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We study the nonequilibrium dynamics of domain walls in real timegrand sine-Gordon models in 1
+1 dimensions in the dilute regime. The equation of motion for the collective coordinate is obtained by
integrating out the meson excitations around the domain wall to one-loop order. The real-time nonequilibrium
relaxation is studied analytically and numerically to this order. The constant friction coefficient vanishes but
there is dynamical friction and relaxation caused by off-shell non-Markovian effects. The validity of a Mar-
kovian description is studied in detail. The proper Langevin equation is obtained to this order; the noise is
Gaussian and additive but colored. We analyze the classical and hard thermal loop contributions to the
self-energy and noise kernels and show that at temperatures larger than the meson mass the hard contributions
are negligible and the finite temperature contribution to the dynamics is governed by the classical soft modes
of the meson bath. The long time relaxational dynamics is completely dominated by classical Landau damping
resulting in that the corresponding time scales are not set by the temperature but by the meson mass. The noise
correlation function and the dissipative kernel obey a generalized form of the fluctuation-dissipation relation.
[S0556-282(198)08718-9

PACS numbdps): 11.27+d, 71.45—-d

I. INTRODUCTION AND MOTIVATION which the interaction between kinks can be ignored because
the mean separation between kinks is much larger than the
Kinks and domain walls play a fundamental role in thetypical width of a kink(of the order of the zero temperature
equilibrium and non-equilibrium processes after phase traneorrelation length or inverse meson mass
sitions to broken symmetry states in theories with scalar or- The focus of this article is to study the real time dynamics
der parameters. In scalar field theories that undergo a synof relaxation of domain wallgkinks) in 1+ 1 dimensions via
metry breaking phase transition the process of phasthe interaction between the domain wall and the meson fluc-
ordering proceeds by the formation of domains of the ortuations in model field theories. In particular we study in
dered phase separated by domain walls. These domain walietail scalarg* and sine-Gordon kinks in the dilute regime
are topological defects that separate regions in which thén which T<M. This problem is important in particle phys-
order parameter is locally ordered and therefore locally thécs, condensed matter and cosmology. In particle physics dis-
system is in a broken symmetry ground state in each domairsipative processes on the dynamics of sphaleron configura-
Interest in the dynamics of these topological excitations igions are important to establish corrections to the proper
interdisciplinary. In condensed matter systems solit@rs transition rates. In quasi-one-dimensional condensed matter
kinks) are collective excitations in quasi-one-dimensionalsystems kinks and domain walls are responsible for impor-
charge density wave systems and conducting polymergant transport phenomena and therefore a study of the dissi-
[1,2,3. In particle physics domain walls in the form of pative aspects will provide a deeper understanding of these
sphaleron$4] have been argued to play an important role inphenomena. In cosmology the evolution of domain walls or
baryogenesi$5], and in cosmology domain walls and other dynamic of interfaces determines the scales in which order-
topological defects could be responsible for structure formaing of horizon sized regions occur.
tion [6,7]. Although a study in ¥ 1 dimension may not be a proper
The classical statistical mechanics of a gas of kinks in oneealization of the (3 1)-dimensional situations in particle
spatial dimension has been previously studigdand it was  physics and cosmology, it will at least highlight important
established that the kink density at a temperaflins ap-  aspects of the dynamics that must be generalized to the
proximately given byng~e ™M'T with M being the kink proper situations.
mass. Therefore a study of the dynamics of single domain In condensed matter there is a considerable effort in un-
walls or kinks will be valid in the dilute regim#&1>T in  derstanding dissipative aspects of solitons starting from a
microscopic descriptiof9—13] in terms of Mori’s formula-
tion of linear response, and more recently in terms of a

*Email address: smast15@vms.cis.pitt.edu system-bath formulatiofl3].
"Email: boyan@vms.cis.pitt.edu Recently Khlebnikov{14] has studied the velocity of a
*Email: takakura@fisica.ufjf.br bubble wall in the case of a non-degenerate scalar potentials.

