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Corrections to finite-size scaling in the latticeN-vector model for N5`
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We compute the corrections to finite-size scaling for theN-vector model on the square lattice in the large-N
limit. We find that corrections behave as logL/L2. For tree-level improved Hamiltonians corrections behave as
1/L2. In generall-loop improvement is expected to reduce this behavior to 1/(L2loglL). We show that the
finite-size scaling limit and the perturbative limit do not commute in the calculation of the corrections to
finite-size scaling. We present a detailed study of the corrections for the RP` model.@S0556-2821~98!03520-6#

PACS number~s!: 11.15.Pg, 05.70.Jk, 75.10.Hk
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I. INTRODUCTION

In the study of statistical models it is extremely importa
to understand finite-size corrections. Indeed in experime
and in numerical work it is essential to take into account
finite size of the system in order to extract correct infini
volume predictions from the data. Finite-size scaling~FSS!
@1–5# concerns the critical behavior of systems in which o
or more directions are finite, even though microscopica
large, and it is therefore essential in the analysis of exp
mental data in many situations, for instance, for films
finite thickness. Numerically FSS can be used in a variety
ways to extract information on infinite-volume systems.
very interesting method to extract critical indices compar
data on lattices of different sizes was introduced by Nigh
gale @6#, the so-called phenomenological renormalizati
group. Recently FSS has been used to obtain precise pr
tions at very large values of the correlation length fro
simulations on small lattices. This extrapolation techniq
was introduced by Lu¨scher, Weisz, and Wolff@7# and sub-
sequently applied to many different models@8–13#: a careful
theoretical analysis~see Sec. V A 2 of Ref.@13#! shows that
the method is extremely convenient for asymptotically fr
theories and indeed one was able to simulate theO(3) s
model@10# up to j'105 and the SU~3! chiral model@12,13#
up to j'43105 using relatively small lattices (L<512). In
order to use these techniques reliably it is extremely imp
tant to have some theoretical prediction on the behavio
the corrections to FSS. One can use this information in
different ways. A possibility is to take advantage of the th
oretical prediction to extrapolate the Monte Carlo data to
FSS limit—that still involves a limitL→`—in the spirit of
Ref. @7#. One also needs this information if one determin
the FSS curve by comparing data from simulations on
tices of different sizes as proposed in Ref.@9#. For instance
checking the absence~within error bars! of corrections to
FSS for lattices of sizes 64<L<256 is enough if the correc
tions vanish as 1/L2 while it can be totally misleading if

*Electronic address~internet!: sergio.caracciolo@sns.it
†Electronic address~internet!: pelissetto@sabsns.sns.it
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corrections behaving as 1/logL are present~this is the case
for instance of the four-state Potts model, see Ref.@14#!.

A second topic that will be extensively discussed in th
paper is the improvement of lattice Hamiltonians@15–19#.
The idea behind all these attempts is to modify the latt
Hamiltonian with the addition of irrelevant operators in ord
to reduce lattice artifacts: in this way one hopes to ha
scaling and FSS at shorter correlation lengths. For gen
statistical models this is a nontrivial program~see, e.g., Ref.
@20#!. For asymptotically free theories the idea is much si
pler to implement since in this case improvement can
discussed using perturbation theory.

In this paper we will study the problem of corrections
FSS and improvement in the context of the large-N N-vector
model. This theory provides the simplest example for
realization of a non-Abelian global symmetry. Its two
dimensional version has been extensively studied becau
shares with four-dimensional gauge theories the propert
being asymptotically free in the weak-coupling perturbat
expansion@21–23#. This picture predicts a nonperturbativ
generation of a mass gap that controls the exponential de
at large distance of the correlation functions.

Besides perturbation theory, the two-dimensionalN-
vector model can be studied using different techniques
can be solved in theN5` limit @24,25# and 1/N corrections
can be systematically calculated@26–28#. An exactS matrix
can be computed@29,30# and, using the thermodynamic Be
the ansatz, the exact mass gap of the theory in the limb
→` has been obtained@31,32#. The model has also been th
object of extensive numerical work@10,33–36# mainly de-
voted to checking the correctness of the perturbative pre
tions@37–39#. In one dimensionO(N)-invariant spin models
with nearest-neighbor interactions are exactly soluble: a
tailed investigation of the possible continuum limits and
exact computation of the FSS functions is reported in R
@40#.

FSS has been extensively studied in perturbation the
@7,41–45# and in the large-N limit where the scaling func-
tions can be computed analytically as expansions in 1N
@41,46–48#. Here we will concentrate on the corrections
FSS forN5` in two dimensions and we will compute th
deviations from FSS for generic lattice interactions. We w
©1998 The American Physical Society07-1
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SERGIO CARACCIOLO AND ANDREA PELISSETTO PHYSICAL REVIEW D58 105007
show that in this limit FSS corrections behave generically
logL/L2. This is in agreement with a general renormalizatio
group argument that shows that corrections to FSS are
trolled by the first subleading operator@49#. Tree-level im-
provement changes the behavior by a logarithm ofL: these
actions have corrections behaving as 1/L2. Subsequent im-
provement should reduce the corrections to 1/(L2 logL) and
so on. FullO(a2) improvement to all orders of perturbatio
theory provides an action with corrections behaving
logL/L4.

In addition to the standardN-vector model we will also
discuss a mixedN-vector–RPN21 model @25,50#. There are
two reasons why we decided to include this computati
first of all, for large values ofN, the N-vector model shows
many simplifying features: for instance, only the leadi
term of theb function does not vanish. For this reason o
may expect that the behavior of the corrections for this cl
of models is far simpler than in generic models. Instead
mixed N-vector–RPN21 model shows a more complex be
havior and, for instance, theb function is nontrivial to all
orders of perturbation theory. We find that in the mix
model the corrections behave as (logL/L2)f(L) wheref (L) is
a nontrivial function such thatf (`) is finite and that admits
an asymptotic expansion in powers of 1/logL. The presence
of powers 1/(L2lognL) is somewhat unexpected from th
point of view of perturbation theory. We will show that th
is related to the noncommutativity of the limitsL→` and
b→`. In other words the perturbative limitb→` at L fixed
followed by the limit L→` gives results that are differen
from the FSS limit. The commutativity of these two limi
has been the object of intense debate. The standard wis
is that the two limits are identical, but this point has be
seriously questioned by Patrascioiu and Seiler@51# ~for an
answer to these criticisms see Ref.@52#! together with many
other assumptions derived from perturbation theory@53#.
Our calculation shows that, if the standard assumption
true, it is a result far from obvious: indeed the limits a
different for the corrections to FSS.

A second motivation for studying this class of models
the problem of the critical limit of RPN21 models. In Ref.
@54# numerical results were presented indicating that RPN21

models could have a critical limit different from that of th
N-vector model. These results were subsequently questio
in Refs. @55,56#. In particular it was argued that numeric
results could be misleading due to the presence of large
rections to scaling@56,57#. We wanted to understand if ther
is any sign of this phenomenon in the large-N limit. Our
explicit calculation shows that RP` has corrections that ar
larger than those of theN-vector model. Depending on th
observable, for reasonable lattice sizes, we find an incre
by a factor of 6–15. This is in qualitative agreement with t
scenario of Ref.@56#.

The paper is organized as follows. In Sec. II we define
models we consider, and compute various observables in
large-N limit. In Sec. III we discuss the corrections to FS
for the N-vector model and in Sec. IV we extend our resu
to the mixedN-vector–RPN21 model. In Sec. V we presen
our conclusions.

In the Appendixes we report some general results on
10500
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FSS behavior of lattice sums. These results are of gen
interest and may be applied in many other contexts: in p
ticular they may be used to study FSS properties of mod
that have a height~SOS! representation~see Refs.@58,59#,
and references therein!. In Appendix A we define a set o
basic functions that appear in all our results and we rep
some of their properties. We extend here the results of R
@60#. In Appendix B we give an algorithmic procedure th
allows us to compute the expansion in powers of 1/L2 of any
sum involving powers of the lattice propagator for a Gau
ian model with arbitrary interaction in the FSS limit. As a
example we report the explicit formulas that are needed
our main discussion. In Appendix C we report th
asymptotic behavior of some lattice integrals. Prelimina
results of this work were presented at the Lattice ’96 Co
ference@61#.

II. THE MODELS

In this paper we will study the FSS properties of the cla
sical N-vector model on a square lattice with loc
translation- and parity-invariant ferromagnetic interactio
The Hamiltonian is given by

H52N(
x,y

J~x2y!sx•sy , ~2.1!

where the fieldssx satisfy sx
251. The partition function is

simply

Z5E )
x

dsxd~sx
221!e2bH. ~2.2!

We will consider generallocal interactions. IfĴ(p) is the
Fourier transform ofJ(x), locality and parity invariance im-
ply that Ĵ(p) is a continuous function ofp, even underp
→2p. We will require invariance under rotations ofp/2,
that is we will assumeĴ(p) symmetric under interchange o
p1 andp2 . Redefiningb we can normalize the couplings s
that

Ĵ~q!5 Ĵ~0!2
q2

2
1O~q4! ~2.3!

for q→0. We also introduce the function

w~q!522@ Ĵ~q!2 Ĵ~0!#, ~2.4!

that behaves asq2 for q→0. Finally we will require the
theory to have the usual~formal! continuum limit: we will
assume that the equationw(q)50 has only one solution for
2p<qi<p, namely,q50. We will need the small-q be-
havior of w(q): we will assume in this limit the form

w~q!5q̂21a1(
m

q̂m
4 1a2~ q̂2!21O~q6!, ~2.5!

wherea1 anda2 are arbitrary constants. Hereq̂25q̂1
21q̂2

2,
q̂52 sin(q/2).
7-2
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Let us give some examples we will use in the followin
The standardN-vector model with Hamiltonian

Hstd52N(
xm

sx•sx1m ~2.6!

corresponds tow(q)5q̂2 and thus we havea15a250.
Other possibilities are the following.

~1! The Symanzik improved Hamiltonian@15#

HSym52N(
xm

S 4

3
sx•sx1m2

1

12
sx•sx12mD , ~2.7!

for which we have

w~q!5q̂21
1

12 (
m

q̂m
4 ~2.8!

anda151/12 anda250.
~2! The ‘‘diagonal’’ Hamiltonian@62#

Hdiag52N(
x

S 2

3 (
m

sx•sx1m1
1

6 (
d̂

sx•sx1d̂D ,

~2.9!

whered̂ are the two diagonal vectors~1, 61!, for which we
have

w~q!5q̂22
1

6
q̂1

2q̂2
2 ~2.10!

anda151/12 anda2521/12.
~3! The perfect Laplacian introduced in various works

the renormalization group@63# and recently revived in con
nection with the perfect actions@17#

1

w~q!
5

1

3k
1 (

l 152`

`

(
l 252`

`
1

~q112p l 1!21~q212p l 2!2

3
q̂1

2q̂2
2

~q112p l 1!2~q212p l 2!2 ~2.11!

for which a151/12 anda25(k24)/(12k).
In general we will speak of tree-level improve

Hamiltonians1 whenevera15 1
12 , a250: in this case, for

q2→0,

w~q!5q21O~q6!. ~2.13!

1Properly speaking we should speak ofO(a2) tree-level improved
Hamiltonians. One can also considerO(a2k) tree-level improved
ones which are such that

w~q!5q21O~q412k! ~2.12!
for q2→0. We do not consider them here since tree-level impro
ment beyondO(a2) does not have any effect on the corrections
FSS at order 1/L2. For a perturbative study of this class of Ham
tonians see Ref.@44#. Classically perfect Hamiltonians are tree-lev
improved to all orders ina @64#.
10500
. The Hamiltonians~2.7! and~2.11! for k54 are examples of
tree-level improved Hamiltonians.

In order to study the finite-size-scaling properties we m
specify the geometry. We will consider here a square lat
of size L3T or a strip of widthL with periodic boundary
conditions in the finite direction~s!. The large-N limit of this
model is well known@24#. The theory is parametrized by
mass parametermL,T

2 related tob by the gap equation

b5
1

LT (
n1 ,n2

1

w~p!1mL,T
2 [IL,T~mL,T

2 !, ~2.14!

wherep152pn1 /L, p252pn2 /T and the sum extends ove
0<n1<L21 and 0<n2<T21. The two-point isovector
Green’s function is then given by

GV~x2y;L,T![^sx•sy&5
1

b

1

LT (
n1n2

eip•~x2y!

w~p!1mL,T
2 .

~2.15!

All other Green’s functions are obtained fromGV(x;L,T)
using the factorization theorem

^~sx1
•sy1

!~sx2
•sy2

!¯~sxn
•syn

!&

5^~sx1
•sy1

!&^~sx2
•sy2

!&¯^~sxn
•syn

!&.

~2.16!

In particular we will consider theisotensor~spin-two! two-
point function

GT~x2y;L,T![^~sx•sy!2&2
1

N
5^sx•sy&

21O~1/N!.

~2.17!

Beside the standardN-vector model we will also discuss
mixed N-vector–RPN21-model @25,50,54,65#. We will re-
strict our attention to nearest-neighbor interactions since o
in this case the model is easily solvable in the large-N limit.
The Hamiltonian is given by

Hmix52N(̂
xy&

F ~12r !sx•sy1
r

2
~sx•sy!2G , ~2.18!

where the sum is extended over all links^xy& andr is a free
parameter varying between 0 and 1. Forr 50 we have the
nearest-neighborN-vector model, whiler 51 corresponds to
the RPN21 model. Notice that forr 51 the theory is invariant
under local transformationssx→exsx , ex561. Therefore
for RPN21 only isotensor observables are relevant. The lim
we consider here corresponds toN→` with r fixed. We
mention that this is not the only case in which the mode
solvable: a different large-N limit is considered in Ref.@65#.

-

7-3
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Also in this case the theory is parametrized by a m
parametermL,T

2 related2 to b by @50#

b5
4I L,T~mL,T

2 !2

4I L,T~mL,T
2 !1r @mL,T

2 I L,T~mL,T
2 !21#

, ~2.19!

where

I L,T~mL,T
2 ![

1

LT (
n1 ,n2

1

p̂21mL,T
2 , ~2.20!

with p152n1p/L, p252n2p/T.
The isovector Green’s function is given by

GV~x2y;L,T!5
1

I L,T~mL,T
2 !

