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We compute the corrections to finite-size scaling fortheector model on the square lattice in the lafge-
limit. We find that corrections behave as Ibfi.. For tree-level improved Hamiltonians corrections behave as
1/L2. In generall-loop improvement is expected to reduce this behavior th2dg'L). We show that the
finite-size scaling limit and the perturbative limit do not commute in the calculation of the corrections to
finite-size scaling. We present a detailed study of the corrections for thieri®Bel.[ S0556-282198)03520-4

PACS numbgs): 11.15.Pg, 05.70.Jk, 75.10.Hk

. INTRODUCTION corrections behaving as 1/ldgare presentthis is the case
for instance of the four-state Potts model, see Ref]).
In the study of statistical models it is extremely important A second topic that will be extensively discussed in this
to understand finite-size corrections. Indeed in experimentpaper is the improvement of lattice Hamiltonigfis—19.
and in numerical work it is essential to take into account theThe idea behind all these attempts is to modify the lattice
finite size of the system in order to extract correct infinite-Hamiltonian with the addition of irrelevant operators in order
volume predictions from the data. Finite-size scalif$S  to reduce lattice artifacts: in this way one hopes to have
[1-5] concerns the critical behavior of systems in which onescaling and FSS at shorter correlation lengths. For general
or more directions are finite, even though microscopicallystatistical models this is a nontrivial prograsee, e.g., Ref.
large, and it is therefore essential in the analysis of experif20]). For asymptotically free theories the idea is much sim-
mental data in many situations, for instance, for films ofpler to implement since in this case improvement can be
finite thickness. Numerically FSS can be used in a variety otliscussed using perturbation theory.
ways to extract information on infinite-volume systems. A In this paper we will study the problem of corrections to
very interesting method to extract critical indices comparingFSS and improvement in the context of the laj&-vector
data on lattices of different sizes was introduced by Nightin-model. This theory provides the simplest example for the
gale [6], the so-called phenomenological renormalizationrealization of a non-Abelian global symmetry. Its two-
group. Recently FSS has been used to obtain precise predidimensional version has been extensively studied because it
tions at very large values of the correlation length fromshares with four-dimensional gauge theories the property of
simulations on small lattices. This extrapolation techniquebeing asymptotically free in the weak-coupling perturbative
was introduced by Lscher, Weisz, and Wolff7] and sub-  expansion[21-23. This picture predicts a nonperturbative
sequently applied to many different modg8s-13: a careful  generation of a mass gap that controls the exponential decay
theoretical analysiésee Sec. V A 2 of Ref.13]) shows that at large distance of the correlation functions.
the method is extremely convenient for asymptotically free Besides perturbation theory, the two-dimensior
theories and indeed one was able to simulate@{8) o  vector model can be studied using different techniques. It
model[10] up to é~10° and the SIB) chiral model[12,13  can be solved in th&l=2 limit [24,25 and 1N corrections
up to é~4X 10° using relatively small latticesl(<512). In  can be systematically calculatE?6—28. An exactS matrix
order to use these techniques reliably it is extremely imporean be computef29,30 and, using the thermodynamic Be-
tant to have some theoretical prediction on the behavior ofhe ansatz, the exact mass gap of the theory in the jimit
the corrections to FSS. One can use this information in two—« has been obtaind®1,32. The model has also been the
different ways. A possibility is to take advantage of the the-object of extensive numerical woik 0,33—36 mainly de-
oretical prediction to extrapolate the Monte Carlo data to thesoted to checking the correctness of the perturbative predic-
FSS limit—that still involves a limilL. —c—in the spirit of  tions[37—39. In one dimensio®(N)-invariant spin models
Ref. [7]. One also needs this information if one determineswith nearest-neighbor interactions are exactly soluble: a de-
the FSS curve by comparing data from simulations on lattailed investigation of the possible continuum limits and an
tices of different sizes as proposed in R&f]. For instance exact computation of the FSS functions is reported in Ref.
checking the absencgvithin error bar$ of corrections to  [40].
FSS for lattices of sizes 64L <256 is enough if the correc- FSS has been extensively studied in perturbation theory
tions vanish as 17 while it can be totally misleading if [7,41-43 and in the largeN limit where the scaling func-
tions can be computed analytically as expansions M 1/
[41,46—48. Here we will concentrate on the corrections to
*Electronic addreséinterne): sergio.caracciolo@sns.it FSS forN=« in two dimensions and we will compute the
Electronic addreséinternel: pelissetto@sabsns.sns.it deviations from FSS for generic lattice interactions. We will
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show that in this limit FSS corrections behave generically a$SS behavior of lattice sums. These results are of general
logL/L2. This is in agreement with a general renormalization-interest and may be applied in many other contexts: in par-
group argument that shows that corrections to FSS are coiticular they may be used to study FSS properties of models
trolled by the first subleading operatpt9]. Tree-level im- that have a heightSOS representatiorisee Refs[58,59,
provement changes the behavior by a logarithni.ofhese  and references therginin Appendix A we define a set of
actions have corrections behaving ak?l/Subsequent im- basic functions that appear in all our results and we report
provement should reduce the corrections td_1/ogL) and  some of their properties. We extend here the results of Ref.
so on. FullO(a?) improvement to all orders of perturbation [60]. In Appendix B we give an algorithmic procedure that

theory provides an action with corrections behaving agllows us to compute the expansion in powers of of any
logL/L%. sum involving powers of the lattice propagator for a Gauss-

In addition to the standarbl-vector model we will also ian model with arbitrary interaction in the FSS limit. As an
discuss a mixed\-vector—RP~1 model[25,50. There are €xample we report the explicit formulas that are needed in
two reasons why we decided to include this computationour main discussion. In Appendix C we report the
first of all, for large values oN, the N-vector model shows asymptotic behavior of some lattice integrals. Preliminary
many simplifying features: for instance, only the leading results of this work were presented at the Lattice '96 Con-
term of the function does not vanish. For this reason oneference{61].
may expect that the behavior of the corrections for this class
of models is far simpler than in generic models. Instead the Il. THE MODELS
mixed N-vector—RP~! model shows a more complex be-
havior and, for instance, thg function is nontrivial to all
orders of perturbation theory. We find that in the mixed
model the corrections behave as () f(L) wheref(L) is
a nontrivial function such that() is finite and that admits
an asymptotic expansion in powers of 1llodhe presence
of powers 1/(%log'L) is somewhat unexpected from the H=—N2 J(X=y)oy- oy, (2.9
point of view of perturbation theory. We will show that this Xy
is related to the noncommutativity of the limits—o> and
B—0e. In other words the perturbative limit— oo atL fixed
followed by the limitL—oo gives results that are different
from the FSS limit. The commutativity of these two limits
has been the object of intense debate. The standard wisdom Z=f 11 doyd(o2—1)e AN, (2.2
is that the two limits are identical, but this point has been x
seriously questioned by Patrascioiu and Sdjitek] (for an . ) ) ] - ]
answer to these criticisms see R?2]) together with many We yv|ll consider generalocal_mterachon_s. _IfJ(p) is the
other assumptions derived from perturbation thef5g]. Fourier transform ofl(x), locality and parity invariance im-
Our calculation shows that, if the standard assumption i$ly that J(p) is a continuous function op, even undemp
true, it is a result far from obvious: indeed the limits are ——p. We will require invariance under rotations af2,
differentfor the corrections to FSS. that is we will assumd(p) symmetric under interchange of

A second motivation for studying this class of models isp, andp,. RedefiningB we can normalize the couplings so
the problem of the critical limit of RF"! models. In Ref.  that
[54] numerical results were presented indicating that RP
models could have a critical limit different from that of the
N-vector model. These results were subsequently questioned
in Refs.[55,56. In particular it was argued that numerical
results could be misleading due to the presence of large cofer g— 0. We also introduce the function
rections to scalin56,57. We wanted to understand if there . .
is any sign of this phenomenon in the lafyelimit. Our w(q)=—-2[J(q)—J(0)], (2.9
explicit calculation shows that RPhas corrections that are
larger than those of thdl-vector model. Depending on the that behaves ag? for g—0. Finally we will require the
observable, for reasonable lattice sizes, we find an increaggeory to have the usuaformal) continuum limit: we will
by a factor of 6—15. This is in qualitative agreement with theassume that the equatiov(q) =0 has only one solution for
scenario of Ref[56]. —m<Q;<, hamely,q=0. We will need the small be-

The paper is organized as follows. In Sec. Il we define théhavior ofw(q): we will assume in this limit the form
models we consider, and compute various observables in the
largeN limit. In Sec. Il we discuss the corrections to FSS _a2 a4 n2\2 6
for the N-vector model and in Sec. IV we extend our results wa)=g +a1% Ayt a2(47)7+0(a7), @9
to the mixedN-vector—-RP~! model. In Sec. V we present
our conclusions. wherea; and a, are arbitrary constants. Hetg= >+ q3,

In the Appendixes we report some general results on thg=2 sin@/?2).

In this paper we will study the FSS properties of the clas-
sical N-vector model on a square lattice with local
translation- and parity-invariant ferromagnetic interactions.
The Hamiltonian is given by

where the fieldso, satisfy 02=1. The partition function is
simply

2
3(a)=3(0)- 5 +0(q¥) 23
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Let us give some examples we will use in the following. The Hamiltoniang2.7) and(2.11) for k=4 are examples of

The standardN-vector model with Hamiltonian

HS‘C‘=—NXZ O Oy (2.6)
7

corresponds tow(q)=0? and thus we havex;=a,=0.
Other possibilities are the following.
(1) The Symanzik improved Hamiltonigri5]

Sym 4 1
H :_NE §0'x'0x+u_1_20'x‘0'x+2,u,1 2.7
Xu

for which we have

A 1 -
w(o) =42+ > 4, (2.9
124
and a¢;=1/12 anda,=0.
(2) The “diagonal” Hamiltonian[62]
diag 2 1 -
H :_Ng 52 o'x'a'x+p,+62 Oy Ox+d |
u d
(2.9

whered are the two diagonal vector§, +1), for which we
have

1.
w(q)= 2‘6‘11% (2.10

and ¢, =1/12 anda,=—1/12.

tree-level improved Hamiltonians.

In order to study the finite-size-scaling properties we must
specify the geometry. We will consider here a square lattice
of sizeLXT or a strip of widthL with periodic boundary
conditions in the finite directids). The largeN limit of this
model is well known[24]. The theory is parametrized by a
mass parametemfT related togB by the gap equation

LT W5, wip)+miy

Tormip), (219

B

wherep,;=2mn,/L, p,=27n,/T and the sum extends over
0=n;=<L-1 and Osn,<T-1. The two-pointisovector
Green'’s function is then given by

11 elP-(x=y)
Gvx—yiLD=(ov 0y)= 5 5 2

2
nqiny W( p) + n']L,T )

(2.1
All other Green’s functions are obtained fro@®(x;L,T)
using the factorization theorem
<(0'xl' Uyl)(o'xz' o'yz)' : '(a'xn' o'yn)>

:<(0'xl' (Tyl)><(0'x2' ‘Tyz))' "<(0'xn' o'yn)>'

(2.19

(3) The perfect Laplacian introduced in various works onln particular we will consider thésotensor(spin-twg two-

the renormalization grouf63] and recently revived in con-

nection with the perfect action47]

0 )

1 _ 1 N E 1
w(g) 3k 1, e, (Qu+ 2l )%+ (gt 27 ,)?
8202
q102
X(Q1+27T|1)2(C12+27T|2)2 @19
for which a1=1/12 anda,=(x—4)/(12).
In general we will speak of tree-level improved

Hamiltoniand whenevera;=2, a,=0: in this case, for
9’0,

w(q)=9?+0(q°). (2.13

Properly speaking we should speak@fa?) tree-level improved
Hamiltonians. One can also consid@(a?¥) tree-level improved
ones which are such that

w(e)=a"+0(q" %) (2.12

point function

Gr(x—y;L,T)=((0y 0,)%) — %:<‘Tx' o,)*+O(1IN).
(2.17)

Beside the standari-vector model we will also discuss a
mixed N-vector—RP'~1-model [25,50,54,65 We will re-
strict our attention to nearest-neighbor interactions since only
in this case the model is easily solvable in the lakgimit.