0556-2821/98/58.0)/10500324)/$15.00 58 105003-1 ©1998 The American Physical Society



S. M. ALAMOUDI, D. BOYANOVSKY, AND F. I. TAKAKURA PHYSICAL REVIEW D 58 105003

The bubble-wall velocity was related to the self-energy ofapproximation and the Langevin equation. Section IV ana-
the scalar field through the fluctuation-dissipation theoremlyzes in detail thep* and sine-Gordon models for which a
Assuming a trilinear coupling to another massive field a locaMarkovian approximation is shown to fail at large tempera-
friction coefficient was extracted. Alternatively, Arndld5]  tures. In Sec. V we study the high temperature but low den-
provided an equivalent result to the one obtained in Refl  sity limit (m<T<M) and establish that the long time dy-
at one loop using reflection and transmission coefficients fonamics is dominated by classical Landau damping processes.
particles scattering off the bubble wall. In Sec. VI we discuss higher order corrections to the results
Our approach is rather different. It is tailored to obtain aobtained within the one-loop approximation and we com-
real time description of the dissipative processes and a coment on generalization to higher dimensions. Section VII
sistent derivation of the Langevin equation in a weak coupresents our conclusions. Several appendices are included for
pling perturbative expansion. The main ingredient is the coltechnical details, in particular Appendix C establishes the
lective coordinate quantization of the kink that allows togeneralized fluctuation-dissipation relation between the
obtain the non-equilibrium generating functional for the col-damping kernel and the noise-noise correlation function.
lective coordinate by integrating out the meson degrees of
freedom, i.e. the fluctuations around the kink. The resulting ;. COLLECTIVE COORDINATE QUANTIZATION
Langevin equation allows an unambiguous identification of
the dissipative kernel and the noise correlation function that To begin our study of the dynamics of kinks we focus on
obey a generalized fluctuation dissipation relation. The dis{1+1)-dimensional quantum field theories described by
sipative processes arise from the interaction between the cdfiamiltonians of the form
lective coordinate and the orthogonal fluctuations around the 2 14
kink, rather than from the coupling to other fields. H :J' dx Tr_+ - ( ¢
We provide analytic and numerical study of the solutions 2 2
of the equations of motion of the kink collective coordinate ] ] ]
in lowest order(one loop and establish that a Markovian N Which the potentiall (¢) admits degenerate, broken sym-
approximation fails to describe the dynamics at large temMetry minima. _ o _
peratures. Furthermore we analyze in detail the high tem- A s_tatlc kink is a solution of the time independent field
perature low density regime in whish<T<M with mbe- ~ €quation
ing the meson mass focusing on the classical and hard Pp,  aU(by)
thermal loop contribution to the dissipative kernel and the — 25+ -0
noise-noise correlation function. We argue that in lowest or- dx dd

der in perturbation theory, the long time dynamics is com- . - _
pletely dominated by classical Landau damping. with boundary conditions such thaly(x— *=)=¢.... and

The main results of this article are the following. U(d’i*’):p [1.6_26' Translational inva}riance impli_es that
such solution is of the formgy(x—xg) with xy an arbitrary

A field-theoretical derivation of the real-time non- translation chosen such that(0)=0, thereforex, is iden-
equilibrium equations of motion of the collective coor- tified with the position of the kink.

dinate associated with translations of the domain wall Lorentz invariance results in that a kink moving with con-
and its solution in relevant cases for the sine-Gordorstant velocity is given bysd (x—xo—vt)/y1—0v?] [16-19.
and ¢* potentials. The mass of the kink, i.e., the energy of a static kink is given

2

dx

+U(¢)} ()

@

A detailed microscopic derivation of the non- by

equilibrium influence functional, the quantum Langevin

equation and the generalized fluctuation dissipation MEE[¢S]ZJ dx(
theorem to one-loop order.

des|?
dx) : ()
A detailed analytic and numerical study of the relax- Quantization around the static kink solution implies writ-
ation in the one-loop approximation. The Markovian ing

approximation is compared to the “exact” dynamics in - -

a wide range of temperature and the high temperature d(X,1) = Ps(X—=Xo) + h(X—Xp;t). (4)
and classical limits analyzed in detail. The long time

dynamics to this order is analyzed both analytically and/Vhere the fluctuation operator is expanded in terms of a
numerically. complete set of harmonic modes around the kink