1

LT (
n1 ,n2

eip•~x-y!

p̂21mL,T
2 .

~2.21!

All other correlations are obtained using Eq.~2.16!. In the
N-vector case we can use the gap equation to subst
I L,T(mL,T

2 ) with b.
In this paper we will study the finite-size-scaling prope

ties of various quantities. We define the vector and ten
susceptibilities

xV~L,T!5(
x

GV~x;L,T!, ~2.22!

xT~L,T!5(
x

GT~x;L,T!. ~2.23!

Using the explicit expressions for the two-point functions
get

xV~L,T!5
1

IL,T~mL,T
2 !mL,T

2 , ~2.24!

xT~L,T!5
1

@IL,T~mL,T
2 !#2

1

LT (
n1n2

1

@w~p!1mL,T
2 #2 .

~2.25!

We want also to define a quantity behaving as a correla
length. In an infinite lattice there are essentially two pos
bilities. One can define the exponential correlation len
from the large-x behavior of a given two-point function3

G(x;`): one considers a wall-wall correlation function

G~w!~y;`!5(
x

G@~x,y!;`#, ~2.26!

and then defines

2b is related tomL,T by Eq. ~2.19! only for b.bc(r ), whereb
5bc(r ) is a first-order transition line@50#. In the following we will
be only interested in the limitb→`, so that we will always use Eq
~2.19!.

3Here and in the following we will indicate the infinite-volum
limit of an observableO(L,T) with O(`).
10500
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j~exp!~`!52 lim
y→1`

y

log G~w!~y;`!
. ~2.27!

The mass gapm~`! is the inverse ofj (exp)(`). A second
possibility is the second-moment correlation lengthj (m)(`)
that is defined by

@j~m!~`!#25
1

4

(xuxu2G~x;`!

(xG~x;`!
. ~2.28!

The factor 1
4 has been introduced in order to havej (m)(`)

5j (exp)(`) for Gaussian models.
We must now give the definitions in finite volume. O

course the exponential correlation can only be defined i
strip. In this case we can still use the definition~2.27!. For
the second-moment correlation length we can use any d
nition that becomes equivalent to Eq.~2.28! in the limit
L,T→`. We will consider here three different definition
given a two-point functionG(x;L,T) and its Fourier trans-
form Ĝ(p;L,T) we define

@j~m,1!~L,T!#25
1

2p̂0x
2 F Ĝ~0;L,T!

Ĝ~p0x ;L,T!
21G

1
1

2p̂0y
2 F Ĝ~0;L,T!

Ĝ~p0y ;L,T!
21G , ~2.29!

@j~m,2!~L,T!#25
L2

8p2 S 12
Ĝ~p0x ;L,T!

Ĝ~0;L,T!
D

1
T2

8p2 S 12
Ĝ~p0y ;L,T!

Ĝ~0;L,T!
D , ~2.30!

@j~m,3!~L,T!#25
1

4Ĝ~0;L,T!
(

i 512 b~L11!/2c

bL/2c

(
j 512 b~T11!/2c

bT/2c

3~ i 21 j 2!G@~ i , j !;L,T#, ~2.31!

wherep0x5(2p/L,0), p0y5(0,2p/T), and bxc is the largest
integer smaller than or equal tox. The third definition evi-
dently coincides with Eq.~2.28! for L,T→`. To verify the
correctness of the other two definitions notice that Eq.~2.28!
can be rewritten as

@j~m!~`!#252
1

4Ĝ~0;`!
(
m

]2

]pm
2

Ĝ~p;`!U
p50

.

~2.32!

Expanding in 1/L2 it is easy to verify that bothj (m,1)(L,T)
andj (m,2)(L,T) converge to Eq.~2.28! for L,T→`. Essen-
tially Eqs. ~2.29! and ~2.30! are definitions in which one
7-4
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approximates the second derivative ofĜ with the difference
at two nearby points. Thus these definitions converge
j (m)(`) as 1/L2 @notice thatG(x;L,T)→G(x,`) exponen-
tially#. The third definition represents instead the ‘‘best’’ a
proximation on a finite lattice sincej (m,3)(L,T) converges to
j (m)(`) exponentially. This is indeed a general result th
can be proved using the relation

(
i 512 b~L11!/2c

bL/2c
i 2f ~ i !52(

n51

L21
~21!n

q̂2 @ f̂ ~q!2 f̂ ~0!#PL~q!,

~2.33!

valid for every functionf. Here f̂ is the Fourier transform o
f, q52pn/L and

PLS 2pn

L D5H 1 for L even,

cos
pn

L
for L odd.

~2.34!

If f̂ (q) is meromorphic~as a function of thecomplexvari-
ableq! in the strip 0<Req<2p, periodic of period 2p, and
with simple poles atq̄i , then we can evaluate this sum
obtain

2 f̂ 9~0!2
L

4 (
i

Ri

sin2~ q̄i /2!sin~Lq̄i /2!
PL~ q̄i !,

~2.35!

whereRi is the residue off̂ (q) at q̄i . Thus the convergenc
rate is L exp(2Lq̄I/2) where q̄I5miniuIm(q̄i)u. For the spe-
cific case of the isovector correlation length one expects
nearest singularities~for b→` at least! to be at q5
6 im(L) where m(L) is the mass gap. Thus we expect
convergence rate ofLe2m(L)L/2. A general Green function
will not be in general a meromorphic function ofq as cuts
will appear as well. We expect however that the definiti
~2.31! will show the same exponential convergence rate.

Using Eq.~2.33! we can rewrite Eq.~2.31! as

@j~m,3!~L,T!#2

5
1

2Ĝ~0;L,T!
(

~n1 ,n2!Þ~0,0!

1

q̂2
@Ĝ~q;L,T!2Ĝ~0;L,T!#

3@~21!n1PL~q1!dq201~21!n2PT~q2!dq10#. ~2.36!
10500
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Let us now give explicit expressions for the isovector cor
lation length: using the isovector two-point function~2.15!
we get on a finite lattice:

@jV
~m,1!~L,T!#2

5
1

2 S w~p0x!

p̂0x
2 1

w~p0y!

p̂0y
2 D 1

mL,T
2 , ~2.37!

@jV
~m,2!~L,T!#2

5
1

8p2 S w~p0x!L
2

w~p0x!1m2 1
w~p0y!T2

w~p0y!1m2D , ~2.38!

@jV
~m,3!~L,T!#2

52
1

2 (
n151

L21

~21!n1
w~q1!

q̂1
2

1

w~q1!1mL,T
2 PL~q1!

2
1

2 (
n251

T21

~21!n2
w~q2!

q̂2
2

1

w~q2!1mL,T
2 PT~q2!.

~2.39!

In infinite volume we have instead

jV
~m!~`!5

1

m`
. ~2.40!

For the mass gapmV(L) and the exponential correlatio
lengthjV

(exp)(L) we must solve the equation

w@ imV~L !,0#1mL,`
2 50. ~2.41!

An explicit solution can be obtained only for the simple
w(p). For the Hamiltonians we have considered in this s
tion we have
mV~L !55 2 arcsinhS mL,`

2 D for Hstd and Hdiag,

2 arcsinhHA6

2 F12S 12
mL,`

2

3 D 1/2G1/2J for HSym.

~2.42!
7-5
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In our calculation we will only need the expression ofmV(L)
for mL,`→0. In this limit we obtain

mV~L !5mL,`F11
1

2 S a11a22
1

12DmL,`
2 1O~mL,`

4 !G .
~2.43!

Isotensor observables are defined using the tensor
point function ~2.17!. For the mass gap it is easy to veri
that mT(L)52mV(L).

III. N-VECTOR MODEL

A. The gap equation

In this section we want to discuss the corrections to F
for the Hamiltonian~2.1!. Let us consider a fixed value ofb.
Let m` andmL,T be the mass parameters corresponding tb
in infinite volume and in a boxL3T. It is immediate to
obtain a relation betweenm` andmL,T . Indeed from the gap
equation we obtain

IL,T~mL,T
2 !5I`~m`

2 !. ~3.1!

Now let us consider the finite-size-scaling limitm` ,mL,T
→0,L,T→` with mL,TL[z and T/L[r fixed. Using the
results~B88! and ~C6! we obtain

m`
2

mL,T
2 5 f m~z;r!S 11

Dm,1~z;r!

L2 logL1
Dm,2~z;r!

L2 D
~3.2!

with corrections of orderO(log2L/L4), where

f m~z;r!5
32

z2 e24pF0~z;r!, ~3.3!

m,1~z;r!5
1

4
~12a1116a221!~32e24pF0~z;r!2z2!,

~3.4!

m,2~z;r!516p~12a1116a221!F0~z;r!e24pF0~z;r!

24~8a118a221!e24pF0~z;r!24p@F1~z;r!

132e24pF0~z;r!L1#. ~3.5!

The functionsF0(z;r) andF1(z;r) are defined in Appendix
B, Eqs. ~B54! and ~B90!. The functionf m(z;r) is the FSS
function for the ratiom`

2 /mL,T
2 . As expected, it is universa

@it does not depend on the explicit form of the couplingJ(x)#
and depends on the modular parameterr. The corrections
instead arenot universal. However, the dependence onJ(x)
is very simple: the only relevant quantities area1 and a2
that are connected to the small-q2 behavior ofw(q) andL1
given by
10500
o-

S

L15E d2p

~2p!2 F 1

w~p!22
1

~ p̂2!2 1
2

~ p̂2!3

3S a1(
m

p̂m
4 1a2~ p̂2!2D G . ~3.6!

The corrections behave in general as logL/L2, except when
12a1116a22150. This cancellation happens for improve
Hamiltonians for whicha15 1

12 and a250 and also for
many other Hamiltonians that are not improved but nonet
less satisfy 12a1116a22150. To understand the relevanc
of this combination, let us introduce polar coordinatesqx
5q cosu, qy5q sinu. Then

w~q!5q21
1

16
~12a1116a221!q4

1
1

48
~12a121!q4cos 4u1O~q6!. ~3.7!

Thus, if (12a1116a221)50, one cancels the first rotation
ally invariant subleading operator, leaving a correction tha
associated to a lattice operator that vanishes when aver
over the angleu. This last property is the reason why th
quantity does not couple to the leading correction. This f
is not unexpected. Indeed the leading correction to scalin
usually associated to a rotationally invariant operator~for a
discussion for the two-point function in infinite volume se
Ref. @66#!.

For a15 1
12 anda250 the expression forDm,2(z;r) sim-

plifies drastically, becoming

Dm,2~z;r!54p~32e24pF0~z;r!2z2!S 1

96p
2L1D . ~3.8!

Thus for improved Hamiltonians there is the possibility
eliminating even the 1/L2 corrections choosingJ(x) so that

L15
1

96p
. ~3.9!

Notice that this condition is global, that is it does not only fi
the small-q behavior ofw(q), but it depends on the behavio
of w(q) over all the Brillouin zone.

A particular Hamiltonian satisfying Eq.~3.9! is

HSym252N(
xm

F S 4

3
115aDsx•sx1m

2S 1

12
16aDsx•sx12m1asx•sx13mG ,

~3.10!

wherea50.00836533968(1). Thefunctionw(q) is given by

w~q!5q̂21
1

12 (
m

q̂m
4 1a(

m
q̂m

6 . ~3.11!
7-6
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TABLE I. Values of Rexact(L;z,r), Rexpan(L;z,r), Dexact(L;z,r), Dexpan(L;z,r), andd2(L;z,r) for the
standard HamiltonianHstd, r51 andz52.

L Rexact(L;2,1) Rexpan(L;2,1) Dexact(L;2,1) Dexpan(L;2,1) d2(L;2,1)

4 0.23892847 0.24124682 0.0649479 0.0752812 20.428
6 0.23332246 0.23379910 0.0399609 0.0420854 20.345
8 0.23028713 0.23044079 0.0264318 0.0271167 20.303

10 0.22856980 0.22863479 0.0187774 0.0190671 20.282
12 0.22751364 0.22754600 0.0140699 0.0142141 20.270
14 0.22681775 0.22683573 0.0109682 0.0110483 20.262
16 0.22633412 0.22634493 0.0088126 0.0088607 20.255
20 0.22572118 0.22572580 0.0060806 0.0061012 20.247
32 0.22497047 0.22497124 0.0027345 0.0027380 20.232
64 0.22453987 0.22453993 0.0008153 0.0008155 20.218
128 0.22441005 0.22441006 0.0002367 0.0002367 20.208
` 0.22435696 20.148
a
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For this Hamiltonian the corrections to FSS behave
logL/L4. Of course one could improve further: using
Hamiltonian withw(q)5q21O(q8) satisfying Eq.~3.9! one
could get rid also of the terms logL/L4. However, the cancel-
lation of the terms 1/L4 will again require a global condition
of the type~3.9!.

It is interesting to understand our results in terms of p
turbation theory. Within the Symanzik improvement pr
gram the conditionsa15 1

12 anda250 are required for tree
level improvement: if the theory is tree-level improved, th
the corrections behave as 1/L2 instead of logL/L2. In Ref.
@45# it was shown that the condition~3.9! is necessary for
improvement at one loop. The simplifying feature of t
model is that, once the theory is one-loop improved, it
improved to all orders of perturbation theory. This expla
why, if condition ~3.9! is satisfied, corrections to scaling b
have as logL/L4. As we shall discuss in the following sectio
for a generic model, for instance for a mixedO(N)-RPN21

theory, we expect only the 1/L2 term to be cancelled so tha
the corrections to scaling would still behave as 1/(L2logL).