The Hamiltonian is given by

Hmix:_NE (1-r)oy- o -I—L(O"G')Z (2.18
(xy) A A

where the sum is extended over all linfg) andr is a free

parameter varying between 0 and 1. FerO we have the
nearest-neighbax-vector model, while =1 corresponds to
the RP'~! model. Notice that for =1 the theory is invariant

for g2—0. We do not consider them here since tree-level improvelnder |9(133| trapsformatione-xe €0y, €=*1. Therefore_ .
ment beyonco(az) does not have any effect on the corrections to for RPY Only isotensor observables are relevant. The limit

FSS at order 1/%. For a perturbative study of this class of Hamil- We consider here corresponds fo—c with r fixed. We
tonians see Ref44]. Classically perfect Hamiltonians are tree-level mention that this is not the only case in which the model is

improved to all orders i [64].

solvable: a different largétlimit is considered in Ref(65].
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Also in this case the theory is parametrized by a mass (o _ y
parametem? ; related to 8 by [50] §¥P ()=~ lim 10g GW(y )" (2.2

y—+o>
Al 1( mE,T)Z ; i (exp),
= 5 7| RSLT (2.19 The mass gapu(») is the inverse of¢é'®*P(«). A second
Al r(mp ) +rimg ol o(mi p) possibility is the second-moment correlation lengtf ()
that is defined by

B

where

4 ZG(x%)
W|th p1:2n17T/L, p2:2n27T/T.

1 i i )
The isovector Green's function is given by The factor: has been introduced in order to hagd” ()

= ¢(®P)) for Gaussian models.

1 eiP-(x-y) We must now give the definitions in finite volume. Of
course the exponential correlation can only be defined in a
strip. In this case we can still use the definitigh27). For

(2.2 the second-moment correlation length we can use any defi-

All other correlations are obtained using E@.16. In the  hition that becomes equivalent to E(.28 in the limit

N-vector case we can use the gap equation to substitute T —=- We will consider here three different definitions:

I r(m? 1) with 8. given a two-point functiorG(x;L,T) and its Fourier trans-
'In this paper we will study the finite-size-scaling proper-form G(p;L,T) we define

ties of various quantities. We define the vector and tensor

susceptibilities

Gy(x—y;L,T)= —— — —_—.
V( y IL,T(mE,T) LT ny.ng p2+mE,T

[EML TP | = 1
XL 1= Gy(xLT), (2.22 2Pox L G(PoxiLT)
X
1 [ Geoo:L,m
S ~1|, (2.29
xr(LT)=2 Gr(xL,T). (223 2P%y L G(Poy:L.T)
Using the explicit expressions for the two-point functions we 2 é(poX;L,T)
get MAL HP=—r— | 1 - 2 7
[&™(L,T)] 5 ~
8 G(0:L,T)
LT =————, 2.2 - .
L) I r(m¢ p)m; 1 (224 T G(Poy;L,T)
T — 1 =20, (230
82 G(0;L,T)
(I SN S -
1 - T = ﬁ'
X [Z (M PP LT iw, [w(p)+m? 17
(2.25 1 [L/2] [T/2)
[EmI(L,T)P=— | _
We want also to define a quantity behaving as a correlation 4G(0;L,T) i=1-1L+ 12| j=1-[(T+1)2)
length. In an infinite lattice there are essentially two possi- P o
bilities. One can define the exponential correlation length X(17+]9)GL(1,]);L,T], (2.39
from the largex behavior of a given two-point functidn .
G(x;*): one considers a wall-wall correlation function wherepo,=(27/L,0), poy=(0,27/T), and|x|is the largest

integer smaller than or equal to The third definition evi-
dently coincides with Eq(2.28 for L,T—o. To verify the
G™(y;2) =2 GL(xy);], (2.26  correctness of the other two definitions notice that @R
g can be rewritten as

and then defines

1 P -
[€M()]?=— ———— D —5 G(p;»)

28 is related tom,_1 by Eq.(2.19 only for B> B(r), whereg 4G(0;) "w dpy, p=0
= B.(r) is a first-order transition ling50]. In the following we will (2.32
be only interested in the limB— o, so that we will always use Eq.
(2.19. Expanding in 12 it is easy to verify that botk(™(L,T)

Here and in the following we will indicate the infinite-volume and £M2)(L.T) converge to Eq(2.28 for L,T—. Essen-
limit of an observabled(L,T) with O(x). tially Egs. (2.29 and (2.30 are definitions in which one
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approximates the second derivative@iwith the difference  Let us now give explicit expressions for the isovector corre-
at two nearby points. Thus these definitions converge tdation length: using the isovector two-point functi¢.19
£M(0) as 1L? [notice thatG(x;L,T)—G(x,») exponen- We get on a finite lattice:

tially]. The third definition represents instead the “best” ap-

proximation on a finite lattice sinc€™3)(L,T) converges to

&M () exponentially. This is indeed a general result that [&/™"(L,T)]?

can be proved using the relation

[L/2)

L-1 1 [w(pox) W(pgy)| 1
- -1 :_< ) WPy 237
2f(i)=2 = f —f(0 , =2 =7 7 .
iy TD=22 o (@)= T(0)]PL) 2\ P3| P | mig
(2.33
valid for every functiort. Heref is the Fourier transform of (&ML, )12
f, g=2#=n/L and
) 1 for L even, _ 1 ( W(poy)L? W(poy) T? (2.39
L(L”): - (2.3 87 | Wipon + 2 W(pgy) + )" :
L cos—— for L odd.
If (q) is meromorphidas a function of theomplexvari- [£™9(L,T)]?

ableq) in the strip O<Reqg=2, periodic of period 2, and
with simple poles afj;, then we can evaluate this sum to
obtain

L-1
1 w(qy) 1

=23 (-1 — P
2 n12:l (=1 a; W(q1)+mE,T Lay)

) L i _
~0-z E. s /2)sinLqrz) F-a0:

(2.39 1 - w(dp)
_ PO -5 2 (Fhn— ——— Pr(q2).
whereR; is the residue of(q) atq;. Thus the convergence np=1 a; w(gp)+mgr
rate isL exp(—Lq/2) whereq,=min|im(g)|. For the spe- (2.39
cific case of the isovector correlation length one expects the
nearest singularitiegfor B—« at least to be atq= In infinite volume we have instead

+iu(L) where u(L) is the mass gap. Thus we expect a

convergence rate dfe “(MY2 A general Green function

will not be in general a meromorphic function gfas cuts m 1

will appear as well. We expect however that the definition V()= (2.40
(2.31) will show the same exponential convergence rate. ”

Using Eq.(2.33 we can rewrite Eq(2.3]) as ) )
For the mass gapuy(L) and the exponential correlation

length £{PXL) we must solve the equation
[&™I(L,T)])?

1 1 wlimy(L),0]+mf .=0. (2.42)
=G0l > = [G(q;L, T)=G(0;L,T)]

(OL,T) (n.nz)#(00 @ An explicit solution can be obtained only for the simplest
w(p). For the Hamiltonians we have considered in this sec-
X(= MPL(A) B0+ (—~ D™Pr(dp) Bgol. (230 P FOr I

m . .
2 arcsin ; ) for HSY and HYa9,
py(L)= NG m2 |\ 12112 (242
2 arcsin>{7 [1— ( 1— ;m> } ] for HSYM
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In our calculation we will only need the expressionuaf(L)
for m__.,—0. In this limit we obtain

1
1+=

my(L)=m ., 2

1
a'l-l- ay— _> mE‘w“l‘ O(mﬁyx):|

12
(2.43

PHYSICAL REVIEW [58 105007

112
w(p)® (pH?  (p*)°

d’p
Alzj (2m)?

X

. (3.6

@ P+ an(p?)?
"

The corrections behave in general asLltg, except when

Isotensor observables are defined using the tensor twd-221+16a,—1=0. This cancellation happens for improved
point function(2.17. For the mass gap it is easy to verify Hamiltonians for whicha;=1; and a,=0 and also for

that ur(L) =2uy(L).

I1l. N-VECTOR MODEL
A. The gap equation

In this section we want to discuss the corrections to FSS

for the Hamiltonian(2.1). Let us consider a fixed value @t

Let m,, andm__ 1 be the mass parameters corresponding to

in infinite volume and in a boX. X T. It is immediate to
obtain a relation betweem., andm,_ 1. Indeed from the gap
equation we obtain

I 7(mf 1) =T (m3). (3.1

Now let us consider the finite-size-scaling limit.,,m_ 1
—0L, T—% with m_tL=z and T/L=p fixed. Using the
results(B88) and (C6) we obtain

m., . Am,l(Z;P)I Am,Z(Z;P)
W,T—fm(z,p) 1+ L2 |OgL+ L2
(3.2
with corrections of orde©(log?L/L%), where
32
fm(zip)= 7 € 47700, (3.3
1 .
Ama(zip)= 2 (1201 + 160~ 1)(32e™ ™M 0#P) — 72),
(3.9

A o(Z;p) =167 (1201 + 16a,— 1)F((z; p)e~ 4™Fo(zp)
—4(8ay+8a,—1)e 4" oZP)—An[ Fi(z;p)

+32e 4Fo(zpIA ],

(3.9

The functionsF((z; p) andF,(z;p) are defined in Appendix
B, Egs.(B54) and (B90). The functionf(z;p) is the FSS

function for the ratiomfo/mf’T. As expected, it is universal

[it does not depend on the explicit form of the coupli{g) |
and depends on the modular paramegieiThe corrections
instead arenot universal. However, the dependence J{x)
is very simple: the only relevant quantities arg¢ and a»,
that are connected to the smgf-behavior ofw(q) and A,
given by

many other Hamiltonians that are not improved but nonethe-
less satisfy 12, + 16a,— 1=0. To understand the relevance
of this combination, let us introduce polar coordinatgs
=q cos#, q,=q sin 6. Then

2 1 4
w(q)=qg°+ 16 (1224 +16a,—1)q

1
+ — (12a;—1)g*cos #+0(q®). (3.7

48

Thus, if (120, +16a,—1)=0, one cancels the first rotation-
ally invariant subleading operator, leaving a correction that is
associated to a lattice operator that vanishes when averaged
over the angled. This last property is the reason why this
quantity does not couple to the leading correction. This fact
is not unexpected. Indeed the leading correction to scaling is
usually associated to a rotationally invariant operdfor a
discussion for the two-point function in infinite volume see
Ref.[66]).

For a;=1 anda,=0 the expression fol 1, 5(z; p) sim-
plifies drastically, becoming

1
Am,z(z;p):4w(32e4”Fo<Z?P>—z2)(E—A1) . (3.9

Thus for improved Hamiltonians there is the possibility of
eliminating even the 172 corrections choosing(x) so that

1

AIZE' (39)
Notice that this condition is global, that is it does not only fix
the smallg behavior ofw(q), but it depends on the behavior
of w(q) over all the Brillouin zone.

A particular Hamiltonian satisfying E43.9) is

4
HSV”‘L——NXZ §+15a)0'x'0'x+M
y73
1
- 1—2+6a Oy Oy o, A0y Oy 3,

(3.10
wherea=0.0083653396@8L). Thefunctionw(q) is given by

RO & R R
w(a) ="+ 2 d,+a> a. (3.19)
w 3
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TABLE I. Values of RexaofL;Z,p), RexpadliZ:0), DexaclL:2,p), DexpadLi2,p), and &,(L;z,p) for the
standard Hamiltoniam®, p=1 andz=2.

