at the horizon. The mass eigenvalues up tom251000 corresponding to smooth normalizable wave
functions are presented. We comment on the relation of our work with the results found in a recent paper by
C. Csáki et al., hep-th/9806021, which addresses the same problem.@S0556-2821~98!09620-9#
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I. INTRODUCTION

The problem of solving QCD in the nonperturbative lar
N limit has been outstanding for several decades@1,2#. It has
been suspected that the answer to this question will co
from string theory. Recently a very interesting proposal@4#
has been introduced and further explored@6–8# which in-
volves a relationship between largeN super Yang-Mills
theory and anti–de Sitter space~AdS! supergravity@5–25#.
This correspondence which was first investigated in stud
of 3-branes gives the possibility of studying largeN proper-
ties of Yang-Mills theories using classical supergravity@3#.
The later is expected to give results that should be valid
the strongly coupled gauge theory. At the present time co
parison of the two theories has been done for operators
correlators protected by supersymmetry@13–21#. Other
quantities such as the entropy or Wilson loops represent
dictions of the conjecture@4–25#. For general systems in
volving p branes a notion of generalized conformal symm
try was found in @23#. One can expect that a simila
correspondence holds also in theories without supersym
try and ultimately in QCD. Witten has presented such
extension where properties of finite temperature Yang-M
theories are to be computed using AdS black hole ba
grounds in gravity@8#.

According to Witten’s generalization of the conjecture
Maldacena in@4#, in order to studyN54 super Yang-Mills
theory at largeN, high temperature and strong ’t Hooft cou
pling, one should consider the Euclidean Schwarzchild bl
hole solution in AdS53S5 space-time in the limit where th

*Email address: rdm@het.brown.edu
†Email address: antal@het.brown.edu
‡Email address: mm@barus.physics.brown.edu
§Email address: nunes@het.brown.edu
0556-2821/98/58~10!/105009~7!/$15.00 58 1050
e

s

r
-

nd

e-

-

e-
n
s
k-

k

black hole mass is large@8#. In this limit the metric can be
written as

ds25S r 2

b2
2

b2

r 2 D dt21
dr2

~r 2/b22b2/r 2!

1r 2(
i 51

3

dxi
21b2dV5

2 , ~1!

wheredV5
2 is the round metric onS5, r 5b is the horizon

radius and the coordinatet is the Euclideanized periodic
time coordinate. This metric is obtained as a solution to
type IIB supergravity equations of motion following from
the g→0 limit of the action

S52
1

16pG10
E d10xAgFR2

1

2
~]f!2

1•••1g expS 2
3

2
f DW1••• G , ~2!

where the orderg51/8z(3)a83 terms contain the first string
corrections to supergravity and whereW is a certain combi-
nation of terms quartic in the Weyl tensor@24,25#. The in-
clusion of stringya8 corrections corresponds to includin
strong coupling expansion corrections in the gauge the
@4,7,8#.

In this paper we would like to study the proposal in@8# for
the supergravity calculation of the mass gap in QCD. In
next section we will examine the equations of motion f
free scalar field propagation on AdS black hole backgrou
by rewriting them in the form of a Hamiltonian problem. W
will then address the problem of the behavior of the wa
function at the horizon. In Sec. III we present our exact
sults for the wave functions and show that there are no n
malizable smooth solutions with vanishing derivative at t
©1998 The American Physical Society09-1
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horizon. Using the exact form of the solutions we then e
hibit the glueball mass eigenvalues predicted by superg
ity. Finally, in Sec. IV we close with some conclusions.