To our knowledge these aspects of domain wall dynamics - _ -

had not been studied previously. ¢’(X_X0at):; An(t)Un(X—Xo) )
Section Il summarizes briefly the main concepts in collec-

tive coordinate quantization that are relevant for our study\here the mode functiorid,(x—x,) obey

In Sec. Il we introduce the main tools of non-equilibrium

field theory to study the kink in a bath of mesons in equilib- d? dZu 5
rium and describe in general the relevant interactions, the _WJFW Un(X—X0) = @Un(X=Xg)  (6)
equation of motion of the collective coordinate a Markovian bs
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with the completeness relation given by A. Kinetic and potential energies
In the Schrdinger representation the kinetic energy can
> %(X—Xo)ub(x'—Xon AR (X—Xo)U(X —Xo) be expressed as a functional derivative as
b
1 6 6
=85(x—x") 7) T=-3 dx5_¢5_¢’ 11

and the subscripb stands for summation over bound states

andk for scattering states. For bound states, the eigenvectoyghere the functional derivative is written in the new coordi-
are chosen to be real and for scattering states, we label thefi@tes using the chain-rule

asU(x—Xp) and are chosen such thidf =i/, in which

case the coordinate operators obey the Hermiticity condition S Xy 6 5Q, o

ax (1) =0q-k(t). 5 =5 st 5 50" (12)
These eigenvectors are normalized as ¢ $X) oo 7o 6¢(X) SQm

~ R Taking the functional variation of the field, Eq.(10), we
f dXI/{; (X_Xo)uq(x_xo) = 5p,q . (8) obtain
As a consequence of translational invariance, there is a SH(X) . Sé(X)
mode with zero eigenvalue given p$6—19 Op(X)= TR ot rgo 50 6Qm
m
U 1 [dgs 9 . .
o(x XO)_\/_M ax | ) _ a¢5()i_X0)+ méum()E_XO) %
ﬂXO m#0 &XO
Depending on the particular form of the potenti( ¢)
there may be other bound stat@s is the case with the?* + E U (X—Xo) 6Qp. (13
n#0

potentia). There is a continuum of scattering states with fre-

quencieswg=k*+ wj; w§=0d?U(¢)/d?¢|, . These scatter-

ing states correspond asymptotically to phase shifted plane Projecting both sides of the above equation W@(x
waves in the cases under consideration because the relevank,) and therug(x—io) with p#0, using Eq.(9) and the
potentials are reflectionle§$6,17]. The continuum states are orthonormalization condition Ed8), we obtain

identified with meson states, whereas bound stébdiser

than the zero modeare identified with excited states of the -

kink [18] 0Xo 1 1 R
in . _ . o - Uy (X—Xo)
The fluctuation along the functional direction correspond-  d¢(X) VM [1+(INVM)2 12 0QmSil
ing to the zero frequency mode represents an infinitesimal (14

translation of the kink that costs no energy. Since this mode
has no restoring force, any arbitrarily large amplitude fluc-
tuation along this direction is energetically allowed and  9Qp U (x5 1 2h£0GpnQn
therefore must be treated non-perturbatively. The variable §¢(x) p (X~ o) WM [1+ (M) 2 120QmSm]
Xg, i-€. the center of mass of the kink is elevated to the status
of a quantum mechanical variable, and the fluctuations are X UG (X—Xo), (15
orthogonal to the zero mode. This treatment is the basis of
the collective coordinate methdd6,19,20—28 . )

In collective coordinates quantization instead of the ex-Where the matrix elementS,, are defined as
pansion(4) with (5) we expandp(x,t) as

o Un(X—X
w Gpmzf de{;(x—xo) (a;xw (16)
SO0 = b x=%o(O)]+ 2, Qn(OUX—Fo(D)] (10
. .. . ~ 67Z/{m(x_)A(O)
This amounts to a change of basis in functional space, SmEGOm=f dXUp(X—Xq) o (17)

from the “Cartesian” coordinate§q,} to “curvilinear” co-
ordinates{Xy,Qn-o} [16,19,22,27.