L Rexac(L32,1) Rexpaf L:2,1) Dexac{L:2,1) Dexpaf L:2,1) 5(L;2,1)
4 0.23892847 0.24124682 0.0649479 0.0752812 —0.428
6 0.23332246 0.23379910 0.0399609 0.0420854 —0.345
8 0.23028713 0.23044079 0.0264318 0.0271167 —0.303
10 0.22856980 0.22863479 0.0187774 0.0190671 —0.282
12 0.22751364 0.22754600 0.0140699 0.0142141 —0.270
14 0.22681775 0.22683573 0.0109682 0.0110483 —0.262
16 0.22633412 0.22634493 0.0088126 0.0088607 —0.255
20 0.22572118 0.22572580 0.0060806 0.0061012 —0.247
32 0.22497047 0.22497124 0.0027345 0.0027380 —0.232
64 0.22453987 0.22453993 0.0008153 0.0008155 —0.218
128 0.22441005 0.22441006 0.0002367 0.0002367 —0.208
0 0.22435696 —0.148

For this Hamiltonian the corrections to FSS behave aS:Im(mOZC): in this way we have obtained for each lattice size

logL/L%. Of course one could improve further: using a| andz the ratio Rexac(L;Z,p)=m2/m? ;. Then we com-
Hamiltonian withw(q) = g%+ O(q®) satisfying Eq.(3.9) one ’

) puted
could get rid also of the terms lag*. However, the cancel-
lation of the terms 1/* will again require a global condition L4
of the type(3.9). o1(L;z,p)= @2? [RexactL;z,p) — Rexpar(l-;zap)]a

It is interesting to understand our results in terms of per- (3.13
turbation theory. Within the Symanzik improvement pro- )

gram the conditionsy; = 35 anda,=0 are required for tree- where Re,pafL:2,p) is the right-hand side of Eq3.2). In
level improvement: if the theory is tree-level improved, then,o way \F/)ve have tried to verify that indeefj(L:z,p) at

. . 3
the corrections behave asLi/ms_tgad of.log/L .InRef. s 47 goes to a constant fdr—oc. Numerically we find
[45] it was shown that the conditio8.9) is necessary for yhat s (L:7, ) varies slowly withL and that the behavior is

improvement at one loop. The simplifying feature of the ., aiiple with the presence of 1/lo@nd 1/lodL correc-

model 'z 'tthat,non(c:je theftheciryblst_ong[-r:oop '“}F;]r_o"edvl It IStjons. A better check can be obtained if we include the term
improved to all orders of perturbation theory. This explains,¢ orer Iogi/L* that can be easily computed

why, if condition (3.9) is satisfied, corrections to scaling be-

have as log/L*. As we shall discuss in the following section,

for a generic model, for instance for a mix&€{N)-RP' "1

theory, we expect only the 17 term to be cancelled so that

the corrections to scaling would still behave ad £1ogL). X
We have performed various checks of the expressions

Ama(Z;p) = (12a;+16a,— 1)

4
9&—877F0(Z;p)_4226—477F0(Z;p)+ -

(3.39—(3.5). First of all we have compared our results with (3.14
previous work. For the strif,,(z;>) was computed by Lst .
cher[41]. In this case, as lim... My 4(z;p)=0, using the Then we consider
explicit expression folFy(z;p), Eq. (B54), and Eq.(A12), L4
we get o5(L;z,p)= m RexactL:Z.p) — Rexpar(l-;zap)
2
32 2 A z ) ., log
fm(z;w):?exp{—T—ZyEHog 7—260(5)} fm(zp)Ama(Zip) — 7 |- (3.19
” In this case we should be able to verify that
=exg -4, Ko(nz)|, (3.12
" 32(z:p)
21\ 4
02(L;Z,p)=~ 620(Z;p) + (3.16

logL
which agrees with the result of Ré#1]. ?

We have furthermore performed a detailed numericafor large values ofL. The results forp=1 andz=2 (this
check for the standard Hamiltonia#®. GivenL, z, andp  value ofz corresponds to the region where the corrections to
we have first computemf’Tzzz/Lz, theng from the finite- ~ FSS are largérare shown in Table | where we also give the
volume gap equatioyif:IL,T(mf’T) and finallym? from 8 deviations from FSS, i.e., the quantity
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D(L;z,p)= (3.17)

R(L;z,p)
Fozip) _1}

A plot of 6,(L;2,1) versus 1l/log shows, as expected, a

linear behavior from which we can estimaty(2;1)~
—0.148 ands,y(2;1)~—0.291.

Let us now consider the limitsz—« and z—0.

PHYSICAL REVIEW [58 105007

47a,

Ama(zp)=—4m(1—12a1)F10(p) —

Asymptotic expansions of the FSS functions can be obtained

using the expansions dfy(z;p) and F;(z;p) reported in

Appendixes B 2 a and B 2 b. For largave have

f(zp) =122y 26 ry 2T
m(Z;p) = e ;7 2€ P

+O(Z—3/2e—Z'Z—3/2e—pZ)’ (31&
1
Ama(z;p) =~ 5 (12a1+16a;~ 1)22
2 217)
T2\ —+e PP\ —
z pZ
+O( 1/2 1/2e7p2), (319)
ar
Anmaz:p) = g (120141205~ 1)z2

N EI—T
2 2

2
Z
+ Z (12a1+ 16a2—1)

|0932( \/7 _pz\/ﬁ)

+0(2%%%,2%% r?), (3.20

The result agrees with what is expected: for the FSS

function converges to 1 exponentiall§7]. Also the correc-
tions vanish in the same way and thus they are extremel

tiny for largez
Let us now consider the perturbative lintgmall z). For
finite values ofp, for z<1 andz<1/p, we find

iz =TT ipyte-2reexd — 47
m\ & p22
X[1—4mZ%Fi(p) +0O(zH], (3.21)
2 —47l(pz?)
Amyl(z,p)=—z(12a1+16a2—1)+0[e p ],

(3.22

—477%| (1-1201)F 14(p) + 2a,F ool p)
+ A +oh (3.23
877 l . .
Here 7(7) is Dedekind’s# function [68]
77( T) — eﬂ'i T/lZH (1_ e27'rin7'), (324)
n=1

andFg:(p), F1o(p), andF4(p) are defined in Appendix B:
see Eqs(B62)—(B64).

For the strip the previous expansions are not valid. In this
case, for smalg, we get

2 2
T
e ZyEe 27z 1+

fm(z;%)= §(3)+O(Z4)>

(3.29

2

z
Ani(z,0)=— 7 (12a1+16a,— 1)+ Ol exp( —27/2)],

(3.26
w? mz
Amaz;)= 18 (12a;—-1)— 2 (12a;+12a5—1)
+0(2%). (3.27)

These formulas can also be used whenl. Indeed they
approximate the FSS functions forpXz<1.

It is interesting to obtain these expansions within pertur-
bation theory(PT). The ided 41,45 is to start from the per-
turbative prediction fom..(8),

m2=32e*"0e 4"[1+0O(Be *"F)],  (3.29
and the perturbative expansionmf +(3),
oomy(L,T
z=Lm_r= E % (3.29

¥hen we use the last equation to express perturbatigety
terms ofz and finally we substitute the result in E§.28). In
this way we obtain the expansiori8.21)—(3.23 and the
analogous ones on the strip. It must be noted that in this
perturbative expansion the combination {42 16a,—1)
arises naturally: indeed it is the coefficient of the unique
logL/L? term that appears in the expansion. Thusa 2
+16a,—1=0 is the improvement condition of the renor-
malized perturbative expansion.

To conclude the discussion we want to comment on the
validity of PT: finite-volume PT is valid in the limjB— <« at
L fixed while the FSS limit we are interested in corresponds
to B—x, L—o atzfixed. Thus our perturbative derivation
of the FSS scaling functions involves arpriori unjustified

105007-8
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FIG. 2. Ay a(z;1) for HS (std), H (diag), andHSY™ (Sym).

. ; i td —
FIG. 1. Ap(z;p) for the standard Hamiltoniahl®“ for p=1 e gashed lines are the asymptotic expansiBr20 and (3.23.
and p=«. The dashed lines correspond to the asymptotic expan-

sions(3.19 and(3.22. A, 1(z;p) for H¥s obtained by multiply- .
ing the vertical scale by 4/3. (0.00001853 The corrections are extremely smédk L =4
they are 100 times smaller than those presentfdf): im-

. - . rovement really works.
extension of the validity of PT51,57. For the leading con- prov yw

tribution this should be corre¢haively because the result is
L independentbut the situation is less clear for the correc- B. Observables

tions: in this case the explicit calculation shows that the ex- | ¢ |5 now compute the FSS curves and the correspond-
tension is valid also for the [L# corrections, but, as we shall ing corrections for the observables we have introduced in
see in the next section, this is a special feature of the Idrge-gec 11, we will first consider the quantities that are obtained
N-vector model: in general the corrections to FSS computegom the isovector correlation function, then we will discuss
in PT need a “resummation” to correctly describe the FSSjsotensor observables.

regime.

The functionsA, (z;p) and A, o(z;p) are reported in 1. Isovector sector
the Figs. 1, 2, and 3 for the torus with=1 and for the strip From Eq.(3.2) it is immediate to obtain the finite-size-
p=c for the various Hamiltonians we have introduced. s¢4ling curves and their leading corrections for the various

From these plots one can immediately recognize a few basighservables. The susceptibilify, does not require any ad-
facts: the region where the corrections to FSS are larger Cogitional calculation since

responds to £z=<4 (the same has been found numerically
in Monte Carlo simulations ot with N=3 [10]). In this

region, for H* and H%"9 and small values oL, say L xu(L,T)  mi (330
=10, the log/L? term gives a contribution which is 2-4 xv(®)  miL :

times larger than the Lf term and the corrections are posi-

tive. For these two Hamiltonians the corrections become ] .
negative for large values of [this can be easily checked For the second-moment correlation lengths, neglecting terms

from the asymptotic expansior3.19 and(3.20]. They are  ©f order logL/L?, we obtain
also negative foH*%in the smallz region on the strip or on

the torus for large values @f Numerically we find thaH 939 ML T)\2  m? 22 14 2
is the Hamiltonian with the largest corrections, wHié"™ is ( V(m) ' ) =— (1+ - (a1t ay) _Zp) ,
the “best” one, as expected. &y (=) m 7 L P
We have finally checked that our expansi(®2) de- (3.31
scribes well the corrections to FSS even for small values of
L. In Table Il we giveDgyac(L;2,p) and Deypafl;z,p) for gmA(L Ty\2 22 m2 2
H9a9 andHY™ for p=1 andz=2. For the first Hamiltonian (V(T) == AZ;p) —| 1+ 5
there is good agreement evenlat 4, while for the latter &v () 2 MLt 3L
there is a somewhat larger discrepancy, probably due to the Ax(z;p)
larger spatial extent of the Symanzik Hamiltonian. We have X(12a1+12a5—1) ALz )),
also computed (L ;z,p) for the same values gf andz n&p
for HY™2 for L=4 (10) we getDqy(L;2,1)=0.0005743 (3.32
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1.0vw\\‘\\\\‘\|||||1||||1|\

Am,Z(Z;m)

-0.5

\\\\l\ll\‘\\\r‘\}l\‘\\lL,

0 2 4 6 8 10
Z

FIG. 3. A o(z;) for HSY (std), H¥@9 (diag), andHSY™ (Sym).
The dashed lines are the asymptotic expans{8r&0) and(3.27).

(f&m@(L,T))Z_ mZ
&7(0) L

Py PR S
" mZ;|" 4\sinhz/2 " sinhpz/2

(3.33

1 1
ti2 Qp)(2)+ P Qp(T)(pZ))
wherep(M) is the parity ofM (M=L,T) and

A (70— 4721+ p?) + 2p?2?
1(Z,p)= (4772+22)(4772+p222)’

(3.39

2 p222

Ch)— +
AZ(ZIP) (4772+ZZ)2 (4772+p222)21

(3.39

~1om 12 L z* coshz/2
Qever(z)_( ay+12a;— )@siniiz/Z

2 1

~(4entdar—1) 5 Grnz

(3.39

12wt 12 L z* coshz/2
Qodd 2) = (12001 + 1205~ )EzsinﬁZ/Z

2 1

'8 sinhz/2° (337

— (a1t ay)

Let us now consider the asymptotic lindt>«. In the FSS
limit it is easy to obtain

( évm'”(L,T)) 2

&) | oo

PHYSICAL REVIEW 8 105007

TABLE II. Deviations from FSS forH%29 and HY™ here p
=1 andz=2.

Hdiag HSym
L Dexacl;2,1) Dexpafl:2,1) Dexac{Li2,1) Dexpafl:2,1)
4 01363230  0.1435180  0.0039380  0.0116907
6 0.0736526  0.0752402  0.0035162  0.0051959
8 0.0463553  0.0468952  0.0023457  0.0029227
10  0.0320544  0.0322879  0.0016198  0.0018705
12 0.0235981  0.0237157  0.0011666  0.0012990
14  0.0181629  0.0182287  0.0008802  0.0009543
16  0.0144512  0.0144909  0.0006858  0.0007307
20  0.0098297  0.0098468  0.0004483  0.0004676
EMmA(L,T)\? 2m2(1+p?) .
() | -z 0@,
v FSS p
(3.39
(m,3) 2
(§V<—>(L’T)) =l—Ee*Z’2—p—Ze*PZ’2
m
&y () Fss 2 2
+0(z Ye2,z7 e ). (3.40

From these expansions one immediately sees that the FSS
function for £{™? goes to 1 only as a power as-=. The
approach is very slow and indeed it reaches 1 at the 1% level
only for z=60. This is extremely inconvenient for Monte
Carlo applications: indeed in order to determine numerically
the FSS curve one has to perform runs up to the value of
where the FSS curves becomes 1 within error bars: in this
case runs witlz=~60 are required, which means that simula-
tions on very large lattices are needed. The origin of these
power corrections can be identified in the definition that ap-
proximates the infinite voluméf,m)(oo) with corrections of
order 1L2: the 1L2 terms give rise to the corrections of
order 1#2. The first definition should suffer from the same
problem because also in this caﬁé"l)(L,T) converges to
£0M () with corrections of order 1. Instead Eq(3.38
shows corrections of ordé(e~%/+/z). This is a peculiarity
due to the particular form o6,/(x) [Gy(x) is a free-field
two-point functior]. However, for different Green’s func-
tions terms of order ¥f are expected and indeed they are
present forg{™Y | cf. Eq.(3.68. As expected the FSS func-
tion for £&™® converges to 1 with corrections of order
ze ?2 in this case the FSS function is 1 at the 1% level
already atz~15.

