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In the framework of the conjectured duality relation between la¥ggauge theory and supergravity the
spectra of masses in largé gauge theory can be determined by solving certain eigenvalue problems in
supergravity. In this paper we study the eigenmass problem given by Witten as a possible approximation for
masses in QCD without supersymmetry. We place a particular emphasis on the treatment of the horizon and
related boundary conditions. We construct exact expressions for the analytic expansions of the wave functions
both at the horizon and at infinity and show that requiring smoothness at the horizon and normalizability gives
a well defined eigenvalue problem. We show, for example, that there are no smooth solutions with a vanishing
derivative at the horizon. The mass eigenvalues umte 1000 corresponding to smooth normalizable wave
functions are presented. We comment on the relation of our work with the results found in a recent paper by
C. Cs&i et al, hep-th/9806021, which addresses the same proflg8%556-282198)09620-9

PACS numbsgs): 12.60.Jv, 04.65-e, 98.80.Cq

I. INTRODUCTION black hole mass is large8]. In this limit the metric can be
written as
The problem of solving QCD in the nonperturbative large

N limit has been outstanding for several decadeg]. It has
been suspected that the answer to this question will come ds’=
from string theory. Recently a very interesting propd<al
has been introduced and further explof&d-8|] which in-
volves a relationship between largé super Yang-Mills +r22 dx?+b%dQ3, (1)
theory and anti—de Sitter spac&dS) supergravity[5—25). =t
This correspondence which was first investigated in studie
of 3-branes gives the possibility of studying lafyeroper- radius and the coordinate is the Euclideanized periodic

ties of Yapg-MnIs theones_ using classical supergra\[[ﬂ': time coordinate. This metric is obtained as a solution to the
The later is expected to give results that should be_ valid foEyloe IB supergravity equations of motion following from
the.strongly coupled gauge theory. At the present time comg, y—0 limit of the action

parison of the two theories has been done for operators and

correlators protected by supersymmetf$3—21. Other 1 1

quantities such as the entropy or Wilson loops represent pre- S=- 167G f dlox\/ﬁ[ R— E(aqb)z

dictions of the conjecturg4—25]. For general systems in- 10
volving p branes a notion of generalized conformal symme- 3

try was found in[23]. One can expect that a similar tooot 79XF< - §¢)W+ o

correspondence holds also in theories without supersymme-

try and ultimately in QCD. Witten has presented such anyhere the ordety=1/87(3)a’3 terms contain the first string
extension Where properties Of f|n|te temperature Yang'Mi”SCorrectionS to Supergravity and whanhis a certain combi-
theories are to be computed using AdS black hole backnation of terms quartic in the Weyl tensf®4,25. The in-
grounds in gravity[8]. clusion of stringya’ corrections corresponds to including
According to Witten's generalization of the conjecture by strong coupling expansion corrections in the gauge theory
Maldacena ir{4], in order to studyV=4 super Yang-Mills [4,7,8].
theory at largeN, high temperature and strong 't Hooft cou-  In this paper we would like to study the proposal&j for
pling, one should consider the Euclidean Schwarzchild blackhe supergravity calculation of the mass gap in QCD. In the
hole solution in Ad$X S° space-time in the limit where the next section we will examine the equations of motion for
free scalar field propagation on AdS black hole backgrounds
by rewriting them in the form of a Hamiltonian problem. We

dr?
(r¥b2—b?/r?)

r2 b2
_ 2
b rz)d”

3

ﬁ/heredﬂé is the round metric or8®, r=b is the horizon

, 2

*Email address: rdm@het.brown.edu will then address the problem of the behavior of the wave
TEmail address: antal@het.brown.edu function at the horizon. In Sec. Ill we present our exact re-
*Email address: mm@barus.physics.brown.edu sults for the wave functions and show that there are no nor-
SEmail address: nunes@het.brown.edu malizable smooth solutions with vanishing derivative at the
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horizon. Using the exact form of the solutions we then ex-Integrating Eq(6) from the horizon toec against®* (y) and

hibit the glueball mass eigenvalues predicted by supergravntegrating by parts assuming normalizability and smooth-

ity. Finally, in Sec. IV we close with some conclusions. ness we obtain a bound on the possible valuemaf For

example, fom=4 we find thatm?>4. To eliminate the first

derivative term in Eq(4) and to write that equation in terms

of a Hamiltonian problem we now take=r"?= coshv) and
According to Witten the equations for a free field propa-redefineA(w) = sinh(2v)Y25(w). This gives

gation, aM(\/ﬁg’“’ayn)=O for a scalar field, in the five-

d|men3|onal space-time described by_ the first terms of Eq. %ava(w)—V(w)A(w)=O, )