II. BLACK HOLE BACKGROUNDS

According to Witten the equations for a free field prop
gation, ]m(Aggmn]nh)50 for a scalar field, in the five-
dimensional space-time described by the first terms of
~1! with t compactified onS1 should give glueball masse
for three-dimensional QCD (QCD3). Similarly a computa-
tion in an AdS7 black hole background is expected to be
relevance for glueball masses in QCD4 @8#. One should look
for solutions behaving like~static! plane waves along thexi
directionsf;h(r )eik•x and then demanding normalizabilit
and regularity of the behavior ofh(r ) at r 5b andr 5` will
select only certain allowed discrete values form252k2.
These values ofm2 are then interpreted as particle masses
the three-dimensional world parametrized by thexi . To
study the corrections to these masses in the strong coup
expansion one then should work with theO(g) corrections
to the background metric~1! and to the dilaton field. To
O(g) and for the purpose of computing mass corrections
is consistent to take a classical solution with a vanish
dilaton field. TheO(g) correction to the metric was found i
@25# and one uses it to compute theO(g) corrections to the
glueball masses.

Consider the general metric for the AdSn11 black hole in
the large mass limit@8#

ds25S r 2

b2
2

bn22

r n22 D dt21
dr2

~r 2/b22bn22/r n22!
1r 2(

i 51

n21

dxi
2 .

~3!

The equation of motion for a free scalar field of the for
f;h(r )eik•x is then given by

] rS r n21S r 2

b2
2

bn22

r n22 D ] rh D 1r n23m2h50, ~4!

wherem252k2 is the (n21)-dimensional mass. Conside
the measure coming from the metric~3! above ~we setb
51 for the remainder of this section!

^huh&5E
1

`

drr n21h~r !h* ~r !. ~5!

In order to trivialize the measure we can take a new varia
y5r n/2 for which with F(y)5y1/2h(y) the equation be-
comes

]y„~y221!]yF…1F2 1
4 ~31y22!1

4m2

n2
y24/nGF50.

~6!
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Integrating Eq.~6! from the horizon tò againstF* (y) and
integrating by parts assuming normalizability and smoo
ness we obtain a bound on the possible values ofm2. For
example, forn54 we find thatm2.4. To eliminate the first
derivative term in Eq.~4! and to write that equation in term
of a Hamiltonian problem we now takey5r n/25cosh(w) and
redefineA(w)5sinh(2w)1/2h(w). This gives

1
2 ]w

2 A~w!2V~w!A~w!50, ~7!

where the potential is now given by

2V~w!512sinh~2w!222
4

n2
m2cosh~w!24/n. ~8!

We are interested in the wave functionA(w) for the zero
eigenvalue of Eq.~7!. If we expand the potential around th
horizon w50 we obtain V(w)521/(8w2)1„2/3
2(2m2)/n2

…1„(4m2)/n322/15…w21O(w4). The harmonic
oscillator perturbed by a potential of the forml(1/w2) was
examined in@26#. Our potential corresponds precisely to th
limiting casel521/8 in that reference beyond which th
Hamiltonian is not bounded below. The indicial equation f
Eq. ~7! with the potential expanded about the horizonw
50, will have a double root12 . Therefore, near the horizo
we will have the behaviors A(w);w1/2 and
A(w);w1/2ln(w) for the two independent solutions of Eq
~7!. Both solutions are normalizable nearw50 and we also
have a normalizable density of probability currents at
horizon of the form J(w);A(w)]wA(w);const or
; ln2(w). The two solutions give wave functionsh(r ) for
Eq. ~4! which behave near the horizon likeh(w);const or
h(w); ln(w). The first derivatives then becomedh/dr
;const ordh/dr;const/w. We therefore expect that th
Neumann boundary condition may never be attained at
horizon for a regular solution. Indeed we note that we hav
potential which is singular at the horizon and that it could
expected that it is not possible to demand Dirichlet or Ne
mann boundary conditions there and as we will see thi
what happens in our case. It would be interesting from t
general point of view to understand if possible tunneli
effects could contribute in a small amount to the values
the eigenmasses. Our solutions of Eq.~4! which we will
present in the next section are consistent with the above
havior.