The largez behavior of the FSS functions can be easily
computed not only in the largd-limit, but for all values of
N. The basic observation is th&,/(x;L,T) converges to
Gy(x;») with corrections of ordet.Pe™#v(*)\. Therefore,
in order to compute the largeexpansion, one can simply
replaceGy(x;L, T) with Gy(x;»). The functionG,/(x;=) is
well known in the critical limit. Indeed, iIGy(p;x) is the
corresponding Fourier transform, then, in the lirpit-0,
£0M(0)— o0 with p&{™(«)=Q fixed, we have69,66,7Q
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FIG. 4. Agv,z(z;l) for HS for the three different definitions of

. Sym i initi
second-moment correlation length. FIG. 5. A, »(z;1) for H>™for the three different definitions of

second-moment correlation length.

?V(O;OO) =D(Q) (3.41) In the largeN limit b,=0 for n=2, s,,=s,=1, andy=z in
Gy(p;=) ' ' the FSS limit, so that one recovers our previous results, Egs.
(3.38—(3.40. For generic values ol numerical estimates

The functionD(Q) can be expanded in the lim@—0 in  of the various constants are reported in R&€]. The devia-
powers ofQ?: tions from the largeN values are extremely small: fax
=3 one finds from a strong-coupling analygig0] b,=
—1.2(2)x10 3, 5,=0.99941), s,=1.00132), while a
precise Monte Carlo simulation givé31] s,,=0.99926).
Using Eqs(3.45—(3.47), it is evident that the first definition
with bo=Db;=1. This expansion converges up to the three4s always the most convenient one except for extremely large

D(Q)=§O b,Q?", (3.42

particle cut, i.e., folQ|<3s,, wheres,, is defined by values ofy (y=20 for N=3), where the deviations are ex-
) — tremely tiny. This is in agreement with the observation of
Sm:;'mx p(®) &y (%); (343 Ref.[36]: they found numerically that, for Zy=10, &™)

had finite-size corrections larger thgiﬁ“'l’. Using their data
Sy, is the ratio between the second-moment and the exponemve can check the largg-behavior of the FSS function of
tial correlation length. MoreoveD (Q) has a zero in corre- &£™®. We find that the data of Reff36]—they belong to the
spondence to the one-particle pol€ss *is,,. In the neigh- range =y=10—are well described by the formula
borhood of these points, we have

Q? {,m'B)(L,T))Z_l_ . eXF{_ ; }
D(Q)=5,| > +1|. (3.44 LT T 26M0(LT) )
Sm (3.48
Using these results it is straightforward to compute the FS§ere
scaling curves in terms of=L/£{™ (=) in the limit y—o.
Disregarding terms of ordei’e™ Y, yPe™#Y we obtain {1_0234; 0.012 forN=3,
(LT L poiin o @=)1.001+0.007 forN=8" (3.49
((T) =1+5 2 by (—) +<— : . , .
&) () css A=1 y py in good agreement .Wlth our previous results. _
(3.45 Let us now consider the corrections to scaling. The term
proportional to log/L? is identical in all cases tAn1(z;p),
ML\ 1[Zr obnsr(27ly)?" ] cf. Eq. (3.4). The contribution proportional to L depend
(W) =3 [ 57 bo(2mly) +(y—py) |, instead on the definition of. In Figs. 4 and 5 we report the
Fss n=0%n - deviations from FSS for the three definitions for the standard
(3.46 and the Symanzik Hamiltoniad ; ; andA, , are defined in
£mI(L T))2 analogy with Eq.(3.2)]. Notice that foré{™Y and £{™? the
(V—) - [e~SmY24 pe~smeY/2], corrections proportional to tL# do not vanish even when
&7() Fss 25;5m a;=1, a,=0 and Eq.(3.9 are satisfied. This is expected

(3.4 since the second-moment correlation length is an off-shell
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qguantity. Therefore the definition of the correlation length 1 E (s
must be improved, as well as the Hamiltonian. For instance, Ayra(zip) =7 (1221 + 16a,—1) 648 7 olzp)
if one usest(™ and the Symanzik Hamiltonian one does

not see any improvement: this definition has large correc- , Z aFo -1
tions to scaling, and the behavior is worse for the Symanzik -zt 20\ 9z ( p) ' (359
Hamiltonian than for the standard one. In this case there is a
simple remedy to the problem: modify the definition in such A, ozp)=32m(12a1+ 16a,— 1)Fo(Z;p)
a way that &L, T)~&,+O(L™4T4L72T?). Analo- v
gously one could proceed fat™ . The second definition is X e 47Fo(ZP) — 4(28a;+ 320, — 3)
automatically improved but this is a peculiarity of the % o~ 47Fo(Zp) _
largeN limit. € —4mF(Z;p)
Let us finally discuss the mass gaR/(L) and the expo- 0F,192(z;p)

nential correlation lengtht{®”=1/u,(L). We have com- —256m A e~ 47Folzp),

puted the FSS functions expressing them in termg.gfL) Folo2(zip)

itself, i.e., using as variabbe= (L)L instead ofz. We get (3.56
2 . . _
()2 A, () A, AX;) és before the [og/L corr.ectlo_ns qa_ncel if 12, +16a,—1
) =fpn(X;°)| 1+ 2 ! 2 , —0 The funcuonAX 2z;p) simplifies considerably ifx;
v (3.50 + and a,=0. In this case
whereA , 4(X;0) = Ay 1(X;0) and A dZip)=| gem— M [25677e4’7':0(z;p)—41722
Au,z(x§°°):Am,2(X;°°) IF -1
3 oF +2z 7 (Z;p)) } (3.57
+ 5 (12a1+120,- 1) &—XO (x;%0)

Therefore, if Eq(3.9) is satisfied,yt has only corrections of
8 _ 4 ox) order lod/L* It is straightforward to compute the expan-
+ 3 (12a,+12a5—1)e "0, (3.5D  sjons of the various FSS functions in the linait>o. Using
the results in Appendixes B 2 a and B 2 b we obtain

Thus only the 12 term differs from the expansion of
mi/me. The asymptotic behavior for largeis analogous

fXT(Z;p)=1+ V27ze ?+\2mpze P?

to Eq. (3.20 while for x—0 we have +O(z V22,77 V27, (3.59
. w’ 2
Ay AX2)= 75 (12a,-1) Bypa(Zip) =7 (1201 + 160y~ 1) (V2mze
_ X _ 2 +\2mpze %)+ 0(2%%%,2%% 17,
3 (12c1+12a5— 1)+ O(X%).
(3.59
(3.52
wzt
Notice that, since this quantity is defined on-shell, it is im- Ay 2dZip) =~ 75 (1204 12a,—1)
proved once the Hamiltonian is improved.
2. Isotensor sector X| —=+——=
N2wmz  \2mpz
Let us now consider the isotensor observables. The calcu- P
lation of the FSS function for the isotensor susceptibiity z? Vi
is straightforward. We obtain — g (12a1+16a;~1)log =5
xt(L,T) Ay a(Zp) Ay 2AZp) X(e *y2mz+e P*\2mp2)
= . I
o) P L egl +0(25% %, 25% 7). (3.60

35
(353 As expectedeT(z;p) behaves agPe™?, but p differs from

with corrections of order I04./L* where the value it assumes for other observablsse, e.g., the
largez behavior ofyy). Indeed, while the exponential be-
havior is completely general, the powprdepends on the

Ly 2R oo —4nF (z)
f(Zp) (zp)e "=, (354 cervable.

z 9z
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FIG. 6.A, 1(z1) andA, 4(z;1) for H*. The dashed lines are FIG. 7. A, 1) fo.r H, Hs.ym’ andH"®. The dashed lines
the largez asymptotic expansions, Eq&.59 and(3.69. are the largezasymptotic expansions, E(B.60.

In Figs. 6 and 7 we report the graphszb;‘(T,l(z;p) and
x.2AZp) for p=1 and different Hamiltonians. The behav-

it

l JF
[ 2. = —2(zp)

|or is very similar to the behavior 0|fn T/m The FSS 1 1
corrections are quite small. The Syman2|k Hamiltonian (F (z )+ Fa(pz: 1, )” (3.69
shows the best behavior, while the diagonal Hamiltonian is P 3pE P
the one with the largest deviations from FSS.

Finally let us compute the FSS curve for the tensor cor— (z.p)= 1 1 n 1 il 1 ’9':0 (z:p)
relation length. We will restrict the discussion to the standard ™2 P 1283 Fs(z;p) Fa(pz;llp) 2z oz P

action; the generalization to generic Hamiltonians is straight-
forward but the final expressions are cumbersome. Moreover 1 1 36
. . . . (m,1) . .. 2/. + 22 . ( . 6)
we will restrict our discussion tg{™", that is to the defini- F3(z;p)  p°F3(pz;1lp)
tion used in numerical simulations. We obtain

_ 1 1 F; 1 1
(%%”‘”(L,T))Z () FaZP) =521 75, 57 B\ E ) T ez dlp)
Ty | elEp
& () ! 2n? o2 Fo )( 1
BeaZip) Mg ozip) 3 6z oz “P\Fyzp)
X| 1+ ~—logL + 5 ,
L L . 1 )+ 1 dFy  [Fa(zip)
(3.61) p°F3(pz;lp)) 2z 9z """\ F3(z;p)
where MJFL#
p%F3(pz;llp) 16w p?F3(pz;1lp)
fe (z:p)=1925 (z;p)e” *7Fo=P), (3.62 (3.67
=.(zp) Using Egs.(B57), (B58), (B106), and (B107) it is straight-
. ) =2\Z:p forward to compute the largebehavior of the various FSS
= + = . ;
Aga(Zp)=Ama(Zp) 2.(z;p) functions. We obtain
—47Fo(z;p)
+ 8e olzp), (3.63 f . 2 1+p +2ﬂ_4 1+p4+o .
_ (Z ) §T(Z p) 52 p2 6324 p4 (Z )(13 68)
E3lZ,p _ . .
A, (Z:p)=AnAZp)+ = —4e~ 47 o(zp)
e.24Zp)=AmAZ;p) =.(Zp) 4
_ . 1+p T
+16mFo(z;p)e 4" @) (3.6 A S APPSR
mFo(zZ;p) (3.649 A a(zp)== 15 P 180p422 (3—2p2+3p%)
and +0(z™%), (3.69
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71,2

A AZp)= 2472 (1+p?)

Z2
log 3—2+4

4 2
T (3-2p%+3p%)log —
36%422 P P 932

4

an
- W(l—pz)z—F O(log Z/Z4).

(3.70

1\\‘\\\r‘\\\<&\\\\\\\\\\

As expectedf gT(Z;p) approaches one aszi/and thus it

reaches the asymptotic value for>c within 1% only for
z~9. Notice moreover thaA\gT'z(z;p) diverges logarithmi- 0 5 10

cally asz—oo. This fact signals the nonuniformity of the z

expansion ire. This is not L_mexpected. I_ndeed,for_each fixed FIG. 8. A, 4(z1) for H The dashed line is the large-
z, we expect the expansion to be reliable onlymf <1, asymptotic ex;;ansion E3.70

i.e., if the correlation length is much larger than a lattice ' o
spacing. Therefore we expect the expansion to be valid onl
if z<L. If 1<z<L, logZL?is a small number and thus the
expansion is completely under control.