We have performed various checks of the expressi
~3.3!–~3.5!. First of all we have compared our results wi
previous work. For the stripf m(z;`) was computed by Lu¨s-
cher @41#. In this case, as limr→` M1,1(z;r)50, using the
explicit expression forF0(z;r), Eq. ~B54!, and Eq.~A12!,
we get

f m~z;`!5
32

z2 expF2
2p

z
22gE1 log

p2

2
22G0S z

2p D G
5expF24(

n51

`

K0~nz!G , ~3.12!

which agrees with the result of Ref.@41#.
We have furthermore performed a detailed numeri

check for the standard HamiltonianHstd. Given L, z, andr
we have first computedmL,T

2 5z2/L2, thenb from the finite-
volume gap equationb5IL,T(mL,T

2 ) and finallym`
2 from b
10500
s

-

s
s

s

l

5I`(m`
2 ): in this way we have obtained for each lattice si

L and z the ratio Rexact(L;z,r)[m`
2 /mL,T

2 . Then we com-
puted

d1~L;z,r!5
L4

log2L
@Rexact~L;z,r!2Rexpan~L;z,r!#,

~3.13!

whereRexpan(L;z,r) is the right-hand side of Eq.~3.2!. In
this way we have tried to verify that indeedd1(L;z,r) at
fixed z goes to a constant forL→`. Numerically we find
that d1(L;z,r) varies slowly withL and that the behavior is
compatible with the presence of 1/logL and 1/log2L correc-
tions. A better check can be obtained if we include the te
of order log2L/L4 that can be easily computed

Dm,3~z;r!5~12a1116a221!2

3S 96e28pF0~z;r!24z2e24pF0~z;r!1
z4

32D .

~3.14!

Then we consider

d2~L;z,r!5
L4

logL FRexact~L;z,r!2Rexpan~L;z,r!

2 f m~z;r!Dm,3~z;r!
log2L

L4 G . ~3.15!

In this case we should be able to verify that

d2~L;z,r!'d20~z;r!1
d21~z;r!

logL
~3.16!

for large values ofL. The results forr51 and z52 ~this
value ofz corresponds to the region where the corrections
FSS are larger! are shown in Table I where we also give th
deviations from FSS, i.e., the quantity
7-7
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D~L;z,r!5FR~L;z,r!

f m~z;r!
21G . ~3.17!

A plot of d2(L;2,1) versus 1/logL shows, as expected,
linear behavior from which we can estimated20(2;1)'
20.148 andd21(2;1)'20.291.

Let us now consider the limitsz→` and z→0.
Asymptotic expansions of the FSS functions can be obtai
using the expansions ofF0(z;r) and F1(z;r) reported in
Appendixes B 2 a and B 2 b. For largez we have

f m~z;r!5122e2zA2p

z
22e2rzA2p

rz

1O~z23/2e2z,z23/2e2rz!, ~3.18!

Dm,1~z;r!52
1

2
~12a1116a221!z2

3S e2zA2p

z
1e2rzA2p

rz D
1O~z1/2e2z,z1/2e2rz!, ~3.19!

Dm,2~z;r!5
p

6
~12a1112a221!z2

3S e2zA z

2p
1e2rzArz

2p D
1

z2

4
~12a1116a221!

3 log
z2

32 S e2zA2p

z
1e2rzA2p

rz D
1O~z3/2e2z,z3/2e2rz!. ~3.20!

The result agrees with what is expected: forz→` the FSS
function converges to 1 exponentially@67#. Also the correc-
tions vanish in the same way and thus they are extrem
tiny for largez.

Let us now consider the perturbative limit~small z!. For
finite values ofr, for z!1 andz!1/r, we find

f m~z;r!5
16p2

z2 h~ ir!4e22gEexpS 2
4p

rz2D
3@124pz2F01~r!1O~z4!#, ~3.21!

Dm,1~z;r!52
z2

4
~12a1116a221!1O@e24p/~rz2!#,

~3.22!
10500
d

ly

Dm,2~z;r!524p~1212a1!F10~r!2
4pa2

r

24pz2F ~1212a1!F11~r!12a2F00~r!

1
a1

8p
2L1G1O~z4!. ~3.23!

Hereh~t! is Dedekind’sh function @68#

h~t!5ep i t/12)
n51

`

~12e2p int!, ~3.24!

andF01(r), F10(r), andF11(r) are defined in Appendix B:
see Eqs.~B62!–~B64!.

For the strip the previous expansions are not valid. In t
case, for smallz, we get

f m~z;`!5
16p2

z2 e22gEe22p/zS 11
z2

4p2 z~3!1O~z4! D ,

~3.25!

Dm,1~z;`!52
z2

4
~12a1116a221!1O@exp~22p/z!#,

~3.26!

Dm,2~z;`!5
p2

18
~12a121!2

pz

4
~12a1112a221!

1O~z2!. ~3.27!

These formulas can also be used whenr@1. Indeed they
approximate the FSS functions for 1/r!z!1.

It is interesting to obtain these expansions within pert
bation theory~PT!. The idea@41,45# is to start from the per-
turbative prediction form`(b),

m`
2 532e4pL0e24pb@11O~be24pb!#, ~3.28!

and the perturbative expansion ofmL,T(b),

z[LmL,T5 (
n51

`
mn~L,T!

bn . ~3.29!

Then we use the last equation to express perturbativelyb in
terms ofz and finally we substitute the result in Eq.~3.28!. In
this way we obtain the expansions~3.21!–~3.23! and the
analogous ones on the strip. It must be noted that in
perturbative expansion the combination (12a1116a221)
arises naturally: indeed it is the coefficient of the uniq
logL/L2 term that appears in the expansion. Thus 12a1
116a22150 is the improvement condition of the reno
malized perturbative expansion.

To conclude the discussion we want to comment on
validity of PT: finite-volume PT is valid in the limitb→` at
L fixed while the FSS limit we are interested in correspon
to b→`, L→` at z fixed. Thus our perturbative derivatio
of the FSS scaling functions involves ana priori unjustified
7-8
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CORRECTIONS TO FINITE-SIZE SCALING IN THE . . . PHYSICAL REVIEW D 58 105007
extension of the validity of PT@51,52#. For the leading con-
tribution this should be correct~naively because the result
L independent! but the situation is less clear for the corre
tions: in this case the explicit calculation shows that the
tension is valid also for the 1/L2 corrections, but, as we sha
see in the next section, this is a special feature of the largN
N-vector model: in general the corrections to FSS compu
in PT need a ‘‘resummation’’ to correctly describe the F
regime.

The functionsDm,1(z;r) and Dm,2(z;r) are reported in
the Figs. 1, 2, and 3 for the torus withr51 and for the strip
r5` for the various Hamiltonians we have introduce
From these plots one can immediately recognize a few b
facts: the region where the corrections to FSS are larger
responds to 1&z&4 ~the same has been found numerica
in Monte Carlo simulations ofHstd with N53 @10#!. In this
region, for Hstd and Hdiag and small values ofL, say L
510, the logL/L2 term gives a contribution which is 2–
times larger than the 1/L2 term and the corrections are pos
tive. For these two Hamiltonians the corrections beco
negative for large values ofz @this can be easily checke
from the asymptotic expansions~3.19! and~3.20!#. They are
also negative forHstd in the small-z region on the strip or on
the torus for large values ofr. Numerically we find thatHdiag

is the Hamiltonian with the largest corrections, whileHSym is
the ‘‘best’’ one, as expected.

We have finally checked that our expansion~3.2! de-
scribes well the corrections to FSS even for small values
L. In Table II we giveDexact(L;z,r) and Dexpan(L;z,r) for
Hdiag andHSym for r51 andz52. For the first Hamiltonian
there is good agreement even atL54, while for the latter
there is a somewhat larger discrepancy, probably due to
larger spatial extent of the Symanzik Hamiltonian. We ha
also computedDexact(L;z,r) for the same values ofr andz
for HSym2: for L54 ~10! we getDexact(L;2,1)50.0005743

FIG. 1. Dm,1(z;r) for the standard HamiltonianHstd for r51
and r5`. The dashed lines correspond to the asymptotic exp
sions~3.19! and~3.22!. Dm,1(z;r) for Hdiag is obtained by multiply-
ing the vertical scale by 4/3.
10500
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~0.00001853!. The corrections are extremely small~at L54
they are 100 times smaller than those present forHstd): im-
provement really works.

B. Observables

Let us now compute the FSS curves and the correspo
ing corrections for the observables we have introduced
Sec. II. We will first consider the quantities that are obtain
from the isovector correlation function, then we will discu
isotensor observables.

1. Isovector sector

From Eq. ~3.2! it is immediate to obtain the finite-size
scaling curves and their leading corrections for the vario
observables. The susceptibilityxV does not require any ad
ditional calculation since

xV~L,T!

xV~`!
5

m`
2

mL,T
2 . ~3.30!

For the second-moment correlation lengths, neglecting te
of order log2L/L4, we obtain

S jV
~m,1!~L,T!

jV
~m!~`!

D 2

5
m`

2

mL,T
2 S 11

2p2

L2 ~a11a2!
11r2

r2 D ,

~3.31!

S jV
~m,2!~L,T!

jV
~m!~`!

D 2

5
z2

2
A1~z;r!

m`
2

mL,T
2 S 11

p2

3L2

3~12a1112a221!
A2~z;r!

A1~z;r! D ,

~3.32!

FIG. 2. Dm,2(z;1) for Hstd ~std!, Hdiag ~diag!, andHSym ~Sym!.
The dashed lines are the asymptotic expansions~3.20! and ~3.23!.

n-
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S jV
~m,3!~L,T!

jV
~m!~`!

D 2

5
m`

2

mL,T
2 F12

z

4 S 1

sinh z/2
1

r

sinh rz/2D
1

1

L2 S Qp~L !~z!1
1

r2 Qp~T!~rz! D G ,
~3.33!

wherep(M ) is the parity ofM (M5L,T) and

A1~z;r!5
4p2~11r2!12r2z2

~4p21z2!~4p21r2z2!
, ~3.34!

A2~z;r!5
z2

~4p21z2!2 1
r2z2

~4p21r2z2!2 ,

~3.35!

Qeven~z!5~12a1112a221!
z4

192

coshz/2

sinh2z/2

2~4a114a221!
z3

32

1

sinh z/2
, ~3.36!

Qodd~z!5~12a1112a221!
z4

192

coshz/2

sinh2z/2

2~a11a2!
z3

8

1

sinh z/2
. ~3.37!

Let us now consider the asymptotic limitz→`. In the FSS
limit it is easy to obtain

S jV
~m,1!~L,T!

jV
~m!~`!

D
FSS

2

5122e2zA2p

z
22e2rzA2p

rz

1O~z23/2e2z,z23/2e2rz!, ~3.38!

FIG. 3. Dm,2(z;`) for Hstd ~std!, Hdiag ~diag!, andHSym ~Sym!.
The dashed lines are the asymptotic expansions~3.20! and ~3.27!.
10500
S jV
~m,2!~L,T!

jV
~m!~`!

D
FSS

2

512
2p2~11r2!

r2z2 1O~z24!,

~3.39!

S jV
~m,3!~L,T!

jV
~m!~`!

D
FSS

2

512
z

2
e2z/22

rz

2
e2rz/2

1O~z21/2e2z,z21/2e2rz!. ~3.40!

From these expansions one immediately sees that the
function for jV

(m,2) goes to 1 only as a power asz→`. The
approach is very slow and indeed it reaches 1 at the 1% l
only for z'60. This is extremely inconvenient for Mont
Carlo applications: indeed in order to determine numerica
the FSS curve one has to perform runs up to the valuez
where the FSS curves becomes 1 within error bars: in
case runs withz'60 are required, which means that simul
tions on very large lattices are needed. The origin of th
power corrections can be identified in the definition that a
proximates the infinite volumejV

(m)(`) with corrections of
order 1/L2: the 1/L2 terms give rise to the corrections o
order 1/z2. The first definition should suffer from the sam
problem because also in this casejV

(m,1)(L,T) converges to
jV

(m)(`) with corrections of order 1/L2. Instead Eq.~3.38!
shows corrections of orderO(e2z/Az). This is a peculiarity
due to the particular form ofGV(x) @GV(x) is a free-field
two-point function#. However, for different Green’s func
tions terms of order 1/z2 are expected and indeed they a
present forjT

(m,1) , cf. Eq. ~3.68!. As expected the FSS func
tion for jV

(m,3) converges to 1 with corrections of orde
ze2z/2: in this case the FSS function is 1 at the 1% lev
already atz'15.

The large-z behavior of the FSS functions can be eas
computed not only in the large-N limit, but for all values of
N. The basic observation is thatGV(x;L,T) converges to
GV(x;`) with corrections of orderLpe2mV(`)L. Therefore,
in order to compute the large-z expansion, one can simpl
replaceGV(x;L,T) with GV(x;`). The functionGV(x;`) is
well known in the critical limit. Indeed, ifĜV(p;`) is the
corresponding Fourier transform, then, in the limitp→0,
jV

(m)(`)→` with pjV
(m)(`)[Q fixed, we have@69,66,70#

TABLE II. Deviations from FSS forHdiag and Hsym: here r
51 andz52.

L

Hdiag HSym

Dexact(L;2,1) Dexpan(L;2,1) Dexact(L;2,1) Dexpan(L;2,1)

4 0.1363230 0.1435180 0.0039380 0.0116907
6 0.0736526 0.0752402 0.0035162 0.0051959
8 0.0463553 0.0468952 0.0023457 0.0029227

10 0.0320544 0.0322879 0.0016198 0.001870
12 0.0235981 0.0237157 0.0011666 0.001299
14 0.0181629 0.0182287 0.0008802 0.000954
16 0.0144512 0.0144909 0.0006858 0.000730
20 0.0098297 0.0098468 0.0004483 0.000467
7-10
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ĜV~0;`!

ĜV~p;`!
5D~Q!. ~3.41!

The functionD(Q) can be expanded in the limitQ→0 in
powers ofQ2:

D~Q!5 (
n50

`

bnQ2n, ~3.42!

with b05b151. This expansion converges up to the thre
particle cut, i.e., foruQu,3sm wheresm is defined by

sm5 lim
b→`

mV~`!jV
~m!~`!; ~3.43!

sm is the ratio between the second-moment and the expo
tial correlation length. MoreoverD(Q) has a zero in corre
spondence to the one-particle poles,Q56 ism . In the neigh-
borhood of these points, we have

D~Q!5szS Q2

sm
2 11D . ~3.44!