The next step is to express the Hamiltonian in terms of the At this stage it is straightforward to follow the procedure
new variables Xy(t) and Qu(t). For this we follow detailed in[19,22,27 to find the final form of the kinetic
[16,19,22,27 and which we summarize below for the casesterm in the Hamiltonian in the Schdinger representation of
under consideration. the coordinatey,Qm.o:
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11 6 ¢ 1 9
TJ’___

T:_— - = =
2 [D (SXO 5)(0 \/6 5X0 p,m#0

1 1)
+ J—
\/5 p,q,;,n;to

9
5Qq|”

GpmQm &

Vb 9Qp
8_paVD

+iGmem
Qp D

Gmem

D

5Q,

+ (19

gn<n
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freedom with frequency w?(k)=k?+ wS; wé

=d?U(¢)/d?¢| 4 . Since the Hamiltonian does not depend
on X, its canonical momenturR is conserved, it is identified
with the total momentum of the kink-meson system
[16,19,22. The kink velocity, however, is not proportional to
P and depends on the momentum of the meson field.
Since our goal is to study the dynamics of the kink by
obtaining the equation of motion for the expectation value of
the kink collective coordinate, we introduce an external
source term linearly coupled tq,. This source term has a

where D is the Jacobian associated with the change of codual purpose, one is to allow to obtain the correlation func-

ordinateq 16,19,22,27 and given by

JB= W

(19

1
1+ o n;o Qmsml.

tion of the collective coordinate as functional derivatives
with respect to this source, the other is to use this source as
a Lagrange multiplier to turn the evolution equation into an
initial value problem. This second use will become clear
later when we study the solutions to the equations of motion.

The total potential energy, including the elastic term, Therefore we add the terii{t)X, to the Hamiltonian.

V[ #] [see Eq(1)], is given by
dp

Ix

2

+U(¢)

1
V[¢]sf dx 5 . (20)

Using the expansion given by EL.0) we find that it can
be written in terms of the new coordinates as

V[¢]=M+ % 2, QrQ-mopt O(Q%)+-- . (2D

By translational invariance the potential energy does not de-
pend on the collective coordinate. Identifying the canonical

momenta conjugate t,Q, as

6

Toe=P=—i ——m=—

5% for k#0, (22

s
I —_—

0Q
and using the commutation relation ¢D and 14/D with
Q,, 7T, andP given by

2 2

[mn,VD]=—iS, and 5

1
T, ——
n \/5
we find the final form of the Hamiltonian:
P2 P
—_ + R
D /D pmo
GpmQm
JD
1

4+ —
\/B p,q,;,nqﬁo

G
4 mem

/D

Gmem

T T,

H_M—i-l
T2

+7T_p

2
+ ,;o @0pQpQ-p

8_pqVD

T—p

FOQ¥) 4+,

Gq nQn (24

T—q

Ill. A DOMAIN WALL IN THE MESON HEAT BATH

Our goal is to study the dynamics of a domain wall in
interaction with the mesons. This is achieved by obtaining
the real-time equations of motion of the collective coordinate
Xo by treating the mesons as a “bath” and obtaining an
influence functional[29-34 by “tracing out” the meson
degrees of freedom and the excited states of the kink. We
assume that the total density matrix for the kink-meson sys-
tem decouples at the initial timg, i.e.
p(t)=ps(t) @ pgr(t)), (25)
where p¢(t;) is the density matrix of the system which is
taken to be that of a free particle associated with the collec-
tive coordinate of the kink, i.ens(t;) = |Xo){(Xo| andpg(t;) is
the density matrix of the meson bath and describes mesons in
thermal equilibrium at a temperatufe

Since the kinks can never be separated from the meson
fluctuations, this factorization must be understood to hold in
the limit in which the initial timet;— — with an adiabatic
switching of the kink-meson interaction.