The functionsAgTyl(z;p) and AgT’Q(Z;p) are reported for
p=1 in Figs. 6 and 8. From these plots, comparing with the l.(mZ)=1_ +(mf )+ omf 1, 4.3
analogous graphs for other observables, one can immediately
see that the corrections to FSS Y are quite large. This a simple computation gives
is particularly evident in the large-region, where the

\\\\‘\\\\‘\\1\‘\\\\‘!\\\

—
@)}

¥SS functions of models with Hamiltonid®.1), as expected
on the basis of universaliff/The corrections will, however,
be different. Writing

2 2
logL/L? term goes to a constaffor the isovector correlation 5= | ms IL,T(mL,T)2 (4.4
length this term vanishes exponentialiwhile the 1L2 term 2\ mf 1 2 f(mf ) —r° '
diverges as log.
Solving formZ/m + we get finally
IV. MIXED O(N)-RPN~! MODEL
2 . r .
In this section we compute the FSS corrections for the rr;w —f (zp)| 1+ [Amvl(z,p)+2Am'1(z,p)]log|_

Hamiltonian(2.18. As before we want to obtain a relation me T me L
betweerm? andm? ; at fixed 8. Using now the gap equation r —~
(2.19 we have [AmaAZip) +AnAZip)]  An(L;Zip)

Al r(mf 1)? (4.5

4l +(m? ) +r[mé 1 +(mf ) —1
Lr(ME )+ Ml (M 7)— 1] where f.(z;p), Am1(z;p), and Ay, o(z;p) are defined in
41,.(m?)2 Egs.(3.3—(3.5), with a;=a,=0 and

TR AR T A R

Apu(zip)= 5 (22-32e 47Fo0) (a9
We will now discuss the FSS limit in which, T—«, 8
—oo, m_ 1, m,—0 with m_;L=z and T/L=p fixed. At
leading order we can disregard the termél..(m?) and

mE,TI L,T(mE,T) in the denominators obtaining To be precise universality applies only to models withl. For

r=1 (RP'"! ¢ mode) there is an additional gauge invariance and
therefore we do not expect its FSS functions to be identical to those
I p(mf )2 l.,(m2)? of the N-vector model. However, under suitable assumpticats
41 (m2 )—r = 41 (mz)—r’ 4.2 sence of vorticesthat are verified in the largl-limit, one can
LU T oA prove that the FSS functions for the RF model with periodic

boundary conditions are equal to thNevector FSS functions with
which imp"93|L,T(mE,T):|w(m§o)- Thus, at leading order, fluctuating periodic-antiperiodic boundary conditiofs]. In the
the relation betweem, + andm,, is identical to the one we largeN limit the antiperiodic contribution vanishes, hence Rtas
have discussed in the previous section. Consequently the same FSS functions of tievector model. For a discussion in
FSS functions for the Hamiltoniaf2.18 are identical to the one dimension, see Rg#0].
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TABLE lll.  Values of Readliz,p),  Rexpadl:z.p), I I T ‘
Dexac{L:Z,p), and DeypadL:z,p) for the RF* model (=1), p
=1 andz=2.

L Reac(L:21) Repafli2,1) Deyac(L;2,1) Dexpafl;2,1)

8 0.35709886  0.34256990 0.5916549 0.5268967
10 0.29398737  0.29002279 0.3103555 0.2926846
12 0.26809044  0.26656021 0.1949281 0.1881076
14 0.25463070  0.25391316 0.1349356 0.1317374
16 0.24665643  0.24627448 0.0993928 0.0976904
32 0.22943124  0.22941299 0.0226170 0.0225356 i
64 0.22561220 0.22561112 0.0055948 0.0055900 i i
128 0.22467784  0.22467777 0.0014302 0.0014300 " 1

S(L:z;1)

© 0.22435696 ol v Lo v L ‘
0 2 4 6 8
Z
P : 2 aon—4nFy(zp) FIG. 9.S(L;z;1) for L=128 andL=512. ForL —, S(L;z1)
AmAZp)= 2 [2Fo(z:p) +r](z°~32 ), converges to 3 for att+0.

(4.7

To compare the corrections for the RRnd theN-vector

- e amEyzp) model with the standard Hamiltonian for all valueszfin
An(Lizip)=—5— (27— 32" olnr)) Fig. 9 we report
X L . 4.9 R DexpafLiZ,p)r=1
logL +27Fo(Z;p) — 71 S(Lizp=5— 753 . (4.9

Dexpar(L;ZaP)r:O

The result(4.9) is quite different than Eq(3.2). Indeed, ¢4, L=128, 512 andp=1 [D(L;zp) is defined in Eq.

while before the corrections had a very simple dependenc%llm_ For these values of. corrections are 5—10 times

on log., now the corrections involvA[(L;z;p) thatis nota larger in the RP model.

simple polynomial in log. Notice that, for large- at fixedz, It is interesting to understand the origin @('—:Z?P) in

Ar(L;z;p) behaves as 1/ldg Therefore, in the FSS limit, terms of perturbation theory. First of all, far small (for

the corrections still behave as lof?. simplicity we consider the strip case, analogous results are
We should make a second remark aba{i(L;z;p). Itis  Vvalid for genericp) we can expand, cf. EqB69),

easy to convince oneself from the asymptotic expansions,

Egs.(B57), (B59), and(B69), thatF,(z;p) assumes any real — w3 z

r “ o —
value. Therefore, for each value ofthere is a value, such An(Lizip)= 2 m+zlogL
that the denominator in Eq4.8) vanishes, and therefore _
Ar(L;z;p) diverges. WherL —©, z.—o, more precisely, _ m2(2F 1) o). @10
using Eq.(B57), we havez,~e~ ™" \/32L. This singularity is m+ zlogL

a signal of the fact that the expansion is not unifornz.ifror

each z the expansion is valid only wheh>z, i.e., for  This is not yet a perturbative expansionzidue to the pres-

m_ r<<1. In other words the expansion makes sense onlgnce of the ternzlogL in the denominators. This term cannot

when the correlation length is much larger than a latticebe expanded irz since we are considering an asymptotic

spacing. expansion at fixea with L— . However, if we ignore this
The corrections are larger for the mixed model than forproblem and expand the denominators in powerg,ofie

the vector model. For instancay, 1(z;p)/Apm1(z;p)=2r so  obtain

that the logarithmic correction in the RRnodel =1) is

three times larger than the corresponding one irNthector A a3

model (=0). For the values ot that are used in Monte A[n(L;z;p)pen:T yad

Carlo simulations, say8L <128, however, all terms in Eq.

(4.5 contribute to the FSS corrections. In Table IIl we report

for r=1, p=1, andz=2 the same quantities reported in +0(Z’log’L)

Table I. Comparing the two tables we see that the corrections

to FSS for RP are seven times larger than those for the —

N-vector model in the same range of valuesLofOnly for  In generalA[(L;z;p) has a polynomial expansion inwith

L~50 (L~150) the corrections are smaller than 1041%.  coefficients that are polynomials in lbg

Z J—
1- ;IogL —2(2Fgp—T)

. (4.11
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FIG. 11.5XT(L;S;1) for the RP model for two different values

FIG. 10. Sg (L;s;1) for the RP model for two different values
Y of L: L=16 andL=128.

of L: L=16 andL=128.

- o while for yt we have
AT(L;Z;p) per= 2320 P, (logL)z", (4.12

xr(L,T) :(XT(L,U) { M)  AhdZip)
whereP,(x) is a polynomial of degrea. This expansion is xT(®) x7(*) o Lz L2

clearly incorrect in the FSS limit — oo at fixedz. However

Eq. (4.12 correctly describes the theory in the linzit-0 at Q(L;z;p) r

fixed L. This is the limit in which PT works correctly 5 >— (328~ 47Fo(Zp) — 72)
[51,52, and indeed the expansig4.12 can be directly ob- L 27°L

tained with a perturbative calculation. Therefore our results

show that in order to correctly compute the corrections to % logL +27Fo(z;p) 4.14
FSS one needs to resum the perturbative expansion. This logL +27Fo(z;p) — 71 |’ '
reflects the fact that the perturbative limit>0 with L large

and fixed does not commute with the FSS lilit: with z  Finally for &™) we have

fixed and small. It should also be noticed that the infinite

series of logarithms appearing in E@.12 resums to give MY T\ 2 [ EmDL,T)) 2 A" (zZ;p)
corrections of order 1l(%logL). This is a result that is far ( 0 (o) ) _( 0 (oo) ) — [z logL
from obvious: in general one expects series of the form T T r=0

(4.12) to give powers of., i.e., to resum t&.P?, wherep(z) . -

is some function of. For N=% no power is generated, but + AmAZip)  An(Lizip) 4.15
we have no proof that this will be true for generic values of L? L? '

N. The only argument we have against the appearance of

power corrections is based on a naive app”cation OfTO conclude our discussion we come back again to the RP
renormalization-group ideas. The corrections to FSS are du@odel. In this case the FSS functions are usually reported in
to the irrelevant operators of the theory. Since Mweector  terms of s=L/&™Y(L,T). Indeed, because of the gauge
model is asymptotically free, operators have canonical scasymmetry, one cannot define observables in the isovector
ing dimensions with logarithmic corrections. Therefore wesector. For any observabi®, we define the FSS deviations
always expect a behavior of the form (l9§/L2.

Using the results of the previous section it is easy to ob-
tain the FSS functions and their leading corrections for the
various observables. For the isovector second-moment corre-
lation lengths the expressiorf8.31)—(3.33 still hold with
mZ/m? ¢ given by Eq.(4.5. For the susceptibilityy, we

owLT 1

Dy(L:sip)=L2
oS = 50 Tasn)

1|, (4.1

Wheref_o(s;p) is the FSS function o® expressed in terms
of s In Figs. 10 and 11 we repongT(L;z;l) and

have N
) DXT(L;z;l) for L=16 andL=128. The corrections are ex-
xv(L,T) _ M, 14 (326~ 47Folzin) _ 72 tremely large if one compares them with the analogous re-
xv(®)  mi; 47°L.? sults for theN-vector model. This is especially true in the

larges region. Moreover the corrections are positive. These
% logL +2mFo(2;p) 4.13 results are in qualitative agreement with the results of Ref.
logL+27Fo(z;p)—ar |’ ' [56].
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V. CONCLUSIONS We want now to discuss their behavior far—0 and «
—. We will focus on those values &fthat appear in our
al results, i.e., tk=0,1.

The expansion forr—0 is trivial. We obtain

In this paper we have investigated the corrections to FS‘?n
in the largeN limit for a vast class of models and we have
studied their relation with the improvement program of Sy-
manzik. In the largeN limit we find that the corrections be-
have asf(z,L)logL/L?> where f(z,L) can be expanded in
powers of 1/lofg and is such thaf(z,) is finite for all ‘
values ofz. Thus, for large values df, corrections behave as Go(a)= kZl (-1 ( K )5(2k+ i)
logL/L2. Tree-level improved Hamiltonians have corrections -
to FSS behaving as 17: the effect of the improvement is
the cancellation of a logarithm. Subsequent perturbative im-
provement should give Hamiltonians with corrections of or- (— )k
der 1/(L%log'L) (I=1 for one-loop improvement and so)on Gi(a)= 22 ( )5(2k+ 1)

We have shown explicitly that the FSS limit and the per- (A5)
turbative limit commute in the calculations of the FSS func-

@ 2k
2

o) 2K
5) . (A4)

(1) 2k+2

tions butnot for the calculation of the next-to-leading term.

Corrections to FSS cannot be computed in perturbation

theory unless an infinite series of logarithms is resummed. Hi(a)= 2 (—1)X2k+ 1)( K )5(2k+ 3)
Finally we have investigated if there is any sign of large k=0

correction in the RP model. We find that this model shows (AG)
deviations from FSS that are much larger than those of the
N-vector model. We find qualitative agreement with the re- * 2k
sults of Ref[56]. Ho(a)= D, (— 1)k( K )aZk
k=0
k
ACKNOWLEDGMENTS 2n
1—-2log 2+§) {(@n o )} (A7)
We thank Ferenc Niedermayer, Paolo Rossi, Juan Ruiz-
Lorenzo, Alan Sokal, and Ettore Vicari for many useful com-
ments. 0 ok
Hi(a)=42, (—1)k(2k+1)< « )a2k
APPENDIX A: DEFINITIONS k=0
k+1
i 2n+1
1. FunctionsGy(a), Hy (@), and H,(a) x| 1-2log 2+ E & - )} (A8)
Let us define the following functions: n=1
o where we have used
Gu(a)=2 |(n*+a?)k 12
n=1
- 1 4 f(2s+ 1)
k
——————rT + 44 - 7
S (k 1/2) Zmnzmml}, AL 3 T —A1-2l0g2+40%, S
o (A9)
w0 All series converge fofa|<1.
Hy(a)= E 1 (A2) We want now to derive the asymptotic expansionsdor
k = (n*+a?) SR —oo, In order to obtain them let us derive a different repre-

sentation for the function&,(«) andH(«).
Let us first consideGy(«). We rewrite it as

o0

1
Hk(a):nzl (1= an?)(n?+ 2B 12" (A3)

, 1
Go(a)= lim T(1/2+ el2)

e—0+

—{(1+e)+

The first and the third ones are defined for integersO

while the second one is defined fior 1: for these values of © dx v 2
k the sums converge for all values @f The functionsG(«) Xf xi-on € 2 e - (AL0)
and H,(a) are known in statistical mechanics under the

name of remnant functionsee Appendix D of Ref46] and

Ref. [60]). Using the Poisson resummation form{i#2] we obtain
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. a_e
Gol@)= M | =L+ &% Rt )
\/; € 1 1+e€
| XS - = =<
2 '\2) 24\ 2

- )dex o

TR 2 -2 ©

)

Taking the limit we get the representatif®0]

xz ex

(A11)

©

o 1
Go(a)=—log 5~ ye~ z+2r1§=:1 Ko(27na),
(A12)

where K, is a modified Bessel functiof73]. The corre-
sponding representations G («) andH,(«), k=1 can be
obtained by integration and derivation of the previous rela-

tion. We obtain[60]

a? a 1 1

1
Gil@)=15+ 5 | ~log5+5—ve— -

- — 2 - K1(27Tna) (A13)
T n=1
1 T
Hl(a)z ?— ﬁ—’_ 7 n§=:1 nK1(277na).
(A14)

This representation of the functiorg,(a) and H,(a) al-

PHYSICAL REVIEW [58 105007

Now in the integral appearing in E§A16) the relevant re-
gion for largea? corresponds to small values xfTherefore
we need the smak-expansion ofg(x). First of all notice
that

+ o

1
g(0)=1+2> ———=0.
n

=1 1—4n (A18)

Then one immediately verifies thg{x) satisfies an equation
of the form

+ oo

1
g<>+ g -5 > e =0,

(A19)
n=-—ow
so that, using Eq(A18), we get
1 x = )
9= 7 e‘X/“f dy e > ey, (A20)
0 n=—o

Using the Poisson resummation form{i#2] we can rewrite
it as

g(x)— x/4J \/_ ey/4n_§;oo e~ 7 n2/y (A21)

In the smallx region only the term witm=0 is relevant so
that

lows an immediate derivation of the asymptotic expansion

for large values ofx since[73]

[
Kn(X)= 2% e

Let us now consider the functiofig(«). We rewriteH, («)
as

1+

n?— E)JrO(xz)}.