Using these results it is straightforward to compute the F
scaling curves in terms ofy5L/jV

(m)(`) in the limit y→`.
Disregarding terms of orderype2y, ype2ry we obtain

S jV
~m,1!~L,T!

jV
~m!~`!

D
FSS

2

511
1

2 (
n51

`

bn11F S 2p

y D 2n

1S 2p

ry D 2nG ,
~3.45!

S jV
~m,2!~L,T!

jV
~m!~`!

D
FSS

2

5
1

2 F(n50
` bn11~2p/y!2n

(n50
` bn~2p/y!2n 1~y→ry!G ,

~3.46!

S jV
~m,3!~L,T!

jV
~m!~`!

D
FSS

2

512
y

2szsm
@e2smy/21re2smry/2#.

~3.47!

FIG. 4. DjV,2(z;1) for Hstd for the three different definitions o
second-moment correlation length.
10500
-

n-

S

In the large-N limit bn50 for n>2, sm5sz51, andy5z in
the FSS limit, so that one recovers our previous results, E
~3.38!–~3.40!. For generic values ofN numerical estimates
of the various constants are reported in Ref.@70#. The devia-
tions from the large-N values are extremely small: forN
53 one finds from a strong-coupling analysis@70# b25
21.2(2)31023, sm50.9994(1), sz51.0013(2), while a
precise Monte Carlo simulation gives@71# sm50.9992(6).
Using Eqs.~3.45!–~3.47!, it is evident that the first definition
is always the most convenient one except for extremely la
values ofy (y*20 for N53), where the deviations are ex
tremely tiny. This is in agreement with the observation
Ref. @36#: they found numerically that, for 7&y&10, jV

(m,3)

had finite-size corrections larger thanjV
(m,1) . Using their data

we can check the large-y behavior of the FSS function o
jV

(m,3) . We find that the data of Ref.@36#—they belong to the
range 7&y&10—are well described by the formula

S jV
~m,3!~L,T!

jV
~m,1!~L,T!

D 2

512a
L

jV
~m,1!~L,T!

expF2
L

2jV
~m,1!~L,T!G ,

~3.48!

where

a5 H1.02360.012 for N53,
1.00160.007 for N58 , ~3.49!

in good agreement with our previous results.
Let us now consider the corrections to scaling. The te

proportional to logL/L2 is identical in all cases toDm,1(z;r),
cf. Eq. ~3.4!. The contribution proportional to 1/L2 depend
instead on the definition ofj. In Figs. 4 and 5 we report the
deviations from FSS for the three definitions for the stand
and the Symanzik Hamiltonians@Dj,1 andDj,2 are defined in
analogy with Eq.~3.2!#. Notice that forjV

(m,1) andjV
(m,3) the

corrections proportional to 1/L2 do not vanish even when
a15 1

12 , a250 and Eq.~3.9! are satisfied. This is expecte
since the second-moment correlation length is an off-s

FIG. 5. DjV,2(z;1) for HSym for the three different definitions o
second-moment correlation length.
7-11
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quantity. Therefore the definition of the correlation leng
must be improved, as well as the Hamiltonian. For instan
if one usesjV

(m,1) and the Symanzik Hamiltonian one do
not see any improvement: this definition has large corr
tions to scaling, and the behavior is worse for the Syman
Hamiltonian than for the standard one. In this case there
simple remedy to the problem: modify the definition in su
a way that j(L,T)'j`1O(L24,T24,L22T22). Analo-
gously one could proceed forjV

(m,3) . The second definition is
automatically improved but this is a peculiarity of th
large-N limit.

Let us finally discuss the mass gapmV(L) and the expo-
nential correlation lengthjV

(exp)51/mV(L). We have com-
puted the FSS functions expressing them in terms ofmV(L)
itself, i.e., using as variablex[mV(L)L instead ofz. We get

S mV~`!

mV~L ! D
2

5 f m~x;`!S 11
Dm,1~x;`!

L2 logL1
Dm,2~x;`!

L2 D ,

~3.50!

whereDm,1(x;`)5Dm,1(x;`) and

Dm,2~x;`!5Dm,2~x;`!

1
px3

6
~12a1112a221!

]F0

]x
~x;`!

1
8

3
~12a1112a221!e24pF0~x;`!. ~3.51!

Thus only the 1/L2 term differs from the expansion o
m`

2 /mL,T
2 . The asymptotic behavior for largex is analogous

to Eq. ~3.20! while for x→0 we have

Dm,2~x;`!5
p2

18
~12a121!

2
px

3
~12a1112a221!1O~x2!.

~3.52!

Notice that, since this quantity is defined on-shell, it is i
proved once the Hamiltonian is improved.

2. Isotensor sector

Let us now consider the isotensor observables. The ca
lation of the FSS function for the isotensor susceptibilityxT
is straightforward. We obtain

xT~L,T!

xT~`!
5 f xT

~z;r!S 11
DxT,1~z;r!

L2 logL1
DxT,2~z;r!

L2 D ,

~3.53!

with corrections of order log2L/L4 where

f xT
~z;r!52

64p

z

]F0

]z
~z;r!e24pF0~z;r!, ~3.54!
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DxT,1~z;r!5
1

4
~12a1116a221!F64e24pF0~z;r!

2z21
z

2p S ]F0

]z
~z;r! D 21G , ~3.55!

DxT,2~z;r!532p~12a1116a221!F0~z;r!

3e24pF0~z;r!24~28a1132a223!

3e24pF0~z;r!24pF1~z;r!

1
]F1 /]z~z;r!

]F0 /]z~z;r!
2256pL1e24pF0~z;r!.

~3.56!

As before the logL/L2 corrections cancel if 12a1116a221
50. The functionDxT,2(z;r) simplifies considerably ifa1

5 1
12 anda250. In this case

DxT,2~z;r!5S 1

96p
2L1D F256pe24pF0~z;r!24pz2

12zS ]F0

]z
~z;r! D 21G . ~3.57!

Therefore, if Eq.~3.9! is satisfied,xT has only corrections of
order logL/L4. It is straightforward to compute the expan
sions of the various FSS functions in the limitz→`. Using
the results in Appendixes B 2 a and B 2 b we obtain

f xT
~z;r!511A2pze2z1A2prze2rz

1O~z21/2e2z,z21/2e2rz!, ~3.58!

DxT,1~z;r!5
z2

4
~12a1116a221!~A2pze2z

1A2prze2rz!1O~z3/2e2z,z3/2e2rz!,

~3.59!

DxT,2~z;r!52
pz4

12
~12a1112a221!

3S e2z

A2pz
1

r2e2rz

A2prz
D

2
z2

8
~12a1116a221!log

z2

32

3~e2zA2pz1e2rzA2prz!

1O~z5/2e2z,z5/2e2rz!. ~3.60!

As expected,f xT
(z;r) behaves aszpe2z, but p differs from

the value it assumes for other observables~see, e.g., the
large-z behavior ofxV). Indeed, while the exponential be
havior is completely general, the powerp depends on the
observable.
7-12
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In Figs. 6 and 7 we report the graphs ofDxT,1(z;r) and

DxT,2(z;r) for r51 and different Hamiltonians. The beha

ior is very similar to the behavior ofmL,T
2 /m`

2 . The FSS
corrections are quite small. The Symanzik Hamiltoni
shows the best behavior, while the diagonal Hamiltonian
the one with the largest deviations from FSS.

Finally let us compute the FSS curve for the tensor c
relation length. We will restrict the discussion to the stand
action; the generalization to generic Hamiltonians is straig
forward but the final expressions are cumbersome. Moreo
we will restrict our discussion tojT

(m,1) , that is to the defini-
tion used in numerical simulations. We obtain

S jT
~m,1!~L,T!

jT
~m!~`!

D 2

5 f jT
~z;r!

3S 11
DjT,1~z;r!

L2 logL1
DjT,2~z;r!

L2 D ,

~3.61!

where

f jT
~z;r!5192J1~z;r!e24pF0~z;r!, ~3.62!

DjT,1~z;r!5Dm,1~z;r!1
J2~z;r!

J1~z;r!

18e24pF0~z;r!, ~3.63!

DjT,2~z;r!5Dm,2~z;r!1
J3~z;r!

J1~z;r!
24e24pF0~z;r!

116pF0~z;r!e24pF0~z;r!, ~3.64!

and

FIG. 6. DxT,1(z;1) andDjT,1(z;1) for Hstd. The dashed lines are
the large-z asymptotic expansions, Eqs.~3.59! and ~3.69!.
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J1~z;r!5
1

8p2 F212r22
1

2z

]F0

]z
~z;r!

3S 1

F3~z;r!
1

1

F3~rz;1/r! D G , ~3.65!

J2~z;r!5
1

128p3 F 1

F3~z;r!
1

1

F3~rz;1/r!
1

1

2z

]F0

]z
~z;r!

3 S 1

F3
2~z;r!

1
1

r2F3
2~rz;1/r! D G , ~3.66!

J3~z;r!5
1

8p2 F2
1

2z

]F1

]z
~z;r!S 1

F3~z;r!
1

1

F3~rz;1/r! D
2

2p2

3
2

p2

6z

]F0

]z
~z;r!S 1

F3~z;r!

1
1

r2F3~rz;1/r! D1
1

2z

]F0

]z
~z;r!S F4~z;r!

F3
2~z;r!

1
F4~rz;1/r!

r2F3
2~rz;1/r!

1
1

16p

log r

r2F3
2~rz;1/r! D G .

~3.67!

Using Eqs.~B57!, ~B58!, ~B106!, and ~B107! it is straight-
forward to compute the large-z behavior of the various FSS
functions. We obtain

f jT
~z;r!512

p2

15z2

11r2

r2 1
2p4

63z4

11r4

r4 1O~z26!,

~3.68!

DjT,1~z;r!52
p2

12

11r2

r2 1
p4

180r4z2 ~322r213r4!

1O~z24!, ~3.69!

FIG. 7. DxT,2(z;1) for Hstd, HSym, andHdiag. The dashed lines
are the large-z asymptotic expansions, Eq.~3.60!.
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DjT,2~z;r!5
p2

24r2 ~11r2!S log
z2

32
14D

2
p4

360r4z2~322r213r4!log
z2

32

2
p4

90r4z2~12r2!21O~ log z/z4!.

~3.70!

As expectedf jT
(z;r) approaches one as 1/z2 and thus it

reaches the asymptotic value forz→` within 1% only for
z'9. Notice moreover thatDjT,2(z;r) diverges logarithmi-

cally as z→`. This fact signals the nonuniformity of th
expansion inz. This is not unexpected. Indeed, for each fix
z, we expect the expansion to be reliable only ifmL,T!1,
i.e., if the correlation length is much larger than a latti
spacing. Therefore we expect the expansion to be valid o
if z!L. If 1!z!L, log z/L2 is a small number and thus th
expansion is completely under control.

The functionsDjT,1(z;r) andDjT,2(z;r) are reported for

r51 in Figs. 6 and 8. From these plots, comparing with
analogous graphs for other observables, one can immedi
see that the corrections to FSS forjT

(m,1) are quite large. This
is particularly evident in the large-z region, where the
logL/L2 term goes to a constant~for the isovector correlation
length this term vanishes exponentially!, while the 1/L2 term
diverges as logz.

IV. MIXED O„N…2RPN21 MODEL

In this section we compute the FSS corrections for
Hamiltonian~2.18!. As before we want to obtain a relatio
betweenm`

2 andmL,T
2 at fixedb. Using now the gap equatio

~2.19! we have

4I L,T~mL,T
2 !2

4I L,T~mL,T
2 !1r @mL,T

2 I L,T~mL,T
2 !21#

5
4I `~m`

2 !2

4I `~m`
2 !1r @m`

2 I `~m`
2 !21#

. ~4.1!

We will now discuss the FSS limit in whichL,T→`, b
→`, mL,T , m`→0 with mL,TL[z and T/L[r fixed. At
leading order we can disregard the termsm`

2 I `(m`
2 ) and

mL,T
2 I L,T(mL,T

2 ) in the denominators obtaining

I L,T~mL,T
2 !2

4I L,T~mL,T
2 !2r

5
I `~m`

2 !2

4I `~m`
2 !2r

, ~4.2!

which implies I L,T(mL,T
2 )5I `(m`

2 ). Thus, at leading order
the relation betweenmL,T andm` is identical to the one we
have discussed in the previous section. Consequently
FSS functions for the Hamiltonian~2.18! are identical to the
10500
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FSS functions of models with Hamiltonian~2.1!, as expected
on the basis of universality.4 The corrections will, however
be different. Writing

I `~m`
2 !5I L,T~mL,T

2 !1dmL,T
2 , ~4.3!

a simple computation gives

d5
r

2 S m`
2

mL,T
2 21D I L,T~mL,T

2 !2

2I L,T~mL,T
2 !2r

. ~4.4!

Solving for m`
2 /mL,T

2 we get finally

m`
2

mL,T
2 5 f m~z;r!S 11

@Dm,1~z;r!1Dm,1
r ~z;r!#

L2 logL

1
@Dm,2~z;r!1Dm,2

r ~z;r!#

L2 1
Dm

r̂ ~L;z;r!

L2 D ,

~4.5!

where f m(z;r), Dm,1(z;r), and Dm,2(z;r) are defined in
Eqs.~3.3!–~3.5!, with a15a250 and

Dm,1
r ~z;r!5

r

2
~z2232e24pF0~z;r!!, ~4.6!

4To be precise universality applies only to models withrÞ1. For
r 51 (RPN21 s model! there is an additional gauge invariance a
therefore we do not expect its FSS functions to be identical to th
of the N-vector model. However, under suitable assumptions~ab-
sence of vortices! that are verified in the large-N limit, one can
prove that the FSS functions for the RPN21 model with periodic
boundary conditions are equal to theN-vector FSS functions with
fluctuating periodic-antiperiodic boundary conditions@56#. In the
large-N limit the antiperiodic contribution vanishes, hence RP` has
the same FSS functions of theN-vector model. For a discussion i
one dimension, see Ref.@40#.