(1) with 7 compactified onS' should give glueball masses

for three-dimensional QCD (QGJp. Similarly a computa-  where the potential is now given by

tion in an AdS black hole background is expected to be of

relevance for glueball masses in QC[B]. One should look

fqr sollutions behaving likgstatig plane waves along th)q_ . 2V(w)=1—sinh2w) 2— imzcosk(w)“””. ®)

directions¢~ 7(r)e'* * and then demanding normalizability 2

and regularity of the behavior af(r) atr=b andr =<0 will

select only certain allowed discrete values fof=—k?.  We are interested in the wave functié(w) for the zero

These values af? are then interpreted as particle masses ireigenvalue of Eq(7). If we expand the potential around the

the three-dimensional world parametrized by the To horizon w=0 we obtain V(w)=—1/(8w?)+(2/3

study the corrections to these masses in the strong coupling (2m*)/n?)+ ((4m?)/n®—2/15w?*+O(w*). The harmonic

expansion one then should work with th¥y) corrections Oscillator perturbed by a potential of the fomf{1/w?) was

to the background metri¢l) and to the dilaton field. To €xamined inf26]. Our potential corresponds precisely to the

O(y) and for the purpose of computing mass corrections, ifimiting case\ =—1/8 in that reference beyond which the

is consistent to take a classical solution with a vanishingiamiltonian is not bounded below. The indicial equation for

dilaton field. TheD(y) correction to the metric was found in Ed. (7) with the potential expanded about the horizan

[25] and one uses it to compute th¥ y) corrections to the =0, will have a double root. Therefore, near the horizon

II. BLACK HOLE BACKGROUNDS

glueball masses. we will have the behaviors A(w)~w*? and
Consider the general metric for the AdS black hole in ~ A(w)~w!4n(w) for the two independent solutions of Eq.
the large mass limif8] (7). Both solutions are normalizable near=0 and we also

have a normalizable density of probability currents at the
) L ) ne1 horizon of the form J(w)~A(w)d,A(w)~const or
r b 2y dr +r22 A2 ~In?(w). The two solutions give wave functionﬁ(r) for
(r2/b2—b"=2/r"-2) “~ T Eq. (4) which behav_e near the _horlzon lileg(w) ~ const or
3) n(w)~In(w). The first derivatives then becoméx/dr

~const ordxn/dr~constiv. We therefore expect that the

The equation of motion for a free scalar field of the form Néumann boundary condition may never be attained at the

&~ n(r)e* ¥ is then given by horlzon for a regular solution. Indeec_i we note that_we have a

potential which is singular at the horizon and that it could be

expected that it is not possible to demand Dirichlet or Neu-

2 pn-2 mann boundary conditions there and as we will see this is

5r( fn_l(—z_ n2> arﬂ) +r"°m?y=0, (4 what happens in our case. It would be interesting from this

b* v general point of view to understand if possible tunneling

Y ] ] ] effects could contribute in a small amount to the values of
wherem”=—k* is the (h—1)-dimensional mass. Consider the eigenmasses. Our solutions of E4) which we will
the measure coming from the metii8) above(we setb  hresent in the next section are consistent with the above be-
=1 for the remainder of this sectipn havior.
To formulate the eigenvalue problem, one fixes the be-
w0 havior ate such that the solution is normalizable. Then de-
(7| n)zj drr™ p(r) 7* (r). (50  manding regularity of the solution at the horizon determines
1 a discrete set of masses. The equations that describe the
wavefunctions corresponding to motion in the AdS black
In order to trivialize the measure we can take a new variablgole backgrounds have regular singular points at 0,1,horizon
y=r"2 for which with ®(y)=y"?5(y) the equation be- ande and also at other points according to the value.ofn
comes view of the discussion above, it might be tempting to ask for
solutions which are regular at the origiimstead of the ho-
am? rizon) and which decay well enough &t and hope that this
—1(3+y )+ iy74/n ®=0. would define an interesting eigenmass problem. However, a
2 closer look at Eq(4) shows that the eigenvalues’ even if
(6) they exist are not guaranteed to be positive in that situation.