2% 4
(A15)

1 1
Hk(a)_ - 2k+1 2 F(k+ 1/2) J dX Xk_l/ze_xazg(x):
(Al16)
where
+ oo eixn2
9= > 1=an? (A17)
n o

VX x x? x3 x4
~ 1—-—+ —— —+——+0(x |.
2 6 60 840 15120
(A22)
We obtain eventually for large values af
J 1
Hk(a)__ 2k+l+ 4F(k+ 1/2) 2k+2
" (k+1)! (k+2)! (k+3)! (k+4)!
1T T6aZ T 60" 840a° ' 151204°
+0(a%"1?), (A23)

2. The functionsM ,4(z; p), Npo(p), Mpo(z: p), and Nyg(p)

A second set of functions appear in our calculations. We
define
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. p - l . ~ ~
Mpd(zip)=(2m° 2 ez o Mp(zip)~ 2 f(27m). (A31)
1 For z— we have
X , A24
[exp(p\4m2nZ+2%)—1]9 (A24)
~ 2
f(w)= TZ (ap2)*P(w?+ 4m2g2p?) 2P 9
Mpq(z:p)=(2m)P i !
pglZp)=(2m)” —AnZ 22 S22 7
ée (1407 (@mn® 2 X e AT 140z ).
1
x . (A25 (A32)
[exp(pV4m?n?+2z%)—1]9 (A25)
Therefore
1 1 1/2-p
= — Z —_ —
Noolp) nzl nP [exp(2mpn)—1]%’ (A26) Mpq(Zip) = Jap (ﬂ) e 10z ).

(A33)

1 1 . . .
= For M4(z;p) we will not need the explicit asymptotic be-
Aoolp) n§=:1 (1—4n*)nP [exp(2mpn)—1]%’ havior. It is, however, easy to convince oneself that, for large
(A27)  Z, Myq(z:p) goes to zero faster than Pe™ 9%
To conclude this subsection let us derive a set of relations
or the functionsNpq(p). First of all let us notice that
N1 1(p) can be related to Dedekind’ function [68]

whereq is a positive integer. We want to compute here thef
asymptotic expansion oM ,4(z;p) and M,4(z;p) for z
—0 andz—-oe at fixed p. The first expansion is straightfor-

ward and we get foM ,4(z; p) o
- T :e'iTiT/lZ 1_e2’7TinT . A34
' Zw)p L Boy-+Br, 7(7) 11 « ) (A34)
zp)=\—]| ——% Era—
Dq( p) z (pz)q Ny, nq:O nll...nq!

Indeed
X(pz)n1+...+nq+ 2Npq(p)

ee] o] 1 ee]
N — _ e*Z*rrnkp: —lo 1_e*2ﬂ'kp
+27% — % Np+24(p) 14(P) n§=:1 k§=:1 n g k[Il ( )
ae P :
T 4n (Np+1,q(P)+ Np+1,q+1(p)) == 12 log #(ip). (A35)
+0(2%). (A28) Following the same steps it is possible to prove that, for
For My4(z;p) the expansion is analogous with the substitu-p>0’
tion of N with V. (—1)P dP
For largez let us consider firsM4(z;p). We obtain N_pi(p)= @ d_pp Np.a(p). (A36)
M oo(Z; —i (2m)” his relati her with
pq(z,p)—n? W This relation, together wit|
_ 22, 2 —2pqz,1/2—p d
X exd —gqpv4mn?+2z?]+0(e 7 P). a5 Nea(p)==2mA[Np—14(p) +Np-14+12(p)],

This last sum can be evaluated using the Poisson resumm

tion formula[72]. Define g’l_lows us to prove that alNyq(p) with p<—1 can be ex-

pressed in terms dfly 4/ (p). From Eqs(A36) and(A37) we

- % _ 2m)P obtain the following relations we will use in the following:
f(w)zf dt et 52 ) >—7 exf — qQp\4mit’+z%]
o _
—c0 (477 t“+z )p
1 1 d _
(A30) N-11(p)=No,(p) + Nodp) = 55+ 5 - g-log m(ip),
Then (A38)
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N_21p)+N_2Ap)=N_11(p)+3N_1p)+2N_; op)

1 d?

=~ 1.2 d—pz|09 n(ip). (A39)

Finally, for p=0, let us derive a relation betweéh,, 5 1(p)
and Nyp 1 31(1/p) that will allow us to compute explicitly
Napt31(1). Let usstart from

©

1 T 27 1

n;x "ta? a a1 (A40)
It follows that
i 1 . 1 1
ety n4rt2 (pm)4p+2 n2+p2m2
==3 £(4p+4)+ 5= §(4p+3)+ N4p+3 1(1/p)

1

T —pr2
p*PT

1 T
T {(4p+4)+ 2 {(4p+3)

e N4p+3,1<p>}. (A41)

However, for integemp=0, we can also compute the first
sum as

oo

1 n4p+2+(pm)4p+2
maz1 (NMp)*P*2  nZ+(pm)?

2p
1
1 m)2n4p—2k
Z )m;1 mnp)4p+ (pm)

2

o

1
p (— 1) PR {(4p—2k+2){(2k+2).

0

(A42)

Comparing Egs(A41) and (A42) we obtain a relation be-
tweenNyp ., 31(p) andNyp,34(1/p). Forp=1 we obtain

1 1
Nap+34(1)= 5 {(4p+4) = 5 £(4p+3)

2p
P > (—1)ke(4p—2k+2)E(2k+2).
27 =0

(A43)
Particular cases are
!
N3i(1)= 555~ 5 £(3)~0.001871373,  (A44)
N;4(1)= il 1g(?) ~0.001870964. (A45)
' 113400 2

PHYSICAL REVIEW [58 105007

Analogous relations can be obtained starting from the more
general sum

o

>

mn=1 \N

1 1
izt (pm)™72| (nZ1 pZm?)8

(A46)

We leave the derivation to the reader. We will not need these
relations here.

APPENDIX B: ASYMPTOTIC EXPANSIONS
OF LATTICE SUMS

In this appendix we will study generic sums involving the
lattice propagator for a Gaussian theory with arbitrary inter-
actions. We will present an algorithmic procedure that allows
us to derive systematically the expansion in powers bfdf/
sums of this type. The results will be expressed in terms of
the functions we have introduced in Appendix A. The
method presented in this appendix applies to a square lattice
L X T with periodic boundary conditions but generalizes eas-
ily to other types of boundary conditions. It can also be used
to study lattice sums in more than two dimensions. In Ap-
pendix B 1 we compute some preliminary one-dimensional
sums; the general procedure is presented in Appendix B 2.

1. One-dimensional sums
a. The Euler-Mac Laurin formula
The basic tool we will use is the Euler-Mac Laurin for-
mula[74]. In its general form it is given by

m—1

E f(k)—f de(X)——[f(m)—f(n)]

+§=:1

f(2k l)(m)_f(Zk l) n)]

1 m
+ ZNFD)! fn dx fEN*TD(x)Bon 1 (X—|X]),
(B1)

whereB, are the Bernoulli numbers arig|(x) are the Ber-
noulli polynomials defined by73,74

n

o00-3, ¥

n—k

B, X (B2)

In the following we will be interested in sums of the form

al—1

f(p),

1
L n=0

(B3)

where p=2mn/L. We will try to compute the asymptotic
expansion of the sunB3) for L—« with « fixed. It is easy
to obtain from Eq(B1) the following formula:
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1] 2wa dp L 1
T 2 —f —f(p)— [(f(2ma)—1(0)] > n=sL(L+1), (B10)
L i=o 2L n=1 2
1 & By (2w L L
Tor & 2o\ T n; n2=gL(L+1)(2L+1), (B11)
X[F D (2ma)— 2D (0)] L
2 :_ 2
. 1 27 N+1J<2m1 dp . 2 L (L+1)2 (B12)
(2N+1)! 0 |
. Let us now consider the sufB8) with p>1. Rewriting it as
X(p)Ban+1(P), (B4) ]
. 1 =
with 2 FoiP- X (B13)
n= n=C+1 N
~ Lp [Lp . . .
B,(p)=B, 7|2 (B5) where £(n) is Riemann zeta function, and using the Euler-

Mac Laurin formula for the second sum, we get the

Thus, as long as the last integral in E84) is finite, i.e., asymptotic expansion

f(N+1)(p) is integrable in the intervdD,2ma], the previous

: , ' . | B
formula gives the asymptotic expansion of the s(B8) in — _n —1)L1-n-p
powers of 1L up to order 12N, An important case corre- 2 e 4P~ T(p) 1 E e '
sponds toa=1 and f(p) periodic of period zr, i.e., f(p (B14)
+2m)=f(p). In this case all the 1/ corrections vanish and o . o
we obtain Finally, taking in the previous formula the limg—1, we
have the asymptotic expansion
15 27 d 2N-1 L >
L 2 Hp)= f f(p)+O(L - (B8 Z % logL + yg+ 21|_ Z %flz—n (B15)

It is easy to prove that a similar result holds for generic .
d-dimensional sums. If(p,...,py) is a periodic function in  Whereyg~0.577215665 is the Euler constant.
all variables of period # and 9, --3%%f (p) is integrable in

[0,27r]¢ for all ng,...,ng such thatn;+---+nyg<2N+1, _ _ .
then, forL—o with L;/L,L,/L,... L4/L fixed, we have In this section we consider sums of the form

c. Asymptotic expansions 6f(n?+a?)k*2

Li-1Lly-1  Lg-1

L-1
1
e > E f(P1...-.Pa) > (n?+a?)ki2 (B16)
1 d ny=0 ny=0 ng=0 n=1

_f % f(D)4+O(L-2N-1 57 Again we want to compute the asymptotic expansionLfor

~ J02q (27)9 (P)+O( ) B with « fixed. Let us first consider the cake=—1. In
this case we rewrite the sum as

where on the left-hand sidg;=2mn;/L;.

‘ & k12
b. Asymptotic expansions cfn~P nZl (n?+a?)k 12— mE:O ( m )azmHZk_ am+d
Here we will discuss the asymptotic expansion of sums of il L1
he form k+1/2
the fo + > ( a2 pk-amil (B17)
L m=0 m n=1
2 ! B8
“nP (B8) We have already explained how to compute the last sums in

the previous subsection. We will now discuss the first sum
for L—. Whenp is a negative integer it is easy to perform that we rewrite as
the summation exactly. Indeed€ —p)

: 49 [1—ea(t+D) Gira(@) = 2 | (n*+a?) 1
2G| e (B9)
) a=0 < (k+172
) _ E ( ) n2k—2m+1 ’ (818)
The simplest cases are
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where Gy(«a) is defined in Eq.(Al). The last term L}*:l 1 L a
appearing in Eq(B18) can be easily computed using the = cot}{L arcsl{ —) . (B27)
Euler-Maclaurin formulaB1). =0 P*FTa’  a\4+a? 2

In the following we will need the previous sums flor

—1,0. Explicitly we have Higher values ofj can be handled by taking derivatives with

respect toa? of the previous formula.