FIG. 8. DjT,2(z;1) for Hstd. The dashed line is the large-z
asymptotic expansion, Eq.~3.70!.
7-14



n

,

n
l

e

n
ic

fo

.
or
in
io
he

s

are

ot
tic

7
6
6
4
4
6
0
0

CORRECTIONS TO FINITE-SIZE SCALING IN THE . . . PHYSICAL REVIEW D 58 105007
Dm,2
r ~z;r!5

pr

2
@2F0~z;r!1r #~z2232e24pF0~z;r!!,

~4.7!

Dm
r̂ ~L;z;r!5

p2r 3

2
~z2232e24pF0~z;r!!

3
1

logL12pF0~z;r!2pr
. ~4.8!

The result ~4.5! is quite different than Eq.~3.2!. Indeed,
while before the corrections had a very simple depende

on logL, now the corrections involveDm
r̂ (L;z;r) that is not a

simple polynomial in logL. Notice that, for largeL at fixedz,

Dm
r̂ (L;z;r) behaves as 1/logL. Therefore, in the FSS limit

the corrections still behave as logL/L2.

We should make a second remark aboutDm
r̂ (L;z;r). It is

easy to convince oneself from the asymptotic expansio
Eqs.~B57!, ~B59!, and~B69!, thatF0(z;r) assumes any rea
value. Therefore, for each value ofL, there is a valuezc such
that the denominator in Eq.~4.8! vanishes, and therefor

Dm
r̂ (L;z;r) diverges. WhenL→`, zc→`, more precisely,

using Eq.~B57!, we havezc'e2prA32L. This singularity is
a signal of the fact that the expansion is not uniform inz. For
each z the expansion is valid only whenL@z, i.e., for
mL,T!1. In other words the expansion makes sense o
when the correlation length is much larger than a latt
spacing.

The corrections are larger for the mixed model than
the vector model. For instance,Dm,1

r (z;r)/Dm,1(z;r)52r so
that the logarithmic correction in the RP` model (r 51) is
three times larger than the corresponding one in theN-vector
model (r 50). For the values ofL that are used in Monte
Carlo simulations, say 8<L<128, however, all terms in Eq
~4.5! contribute to the FSS corrections. In Table III we rep
for r 51, r51, and z52 the same quantities reported
Table I. Comparing the two tables we see that the correct
to FSS for RP` are seven times larger than those for t
N-vector model in the same range of values ofL. Only for
L'50 (L'150) the corrections are smaller than 1%~0.1%!.

TABLE III. Values of Rexact(L;z,r), Rexpan(L;z,r),
Dexact(L;z,r), and Dexpan(L;z,r) for the RP` model (r 51), r
51 andz52.

L Rexact(L;2,1) Rexpan(L;2,1) Dexact(L;2,1) Dexpan(L;2,1)

8 0.35709886 0.34256990 0.5916549 0.526896
10 0.29398737 0.29002279 0.3103555 0.292684
12 0.26809044 0.26656021 0.1949281 0.188107
14 0.25463070 0.25391316 0.1349356 0.131737
16 0.24665643 0.24627448 0.0993928 0.097690
32 0.22943124 0.22941299 0.0226170 0.022535
64 0.22561220 0.22561112 0.0055948 0.005590
128 0.22467784 0.22467777 0.0014302 0.001430
` 0.22435696
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To compare the corrections for the RP` and theN-vector
model with the standard Hamiltonian for all values ofz, in
Fig. 9 we report

S~L;z;r!5
Dexpan~L;z,r!r 51

Dexpan~L;z,r!r 50
~4.9!

for L5128, 512 andr51 @D(L;z,r) is defined in Eq.
~3.17!#. For these values ofL, corrections are 5–10 time
larger in the RP` model.

It is interesting to understand the origin ofDm
r̂ (L;z;r) in

terms of perturbation theory. First of all, forz small ~for
simplicity we consider the strip case, analogous results
valid for genericr! we can expand, cf. Eq.~B69!,

Dm
r̂ ~L;z;r!5

p2r 3

2

z3

p1zlogL

3F12
pz~2F̄002r !

p1zlogL
1O~z2!G . ~4.10!

This is not yet a perturbative expansion inz due to the pres-
ence of the termzlogL in the denominators. This term cann
be expanded inz since we are considering an asympto
expansion at fixedz with L→`. However, if we ignore this
problem and expand the denominators in powers ofz, we
obtain

Dm
r̂ ~L;z;r!pert5

pr 3

2
z3F12

z

p
logL2z~2F̄002r !

1O~z2log2L !G . ~4.11!

In generalDm
r̂ (L;z;r) has a polynomial expansion inz with

coefficients that are polynomials in logL:

FIG. 9. S(L;z;1) for L5128 andL5512. ForL→`, S(L;z;1)
converges to 3 for allzÞ0.
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Dm
r̂ ~L;z;r!pert5z3(

n50

`

Pn~ logL !zn, ~4.12!

wherePn(x) is a polynomial of degreen. This expansion is
clearly incorrect in the FSS limitL→` at fixedz. However
Eq. ~4.12! correctly describes the theory in the limitz→0 at
fixed L. This is the limit in which PT works correctly
@51,52#, and indeed the expansion~4.12! can be directly ob-
tained with a perturbative calculation. Therefore our resu
show that in order to correctly compute the corrections
FSS one needs to resum the perturbative expansion.
reflects the fact that the perturbative limitz→0 with L large
and fixed does not commute with the FSS limitL→` with z
fixed and small. It should also be noticed that the infin
series of logarithms appearing in Eq.~4.12! resums to give
corrections of order 1/(L2logL). This is a result that is far
from obvious: in general one expects series of the fo
~4.12! to give powers ofL, i.e., to resum toLp(z), wherep(z)
is some function ofz. For N5` no power is generated, bu
we have no proof that this will be true for generic values
N. The only argument we have against the appearanc
power corrections is based on a naive application
renormalization-group ideas. The corrections to FSS are
to the irrelevant operators of the theory. Since theN-vector
model is asymptotically free, operators have canonical s
ing dimensions with logarithmic corrections. Therefore w
always expect a behavior of the form (logL)p/L2.

Using the results of the previous section it is easy to
tain the FSS functions and their leading corrections for
various observables. For the isovector second-moment co
lation lengths the expressions~3.31!–~3.33! still hold with
m`

2 /mL,T
2 given by Eq.~4.5!. For the susceptibilityxV we

have

xV~L,T!

xV~`!
5

m`
2

mL,T
2 F11

r

4z2L2 ~32e24pF0~z;r!2z2!

3
logL12pF0~z;r!

logL12pF0~z;r!2pr G , ~4.13!

FIG. 10. D̄jT
(L;s;1) for the RP` model for two different values

of L: L516 andL5128.
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while for xT we have

xT~L,T!

xT~`!
5S xT~L,T!

xT~`! D
r 50

F11
Dm,1

r ~z;r!

L2 logL1
Dm,2

r ~z;r!

L2

1
Dm

r̂ ~L;z;r!

L2 1
r

2z2L2 ~32e24pF0~z;r!2z2!

3
logL12pF0~z;r!

logL12pF0~z;r!2pr
G . ~4.14!

Finally for jT
(m,1) we have

S jT
~m,1!~L,T!

jT
~m,1!~`!

D 2

5S jT
~m,1!~L,T!

jT
~m,1!~`!

D
r 50

2 F11
Dm,1

r ~z;r!

L2 logL

1
Dm,2

r ~z;r!

L2 1
Dm

r̂ ~L;z;r!

L2 G . ~4.15!

To conclude our discussion we come back again to the R`

model. In this case the FSS functions are usually reporte
terms of s5L/jT

(m,1)(L,T). Indeed, because of the gaug
symmetry, one cannot define observables in the isove
sector. For any observableO, we define the FSS deviation

D̄O~L;s;r!5L2FO~L,T!

O~`!

1

f̄O~s;r!
21G , ~4.16!

where f̄O(s;r) is the FSS function ofO expressed in terms
of s. In Figs. 10 and 11 we reportD̄jT

(L;z;1) and

D̄xT
(L;z;1) for L516 andL5128. The corrections are ex

tremely large if one compares them with the analogous
sults for theN-vector model. This is especially true in th
large-s region. Moreover the corrections are positive. The
results are in qualitative agreement with the results of R
@56#.

FIG. 11. D̄xT
(L;s;1) for the RP` model for two different values

of L: L516 andL5128.
7-16
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V. CONCLUSIONS

In this paper we have investigated the corrections to F
in the large-N limit for a vast class of models and we hav
studied their relation with the improvement program of S
manzik. In the large-N limit we find that the corrections be
have asf (z,L)logL/L2 where f (z,L) can be expanded in
powers of 1/logL and is such thatf (z,`) is finite for all
values ofz. Thus, for large values ofL, corrections behave a
logL/L2. Tree-level improved Hamiltonians have correctio
to FSS behaving as 1/L2: the effect of the improvement i
the cancellation of a logarithm. Subsequent perturbative
provement should give Hamiltonians with corrections of
der 1/(L2loglL) ( l 51 for one-loop improvement and so on!.

We have shown explicitly that the FSS limit and the p
turbative limit commute in the calculations of the FSS fun
tions butnot for the calculation of the next-to-leading term
Corrections to FSS cannot be computed in perturba
theory unless an infinite series of logarithms is resumme

Finally we have investigated if there is any sign of lar
correction in the RP` model. We find that this model show
deviations from FSS that are much larger than those of
N-vector model. We find qualitative agreement with the
sults of Ref.@56#.
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APPENDIX A: DEFINITIONS

1. FunctionsGk„a…, H k„a…, andHk„a…

Let us define the following functions:

Gk~a!5 (
n51

` F ~n21a2!k21/2

2 (
m50

k S k21/2
m Da2mn2k22m21G , ~A1!

Hk~a!5 (
n51

`
1

~n21a2!k11/2, ~A2!

Hk~a!5 (
n51

`
1

~124n2!~n21a2!k11/2. ~A3!

The first and the third ones are defined for integersk>0
while the second one is defined fork>1: for these values o
k the sums converge for all values ofa. The functionsGk(a)
and Hk(a) are known in statistical mechanics under t
name of remnant functions~see Appendix D of Ref.@46# and
Ref. @60#!.
10500
S

-

-
-

-
-

n

e
-

z-
-

We want now to discuss their behavior fora→0 anda
→`. We will focus on those values ofk that appear in our
final results, i.e., tok50,1.

The expansion fora→0 is trivial. We obtain

G0~a!5 (
k51

`

~21!kS 2k
k D z~2k11!S a

2 D 2k

, ~A4!

G1~a!52(
k51

`
~21!k

k S 2k
k D z~2k11!S a

2 D 2k12

,

~A5!

H1~a!5 (
k50

`

~21!k~2k11!S 2k
k D z~2k13!S a

2 D 2k

,

~A6!

H0~a!5 (
k50

`

~21!kS 2k
k Da2k

3F122 log 21 (
n51

k
z~2n11!

4n G , ~A7!

H1~a!54(
k50

`

~21!k~2k11!S 2k
k Da2k

3F122 log 21 (
n51

k11
z~2n11!

4n G , ~A8!

where we have used

(
n51

`
1

~124n2!n2q11 54q~122 log 2!14q(
s51

q
z~2s11!

4s .

~A9!

All series converge foruau,1.
We want now to derive the asymptotic expansions fora

→`. In order to obtain them let us derive a different repr
sentation for the functionsGk(a) andHk(a).

Let us first considerG0(a). We rewrite it as

G0~a!5 lim
e→01

F2z~11e!1
1

G~1/21e/2!

3E
0

` dx

x~12e!/2 e2xa2

(
n51

`

e2xn2G . ~A10!

Using the Poisson resummation formula@72# we obtain
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G0~a!5 lim
e→01

H 2z~11e!1
a2e

G~1/21e/2!

3FAp

2
GS e

2D2
1

2a
GS 11e

2 D G
1

Ap

G~1/21e/2!
E

0

` dx

x12e/2 e2xa2

3 (
n51

`

expS 2
p2n2

x D J . ~A11!

Taking the limit we get the representation@60#

G0~a!52 log
a

2
2gE2

1

2a
12(

n51

`

K0~2pna!,

~A12!

where K0 is a modified Bessel function@73#. The corre-
sponding representations forGk(a) andHk(a), k>1 can be
obtained by integration and derivation of the previous re
tion. We obtain@60#

G1~a!5
1

12
1

a2

2 S 2 log
a

2
1

1

2
2gE2

1

a D
2

a

p (
n51

`
1

n
K1~2pna!, ~A13!

H1~a!5
1

a22
1

2a3 1
4p

a (
n51

`

nK1~2pna!.

~A14!

This representation of the functionsGk(a) and Hk(a) al-
lows an immediate derivation of the asymptotic expans
for large values ofa since@73#

Kn~x!5Ap

2x
e2xF11

1

2x S n22
1

4D1O~x22!G .
~A15!

Let us now consider the functionsHk(a). We rewriteHk(a)
as

Hk~a!52
1

2

1

a2k11 1
1

2

1

G~k11/2!
E

0

`

dx xk21/2e2xa2
g~x!,

~A16!

where

g~x!5 (
n52`

1`
e2xn2

124n2 . ~A17!
10500
-

n

Now in the integral appearing in Eq.~A16! the relevant re-
gion for largea2 corresponds to small values ofx. Therefore
we need the small-x expansion ofg(x). First of all notice
that

g~0!5112(
n51

1`
1

124n2 50. ~A18!

Then one immediately verifies thatg(x) satisfies an equation
of the form

g8~x!1
1

4
g~x!2

1

4 (
n52`

1`

e2xn2
50, ~A19!

so that, using Eq.~A18!, we get

g~x!5
1

4
e2x/4E

0

x

dy ey/4 (
n52`

1`

e2yn2
. ~A20!

Using the Poisson resummation formula@72# we can rewrite
it as

g~x!5
Ap

4
e2x/4E

0

x dy

Ay
ey/4 (

n52`

1`

e2p2n2/y. ~A21!

In the small-x region only the term withn50 is relevant so
that

g~x!'
Ap

4
e2x/4E

0

x dy

Ay
ey/4

'
Apx

2 S 12
x

6
1

x2

60
2

x3

840
1

x4

15120
1O~x5! D .

~A22!

We obtain eventually for large values ofa

Hk~a!52
1

2

1

a2k11 1
Ap

4G~k11/2!