To formulate the eigenvalue problem, one fixes the
havior at` such that the solution is normalizable. Then d
manding regularity of the solution at the horizon determin
a discrete set of masses. The equations that describe
wavefunctions corresponding to motion in the AdS bla
hole backgrounds have regular singular points at 0,1,hori
and` and also at other points according to the value ofn. In
view of the discussion above, it might be tempting to ask
solutions which are regular at the origin~instead of the ho-
rizon! and which decay well enough at̀, and hope that this
would define an interesting eigenmass problem. Howeve
closer look at Eq.~4! shows that the eigenvaluesm2 even if
they exist are not guaranteed to be positive in that situat
9-2
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III. CALCULATIONS AND RESULTS

To leading order ing the equation of motion for the qua
dratic fluctuationh0 of the dilaton field is@8#

] r„r ~r 42b4!] rh0…1m0
2b2rh050, ~9!

where one takesb,r ,` and wherem0 is the leading con-
tribution to the mass in the strong coupling expansion. T
eigenvaluesm0

2 will provide the masses of the scalar glueb
O11 states. Considering first the behavior of the solution
infinity it is useful to rewrite the equation in the variablez
5b/r with 0,z,1:

d

dzS zS 1

z4
21D dh0

dz D 1
1

z3

m0
2

b2
h050. ~10!

One wants to find normalizable wave function solutions
Eq. ~9! and this fixes the behavior at̀ to be like h0
;1/r 4. This 1/r 4 behavior at` provides us with a Taylor
expansion forh0 aroundz50 of the formh05(n52

` cnz2n

where to fix the overall normalization ofh0 we take c1
[0, c251 and then obtain the recursion relation forn>2:

cn1152
cn~m0

2/b2!2cn21„2~n21!~2n23!12~n21!…

~2n12!~2n11!26~n11!
.

~11!

We next concentrate on the behavior of the solutions
this equation near the singularity at the horizon. We will fi
find an expression for the analytic solution at the horizon a
use it to reduce the order of the equation and show that
other independent solution is not smooth at the horizon
order to better describe the vicinity of the horizon let us u
the variablez5b2/r 22151/z221 such that the horizon is1

at z50. The equation becomes

d2h0

dz2
1S 2

1

z11
1

1

z12
1

1

z Ddh0

dz

2
m0

2

8b2S 2
2

z11
1

1

z12
1

1

z Dh050, ~12!

where we can expand the fractional coefficients in power
z and where we take a power series ansatzh0(z)
5(n50

` bnzn. We obtain that the first coefficientb0 is free,
b15(m0

2/8b2)b0 and that the other coefficients can be det
mined in terms ofb0 from the recursion relation

1One could take 1/r 21 as well but it turns out that 1/r 221
provides a much better behavior of the coefficients of the po
series for the regular solution and this is important to ensur
proper numerical treatment of the problem.
10500
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~n12!2bn125
m0

2

8b2
bn112 (

k50

n

~k11!~21!n2k

3S 1

2n2k11
21D bk11

1
m0

2

8 (
k50

n

~21!n2kbkS 1

2n2k11
22D .

~13!

At the horizon this solution goes to a constantb0 and the
first derivative dh0 /dr5(22/b)dh0 /dz5(22/b)b15
(2m0

2/4b3)b0Þ0. We will now use this solution to reduc
the order of the equation and find a second linearly indep
dent solution. Letc be the analytic solution defined by th
recursion relation~13! and seth05c•g. Inserting into Eq.
~12! we obtain a first order equation for thez derivative ofg:

d2g

dz2S dg

dz D 21

12
dc

dz
c211S 2

1

z11
1

1

z12
1

1

z D50,

~14!

implying that dg/dz5const(z11)/„z(z12)c2
…. Therefore

the second solution to Eq.~12! has a first derivative which
blows up at the horizon and is not smooth there. Con
quently, there are no smooth solutions with a vanishing fi
derivative at the horizon. This behavior in the region close
the horizon is consistent with the results of Sec. II where
have seen that the problem reduces to a Schrodinger pro
for the harmonic oscillator perturbed by a potential of t
form V(x)5(21/8)1/x2.