&y((yz— 1)9,®)+
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I1l. CALCULATIONS AND RESULTS m2 n
2 __9 _ _1\n—k
To leading order iny the equation of motion for the qua- (n+2) bn+2_8b2 Bn+1 go (k+1)(—1)

dratic fluctuations, of the dilaton field i8]

1
>< R —
0 (1= b 7o)+ 321 7=, © (znk“ 1) P
where one takeb<<r <o and wherem, is the leading con- mg " e
tribution to the mass in the strong coupling expansion. The +?k§_‘fo (—1)" by on—kr1 —2].
eigenvalues’ng will provide the masses of the scalar glueball N
O " states. Considering first the behavior of the solution at (13

infinity it is useful to rewrite the equation in the variakde

=bir with 0<z<1: At the horizon this solution goes to a constdmtand the

first derivative da/dr=(—2/b)dz,/dl=(—2/b)b,=

d 1 d 7o 1 m3 (—m2/4b%)bo+#0. We will now use this solution to reduce
iz zZl -1 a9z 75 F 70=0. (100  the order of the equation and find a second linearly indepen-
z z

dent solution. Let) be the analytic solution defined by the

] ) ) _ recursion relation(13) and setny=-g. Inserting into Eq.

Eqg. (9) and this fixes the behavior at to be like 7,
~1/r*. This 1+* behavior at< provides us with a Taylor

expansion forp, aroundz=0 of the form 7,==;_,c,z>" d?g/dg\ "t dy 1 1
where to fix the overall normalization of; we takec; _2<d_§) +2d—§1p*1+ —m+§+—2+z =0,
=0, c,=1 and then obtain the recursion relation for2: dg (14)

2

o - Cn(Mg/b?) —Cp-1(2(n—1)(2n—3) +2(n—1)) implying thatdg/dZ=const¢+ 1)/({({+2)¥?). Therefore

n+l (2n+2)(2n+1)—6(n+1) ' the second solution to E@12) has a first derivative which

(1) blows up at the horizon and is not smooth there. Conse-

quently, there are no smooth solutions with a vanishing first
]derivative at the horizon. This behavior in the region close to
he horizon is consistent with the results of Sec. Il where we
ave seen that the problem reduces to a Schrodinger problem

r the harmonic oscillator perturbed by a potential of the

We next concentrate on the behavior of the solutions o
this equation near the singularity at the horizon. We will firstt
find an expression for the analytic solution at the horizon an
use it to reduce the order of the equation and show that th - >
other independent solution is not smooth at the horizon. IO V(X) = (—1/8)1&~.

order to better describe the vicinity of the horizon let us use W_e would now _Iike to use the exact form for the se_ries
the variable =b2/r2—1=1/z2—1 such that the horizons solution at the horizon and try to fix the overall normaliza-

tion by choosing the coefficierti, in such a way that this
solution matches with the Taylor expansidrl) obtained by
expanding at spatial infinitg=0. Of course, such a match-
d?7 1 1 1\dz, ing of the two Taylor expansions over an interval will be
> ( - + e possible only for certain values mg and these are the val-
d¢ {+1 f+2 ) d¢ .
ues for the masses. We have used these exact expressions for

at /=0. The equation becomes

mz2 2 1 the analytic expansions of the wave functions and have
=t st 70=0, (12 evaluated them numerically. We found that in practice this
8b ¢t1 f+2 ¢ method yields strong conditions on the allowed valuem@f

which can be found with an arbitrarily high numerical preci-
where we can expand the fractional coefficients in powers o&jon. Indeed we found that for the allowed valuesrgfand
{ and where we take a power series ansajg({)  once we compare the values of the two Taylor expansions at
=X ,_obn¢". We obtain that the first coefficiett; is free,  one point to fix the coefficiertt,, the two Taylor expansions
b,=(m3/8b?)b, and that the other coefficients can be deter-actually agree to a very high accuracy over an entire interval
mined in terms ob, from the recursion relation thus providing an impressive test of the method. Small