1

a2k12

3Fk! 2
~k11!!

6a2 1
~k12!!

60a4 2
~k13!!

840a6 1
~k14!!

15120a8G
1O~a22k212!. ~A23!

2. The functionsM pq„z; r…, Npq„r…,Mpq„z; r…, andNpq„r…

A second set of functions appear in our calculations. W
define
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M pq~z;r!5~2p!p (
n52`

`
1

~4p2n21z2!p/2

3
1

@exp~rA4p2n21z2!21#q
, ~A24!

Mpq~z;r!5~2p!p (
n52`

`
1

~124n2!~4p2n21z2!p/2

3
1

@exp~rA4p2n21z2!21#q
, ~A25!

Npq~r!5 (
n51

`
1

np

1

@exp~2prn!21#q , ~A26!

Npq~r!5 (
n51

`
1

~124n2!np

1

@exp~2prn!21#q ,

~A27!

whereq is a positive integer. We want to compute here t
asymptotic expansion ofM pq(z;r) and Mpq(z;r) for z
→0 andz→` at fixedr. The first expansion is straightfor
ward and we get forM pq(z;r)

M pq~z;r!5S 2p

z D p 1

~rz!q (
n1 ,...,nq50

` Bn1
¯Bnq

n1!¯nq!

3~rz!n11...1nq12Npq~r!

12z2F2
p

8p2 Np12,q~r!

2
qr

4p
„Np11,q~r!1Np11,q11~r!…G

1O~z4!. ~A28!

ForMpq(z;r) the expansion is analogous with the substi
tion of Npq with Npq .

For largez let us consider firstM pq(z;r). We obtain

M pq~z;r!5 (
n52`

`
~2p!p

~4p2n21z2!p/2

3exp@2qrA4p2n21z2#1O~e22rqzz1/22p!.

~A29!

This last sum can be evaluated using the Poisson resum
tion formula @72#. Define

f̂ ~v!5E
2`

`

dt eivt
~2p!p

~4p2t21z2!p/2 exp@2qrA4p2t21z2#.

~A30!

Then
10500
e

-

a-

M pq~z;r!' (
n52`

`

f̂ ~2pn!. ~A31!

For z→` we have

f̂ ~v!5
2p

Az
~qrz!12p~v214p2q2r2!~2p23!/4

3expF2
z

2p
Av214p2q2r2G@11O~z21!#.

~A32!

Therefore

M pq~z;r!5
1

Aqr
S z

2p D 1/22p

e2qrz@11O~z21!#.

~A33!

ForMpq(z;r) we will not need the explicit asymptotic be
havior. It is, however, easy to convince oneself that, for la
z,Mpq(z;r) goes to zero faster thanz2pe2qpz.

To conclude this subsection let us derive a set of relati
for the functionsNpq(r). First of all let us notice that
N1,1(r) can be related to Dedekind’sh function @68#

h~t!5ep i t/12)
n51

`

~12e2p int!. ~A34!

Indeed

N1,1~r!5 (
n51

`

(
k51

`
1

n
e22pnkr52 logF )

k51

`

~12e22pkr!G
52

pr

12
2 log h~ ir!. ~A35!

Following the same steps it is possible to prove that,
p.0,

N2p,1~r!5
~21!p

~2p!p

dp

drp Np,1~r!. ~A36!

This relation, together with

d

dr
Npq~r!522pq@Np21,q~r!1Np21,q11~r!#,

~A37!

allows us to prove that allNpq(r) with p<21 can be ex-
pressed in terms ofN0,q8(r). From Eqs.~A36! and~A37! we
obtain the following relations we will use in the following:

N21,1~r!5N0,1~r!1N0,2~r!5
1

24
1

1

2p

d

dr
log h~ ir!,

~A38!
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N22,1~r!1N22,2~r!5N21,1~r!13N21,2~r!12N21,3~r!

52
1

4p2

d2

dr2log h~ ir!. ~A39!

Finally, for p>0, let us derive a relation betweenN4p13,1(r)
and N4p13,1(1/r) that will allow us to compute explicitly
N4p13,1(1). Let usstart from

(
n52`

`
1

n21a2 5
p

a
1

2p

a

1

e2pa21
. ~A40!

It follows that

(
m,n51

` S 1

n4p12 1
1

~rm!4p12D 1

n21r2m2

52
1

2
z~4p14!1

p

2r
z~4p13!1

p

r
N4p13,1~1/r!

1
1

r4p12 F2
1

2r2 z~4p14!1
p

2r
z~4p13!

1
p

r
N4p13,1~r!G . ~A41!

However, for integerp>0, we can also compute the firs
sum as

(
m,n51

`
1

~nmr!4p12

n4p121~rm!4p12

n21~rm!2

5 (
k50

2p

~21!k (
m,n51

`
1

~mnr!4p12 ~rm!2kn4p22k

5 (
k50

2p

~21!k
1

r4p22k12 z~4p22k12!z~2k12!.

~A42!

Comparing Eqs.~A41! and ~A42! we obtain a relation be
tweenN4p13,1(r) andN4p13,1(1/r). For r51 we obtain

N4p13,1~1!5
1

2p
z~4p14!2

1

2
z~4p13!

1
1

2p (
k50

2p

~21!kz~4p22k12!z~2k12!.

~A43!

Particular cases are

N3,1~1!5
7p3

360
2

1

2
z~3!'0.001871373, ~A44!

N7,1~1!5
19p7

113400
2

1

2
z~7!'0.001870964. ~A45!
10500
Analogous relations can be obtained starting from the m
general sum

(
m,n51

` S 1

n4p12 1
1

~rm!4p12D 1

~n21r2m2!q . ~A46!

We leave the derivation to the reader. We will not need th
relations here.

APPENDIX B: ASYMPTOTIC EXPANSIONS
OF LATTICE SUMS

In this appendix we will study generic sums involving th
lattice propagator for a Gaussian theory with arbitrary int
actions. We will present an algorithmic procedure that allo
us to derive systematically the expansion in powers of 1/L of
sums of this type. The results will be expressed in terms
the functions we have introduced in Appendix A. Th
method presented in this appendix applies to a square la
L3T with periodic boundary conditions but generalizes e
ily to other types of boundary conditions. It can also be us
to study lattice sums in more than two dimensions. In A
pendix B 1 we compute some preliminary one-dimensio
sums; the general procedure is presented in Appendix B

1. One-dimensional sums

a. The Euler-Mac Laurin formula

The basic tool we will use is the Euler-Mac Laurin fo
mula @74#. In its general form it is given by

(
k5n

m21

f ~k!5E
n

m

dx f~x!2
1

2
@ f ~m!2 f ~n!#

1 (
k51

N
B2k

~2k!!
@ f ~2k21!~m!2 f ~2k21!~n!#

1
1

~2N11!! En

m

dx f~2N11!~x!B2N11~x2 bxc !,

~B1!

whereBk are the Bernoulli numbers andBk(x) are the Ber-
noulli polynomials defined by@73,74#

Bn~x!5 (
k50

n S n
kDBkx

n2k. ~B2!

In the following we will be interested in sums of the form

1

L (
n50

aL21

f ~r!, ~B3!

where p52pn/L. We will try to compute the asymptotic
expansion of the sum~B3! for L→` with a fixed. It is easy
to obtain from Eq.~B1! the following formula:
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1

L (
n50

aL21

f ~p!5E
0

2pa dp

2p
f ~p!2

1

2L
@ f ~2pa!2 f ~0!#

1
1

2p (
k51

N
B2k

~2k!! S 2p

L D 2k

3@ f ~2k21!~2pa!2 f ~2k21!~0!#

1
1

~2N11!! S 2p

L D 2N11E
0

2pa dp

2p
f ~2N11!

3~p!B̂2N11~p!, ~B4!

with

B̂n~p!5BnS Lp

2p
2 bLp

2p c D . ~B5!

Thus, as long as the last integral in Eq.~B4! is finite, i.e.,
f (2N11)(p) is integrable in the interval@0,2pa#, the previous
formula gives the asymptotic expansion of the sum~B3! in
powers of 1/L up to order 1/L2N. An important case corre
sponds toa51 and f (p) periodic of period 2p, i.e., f (p
12p)5 f (p). In this case all the 1/L corrections vanish and
we obtain

1

L (
n50

L21

f ~p!5E
0

2p dp

2p
f ~p!1O~L22N21!. ~B6!

It is easy to prove that a similar result holds for gene
d-dimensional sums. Iff (p1 ,...,pd) is a periodic function in
all variables of period 2p and]1

n1
¯]d

ndf (p) is integrable in
@0,2p#d for all n1 ,...,nd such thatn11¯1nd<2N11,
then, forL→` with L1 /L,L2 /L,...,Ld /L fixed, we have

1

L1¯Ld
(

n150

L121

(
n250

L221

¯ (
nd50

Ld21

f ~p1 ,...,pd!

5E
@0,2p#d

ddp

~2p!d f ~p!1O~L22N21!, ~B7!

where on the left-hand side,pi52pni /Li .

b. Asymptotic expansions of(n2p

Here we will discuss the asymptotic expansion of sums
the form

(
n51

L
1

np , ~B8!

for L→`. Whenp is a negative integer it is easy to perfor
the summation exactly. Indeed (q52p)

(
n51

L

nq5
dq

daq F12ea~L11!

12ea GU
a50

. ~B9!

The simplest cases are
10500
f

(
n51

L

n5
1

2
L~L11!, ~B10!

(
n51

L

n25
1

6
L~L11!~2L11!, ~B11!

(
n51

L

n35
1

4
L2~L11!2. ~B12!

Let us now consider the sum~B8! with p.1. Rewriting it as

(
n51

L
1

np 5z~p!2 (
n5L11

`
1

np , ~B13!

wherez(n) is Riemann zeta function, and using the Eule
Mac Laurin formula for the second sum, we get t
asymptotic expansion

(
n51

L
1

np 5z~p!2
1

G~p! (
n50

`
Bn

n!
G~n1p21!L12n2p.

~B14!

Finally, taking in the previous formula the limitp→1, we
have the asymptotic expansion

(
n51

L
1

n
5 logL1gE1

1

2L
2 (

n51

`
B2n

2n

1

L2n , ~B15!

wheregE'0.577215665 is the Euler constant.

c. Asymptotic expansions of((n21a2)k11/2

In this section we consider sums of the form

(
n51

L21

~n21a2!k11/2. ~B16!

Again we want to compute the asymptotic expansion foL
→` with a fixed. Let us first consider the casek>21. In
this case we rewrite the sum as

(
n51

L21 F ~n21a2!k11/22 (
m50

k11 S k11/2
m Da2mn2k22m11G

1 (
m50

k11 F S k11/2
m Da2m(

n51

L21

n2k22m11G . ~B17!

We have already explained how to compute the last sum
the previous subsection. We will now discuss the first s
that we rewrite as

Gk11~a!2 (
n5L

` F ~n21a2!k11/2

2 (
m50

k11 S k11/2
m Da2mn2k22m11G , ~B18!
7-21



e

ac

m

-

th

ns

s

e
n.
r-
m
ra-

e

SERGIO CARACCIOLO AND ANDREA PELISSETTO PHYSICAL REVIEW D58 105007
where Gk(a) is defined in Eq. ~A1!. The last term
appearing in Eq.~B18! can be easily computed using th
Euler-Maclaurin formula~B1!.

In the following we will need the previous sums fork5
21,0. Explicitly we have

(
n51

L21

An21a25
1

2
L~L21!1G1~a!1

a2

2
~ logL1gE!2

a2

4L

1O~L22!, ~B19!

(
n51

L21
1

An21a2
5 logL1gE1G0~a!2

1

2L
2

1

12L2

1
a2

4 S 1

L2 1
1

L3D1O~L24!. ~B20!

For k,21 the computation is straightforward as no subtr
tion is needed in this case. Fork51 we have

(
n51

L21
1

~n21a2!3/25H1~a!2
1

2L22
1

2L3 1O~L24!,

~B21!

whereH1(a) is defined in Eq.~A3!.

d. Computation of((p̂21a2)2q

In this section we will compute exactly sums of the for

(
n50

L21
1

~ p̂21a2!q , ~B22!

for integer values ofq. As usual,p̂52 sin(p/2).
If q is negative the summation is trivial as~herek>1)

(
n50

L21

p̂2k5S 2k
k DL. ~B23!

Let us now discuss the caseq>1. Consider firstq51. Then

(
n50

L21
1

p̂21a2 5
1

2 (
n50

L21
1

v2cos~2pn/L !
, ~B24!

wherev511a2/2. Then notice that

lim
R→`

E
DR

dz
cot pz

v2cos~2pz/L !
50, ~B25!

whereDR is the rectangle in the complexz plane bounded by
the linesz52 1

2 , z5L2 1
2 , z56 iR. Using the residue theo

rem we get

(
n50

L21
1

v2cos~2pn/L !
5

L

Av221
cothS L

2
arcchv D .

~B26!

We thus end up with
10500
-

(
n50

L21
1

p̂21a2 5
L

aA41a2
cothFL arcshS a

2 D G . ~B27!

Higher values ofq can be handled by taking derivatives wi
respect toa2 of the previous formula.

e. Asymptotic expansion of((p̂21m2)k11/2

Let us now consider sums of the form

(
n50

L21

~ p̂21m2!k11/2, ~B28!

where p̂52 sin(p/2), p52pn/L. We want to study these
sums in the finite-size-scaling limit, i.e., forL→`, m→0,
with mL[z fixed. To compute these asymptotic expansio
we proceed in the following way.

AssumingL even~the final result will not depend on thi
assumption! we rewrite

(
n50

L21

~ p̂21m2!k11/252 (
n51

L/221

~ p̂21m2!k11/2

1~41m2!k11/21m2k11. ~B29!

Then let us consider the expansion of (p̂21z2/L2)k11/2 in
powers of 1/L2: it can be written in the form

S p̂21
z2

L2D k11/2

5S p21
z2

L2D k11/2

3 (
h50

`
ah~n2,z2!