We would now like to use the exact form for the seri
solution at the horizon and try to fix the overall normaliz
tion by choosing the coefficientb0 in such a way that this
solution matches with the Taylor expansion~11! obtained by
expanding at spatial infinityz50. Of course, such a match
ing of the two Taylor expansions over an interval will b
possible only for certain values ofm0

2 and these are the val
ues for the masses. We have used these exact expressio
the analytic expansions of the wave functions and h
evaluated them numerically. We found that in practice t
method yields strong conditions on the allowed values ofm0

2

which can be found with an arbitrarily high numerical prec
sion. Indeed we found that for the allowed values ofm0

2 and
once we compare the values of the two Taylor expansion
one point to fix the coefficientb0 , the two Taylor expansions
actually agree to a very high accuracy over an entire inte
thus providing an impressive test of the method. Sm
changes in the values ofm0

2 away from the correct value ar
easily detected by the mismatch they produce between
Taylor expansions at the horizon and at`. As an example
we show the wave function for the 12th eigenvaluem0

2

5895.8 in Fig. 1. We plotted the solution inx5b/r . The
curve starting at the origin is determined from the Tay

r
a
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DE MELLO KOCH, JEVICKI, MIHAILESCU, AND NUNES PHYSICAL REVIEW D58 105009
expansion at infinity which we take up tox50.9. We find
that the power series converges extremely well in this reg
From x51 we use the Taylor series from the horizon dow
to x50.8 where again we find a rapid convergence. As
clear from the figure the two expansions match perfectly
expected since we are describing the exact analytic form
the solution. We note that the radial derivative at the horiz
is not zero~it is a factor of order one times thex derivative!
and is in fact not small. We find similar results for the oth
mass eigenvalues.

In Table I we reproduce the first twelve values ofm0
2 .

The authors of@28# used a ‘‘shooting’’ technique and nu
merically integrated the differential equation using the Ta
lor expansion at̀ as an initial condition. To fix the values o
m0

2 one needs to fix the boundary condition at the horizon
one uses the Neumann boundary conditionh0850 as pro-
posed in@8#, one finds numerical values form0

2 that are in
excellent agreement with the values in Table I even tho
there are no smooth solutions satisfying that boundary c
dition. Although the dependence of the eigenmass value
the boundary condition at the horizon is relatively weak, t
is of course not true for the wave functions since one
precisely discussing the first derivative at the horizon. T
fact that the actual eigenvalues turn out to agree is inter
ing. It can be explained by the fact that in the ‘‘shooting
techniqueh08(b) is a rapidly varying function ofm0

2 as can
be seen from Fig. 2. We can expect that the discrepa
between the exact mass and the one obtained using the
mann boundary condition will increase with increasi
masses since the exact boundary condition hash08 at the
horizon increasing withm0

2 . This point should be taken in
consideration in future work on the subject and in particu
in future studies of mass spectra from supergravity wh
one could conceivably demand a high accuracy.

FIG. 1. The exact wave function form0
25895.5. The horizontal

axis isx5b/r . From x50 up tox50.9 we use the Taylor expan
sion at`. Fromx51 down tox50.8 we use the Taylor expansio
about the horizon located atx51.
10500
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We emphasize that our construction is based on match
the analytic forms of the wave functions over an extend
interval. Consequently, the size of the error in the deter
nation of the masses in our approach leads us to exclude
possibility of an exact mass formula of the formm0

256n(n
11).

To find theO(g) corrections to the masses of theO11

glueballs one needs to study the equations of motion
quadratic fluctuations of the dilaton field in the metric bac
ground~1! corrected to leading order ina8. This correction
was found in@25# where one can also find the expression
W. One sets m25m0

21gm1
21O(g2) and h(r )5h0(r )

1gh1(r )1O(g2) and perturbs Eq.~2! about the vanishing

FIG. 2. This plot shows the dependence of the derivative at
horizon dh0 /dr(b) as a function ofm0

2 in the ‘‘shooting’’ tech-
nique. The wave function is normalized so that the first term in
Taylor expansion about̀ is 1. In this normalization the exact wav
function hasdh0 /dr520.03 which would put the exact mass
m0

2 above 11.588 while the Neumann boundary condition wo
give m0

2 below 11.588.

TABLE I. The exact eigenvalue massesm0
2 for the O11 glue-

ball in QCD3 derived from supergravity. Note that these exact s
pergravity masses have been rounded to the accuracy shown.