L-1 2 2
E Jn2+ &= —|_(|_ 1)+Gy(a)+ = (IogL+ Ye)— e. Asymptotic expansion GE(p?+m?)k+12
Let us now consider sums of the form

+0(L7?), (B19) -
L1 11 nzo (p?+m?)k+172, (B28)
e —m:bgl_'i‘ ’yE+G0(a)—Z—T )

where p=2 sin@/2), p=2an/L. We want to study these
a? 4 sums in the finite-size-scaling limit, i.e., fdr—o, m—0,
+ a4 FJF L3 +O(L™%). (B20)  \yith mL=z fixed. To compute these asymptotic expansions

we proceed in the following way.
Fork< —1 the computation is straightforward as no subtrac- AssumingL even(the final result will not depend on this

tion is needed in this case. Fke=1 we have assumptiopwe rewrite
iy 1 1 1 Li2—1
- -4 + 2\k+1/2_ 2+ 2\k+1/2
3 ey Hi@ - 5 et oL, E (PP+m2)k =2 3 (p*+m?)
(B21)

+(4+m?) 2 mt - (B29)
whereH(«) is defined in Eq(A3).

Then let us consider the expansion @¢z2/L2)%*%2 in
d. Computation ofS(p?+a?) ™ powers of 1L2: it can be written in the form
In this section we will compute exactly sums of the form 22\ k+172 22\ k+172
L-1 1 p*+ Lz) =(DZ+F
=55 g B22 o
nZO (p*+a®)d 22 S an(n2,22) 1
4h 2 2/ 2 ’
for integer values of}. As usual,p=2 sin(/2). h=0 L (p*+Z7/Lh
If g is negative the summation is trivial éiserek=1) (B30
1 2k whereay(n?,z?) is a polynomial inn? and z2. Let us indi-
Z pH= ) (B23)  cate withRy 4(p,z;L) the sum of the firsg terms in Eq.

(B30). Then we rewrite
Let us now discuss the cage=1. Consider firsg=1. Then _

B 2+ 2\k+1/2
L21 11 S 1 o Z m°)
& p?+a? 2 &5 w—cog2wn/L)’ (B29 Li2—1

L-1

k+1/2
=2 p2+ —Ryq(p,z;L
wherew= 1+ a?/2. Then notice that 2 [ L? ca(P.ZiL)
cot 7z g
i i + L)+ (44 m2)kH V24 mk+ 1
Fle'flo fDRdz o~ coa2m a0 0, (B25) 2 nzl Riq(Pz;L)+ (4+m?) m
. . (B31)
whereDg is the rectangle in the complepplane bounded by
— 1 o, 4 ; ;

the linesz=—3, z=L—3, z=*iR. Using the residue theo- \ye must then choosg To fix its value we must decide the
rem we get order in 1L to which we want to compute the expansion.

Then we fixqg so that we can use the Euler-Maclaurin for-
mula for the first sum. It is trivial to reduce the second sum
to a sum of terms of the form studied in the previous para-
(B26)  graph.
We will now illustrate the method by computing the
We thus end up with asymptotic expansion of

L-1 1

E _ L
= w—cog2mn/L)  /p2—1

L
cot| > arcchw) .
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including terms of order 12. Since

(B32)

- = ! 1 P’ +0O(L™ %,
VE I pPr AL\ 24pTH il
(B33
we rewrite
L-1 1
n=0 ‘/ﬁ2+m2
2|_/2—1 1 1 . ot
TS | PP m? JpPem? 24 (p2+m?)3"2
& Jprrme
L/2—1 4
1 p 1
n & e T

The first sum can be computed up to order?1lsing the
Euler-Maclaurin formula. We obtain

L/2-1

1 1 1 p*
Vp2+m?  \pP+m? 24 (p®+m?)¥2
L I T o z2
- _094 96 167L2
| T 2
T 2997t
1+ 1 L z2 1+ 1 . 1
4" 27 48 2L2\ 16 2#° ' 167
T [ 1 3
+ 60 | 2 5/ TOL ). (B35)

The two remaining sums can be computed using the results

of the previous subsection. We obtain finally

i " logL+ ye—log =+ Gy(2/2
= ,—2+m =5 09T YeT 00 o(2/2m)
L T _— 1
+E+6_L 1(Z 7T)—l—2
Z4 2
A pry

1
X | logL + yg—log g+ Go(z/27)— E)

+0(L79). (B36)

PHYSICAL REVIEW D 58 105007

We will also need the expansion of H&§29) for k=0 up to
O(L"3). Using the same method we obtain

e AL 7 4x z
nzo JpZ+m?= ——g0t T Guz2m+ |
z° T
+ 5 | logL+ ye—log +0(L™3).
(B37)

2. Two-dimensional sums

In this section we present our procedure to expand in
powers of 1. general sums with Gaussian propagators in the
FSS limit. A general theorem for massless propagators was
proved in Ref[75]. Here we will improve their result show-
ing that only even powers of l/appear in the expansion and
providing an algorithmic method to compute the various co-
efficients.

a. Asymptotic expansions APz (p?+m?)

In this section we present a general procedure to derive

asymptotic expansions of sums of the form
ha 2k
1 PPy

(B ma)- (B39

ﬁ ny.Ny

wherep,=2mn,/L, py= 2mny /T, the sum extends over 0
=n,<L, 0<n <T in the f|n|te -size-scaling limit, i.e., for
L, T—>oo m *)0 with T/L=p andmL=z f|xed
F|rst of all let us notice that rewriting?“=[ (p?+m?)

—p2—m?]¥ we can limit ourselves to con5|der sums with
=0, i.e., sums of the form

1 by

LT ey (p+m2)q- (839)
The summation oven, can be performed exactly using the
results of Appendix B 1 d. It is easy to see that the result will
be a sum of terms of the form

L-1
2 (p2+m2)a/2(4+p2+m2)b/2

X

1
F{ZT arcsré \/px+ m?

R
(B40)

for integersa, b, andc=0. If cis strictly positive it is simple
to obtain an asymptotic expansion in powers a@f?1/Indeed
arcshx=0 if and only if x=0. Therefore, forl.,T—~ the
terms that contribute are those for whiphk:0. Thus rewrit-
ing the previous sum as

2mn 72
) , (B41)

L1 2+>/zJ )
L nSn \C2°

Ny
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we expand the functiog in powers ofL atn, z, p fixed,

2mn 72 1 )
9\ |z Pt =|—“m2 2m In(n,2%,p). (B42)

The expansion of EqB40) is simply given by

+ 00

S G| S |

m=

L2m (B43)

Let us now consider the cagse=0. If alsob=0 we have

discussed the asymptotic expansion in Appendix B 1 e. Sup-

pose nowb# 0. Then define

o (k/z) pZ+m?|"
n=o0 \ N

4

>

Rk|:2

, (B44)

and rewrite

L-1
= > (PZ+m?)¥2(4+pZ+m?)Pi2
L n,=0

2+ m?) ¥ (44 pZ+m?)P2—Ry ]

L-1

1 N
+= 2 (PZ+mA)¥Ry,.

B45
P (B45)

Then choosd so that one can apply the Euler-Maclaurin
formula to the first sum: as the function is periodic of period

21, as we observed at the end of Appendix B fisae for-

PHYSICAL REVIEW [58 105007

L-1
= 2 (PE+m?)¥2(4+pZ+m?)bi2
L n=o

2 dp R
:Jo > (PZ+ M) (4+p;+m?)P2—Ry ]

L-1

O .2 (Brm)?2Ry. (B46)

The computation of the remaining sums was discussed in
Appendix B 1 e.

To illustrate the method let us consider a specific case, the
sum

1
M= 2 (B47)

Using Eq.(B27) we can perform the summation ovay
obtaining

1 1

L 2o p2+m2\a+p2+m?

2 iy 1

L m=0 \p+m2\4+ps+m?

X

1
p{ZT arcsV( Vpi+m?

=R

(B48)

mula (B7)] we can simply replace the sum with the corre- The asymptotic expansion of the second sum is immediately

sponding integral. We thus obtain

1 ' 1

Ui V5w g

1 ™ z\* z\2
:EMl,l(Z;P)+W > M3,1(Z§P)_ZE M11(Z;p) —2M _14(Z;p)

m2p

G 2
+2M_2,2(z;p)—2(5) MoAZ;p)+

;{ZT arcsVE Vp2+m?

2
z
+ 122 {ZM 2,1(Z;P)_2(Z> Mo1(Zp)+

computed: we get

-

2 \4
E) M, 1(Z;p)

+0O(L™%). (B49)

2 \4
Z) M3 AZ;p)
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Let us now consider the first sum. We want to compute its; L-1

1 1
asymptotic expansion including terms of ordet4/We re- = =
write it as L niZo Jpz+m? J4+pi+m
1 1 1 z
1 L-1 1 1 Zz“'ﬁ |OgL+’yE—|0g 7T+§|092+GOE
L =0 p2+m? J4+p2+m?
LT 1 s z z z* H
= 1 1 1 6L% |12 “H2wm/| 16.2 7 1927%L2 M 27
L& P2+ m? | J4+p2+m? 2 2 1
. ~ 16712 logL + yg—log 7+ §|092
1 (B2 |+ 1 s 1
78 (PxTm ETR N
16 2L ne=0 p)2<+ m2 2 z 1 _4
1 L-1
“Ta 2, V pr+m?. (B50)  Using Eq.(B49) and the previous expression we obtain the

following result:

The last two sums were discussed in Appendix B 1 e. The
first one, up to terms oO(L %), can be replaced by the I

corresponding integral. Expanding the integrand in powers
of m? we get

1 z? 1
Lr(m?)= §|09|—+ Fo(zip)— ng L+iz Fi(zp)

+0O(L *logL), (B53)
1S 1 1 L, L e where
L2 pZrm? | Jaipirm? 2 16 P
Fozi) 1+1 1I 71'2+G z
1 72 olZp)= 5o+ 5| Ve~ 51005 7 6o 5
:E(1_|092)+W(1+2|092)
1
+0O(L " *logL). (B51) + 5 M1a(Zp) (B54)
It follows that and

F__quGz zz“Hz z2 1|w22621 ZAM'
1(Z,P)—g 5 S| "6t 1022 Hil 57 16, | ET 21095t 3 G0l 5]~ 3 7 31(Z;p)

w2p z\?
Tt 2M _54(z;p) =2 > Mo 1(Z;p) +

2 \2
- 2(%) M11(Z;p) —2M -1 4(Z;p)

z 4
5) M2 4(Zip)

2
+2M2,z<z;p>—2(%) MoAZip)+

Z 4
%) M2AZp)|. (B55)

In addition to this sum we will also need
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1 S ,.08 N K
ﬁnx,ny (p m) m L?[6

2

T
2 2M_14(Z;p)+2 2

272
Q2T

2
+2M _,AZip) - 2(2—) MoAZip)+

_27TG]_(

logL —1 1| 2 ! 2G z
0og —qu-r-i-zog +’yE—€+§ OE

2
2 [ZM 21Z;p)— 2(277) Mo,1(Z?P)+(

PHYSICAL REVIEW [58 105007

z 3z+ z H z
27) 4 160 HN2m

)

4
277) M3 4(Z;p)

22
_77) M1 4(Z;p)— (

7 \4
E) M 1(Z;p)

4
z
%) M, Az;p)+O(L ™ *loglL)

g2 —322 logL+ 12F(z; z +0O(L %logL B56
- 47TL2 Og F 1(ZaP) _7T ( Og ) ( )
|
Finally we want to report the asymptotic expansions of 1 pe
Fo(z;p) and F,(z;p) for z—0 andz— +«. They are ob- Foi(p) == 753 {(3)~ 755~ g3 Naa(p)
tained using the asymptotic expansions of the functions
Gy(2), H(2), and M ,4(z;p) reported in Appendixes A1 p
and A 2. Forz— +, We obtain ~ 2.2LN21(p) + N2 5(p)], (B62
Fiolp)= o = N_11(p)
Cy— 1 10\P) =557 75— 7 N-1dp
Fo(z;p)=— Iog 32 \/_ [1+0(z™ Y] 72 120 3
2
p
~pz [140(z-Y)] 857 +——=—[N_21(p)+*N_24p)], (B63)
+ +0(z ,
\V2mpz 1 1
R Zlog o— = | - P
ZZ ( Z2 23 72 L
Fi(zp)= log =5 —— [1+O(Z’ )] 1
2 )" 20, + 2—log n(ip)+ 15 [Nox(p) +NoAp)]
8 2 " :
p23 —pz L 2
+ = 1+0(z7H)]. B58 &y
24 fompz O (859 T2 N1 i)+ 3Ny ) + 2Ny )]
Let us now consider the perturbative limit. gk~ <, we ob- 1
P / 5 Fodl )~ o Flp). (864

tain for z<1, z<1/p

In the last formula we have used E@8.38) and (A39) that

1
Fo(z;p)=—5+Foop)+22Foi(p)+O(z%), (B59 also show thaFo(p) can be expressed in terms of deriva-
pz tives of log#(ip). For p=1 we obtain the following numeri-
cal values:
F(zp)=F +2°F +0(z2%), B60

1) =Fadp)+ 2 Falp)+ O(Z) (B60) Fool1)~0.04876563317014130,  (B65)

where Foi(1)~—0.00386694659073721, (B66)

1 1 1 . F1o(1)~—0.02924119479519021, (B67)

Foolp)= 5| ve—log m+ 7log 2] — —log 7(ip),
(B61) F,,(1)~—0.00376876379948390. (B68)
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For the strip p==) the previous expansions are not valid. where, in our case, we would identifi=ip. To prove di-
In this case we write rectly Eq.(B78) one should use the relation obtained com-
paring Eq.(A41) with Eq. (A42) for p=0.