changes in the values af3 away from the correct value are

easily detected by the mismatch they produce between the

10ne could take T/—1 as well but it turns out that t#—1  Taylor expansions at the horizon andeat As an example

provides a much better behavior of the coefficients of the powele show the wave function for the 12th eigenvalog
series for the regular solution and this is important to ensure a&=895.8 in Fig. 1. We plotted the solution x=Db/r. The
proper numerical treatment of the problem. curve starting at the origin is determined from the Taylor
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x10° TABLE I. The exact eigenvalue masses for the O* " glue-
ball in QCD; derived from supergravity. Note that these exact su-
2 - pergravity masses have been rounded to the accuracy shown.

r I SUGRAmM3

0 11.5877
al 34.5270
68.9750
2r 114.9104
-l ] 172.3312
241.2366
321.6265
sl l 413.5009
516.8597
631.7028

T 0T oz 03 0% 05 05 o7 o8 o9 1 758.0302
895.8410

4t

6}

FIG. 1. The exact wave function fon3=895.5. The horizontal
axis isx=b/r. Fromx=0 up tox=0.9 we use the Taylor expan-
sion atee. Fromx=1 down tox=0.8 we use the Taylor expansion
about the horizon located at=1.

We emphasize that our construction is based on matching

the analytic forms of the wave functions over an extended
interval. Consequently, the size of the error in the determi-
expansion at infinity which we take up t0=0.9. We find  nation of the masses in our approach leads us to exclude the
that the power series converges extremely well in this regionpossibility of an exact mass formula of the fomﬁ 6n(n
Fromx=1 we use the Taylor series from the horizon down+1).
to x=0.8 where again we find a rapid convergence. As is To find theO(y) corrections to the masses of tle" "
clear from the figure the two expansions match perfectly aglueballs one needs to study the equations of motion for
expected since we are describing the exact analytic form afuadratic fluctuations of the dilaton field in the metric back-
the solution. We note that the radial derivative at the horizorground(1) corrected to leading order ia’. This correction
is not zera(it is a factor of order one times thederivative was found in[25] where one can also find the expression for
and is in fact not small. We find similar results for the otherw. One setsm?=m3+ym?+0(y?) and 7(r)= 7,(r)
mass eigenvalues. + y71(r)+0O(»?) and perturbs Eq(2) about the vanishing
In Table | we reproduce the first twelve valuesrg.
The authors 0f28] used a “shooting” technique and nu- 445
merically integrated the differential equation using the Tay-
lor expansion at as an initial condition. To fix the values of 0.1
m3 one needs to fix the boundary condition at the horizon. If
one uses the Neumann boundary conditigf=0 as pro- 0.05
posed in[8], one finds numerical values fanj that are in
excellent agreement with the values in Table | even though
there are no smooth solutions satisfying that boundary con-_; o5
dition. Although the dependence of the eigenmass values on
the boundary condition at the horizon is relatively weak, this _o.1
is of course not true for the wave functions since one is
precisely discussing the first derivative at the horizon. The -o.15
fact that the actual eigenvalues turn out to agree is interest-
ing. It can be explained by the fact that in the “shooting” %2/~
techniquen(b) is a rapidly varying function ofn? as can . , :
be seen from |:|g 2. We can expect that the dlscrepancy %58 11582 11584 11586 11588 1159 11502 11584 11596 11598 1.6
between the exact mass and the one obtained using the Neu-
mann boundary condition will increase with increasing horizon d o /dr(b) as a function ofm? in the “shooting” tech-

masses since the exact boundary condition hgsat the  nigue. The wave function is normalized so that the first term in the
horizon increasing wittmg. This point should be taken in Taylor expansion about is 1. In this normalization the exact wave
consideration in future work on the subject and in particularfunction hasdz,/dr=—0.03 which would put the exact mass at

in future studies of mass spectra from supergravity wheren? above 11.588 while the Neumann boundary condition would
one could conceivably demand a high accuracy. give m3 below 11.588.