L4h

1

~p21z2/L2!h
,

~B30!

whereah(n2,z2) is a polynomial inn2 andz2. Let us indi-
cate with Rk,q(p,z;L) the sum of the firstq terms in Eq.
~B30!. Then we rewrite

(
n50

L21

~ p̂21m2!k11/2

52 (
n51

L/221 F S p̂21
z2

L2D k11/2

2Rk,q~p,z;L !G
12 (

n51

L/221

Rk,q~p,z;L !1~41m2!k11/21m2k11.

~B31!

We must then chooseq. To fix its value we must decide th
order in 1/L to which we want to compute the expansio
Then we fixq so that we can use the Euler-Maclaurin fo
mula for the first sum. It is trivial to reduce the second su
to a sum of terms of the form studied in the previous pa
graph.

We will now illustrate the method by computing th
asymptotic expansion of
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(
n50

L21
1

Ap̂21m2
, ~B32!

including terms of order 1/L2. Since

1

Ap̂21z2/L2
5

1

Ap21z2/L2 S 11
1

24

p4

p21z2/L2 1O~L24! D ,

~B33!

we rewrite

(
n50

L21
1

Ap̂21m2

52 (
n50

L/221 F 1

Ap̂21m2
2

1

Ap21m2
2

1

24

p4

~p21m2!3/2G
1

1

m
12 (

n51

L/221
1

Ap21m2

1
1

12 (
n51

L/221
p4

~p21m2!3/21
1

A41m2
. ~B34!

The first sum can be computed up to order 1/L2 using the
Euler-Maclaurin formula. We obtain

(
n50

L/221 F 1

Ap̂21m2
2

1

Ap21m2
2

1

24

p4

~p21m2!3/2G
5LF2

1

2p
log

p

4
2

p

96
2

z2

16pL2

3S 2
1

12
2

1

2
log

p

4
1

2

p2D G
2

1

4
1

1

2p
1

p

48
2

z2

2L2 S 2
1

16
1

1

2p3 1
1

16p D
1

p

6L S 1

p22
1

24D1O~L23!. ~B35!

The two remaining sums can be computed using the res
of the previous subsection. We obtain finally

(
n50

L21
1

Ap̂21m2
5

L

p F logL1gE2 log
p

2
1G0~z/2p!G

1
L

z
1

p

6L S G1~z/2p!2
1

12D
1

z4

96p3L
H1~z/2p!2

z2

16pL

3S logL1gE2 log
p

2
1

4

3
G0~z/2p!2

1

6D
1O~L23!. ~B36!
10500
lts

We will also need the expansion of Eq.~B29! for k50 up to
O(L23). Using the same method we obtain

(
n50

L21

Ap̂21m25
4L

p
2

p

3L
1

4p

L
G1~z/2p!1

z

L

1
z2

2pL S logL1gE2 log
p

2 D1O~L23!.

~B37!

2. Two-dimensional sums

In this section we present our procedure to expand
powers of 1/L general sums with Gaussian propagators in
FSS limit. A general theorem for massless propagators
proved in Ref.@75#. Here we will improve their result show
ing that only even powers of 1/L appear in the expansion an
providing an algorithmic method to compute the various c
efficients.

a. Asymptotic expansions of(p̂x
2hp̂y

2k(p̂21m2)2q

In this section we present a general procedure to de
asymptotic expansions of sums of the form

1

LT (
nx ,ny

p̂x
2hp̂y

2k

~ p̂21m2!q , ~B38!

wherepx52pnx /L, py52pny /T, the sum extends over 0
<nx,L, 0<ny,T, in the finite-size-scaling limit, i.e., for
L,T→`, m2→0 with T/L[r andmL[z fixed.

First of all let us notice that rewritingp̂y
2k5@( p̂21m2)

2 p̂x
22m2#k we can limit ourselves to consider sums withk

50, i.e., sums of the form

1

LT (
nx ,ny

p̂x
2h

~ p̂1m2!q . ~B39!

The summation overny can be performed exactly using th
results of Appendix B 1 d. It is easy to see that the result w
be a sum of terms of the form

1

L (
nx50

L21

~ p̂x
21m2!a/2~41 p̂x

21m2!b/2

3H expF2T arcshS 1

2
Ap̂x

21m2D G21J 2c

,

~B40!

for integersa, b, andc>0. If c is strictly positive it is simple
to obtain an asymptotic expansion in powers of 1/L2. Indeed
arcshx50 if and only if x50. Therefore, forL,T→` the
terms that contribute are those for whichp̂'0. Thus rewrit-
ing the previous sum as

1

L (
nx5 bL/2c

12 b~L11!/2c
gS 2pn

L
,

z2

L2 ,rL D , ~B41!
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we expand the functiong in powers ofL at n, z, r fixed,

gS 2pn

L
,

z2

L2 , rL D5La (
m50

`
1

L2m ĝm~n,z2,r!. ~B42!

The expansion of Eq.~B40! is simply given by

La21 (
m50

`
1

L2m F (
n52`

1`

ĝm~n,z2,r!G . ~B43!

Let us now consider the casec50. If also b50 we have
discussed the asymptotic expansion in Appendix B 1 e. S
pose nowbÞ0. Then define

Rkl52k(
n50

l S k/2
n D S p̂x

21m2

4 D n

, ~B44!

and rewrite

1

L (
nx50

L21

~ p̂x
21m2!a/2~41 p̂x

21m2!b/2

5
1

L (
nx50

L21

~ p̂x
21m2!a/2@~41 p̂x

21m2!b/22Rbl#

1
1

L (
nx50

L21

~ p̂x
21m2!a/2Rbl . ~B45!

Then choosel so that one can apply the Euler-Maclaur
formula to the first sum: as the function is periodic of peri
2p, as we observed at the end of Appendix B 1 a@see for-
mula ~B7!# we can simply replace the sum with the corr
sponding integral. We thus obtain
10500
p-

1

L (
nx50

L21

~ p̂x
21m2!a/2~41 p̂x

21m2!b/2

5E
0

2p dp

2p
~ p̂x

21m2!a/2@~41 p̂x
21m2!b/22Rbl#

1
1

L (
nx50

L21

~ p̂x
21m2!a/2Rbl . ~B46!

The computation of the remaining sums was discussed
Appendix B 1 e.

To illustrate the method let us consider a specific case,
sum

I L,T~m2![
1

LT (
nx ,ny

1

p̂21m2 . ~B47!

Using Eq. ~B27! we can perform the summation overny
obtaining

1

L (
nx50

L21
1

Ap̂x
21m2A41 p̂x

21m2

1
2

L (
nx50

L21
1

Ap̂x
21m2A41 p̂x

21m2

3H expF2T arcshS 1

2
Ap̂x

21m2D G21J 21

.

~B48!

The asymptotic expansion of the second sum is immedia
computed: we get
1

L (
nx50

L21
1

Ap̂x
21m2A41 p̂x

21m2 H expF2T arcshS 1

2
Ap̂x

21m2D G21J 21

5
1

4p
M1,1~z;r!1

p

24L2 F S z

2p D 4

M3,1~z;r!22S z

2p D 2

M1,1~z;r!22M 21,1~z;r!G

1
p2r

12L2 F2M 22,1~z;r!22S z

2p D 2

M0,1~z;r!1S z

2p D 4

M2,1~z;r!

12M 22,2~z;r!22S z

2p D 2

M0,2~z;r!1S z

2p D 4

M2,2~z;r!G1O~L24!. ~B49!
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Let us now consider the first sum. We want to compute
asymptotic expansion including terms of order 1/L2. We re-
write it as

1

L (
nx50

L21
1

Ap̂x
21m2

1

A41 p̂x
21m2

5
1

L (
nx50

L21
1

Ap̂x
21m2 F 1

A41 p̂x
21m2

2
1

2

1
1

16
~ p̂x

21m2!G1
1

2L (
nx50

L21
1

Ap̂x
21m2

2
1

16L (
nx50

L21

Ap̂x
21m2. ~B50!

The last two sums were discussed in Appendix B 1 e. T
first one, up to terms ofO(L24), can be replaced by th
corresponding integral. Expanding the integrand in pow
of m2 we get

1

L (
nx50

L21
1

Ap̂x
21m2 F 1

A41 p̂x
21m2

2
1

2
1

1

16
~ p̂x

21m2!G
5

1

4p
~12 log 2!1

z2

64pL2 ~112 log 2!

1O~L24logL !. ~B51!

It follows that
10500
s

e

rs

1

L (
nx50

L21
1

Ap̂x
21m2

1

A41 p̂x
21m2

5
1

2z
1

1

2p F logL1gE2 log p1
1

2
log 21G0S z

2p D G
1

p

6L2 F 1

12
2G1S z

2p D G2
z

16L2 1
z4

192p3L2 H1S z

2p D
2

z2

16pL2 F logL1gE2 log p1
1

2
log 2

1
2

3
G0S z

2p D2
1

3G1O~L24logL !. ~B52!

Using Eq.~B49! and the previous expression we obtain t
following result:

I L,T~m2!5
1

2p
logL1F0~z;r!2

z2

16pL2 logL1
1

L2 F1~z;r!

1O~L24 logL !, ~B53!

where

F0~z;r!5
1

2z
1

1

2p FgE2
1

2
log

p2

2
1G0S z

2p D G
1

1

2p
M1,1~z;r! ~B54!

and
F1~z;r!5
p

6 F 1

12
2G1S z

2p D G2
z

16
1

z4

192p3 H1S z

2p D2
z2

16p FgE2
1

2
log

p2

2
1

2

3
G0S z

2p D2
1

3G1
p

12 F S z

2p D 4

M3,1~z;r!

22S z

2p D 2

M1,1~z;r!22M 21,1~z;r!G1
p2r

6 F2M 22,1~z;r!22S z

2p D 2

M0,1~z;r!1S z

2p D 4

M2,1~z;r!

12M 22,2~z;r!22S z

2p D 2

M0,2~z;r!1S z

2p D 4

M2,2~z;r!G . ~B55!

In addition to this sum we will also need
7-25
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1

LT (
nx ,ny

(mp̂m
4

~ p̂21m2!2 512
1

p
1

1

L2 H p

6
22pG1S z

2p D2
3z

4
1

z4

16p3 H1S z

2p D
2

3z2

4p F logL2 log p1
1

2
log 21gE2

1

6
1

2

3
G0S z

2p D G J
2

p

L2 F2M 21,1~z;r!12S z

2p D 2

M1,1~z;r!2S z

2p D 4

M3,1~z;r!G
1

2p2r

L2 F2M 22,1~z;r!22S z

2p D 2

M0,1~z;r!1S z

2p D 4

M2,1~z;r!

12M 22,2~z;r!22S z

2p D 2

M0,2~z;r!1S z

2p D 4

M2,2~z;r!1O~L24logL !

512
1

p
2

3z2

4pL2 logL1
1

L2 S 12F1~z;r!2
z2

8p D1O~L24logL !. ~B56!
o

on

a-
Finally we want to report the asymptotic expansions
F0(z;r) and F1(z;r) for z→0 andz→1`. They are ob-
tained using the asymptotic expansions of the functi
Gk(z), H1(z), and M pq(z;r) reported in Appendixes A 1
and A 2. Forz→1`, we obtain

F0~z;r!52
1

4p
log

z2

32
1

e2z

A2pz
@11O~z21!#

1
e2rz

A2prz
@11O~z21!#, ~B57!

F1~z;r!5
z2

32p S log
z2

32
11D1

z3

24

e2z

A2pz
@11O~z21!#

1
rz3

24

e2rz

A2prz
@11O~z21!#. ~B58!

Let us now consider the perturbative limit. IfrÞ`, we ob-
tain for z!1, z!1/r

F0~z;r!5
1

rz2 1F00~r!1z2F01~r!1O~z4!, ~B59!

F1~z;r!5F10~r!1z2F11~r!1O~z4!, ~B60!

where

F00~r!5
1

2p S gE2 log p1
1

2
log 2D2

1

p
log h~ ir!,

~B61!
10500
f

s
F01~r!52

1

16p3 z~3!2
r3

720
2

1

8p3 N3,1~r!

2
r

4p2 @N2,1~r!1N2,2~r!#, ~B62!

F10~r!5
p

72
2

1

12r
2

p

3
N21,1~r!

1
2p2r

3
@N22,1~r!1N22,2~r!#, ~B63!

F11~r!52
1

16p S gE2 log p1
1

2
log 22

1

3D2
r

288

1
1

8p
log h~ ir!1

r

12
@N0,1~r!1N0,2~r!#

2
pr2

6
@N21,1~r!13N21,2~r!12N21,3~r!#

52
1

8
F00~r!2

r

4p
F10~r!. ~B64!

In the last formula we have used Eqs.~A38! and ~A39! that
also show thatF10(r) can be expressed in terms of deriv
tives of logh(ir). For r51 we obtain the following numeri-
cal values:

F00~1!'0.04876563317014130, ~B65!

F01~1!'20.00386694659073721, ~B66!

F10~1!'20.02924119479519021, ~B67!

F11~1!'20.00376876379948390. ~B68!
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For the strip (r5`) the previous expansions are not vali
In this case we write

F0~z;`!5
1

2z
1F̄001z2F̄011O~z4!, ~B69!

F1~z;`!5
p

72
2

z

16
1z2F̄111O~z4!, ~B70!

with

F̄005
1

2p S gE2 log p1
1

2
log 2D , ~B71!

F̄0152
1

16p3 z~3!, ~B72!

F̄1152
1

16p S gE2 log p1
1

2
log 22

1

3D .

~B73!

Finally let us comment on the duality property of the fun
tions F0(z;r) and F1(z;r). The sum I L,T(m2) is clearly
symmetric inL,T and thus it is a functionF(mL,T/L,L)
such that

F~mL,T/L,L !5F~mT,L/T,T!, ~B74!

i.e., F(z,r,L)5F(rz,1/r,rL). This implies for the func-
tions F0(z;r) andF1(z;r) the following relations:

F0~z;r!5
1

2p
log r1F0~rz;1/r!, ~B75!

F1~z;r!52
z2

16p
log r1

1

r2 F1~rz;1/r!.

~B76!

These equations provide a nontrivial check for the corre
ness of our asymptotic expansions and moreover imply
following relations on the expansion coefficients forz→0:

F00~r!5
1

2p
log r1F00~1/r!, ~B77!