The time evolution is completely contained in the time
dependent density matrix

p()=U(t,t)p(tHU (L))

with U(t,t;) the time evolution operator. Real time non-
equilibrium expectation values and correlation functions can
be obtained via functional derivatives with respect to sources
of the generating functiondB5-42:

(26)

Z[j+vj7]=Tr U(ocv_oo;j+)

XpiU~ oo, =i j )ITrp(t),  (27)
where j= are sources coupled to the meson field and the
collective coordinate. This generating functional is readily
obtained using the Schwinger-Keldysh method which in-
volves a path integral in a complex contour in tif3&—43:

whereQ,, are now operators. The coordina@g associated a branch corresponding to the time evolution forward, a
with the scattering states describe the meson degrees bfickward branch corresponding to the inverse time evolution
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operator and a branch along the imaginary time axis ftpm + + + -

to t;—iB to represent the initial thermal density matrix. We

will obtain the equation of motion for the kink collective

coordinate in an expansion of the “adiabatic” parameter

wo/M which is also the weak coupling limit of the scalar

field theories under consideratiph6]. As it will be shown

explicitly below in the particular cases studied, the matrix _ _ _ +

elements given by Eq$16),(17) will provide the necessary

powers of the meson masg,. The lowest order iy /M is -

formally obtained by keeping only the M/ terms in the

Hamiltonian and neglecting the non-line@(Q%) terms. Un-

der these approximations,#1/M and the Hamiltonian FIG. 1. The nonequilibrium one-loop contributions to the self-

has the following form: energy. The upper two contributions correspond to emission-
annihilation of two mesons. The lower two correspond to scattering
of in-medium mesons and are responsible for Landau damping.

Wy w
N AL ]
wp Wy

To use the path integral formulation we need the Lagrang-
where we define ian, which to the order that we are workif@(wq/M)] and
properly accounting for normal ordering, is given by

1 2
H=M+-—|P+ > DpnmmQn
2M m,n#0

TR =

1
o= Dip- (33)

+§ 2 [Tt 07 QuQ-ml+j (D%,  (28)

m#0

Dmn=G-mn- (29)
L . . . £[§< aaT]:M;z—;”( F[a'a]
At this point it proves convenient to write the coordinates 0. 2 70 70 ’
and momenta of the mesons in terms of creation and annihi-
lation operators obeying the standard Bose commutation re- SN
lations. P ying —go wy(aja+1/2)—j(HXe—M. (34)

1 o The interaction of the collective coordinate and the me-
Qi=—=[a+a’,];m=—i \ﬁ [a,—a’,]. (300 sons is now clear. Only time derivatives of the collective
\/Z_wk 2 coordinate couple, a consequence of the Goldstone character
of the collective coordinate. There are two processes de-
The Hamiltonian can be expressed in termsiahda’ as  scribed by the interactiorfi) creation and destruction of two
mesons andii) scattering of mesons. Whereas the first type
L can contribute with the mesons in their ground state, the
_ 2 + RN second can only contribute if the meson states are occupied.
H= 2M (P+Fla',a]) +k§0 ok @@yt 112+ ()Xo + M, The two processes are depicted in Fig. 1. As it will become
(31) clear below, the second type of processes will lead to Landau
damping.
where Since we have preferred to work in terms of the creation
and annihilation operators it is convenient to write the path
integral for the non-equilibrium generating functional in the
coherent state representatiidr8,44].

Fla'a]= %o [Tor(apac—a’ jal,) Following the steps outlined ifiL3,44) we find the gen-
. erating functional of non-equilibrium Green’s functions in
+T§ﬁ<)(atpak—aikap)]- (32)  the coherent state representation to be given by

We have made use of the symmetries of the operators and
defined the symmetrig} and antisymmetrid {} matrices Z[j+,j—]:f Dx*J Dx‘f szf D2y~
that provide the interaction vertices as

[(,()k ’(l)p
(J)p Wy

xexp[if dt(L[x",y*,y* 1]

1
(S _ .
T =77 Dkps

_‘C[).(_l’y_i'y*_!j_])] (35)
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with the Lagrangian density defined on each branch given by % o )
J_ dt' (" ()¢ (t'>>H Mg(t’)
E[Xi,,yt,,y*t,jt]

t
M _ dye N +J dt'T (t’—t”)d(t”)]
=5(X)2+k§0[w§ dt ———o v "

R HEDEM) |= (39
Frdic Y e KR Ty =X
(36) where the retarded kernel is given by

and with proper boundary conditions on the fields that reflect —ilm(t=t)o(t=t")
the _fgct_orized initie_ll cond_ition with the mesons in thermal :(F[a”(t),a*(t)]F[a”(t’),a*(t’)]}
equilibrium. The signst in the above expressions corre- ., N . B
spond to the fields and sources on the forw@rd and back- —(F[a'"(t),a” () ]F[a' (t").a (t")]).
ward (—) branches. The contribution from the branch along (40)

the imaginary time is cancelled by the normalization factor.