SUGRA m0
2

11.5877
34.5270
68.9750
114.9104
172.3312
241.2366
321.6265
413.5009
516.8597
631.7028
758.0302
895.8410
9-4



e
on
b

fe
o
th
s

t
d
d
ic

as
c

s
es

t
ll
a

on
ely

zon

at

EVALUATION OF GLUEBALL MASSES FROM SUPERGRAVITY PHYSICAL REVIEW D58 105009
dilaton background.2 This gives the equation of motion~with
b51)

d

drS r ~r 421!
dh1

dr D1rm0
2h1

5~r 52r !S 2
300

r 5
2

600

r 9
1

1980

r 13 D dh0

dr

1S 2rm1
22rm0

2S 75

r 4
1

75

r 8
2

165

r 12 D
1

405

r 13
1m0

2 120

r 11 D h0 . ~15!

Normalizability and the already known behavior ofh0 once
again fix the behavior ofh1 at `. By an analysis similar to
the one we performed above one can show that there ar
smooth solutions with a vanishing derivative at the horiz
In this case the expressions for the Taylor expansions
come a bit cumbersome. We have calculated the first
mass correctionsm1

2 by the method of matching the tw
Taylor expansions for the exact solutions. Once again for
same reasons that we explained above, we found value
m1

2 which coincide with the ones obtained by Csa´ki et al.
@28# via the ‘‘shooting’’ technique and we will not repea
those values here. Therefore, we also have nothing to ad
the physical analysis that was done in that reference an
particular on the comparison with the results from the latt
@27#.

In @28# the authors also studied the spectrum for theO22

glueball in three-dimensional QCD and the glueball m
spectra in four-dimensional QCD obtained from the bla
hole geometry in AdS73S4 @8#. The results of our analysi
apply equally well to those cases. We note that in all th
cases there is only one smooth solution at the horizon as
indicial equation always has a double root. This is physica
interesting since otherwise matching with the behavior
. T

ll

n

10500
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infinity would most probably not put enough restrictions
the wave functions and the eigenmass problem would lik
be ill defined.

In the case of theO22 glueball in QCD3 one has the
eigenvalue problem@28#

r ~r 421!
d2h0

dr2
1~31r 4!

dh0

dr
1~m0

2r 216r 3!h050.

~16!

Normalizability fixes the behavior at̀ to be h0(r );r 24

and the Taylor expansion at̀ has the form h0(r )
5(n50

` cnxn12 with x51/r 2 ~we setb51) and

cn5
„4n~n21!112n…cn222m0

2cn21

4~n12!~n11!21614~n12!
, ~17!

with c051 and c152m0
2/20. At the horizon we use the

variable y5x21 and the ansatzh0(y)5(n50
` bnyn where

we obtain, from Eq.~16!,

TABLE II. Values of m0 for the O22 glueball in QCD3 ob-
tained from matching the exact Taylor expansions at the hori

and ` in supergravity.m̃0 is the same mass normalized such th
the lowestO11 mass is 4.07.

O22 m0 O22 m̃0

5.1102 6.11
7.8234 9.35
10.3591 12.39
12.8375 15.35
15.2909 18.28
17.7280 21.20
20.1528 24.09
22.5718 26.98
24.9868 29.88
27.3998 32.76
29.8088 35.64
bn5
„24~n21!~5n22!1m0

2216…bn211„m0
224~n22!~4n23!…bn2224~n23!~n27!bn23

8n2
~18!
es

we
ass

t

with b0 fixed by the Taylor expansion at̀ and b15(m0
2

216)b0/8 andb25(m0
2248)b1/321m0

2b0/32. We now find
the mass eigenvalues by matching these two expansions
results form0

2,1000 are shown in Table II.
We observe that for theO22 three-dimensional glueba

2Even though the dilaton is corrected toO(g) as was calculated in
@25# this does not affect the equation of motion for the fluctuatio
h to this order.
he

our exact values for the masses differ slightly from the on
obtained in the shooting technique in@28#.3 As our first ei-
genvalue essentially agrees with the one in that reference
confirm the agreement between the ratio of the lowest m
O22 andO11 glueballs in QCD3 in supergravity and on the
lattice reported in@28#. For completeness, in Fig. 3 we plo

s
3However, the mass ratios are still in excellent agreement.
9-5
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the wave functionh0 corresponding to the mass eigenval
m0527.3998.