FIG. 2. This plot shows the dependence of the derivative at the
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dilaton backgroun&.This gives the equation of motigdwith TABLE Il. Values of m, for the O™~ glueball in QCL} ob-
b=1) tained from matching the exact Taylor expansions at the horizon

ande in supergravity.m, is the same mass normalized such that
the lowestO** mass is 4.07.

d 4 dnq 2
a(r(r _1)W +rmgn,
077 mo (O ﬁ10
300 600 1980|d7,
—(r5-n)| - T)d_ 5.1102 6.11
r r r r 7.8234 9.35
10.3591 12.39
| —rm2—rm2 7_? 7_85_1_6135) 12.8375 15.35
r r r 15.2909 18.28
17.7280 21.20
. ﬂ%+ 2 120 . (15 20.1528 24.09
r13 r11 22.5718 26.98
24.9868 29.88
Normalizability and the already known behavior f once 57 3993 32.76
again fix the behavior ofy; ate. By an analysis similar to  5g gogg 35.64

the one we performed above one can show that there are no
smooth solutions with a vanishing derivative at the horizon. o

In this case the expressions for the Taylor expansions bdbfinity would most probably not put enough restrictions on
come a bit cumbersome. We have calculated the first fevgqe_l‘?’gvﬁ f“SCt'O”S and the eigenmass problem would likely
mass correctionsn? by the method of matching the two e Il aefined. __ .

Taylor expansionslfor the exact solutions. Once again for the. In the case of the)™" glueball in QCQ one has the
same reasons that we explained above, we found values S*genvalue problerf2g]

m2 which coincide with the ones obtained by ‘@sat al. d? 7, 7o

[28] via the “shooting” technique and we will not repeat r(ré— 1)—2+(3+r4)d—+(m§r—16r3) 70=0.
those values here. Therefore, we also have nothing to add to dr '

the physical analysis that was done in that reference and in (16)
particular on the comparison with the results from the latticeNormalizability fixes the behavior at to be 7g(r)~r ~*

[27]. and the Taylor expansion at has the form 7(r)
In[28] the authors also studied the spectrum for@e™  —s=_ ¢ x"*2 with x=1/r? (we setb=1) and

glueball in three-dimensional QCD and the glueball mass

spectra in four-dimensional QCD obtained from the black (4n(n—1)+12n)cn,2—m§cn,1

hole geometry in Ad$x S* [8]. The results of our analysis Cn= 4(n+2)(n+1)—16+4(n+2) (17)

apply equally well to those cases. We note that in all these

cases there is only one smooth solution at the horizon as thaith c,=1 andc,= —mZ/20. At the horizon we use the
indicial equation always has a double root. This is physicallyvariabley=x—1 and the ansatzy(y)==,_,b,y" where
interesting since otherwise matching with the behavior atve obtain, from Eq(16),

. :(—4(n—l)(5n—2)+mg—16)bn,1+(m3—4(n—2)(4n—3))bn,2—4(n—3)(n—7)bn,3

. -~ (19

with b, fixed by the Taylor expansion a andb;=(m3  our exact values for the masses differ slightly from the ones
—16)b,/8 andb,= (mZ— 48)b,/32+m2hy/32. We now find  obtained in the shooting technique i28].2 As our first ei-

the mass eigenvalues by matching these two expansions. TEEnvalue essentially agrees with the one in that reference we
results form§< 1000 are shown in Table II. confirm the agreement between the ratio of the lowest mass

__ i ; . .
We observe that for th® ™~ three-dimensional glueball o . andO gl_ueballs in QCRIn supergrgwty and on the
lattice reported irf28]. For completeness, in Fig. 3 we plot

2Even though the dilaton is corrected®qy) as was calculated in
[25] this does not affect the equation of motion for the fluctuations
7 to this order. SHowever, the mass ratios are still in excellent agreement.
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TABLE Ill. Values of mj and m, for the O * glueball in

8 QCD, obtained from matching the exact Taylor expansions at the
» horizon and= in supergravity.
1 ot ma o™t my
26.9498 5.1913
0 63.8820 7.9926
114.1326 10.6833
- 177.7429 13.3320
R 254.7283 15.9602
345.0944 18.5767
" 448.8437 21.1859
565.9776 23.7903
_al 696.4967 26.3912
840.4013 28.9897
-5 . . L " . ' ' ' ' 997.6925 31.5863

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3. This plot shows the wave function, for the O™~
glueball in QCL} with my=27.3998. The plot is obtained from the

. _ 2 . . .
Taylor expansions at the horizon amdwhich agree perfectly. with r=s®. At « the Taylor expansion is of the form, with

x=1I, no(X)==7_,cox"" 72 where co=1, ¢;=—mj/18

) . . .
the wave functiony, corresponding to the mass eigenvalue@"dC2=m"/792. The recursion relation is

my=27.3998.