This is the non-equilibrium generalization of the coherent Since we restrict ourselves to non-relativistic kinks we
state path integral{see details in Appendix YA Non-  considerq<1. The non-equilibrium Feynman diagrams that
equilibrium Green’s functions are now obtained as functionaktontribute to one loop ordésecond orderare shown in Fig.
derivatives with respect to the sourges There are 4 types 1.

of free meson propagatof85—-42: Alternatively this equation of motion may be obtained by
computing the influence functionf29-34 in second order
<al+(t)a;(t’)>:5k’pe_i‘”k(t/_t)[6(t’_t)+nk] perturbation theory. The resulting influence functional is

guadratic in the collective coordinate, performing the shift
x*(t)=q(t)+ £(t) the above equation of motion is ob-

+ T+, _r\\ — jw(t’' — ’
(ag (may" (1)) = b pe' M VLt —t") +ny] tained by requesting that the linear termstin vanish(there
are two linear terms, both give the same equation of mation
(™ (tal ™ (t))=0 The kernell’ ,(t—t') is found by using Eq(40) and Eq.

(38) and it is given by

(a(hag™(t'))=0
[(t—t) 42 {T<S>T_p (1+2n)

(al" (ma, (7))= 8 pe” I 14 ny]
Xsin (wp+ 0 ) (t—t")]=2TWTA n,

(ag(m)ah (7))= g et "Un, 37 X sin (wp— @) (t—1) 1}, (41)

wheren, is Bose Einstein distribution for mesons of quan-  Performing the integral overr’ in Eq. (39) by parts, we
tum numberk and( ) refer to averages in the initial density obtain the final form of the equation of motion
matrix. The++ (——) propagators correspond to the time- .
ordered(ar_ltl—tlme—orderelj whereas the- = are the Wight- Md(t)JrJ' dt'S (t—t)at’)=j(t), (42)
man functions. —w
An important point to notice is that
where the non-local kernel is given by
T =
(Fla'a])=0 (39) Tlt—t) (i)
o '

. . . . . . Ip(t—t)= (43
in the non-lnteractlng case, since it Is proportlonal to

2Dy =0 Using Eq.(41) we find the final expression for the kernel

A. The equation of motion for the collective coordinate m
The equation of motion of the expectation value of the v (_t')=_4 TOTS (1+2n M w.+ o
collective coordinate for the kinkxo)=q(t), can be derived m(t =) p,k2¢0{ pk T=p-il pll@pt o)
by expandingx™(t)=q(t)+£7(t) and requiring(&=(t))

=0 to all orders in perturbation theof@#6]. Imposing the X cog(wpt w(t—t")]

- o ; ; .
condition (£7(7'))=0, treating the interaction term up to _ZTE)'?‘()T(—A;))—knp(wp_wk)

second order in perturbation theory and using &§), we

obtain the following linearized equation of motion: X cog (wp— wy) (t—t")]}. (49
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We will see in the next sections that the two kerngls; I', vo+[3(s)/M]

have very special significance: where&gs is identified with v(g)=—m, (48)
the real-time retarded self-energy of the collective coordi- st i 5 (s)

nate,I',,, will provide the coefficient oflynamical frictionin Mmoo

the Markovian approximation.
It is more convenient to express the equation of motion ofand consistently with the linearized equation of motion and

the kink in terms of the velocity the non-relativistic dynamics(t); vo<<1. The quantity
. t ) 1
MV(t)+ﬁ dt'S(t=t)V(t) =] (1) (45) G(s)=1— (49
s+ ﬁ 2m(S)

with %, given by Eq.(44).