Finally, we will examine theO11 glueball in four-
dimensional QCD. The appropriate wave equation is in t
case@28#

~s72s!
d2h0

ds2
1~8s622!

dh0

ds
1s3m0

2h050, ~19!

FIG. 3. This plot shows the wave functionh0 for the O22

glueball in QCD3 with m0527.3998. The plot is obtained from th
Taylor expansions at the horizon and̀which agree perfectly.
n

lo

tu
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m
e

s
io

da
re
liz
t n

10500
is

with r 5s2. At ` the Taylor expansion is of the form, with
x51/r , h0(x)5(n50

` cnxn17/2 where c051, c152m0
2/18

andc25m4/792. The recursion relation is

cn215
„4~n21/2!~n23/2!12~n21/2!…cn242m0

2cn22

4~n15/2!~n13/2!210~n15/2!
.

~20!

At the horizon we use the variabley5x21 and the ansatz
h0(y)5(n50

` bnyn which gives

TABLE III. Values of m0
2 and m0 for the O11 glueball in

QCD4 obtained from matching the exact Taylor expansions at
horizon and̀ in supergravity.

O11 m0
2 O11 m0

26.9498 5.1913
63.8820 7.9926
114.1326 10.6833
177.7429 13.3320
254.7283 15.9602
345.0944 18.5767
448.8437 21.1859
565.9776 23.7903
696.4967 26.3912
840.4013 28.9897
997.6925 31.5863
bn115
22~n22!~2n25!bn2222~n21!„318~n22!…bn212„24n~n21!2m216n…bn

12n~n11!112~n11!
, ~21!
n-
ing
ns,
pre-

ith
o
cy.
s of
in-
ctra

ady
is
ect
ision

n,
-

where b0 is fixed by matching with the Taylor expansio
from ` andb152m0

2b0/12 andb25m0
2(m0

226)b0/576. The
masses we obtained are exhibited in Table III.

In this case our exact mass eigenvalues are also in c
agreement with the ones presented in@28#.

IV. CONCLUSIONS

We have examined the eigenvalue problems that fea
in Witten’s generalization of the conjecture by Maldace
regarding largeN supersymmetric gauge theory at high te
perature and strong coupling. We have studied the eig
value problem through exact analytical expansions~at both
the horizon and infinity! and evaluated these exact expre
sions numerically. We have analyzed carefully the behav
of eigenfunctions at the horizon and discussed the boun
conditions. We have emphasized the fact that the cor
criteria for selecting the wave eigenfunctions are norma
ability and smoothness at the horizon, have shown tha
se
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smooth solutions exist with vanishing derivative~Neumann
boundary condition! at the horizon, and have given a co
struction of such smooth solution. Given that we are us
exact analytic expressions for the various wave functio
our mass eigenvalues can be determined to any desired
cison.

Our values for the glueball masses are in agreement w
the ones found in@28# and we have explained why the tw
techniques give identical results to this level of accura
Since we used exact formulas for the analytic expansion
the wave function solutions we believe that our work re
forces the good agreement between various glueball spe
obtained in supergravity and on the lattice as was alre
described in@28#. We hope that the results of this analys
will be of use for further studies of the conjecture. We exp
that indeed they will be necessary as soon as higher prec
in the mass values becomes important.

Note added. While the present work was in preparatio
we received the paper@28# which examines the same prob
9-6
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lem. In the body of the text we have therefore described
relation between these two studies. After completion of t
work the paper hep-th/9806128 by M. Zyskin which h
some overlap with our paper also appeared. We also rece
comments on the correct treatment of the boundary condi
at the horizon by E. Witten and A. Hashimoto and I. Kl
banov~private communications!.
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