Finally, we will examine theO** glueball in four- (4(n—1/2)(n—3/2)+2(n—1/2))Cc\_4— M3Ch_»
dimensional QCD. The appropriate wave equation is in this Cn-1= 4(n+5/2)(n+3/2)— 10(n+5/2)
case[ 28] (20)

2
(57_S)M+(836_2)%+83m27] —0, (19 Atthe horizon we use the variable=x—1 and the ansatz
ds 0770

ds? 7o(Y) ==p_obny" which gives

B —2(n=2)(2n—5)b,_»,—2(n—1)(3+8(n—2))b,_;— (24n(n—1)—m?+6n)b,
bn+1= 12n(n+1)+12(n+1) '

(21)

where by is fixed by matching with the Taylor expansion smooth solutions exist with vanishing derivatiddeumann
from o andb; = —m3b,/12 andb,=m3(m3—6)b,/576. The  boundary conditionat the horizon, and have given a con-

masses we obtained are exhibited in Table III. struction of such smooth solution. Given that we are using
In this case our exact mass eigenvalues are also in clossxact analytic expressions for the various wave functions,
agreement with the ones presenteda8]. our mass eigenvalues can be determined to any desired pre-
cison.

Our values for the glueball masses are in agreement with
the ones found 28] and we have explained why the two

We have examined the eigenvalue problems that featurtechniques give identical results to this level of accuracy.
in Witten’s generalization of the conjecture by MaldacenaSince we used exact formulas for the analytic expansions of
regarding largeN supersymmetric gauge theory at high tem-the wave function solutions we believe that our work rein-
perature and strong coupling. We have studied the eigerferces the good agreement between various glueball spectra
value problem through exact analytical expansi¢misboth  obtained in supergravity and on the lattice as was already
the horizon and infinity and evaluated these exact expres-described in28]. We hope that the results of this analysis
sions numerically. We have analyzed carefully the behaviowill be of use for further studies of the conjecture. We expect
of eigenfunctions at the horizon and discussed the boundatat indeed they will be necessary as soon as higher precision
conditions. We have emphasized the fact that the corredh the mass values becomes important.
criteria for selecting the wave eigenfunctions are normaliz- Note addedWhile the present work was in preparation,
ability and smoothness at the horizon, have shown that nae received the papgR8] which examines the same prob-

IV. CONCLUSIONS
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lem. In the body of the text we have therefore described the ACKNOWLEDGMENTS

relation between these two studies. After completion of this

work the paper hep-th/9806128 by M. Zyskin which has We would like to thank Richard Easther for helpful dis-

some overlap with our paper also appeared. We also receivenissions. We also wish to thank Hirosi Ooguri for comments
comments on the correct treatment of the boundary conditionn the manuscript. This work was supported by the DOE
at the horizon by E. Witten and A. Hashimoto and I. Kle- under Grant No. DE-FG0291ER40688-Task A. R.dMK. is

banov(private communications supported by the South Africa FRD Bursary.
[1] G. 't Hooft, Nucl. Phys.B72, 461(1974. [15] M. Li, J. High Energy Phys07, 003 (1998; ‘'t Hooft Vorti-

[2] A. Polyakov, Nucl. Phys. BProc. Supp). 68, 1 (1998. ces and Phases of LarggGauge Theory,” hep-th/9804175.
[3] I. Klebanov, Nucl. PhysB496, 231(1997; S. Gubser, I. Kle- [16] S. Das and S. Trivedi, “Three Brane Action and the Corre-
banov, and A. Tseytlinpid. B499, 217(1997; S. Gubser and spondence Betwedd=4 Yang-Mills Theory and Anti de Sit-

I. Klebanov, Phys. Lett. Bl13 41 (1997). ter Space,” hep-th/9804149.

[4] J. Maldacena, “The Larg®l Limit of Superconformal Field [17] S. Ferrara, M. Lledpand A. Zaffaroni, Phys. Rev. Mo be
Theories and Supergravity,” hep-th/9711200. published, hep-th/9805082.