The _relat|on(44)_, ensures to thls or_der_ln the perturbative is the Laplace transform of the propagator of the velocity of
expansion, that with an adiabatic switching on convergenc

factor introduced to regularize the lower limit of the integral the collective coordinate. The real time evolution is found by

and to provide an initial factorization of the density matrix asthe inverse Laplace transform

t;— —oo the total integral of the retarded self-energy kernel 1

vanishes, i.e, v(t):2_77i f e (s)ds (50)
c

Jt S (t—t)dt’=0. (46)  whereC refers to the Bromwich contour running along the
- imaginary axis to the right of all the singularities ©fs) in
) ) ) ) ) the complexs plane. Therefore we need to understand the
This result is consistent with that found in Ref$4,15.  gnaiytic structure of5(s) in Eq. (48) to obtain the real time
Therefore forj =0, any constant velocity of the kink is & gynamics. The Laplace transform of the self-energy kernel is

solution of the equation of motiof@5). This result is physi-  conyeniently written as a dispersion relation in the form
cally clear: when =0, the total Hamiltonian commutes with

P, the canonical momentum conjugatextobecause of trans- S (s)=sl\(s) (51)
lational invariance, i.e. the total momentum of the system is

conserved. One can then go to a frame in whichO and ~ p(Po)

since the meson bath is in equilibrium this must result in that I'm(s)= f Z+p2 dPo (52)
the domain wall must have a constant velocity, therefore for 0

j=0 there must be a constant velocity solution to the equa-

tions of motion of the collective coordinate resulting in Eq. p(Po)= —4p%0 {THTS) _((1+2n))

(46).

_ _ X 5(p0_wp_wk)_TE)'?()T(ngfk(np_nk)
B. General properties of the solution

X 8(po— wp+ , 53
Since in the absence of an external driving term we have (Po—wpt @i} ®3

found that the domain wall moves with constant velocity, Wewheref‘m(s) is the Laplace transform of the ker@ given
can now use the external source term to cast the evolution ag,qoye.
an initial value problem. For this consider the situation in  This dispersive form for the Laplace transform of the ker-

which at timet=0 a force is applied, therefore changing the nel reveals thaf® (s) has a discontinuity in the complex
velocity of the domain wall. Assuming that fo«0 the kink s-plane along themimaginary axis. since

traveled with a constant velocity,, after switching on the

external force the domain wall will accelerate, butitwillalso  _ _ . m sgn(w)
transfer energy and excite the meson degrees of freedom and I'm(s=iw+07)= ?W [o(lo))—p(—o])].
this will lead to dissipative processes. Therefore writing (54)

V(t)=vo+uv(t) with j(t<0)=0; j(t>0)#0 and using the
property(46) the equation of motion for the velocity change  The imaginary part changes sign withas a result of the
becomes retarded nature of the kernel. Therefore the propagatas)
. has cuts along the imaginary axis in the complex s-plane.
Ml-}(t)Jrf dt'S (t—t)o(t')=j(t). (47) T_he two dlffe_rent contributions to the spectral (_jeneihi)%)
0 yield to two different cut structures. Far>0, the first term,
proportional tod(w — w,— wy) gives a two-meson cut begin-
The solution of this equation is found by Laplace trans-ning at 2w, corresponding to the process of spontaneous and
form, in terms ofv (s); 2.,(s); J(S), the Laplace transforms induced two-meson creation and annihilation. The second
of the velocity, self-energy kernel and current respectively contribution corresponding té(w— w,+ wy) gives a cut,
in terms of the Laplace variable We find that the solution which we identify as the Landau damping ¢4%,46], pinch-
is given by ing the origin and originates in the process of scattering of
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mesons present in the medium off the domain wall. As it will s-plane
be seen in detail for the examples in the next section the
discontinuity vanishes linearly as— 0 allowing an analytic
continuation into the second Riemann sheet and to isolate the
pole. This linear vanishing of the self energy is consistent

with the case studied HyL4,15. This process is present only L/ e
for finite temperature as there must be mesons present for
this process to exist. This contribution is identified as Landau /j —te

damping from the in medium mesons and will be seen to
provide the leading contribution to the long time relaxation.
The presence of a static friction coefficient will be re-
vealed by a pole if5(s) with a negative real part, since this
will translate into an exponential relaxation of the velocity.
In the absence of interactiord(s) has a simple pole at
s=0. Since we obtained the expression for the kernels in FIG. 2. Contour in the complex s-plane for inverse Laplace
perturbation theory the position of a pole must be found in gransform.
consistent perturbative expansion by writisg=(1/M)s; _
+--, we find -_J ;
Moy with  Mgg= 7.