1 — —
. - 2 4
Fo(z:0) = 27 +Foot ZFor+ O(Z), (B69) b. Asymptotic expansion oE(w(p)+m?)~*
, We want to compute here the asymptotic expansion, in-
T — ; -2
Fy(z:0) = o 1_64_22,:1lJr oY, (B70) cluding terms of orde©(L™¢), of the sum
with 7, 2)_ 1 ! B82
L,T(m )_ LT nx’ny W(p)+m2 ( )
— 1 1
Foo= 5| ye~log m+ log 2], (B7D) " in the FSS limit. Generic sums of the tyiB38) can be
easily computed with the same technique. We assume that,
_ 1 for — w<p;<, w(p) vanishes only fop=0 and that in a

Foi=— 77—=3 {(3), (B72)  neighborhood of the origimv(p) has an expansion of the

1
o form (2.5. Then we rewrite
F, ! | log2- 2
u= " 16, | YETI09 TH 5log 2= o . - (mz):iz 1 ] 1
(B73) BT LT 5 [w(p)+m® p*+m?
Finally let us comment on the duality property of the func- a2, 0+ ax(p??] 1 1
tions Fy(z;p) and F4(z;p). The suml,_,T(mz) is clearly (pZ+m?)2 +ﬁ zp: pZ+m?
symmetric inL,T and thus it is a functionb(mL,T/L,L)
such that 1 a2, ph+ an(p?)?
e (883
d(mL,T/L,L)=d(mT,L/T,T), (B74) P P
i.e., ®(z,p,L)=®(pz,1lp,pL). This implies for the func- Since we want to computé_r(m?) up to O(L %) we can
tions Fy(z;p) andF4(z;p) the following relations: substitute the first sum with the corresponding intedcél
Eq. (B7)]. Then, expanding the integrand in powersnof,
1 we obtain
Fo(zip)= 5109 p+Fol(pz;1lp), (B75)
2 1 22 2
ZZ 1 IL'T(m ):Ao+al l_; +(12_FA1+IL’T(m )
Fi(z,p)=— 7-log p+ — F1(pz;1lp).
16m p nd a2\2
(B76) _iZ 2 P, +as(p) (B84)
LT 5 (p%+m?)?
These equations provide a nontrivial check for the correct-
ness Qf our a_symptotlc expansions and moreover imply thﬁ/here we have introduced
following relations on the expansion coefficients for 0:
1 B d?p 1 1
Fod(p) = 5109 p+Fodl Lip), (B77) Ao= J @m? w5 (B89
Fou(p)=p*Foi1lp), (B78) o d%p 1 1
1 ! (2m)? |w(p)® (p*)?
Fidp) =~ Fid 1p), (879 2
P TRE (alE Pyt az(Pz)z)}, (B86)
1 "
=—— + . ;
Fulp)= = 76,109 p+ F1u(1lp) (B80 4nd we have used the resgee Appendix C of Ref:39])
The duality relation forFqo(p), F1o(p), andF4(p) can be d?p =,.p 1
obtained directly from the inversion property of Dedekind’s j — %:1_ — (B87)
7 function[68] (2m)° (p%) T

n(—Ur)?=—iry(7)?, (B81)  We obtain eventually, using Eq&56) and (B53),
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TABLE IV. Values of A; and A for various Hamiltonians.

ar z
Fa(z;0)= 25 (1= 12ay) + 16 (1201 + 12a,— 1)+ 22

Ao Ay
H20 0.0322658881033520480  0.00371978402668476 x| (1= 12007)F 11+ 25F ogt 2= A4 | +0O(2%).
HS™  —0.0471699346329274140  0.00811339924292905 v 87w 7
H Sym2 —0.0564354728047190420 0.00331572798724030 (B93)
1 2 ¢. Sum for the tensor correlation length
z
IL,T(mz)z zlogLﬂL}‘o(z;p)— 16702 In this section we describe the computation, in the FSS
limit, of
1
X(1—12a1—16a2)|ogL+Ffl(Z;p), L) 1 E 1
m == —_— ~ ~ ~ 1
2L LT iy [(Px—Po)®+ Py +m?I[pc+ py+m?’]
(B88) (B94)
where the neglected terms are of oré¥il ~*logL) and where po=27/L and, as beforep,=27n,/L and p,
=2mny/T.
Fo(z;p)=Fo(z;p)+ Ao, (B89 First of all we rewrite Eq(B94) as
2 1 1
. . 2| %1 I (M) = — —— 5 2272, A7
Fi(z;p)=(1-12ay)Fy(z;p) +2 5_/\1 ' LT wi7ny (Px—Po)“—Px PxtPy+m
(B95)
2 Ay 3 (9F0
+2a,2°Fo(zp)+ 5 20— (Zp); then we sum ovep, to get
(B90) 2 1 1
o L& (P=po)2-p2 Jo2+ 2 >
Fo(z:p) andF(z:p) are defined in Eqs(B54) and (B55). i=0 (P=Po)"=P" {p?+m*J4+p*+m
Explicit values of Ay and A ; for the Hamiltonians that were 2
introduced in the text are reported in Table IV. xX{ 1+ = ,
Using the expansions &,(z;p) andF(z;p) (see previ- exq 2T arcshi; yp*+m?)]—1
ous sectiopwe can easily obtain the asymptotic expansions (B96)

of F1(z;p). For largez we obtain

where we have simplified the notation usipinstead ofp, .
Z o & The contribution due to the second term in curly brackets
327 9 32 32« is obtained by simply expanding in powers of 1[see the
discussion of Eq(B40) for c#0]. The remaining term re-
quires more care. Assumirigeven, we rewrite

Z2 2 2

.IT]_(Z,[)): —(12a1+ 16&’2_1)

X(8a1+ 8(12_1)_22Al_

24
_Z - 2! 1 1
X (1201 + 120y~ 1) 28| —— + e L & (P~ Po)®=P? pZ+m2\a+potm?
V2mz  \2mpz
+0(2%%2,2%%r?), (B91) = iz L i1
Lpg V4+m? \m 8+m?
For finite p andz<1, z<1/p, neglecting terms of ordez*, Li2—1 a5
we have 4 1-p/2 !
+— = - = = .
L =1 (pg—4sirtp) pZ+m2\a+pZ+m?
@
Fi(zip) = (1= 120 Fudlp) + 27 (B97)

Consider now the last sum and notice that, Forr, m
—0, beside the singularity gt=0, there is an additional
singularity atp= 7. Using the fact that

(B92) Li2-1

ag
X[ (1=12a7)F11(p) +2a,F oo p) + g‘f\l ,

1 1
= — =3, B98
while on the strip, forz— 0, we obtain i1 Po—4sirp PG (899
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and keeping only those contributions that do not vanish for 1
L—o we rewrite Eq.(B97) as o r(m?)=L%F3(z; P)+ 16100k +Fa(Z; p)+O(logL/L?),
_ B103
2 1 1 1 4 Lgl 1 (B103
2 G 22 Lp; L &1 p-asifp where
1 1— l 1
X il (B99) Fa(zp)= t I3 {Ho( +Ma4(Z;p)
a2 \/p2+ mz\/4+p +m?
(B104)
In this way we have removed the singularity for= 7. The
o . X and
remaining part of the calculation follows the lines we have
presented for Eq(B40) whenc=0. We subtract to the sum 1 1 1 > .
the first two terms of th(_a asym_ptotic expans_io_n ill_zland Fa(z;p)= 122 o (?’E—|09 o+ E|og 2— §) ~ 352
then replace the sum with the integral. Explicitly, if we de- T
fine
+ ! 2 222 Ho| | + L Go| =
R : 1 [ 1 483 (™ 22 Mol 5| 15 Gol o
b !m =
P:Po 2(p5—4p?)| JpZ+m? IV
s pS_ P2 mz 1 m . 1 Ry (ﬂ) Hl(ﬁ) + 54 [Mua(zZip)
12 4 6 24p2+m2 23|
1
(B100) +M14(zp)]— [ZM 1,1(Z;p)
we obtain )
2 1 N 1 1 4 = dp +2 ) Mll(z p)— ( ) Mgl(z D)
R Jarm? 2valps Jo 2w » )
T el o TN /=5 p,Y,
4sinfp | 4v2  pya+p L\
L/2-1 _77) M A(Z;p) +2M 5 A(Z;p)
+T > R(p,po.m?)+O(1/L). (B102)
n=1 . 2 . 4
The last sum can be dealt with following the strategy of _2<E) MoAzip)+ Z) MaAzp)|.
Appendix B 1 c. We finally obtain
(B109H
25 ! ! T lude thi i ive th i i
T & =2 52 > = = 0 conclude this section we give the asymptotic expansions
L %0 (P~ Po)"~P" yp*+m*J4+p*+m of F4(z;p) andF,(z;p) for large and small values af The
1 L2 2 necessary formulas for the derivations are reported in Appen-
=12 ( + 302 16 logL + yg—log 7= dixes A1 and A 2. For large we have
1 ) ) = 1 27*  8w* 167° s
+3510g2- 5|+ 5 e — Felzp =z |1 37 Y1 3 T )
7T n=1 (1—-4n°)\J4m°n°+z (B106)
* 2 2
4 iz 2 [ = - L Z— _ 1 z° T s >
2m" =1 [ (1-4n?)ya4nn?+2° | 3 6 Fazip)== 551005342 | " 452 3607 126
1 z T +0(z79). (B107)
T 243 2| %} ' (8102
For finite p andz<1, z<1/p we have
Collecting everything together and introducing the functions 1
Hi(a) and M,4(z;p) defined in Appendixes A1 and A2 Fy(zp)= +F3O(p)+0(22) (B108)

we have
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Fa(z:p)= g—+Falp) +O(2),
(B109

where

1 p 1
Faolp)= 73 (1-2l0g 2+ 57—+ 5— M(p),
(B110

1
F40(P):E(7E_|09 ™ 2+log 2)+

967r(

PHYSICAL REVIEW 8 105007

More general integrals can be discussed following the same
method and using the results of Appendix C of R&9.

The expansion of..(m3) is easily obtained from its expres-
sion in terms of elliptic integral§73]

| o 1 4 1 I m3
AM) = arme Kl amz) T T a9 32
2
m3 mg
320 (Iog—+1 +0(milog m3). (C3

To obtain the expansion dfw(mé) let us proceed as in Ap-
pendix B 2 b. We rewrite

1 1
- m"‘ 1om [Ny1(p) +Nia(p)—2N_14(p)] o —f dp 1 1
) ~(Mp) = (2m)? |w(p)+m? p?+m?
+ 3 [N_21(p)+N_2Ap)]. (B111) aliﬂﬁi+a2(ﬁ2)z dp 1
N2 2\2 2
On the strip, for smalg, we have (p*+m) (277) +m’
1 1 , dp . oqEMlDZM+ ay(p?)? o
F3(Z,w):m+m(l—2|092)+0(2 ), (2) (p +m )
(B112 If we want to compute the expansion neglecting terms of
1 orderO(mglog mg) we can expand the first integral in pow-
Fa(z;0)= 122 oo (ye—log 77)— (2 ers ofmg. Then, usingsee Appendix C of Ref.39])
a4 2 2
) de AE’LP"Z = 1 Do (3Iogm—+2
+log2)~ 555 +0(22). (B113 (2m)% (p*+mg)? T&n
+0(mglog m3), (CH
APPENDIX C: ASYMPTOTIC EXPANSION OF LATTICE )
INTEGRALS we obtain
In this section we want to discuss the asymptotic expan- 1 m?2 m2

sion form3—0 of the integrals

5 d’p 1
Iw(m0)=f (2m)2 325 me

d?p 1

2\
Iw(mO)‘f 2mZ wip)+m2

(CD

(C2

0
Ix(mg):—ﬂlogﬁ—i—Ao 307 (1-12a4

m;  m3
0 0 2
—16a2)|0g ﬁ_l— @ (1—8a1—8a2)—m0A1,

(C6)

whereA, and A ; are defined in Eq9B85) and (B86).
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