[5] S. Gubser, I. Klebanov, and A. Polyakov, Phys. Lett4®3 [18] G. Chalmers, H. Nastase, K. Schalm, and R. Siebelink, “R-
105(1998. Current Correlators ilN=4 Super Yang-Mills Theory from

[6] J. Maldacena, Phys. Rev. Le80, 4859(1998. Anti de Sitter Supergravity,” hep-th/9805105.

[7]E. Witten, “Anti de Sitter Space and Holography,” [19] A. Ghezelbash, K. Kaviani, S. Parvizi, and A. Fatollahi, “In-
hep-th/9802150; “Baryons and Branes in Anti de Sitter teracting Spinor-Scalars anddSCFT Correspondence,”

Space,” hep-th/9805112. hep-th/9805162.

[8] E. Witten, “Anti de Sitter Space, Thermal Phase Transitions[20] V. Balasubramanian, P. Kraus, and A. Lawrence, “Bulk vs.
and Confinement in Gauge theories,” hep-th/9803131. Boundary Dynamics in Anti de Sitter Spacetime,”

[9] G. Horowitz and H. Ooguri, Phys. Rev. Le#0, 4116(1998. hep-th/9805171.

[10] S. Ferrara, C. Frgnsdal, and A. Zaffaroni, “Oi=8 Super- [21] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three-
gravity in AdS and N=4 Superconformal Yang-Mills Point Functions of Chiral Operators in=Bl N=4 SYM at

Theory,” hep-th/9802203; L. Andrianopoli and S. Ferrara, LargeN,” hep-th/9806074.
“K-K Excitations on AdS;xS® as N=4 Primary Super- [22] D. Gross and H. Ooguri, Phys. Rev. (B be publishej

fields,” hep-th/9803171. [23] A. Jevicki and T. Yoneya, “Space-Time Uncertainty Principle
[11] S.-J. Rey and J. Yee, “Macroscopic Strings as Heavy Quarks and Conformal Symmetry in D-Particle Dynamics,”
of Large N Gauge Theory and Anti de Sitter Supergravity,” hep-th/9805069.

hep-th/9803001; S.-J. Rey, S. Theisen, and J. Yee, “Wilson{24] T. Banks and M. Green, J. High Energy Ph§§, 002(1998.

Polyakov Loop at Finite Temperature in Lard¢ Gauge [25] S. Gubser, I. Klebanov, and A. Tseytlin, “Coupling Constant

Theory and Anti de Sitter Supergravity,” hep-th/9803135. Dependence in the Thermodynamics\oft 4 Supersymmetric
[12] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yank- Yang-Mills Theory,” hep-th/9805156.

ielowicz, “Wilson Loops in the LargeN Limit at Finite Tem-  [26] L. Lathouwers, J. Math. Phy46, 1393(1975.

perature,” hep-th/9803137; J. High Energy Phy, 001 [27] J. Mandula, G. Zweig, and J. Govaerts, Nucl. PiB228 109

(1998. (1983; M. Teper, “Physics from Lattice: Glueballs in QCD;
[13] D. Freedman, S. Mathur, A. Matusis, and L. Rastelli, “Corre- Topology; SU(N) for all N,” hep-lat/9711011; ‘SU(N)
lation Functions in CFT(d)/AdS;,; Correspondence,” Gauge Theories in 21 Dimensions,” hep-lat/9804008; C.
hep-th/9804058. Morningstar and M. Peardon, Phys. Rev5B, 4043(1997.
[14] J. Minahan, “Quark-Monopole Potentials in Larde Super  [28] C. Cs&i, H. Ooguri, Y. Oz, and J. Terning, “Glueball Mass
Yang-Mills,” hep-th/9803111. Spectrum From Supergravity,” hep-th/9806021.

105009-7