F01~r!5r2F01~1/r!, ~B78!

F10~r!5
1

r2 F10~1/r!, ~B79!

F11~r!52
1

16p
log r1F11~1/r!. ~B80!

The duality relation forF00(r), F10(r), andF11(r) can be
obtained directly from the inversion property of Dedekind
h function @68#

h~21/t!252 i th~t!2, ~B81!
10500
t-
e

where, in our case, we would identifyt5 ir. To prove di-
rectly Eq. ~B78! one should use the relation obtained co
paring Eq.~A41! with Eq. ~A42! for p50.

b. Asymptotic expansion of((w(p)1m2)21

We want to compute here the asymptotic expansion,
cluding terms of orderO(L22), of the sum

IL,T~m2!5
1

LT (
nx ,ny

1

w~p!1m2 ~B82!

in the FSS limit. Generic sums of the type~B38! can be
easily computed with the same technique. We assume
for 2p<pi<p, w(p) vanishes only forp50 and that in a
neighborhood of the originw(p) has an expansion of th
form ~2.5!. Then we rewrite

IL,T~m2!5
1

LT (
p

F 1

w~p!1m22
1

p̂21m2

1
a1(mp̂m

4 1a2~ p̂2!2

~ p̂21m2!2 G1
1

LT (
p

1

p̂21m2

2
1

LT (
p

a1(mp̂m
4 1a2~ p̂2!2

~ p̂21m2!2 . ~B83!

Since we want to computeIL,T(m2) up to O(L22) we can
substitute the first sum with the corresponding integral@cf.
Eq. ~B7!#. Then, expanding the integrand in powers ofm2,
we obtain

IL,T~m2!5L01a1S 12
1

p D1a22
z2

L2 L11I L,T~m2!

2
1

LT (
p

(ma1p̂m
4 1a2~ p̂2!2

~ p̂21m2!2 , ~B84!

where we have introduced

L05E d2p

~2p!2 S 1

w~p!
2

1

p̂2D , ~B85!

L15E d2p

~2p!2 F 1

w~p!22
1

~ p̂2!2

1
2

~ p̂2!3 S a1(
m

p̂m
4 1a2~ p̂2!2D G , ~B86!

and we have used the result~see Appendix C of Ref.@39#!

E d2p

~2p!2

(mp̂m
4

~ p̂2!2 512
1

p
. ~B87!

We obtain eventually, using Eqs.~B56! and ~B53!,
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IL,T~m2!5
1

2p
logL1F0~z;r!2

z2

16pL2

3~1212a1216a2!logL1
1

L2 F1~z;r!,

~B88!

where the neglected terms are of orderO(L24logL) and

F0~z;r!5F0~z;r!1L0 , ~B89!

F1~z;r!5~1212a1!F1~z;r!1z2S a1

8p
2L1D

12a2z2F0~z;r!1
a2

2
z3

]F0

]z
~z;r!;

~B90!

F0(z;r) and F1(z;r) are defined in Eqs.~B54! and ~B55!.
Explicit values ofL0 andL1 for the Hamiltonians that were
introduced in the text are reported in Table IV.

Using the expansions ofF0(z;r) andF1(z;r) ~see previ-
ous section! we can easily obtain the asymptotic expansio
of F1(z;r). For largez we obtain

F1~z;r!52~12a1116a221!
z2

32p
log

z2

32
2

z2

32p

3~8a118a221!2z2L12
1

24

3~12a1112a221!z3S e2z

A2pz
1

re2rz

A2prz
D

1O~z3/2e2z,z3/2e2rz!. ~B91!

For finite r andz!1, z!1/r, neglecting terms of orderz4,
we have

F1~z;r!5~1212a1!F10~r!1
a2

r
1z2

3F ~1212a1!F11~r!12a2F00~r!1
a1

8p
2L1G ,

~B92!

while on the strip, forz→0, we obtain

TABLE IV. Values of L0 andL1 for various Hamiltonians.

L0 L1

Hdiag 0.0322658881033520480 0.003719784026684
HSym 20.0471699346329274140 0.008113399242929
HSym2 20.0564354728047190420 0.003315727987240
10500
s

F1~z;`!5
p

72
~1212a1!1

z

16
~12a1112a221!1z2

3F ~1212a1!F̄1112a2F̄001
a1

8p
2L1G1O~z4!.

~B93!

c. Sum for the tensor correlation length

In this section we describe the computation, in the F
limit, of

I 2,LT~m2!5
1

LT (
nx ,ny

1

@~px2p0̂!21 p̂y
21m2#@ p̂x

21 p̂y
21m2#

,

~B94!

where p052p/L and, as before,px52pnx /L and py
52pny /T.

First of all we rewrite Eq.~B94! as

I 2,LT~m2!5
2

LT (
nx ,ny

1

~px2p0̂!22 p̂x
2

1

p̂x
21 p̂y

21m2 ;

~B95!

then we sum overpy to get

2

L (
n50

L21
1

~p2p0̂!22 p̂2

1

Ap̂21m2A41 p̂21m2

3H 11
2

exp@2T arcsh~ 1
2 Ap̂21m2!#21J ,

~B96!

where we have simplified the notation usingp instead ofpx .
The contribution due to the second term in curly brack

is obtained by simply expanding in powers of 1/L2 @see the
discussion of Eq.~B40! for cÞ0]. The remaining term re-
quires more care. AssumingL even, we rewrite

2

L (
n50

L21
1

~p2p0̂!22 p̂2

1

Ap̂21m2A41 p̂21m2

5
2

Lp̂0
2

1

A41m2 S 1

m
2

1

A81m2D
1

4

L (
n51

L/221
12 p̂2/2

~ p̂0
224 sin2p!

1

Ap̂21m2A41 p̂21m2
.

~B97!

Consider now the last sum and notice that, forL→`, m
→0, beside the singularity atp50, there is an additiona
singularity atp5p. Using the fact that

(
n51

L/221
1

p̂0
224 sin2p

52
1

p̂0
2 , ~B98!
7-28



fo

ve

e-

o

n

ons

en-

CORRECTIONS TO FINITE-SIZE SCALING IN THE . . . PHYSICAL REVIEW D 58 105007
and keeping only those contributions that do not vanish
L→` we rewrite Eq.~B97! as

2

zp̂0
2

1

A41m2
1

1

2&

1

Lp̂0
2 1

4

L (
n51

L/221
1

p̂0
224 sin2p

3S 1

4&
1

12 p̂2/2

Ap̂21m2A41 p̂21m2D . ~B99!

In this way we have removed the singularity forp5p. The
remaining part of the calculation follows the lines we ha
presented for Eq.~B40! whenc50. We subtract to the sum
the first two terms of the asymptotic expansion in 1/L2 and
then replace the sum with the integral. Explicitly, if we d
fine

R~p,p0 ,m2!5
1

2~p0
224p2!F 1

Ap21m2

3S 11
p0

2

12
2

p2

4
2

m2

6
1

1

24

m4

p21m2D 1
1

2&
G ,

~B100!

we obtain

2

zp̂0
2

1

A41m2
1

1

2&

1

Lp̂0
2 14E

0

p dp

2p

3F2
1

4 sin2p S 1

4&
1

12 p̂2/2

p̂A41 p̂2D 2R~p,0,0!G
1

4

L (
n51

L/221

R~p,p0 ,m2!1O~1/L !. ~B101!

The last sum can be dealt with following the strategy
Appendix B 1 c. We finally obtain

2

L (
n50

L21
1

~p2p0̂!22 p̂2

1

Ap̂21m2A41 p̂21m2

5
1

z

L2

4p2 S 11
p2

3L2D1
1

16p S logL1gE2 log p

1
1

2
log 22

2

3D1
L2

2p2 (
n51

`
1

~124n2!A4p2n21z2

1
1

2p2 (
n51

` H 1

~124n2!A4p2n21z2 Fp2

3
2p2n22

z2

6

1
1

24

z4

4p2n21z2G2
p

8nJ . ~B102!

Collecting everything together and introducing the functio
Hk(a) andMpq(z;r) defined in Appendixes A 1 and A 2
we have
10500
r

f

s

I 2,LT~m2!5L2F3~z;r!1
1

16p
logL1F4~z;r!1O~ logL/L2!,

~B103!

where

F3~z;r!5
1

4p2z
1

1

4p3 FH0S z

2p D1M1,1~z;r!G
~B104!

and

F4~z;r!5
1

12z
1

1

16p S gE2 log p1
1

2
log 22

2

3D2
z

32p2

1
1

48p3 ~p222z2!H0S z

2p D1
1

16p
G0S z

2p D
1

1

24p S z

2p D 4

H1S z

2p D1
1

24p
@M1,1~z;r!

1M1,1~z;r!#2
1

24p F2M21,1~z;r!

12S z

2p D 2

M1,1~z;r!2S z

2p D 4

M3,1~z;r!G
1

r

12 F2M22,1~z;r!22S z

2p D 2

M0,1~z;r!

1S z

2p D 4

M2,1~z;r!12M22,2~z;r!

22S z

2p D 2

M0,2~z;r!1S z

2p D 4

M2,2~z;r!G .
~B105!

To conclude this section we give the asymptotic expansi
of F3(z;r) andF4(z;r) for large and small values ofz. The
necessary formulas for the derivations are reported in App
dixes A 1 and A 2. For largez we have

F3~z;r!5
1

4pz2 F12
2p2

3z2 1
8p4

15z42
16p6

35z6 1O~z28!G ,
~B106!

F4~z;r!52
1

32p S log
z2

32
12D1

p

48z22
p3

360z42
p5

126z6

1O~z28!. ~B107!

For finite r andz!1, z!1/r we have

F3~z;r!5
1

2p2rz2 1F30~r!1O~z2!, ~B108!
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F4~z;r!5
1

6rz2 1F40~r!1O~z2!,

~B109!

where

F30~r!5
1

4p3 ~122 log 2!1
r

24p2 1
1

2p3 N1,1~r!,

~B110!

F40~r!5
1

16p
~gE2 log p!2

1

96p
~21 log 2!1

r

72

2
1

24p2r
1

1

12p
@N1,1~r!1N1,1~r!22N21,1~r!#

1
r

3
@N22,1~r!1N22,2~r!#. ~B111!

On the strip, for smallz, we have

F3~z;`!5
1

4p2z
1

1

4p3 ~122 log 2!1O~z2!,

~B112!

F4~z;`!5
1

12z
1

1

16p
~gE2 log p!2

1

96p
~2

1 log 2!2
z

32p2 1O~z2!. ~B113!

APPENDIX C: ASYMPTOTIC EXPANSION OF LATTICE
INTEGRALS

In this section we want to discuss the asymptotic exp
sion for m0

2→0 of the integrals

I `~m0
2!5E d2p

~2p!2

1

p̂21m0
2 , ~C1!

I`~m0
2!5E d2p

~2p!2

1

w~p!1m0
2 . ~C2!
t
S

a

a
,

10500
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More general integrals can be discussed following the sa
method and using the results of Appendix C of Ref.@39#.
The expansion ofI `(m0

2) is easily obtained from its expres
sion in terms of elliptic integrals@73#

I `~m0
2!5

2

p

1

41m0
2 KS 4

41m0
2D 52

1

4p
log

m0
2

32

1
m0

2

32p S log
m0

2

32
11D 1O~m0

4log m0
2!. ~C3!

To obtain the expansion ofI`(m0
2) let us proceed as in Ap

pendix B 2 b. We rewrite

I`~m0
2!5E dp

~2p!2 F 1

w~p!1m22
1

p̂21m2

1
a1(mp̂m

4 1a2~ p̂2!2

~ p̂21m2!2 G1E dp

~2p!2

1

p̂21m2

2E dp

~2p!2

a1(mp̂m
4 1a2~ p̂2!2

~ p̂21m2!2 . ~C4!

If we want to compute the expansion neglecting terms
orderO(m0

4log m0
2) we can expand the first integral in pow

ers ofm0
2. Then, using~see Appendix C of Ref.@39#!

E dp

~2p!2

(mp̂m
4

~ p̂21m0
2!2 512

1

p
1

m0
2

8p S 3 log
m0

2

32
12D

1O~m0
4log m0

2!, ~C5!

we obtain

I`~m0
2!52

1

4p
log

m0
2

32
1L01

m0
2

32p
~1212a1

216a2!log
m0

2

32
1

m0
2

32p
~128a128a2!2m0

2L1 ,

~C6!

whereL0 andL1 are defined in Eqs.~B85! and ~B86!.
and
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@7# M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys.B359, 221
~1991!.

@8# J.-K. Kim, Phys. Rev. Lett.70, 1735 ~1993!; Nucl. Phys. B
~Proc. Suppl.! 34, 702 ~1994!; Phys. Rev. D50, 4663~1994!;
Europhys. Lett.28, 211~1994!; Phys. Lett. B345, 469~1995!.

@9# S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto,
A. D. Sokal, Phys. Rev. Lett.74, 2969~1995!; Nucl. Phys. B
~Proc. Suppl.! 42, 749 ~1995!.

@10# S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sok
Phys. Rev. Lett.75, 1891~1995!; Nucl. Phys. B~Proc. Suppl.!
42, 752 ~1995!.

@11# T. Mendes, A. Pelissetto, and A. D. Sokal, Nucl. Phys.B477,
203 ~1996!.

@12# G. Mana, A. Pelissetto, and A. D. Sokal, Phys. Rev. D54,
R1252~1996!.
7-30



s-

.

tt

P

s.

et

ka

A

or

J

pa,

al,

al,

en-

B

otts

B

ro-

ys.

s

l

CORRECTIONS TO FINITE-SIZE SCALING IN THE . . . PHYSICAL REVIEW D 58 105007
@13# G. Mana, A. Pelissetto, and A. D. Sokal, Phys. Rev. D55,
3674 ~1997!.

@14# J. Salas and A. D. Sokal, J. Stat. Phys.88, 567 ~1997!.
@15# K. Symanzik, inMathematical Problems in Theoretical Phy

ics, edited by R. Schraderet al. ~Springer, Berlin, 1982!; Nucl.
Phys.B226, 187 ~1983!; B226, 205 ~1983!.
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