(58)

1~
Sp=— 17 2m(5=0)

M 0. (39 Thus the wave function renormalization can also be under-

stood as a renormalization of the kink mass. The ratio of the
Therefore the coefficient of static friction vanishes. This is a8SyMptotic acceleration to the initial acceleration is given by
consequence of the vanishing of the integ##). Therefore ~ Zs- AS the kink moves, the interaction with the meson bath
up to this order in perturbation theory the position of the pole dress” it changing its effective mass, which will be seen in
in the s-variable remains at=0 resulting in that the static SPECific models to be larger than the bare mass.
friction coefficient vanishes. Furthermore we can now derive the following important

In summary, the analytic structure 6{s) in the complex ~ SUm rule. Consider the cage=0. Isolat_ing the contribution
s-plane corresponds to a polesat0 with residue from the pole and the cutiby replacing 5(po— wp+ i)
— 0(Po— wpt wi—€) and taking the limite—0 at the end

of the computatiohseparating the pole and continuum con-

Z.= 1 (56) tributions, and deforming the contour of integration for the
~ inverse Laplace transform as shown in Fig. 2 we find the
1+ " I'n(0) time evolution(for j =0) to be given by
and cuts along the imaginary axis beginningti w,; *ie v® _ . 2 Jm do [~ F'm(“’)z]cof‘*’t) ..
with e— 0 to clarify that the beginning of this cut pinches the  vg ™ Je w IN'rm(w) I'm(w)
pole at the origin but the continuum contribution to the spec- 1+ M + M
tral density (discontinuity vanishes at the position of the (59)

pole ats=0.
The residueZs has a very clear interpretation, it is the gyajuating at=0 we obtain the sum rule
“wave function renormalization” and its effect can be un-

derstood in two alternative manners. T
: . : 2 (=do [—T'im(w)]

Consider the case in which=0 in Eq. (48). Performing Zs+— — = = 5=1.
the inverse Laplace transform and invoking the Riemann- ™ Je o 14 e ®) N I'im(w)
Lebesgue lemma, the long time behavior will be completely M M
dominated by the pole &=0. Therefore, if the velocity of (60)

the kink has been changedtat0 by some external source,

this disturbance will relax in time to an asymptotic value Since the spectral densipfw) is positive(semjdefinite as it

given by will be explicitly shown below for specific models, the sum
rule above determines that

Uoc:ZSU(). (57)
Vo
Alternatively, consider the case of=0 but with an ex- Zs<1= v_0<1' (62)
ternal source term switched ontat 0 and constant in time
thereafter. Again the inverse Laplace transform at long time Although a sum rule similar to Eq60) is obtained in
will be dominated by the pole, and we find that the kink quantum field theory from the canonical commutation rela-
moves with constant acceleration given by tions, its validity for the collective coordinate associated with
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the domain wall is far from obvious since the kinematic and G -
canonical momentum conjugate to the collective coordinate Z[J'+,J'_=0]=J Dx*tDx el -t (Lolx 1= Lolx D)
are different. o
The continuum contribution in Eq59) is dominated at XX x7], (62
long times by the smallo region. Therefore foiT#0 the
asymptotic long time relaxation of the velocity is completely
determined by the Landau damping cut which has support at
small o, whereas the two-meson cut vanishes below the [;O[)'(t]zl M(x*)2—jx* (63)
threshold at 2. 2
A further understanding of the dynamics will necessarily o . )
require knowledge of the matrix elements to establish th@ndF[x",x" ] is the influence functiondP9—-34. To lowest
details of the kernels. This will be studied in particular mog-adiabatic order we find
els in the next section.

where

f[)'(*,k]zexp[ — % f dt dt’[xF(1)G* F(t,t")x* (")

C. Semiclassical Langevin equation X (DG (L)X (1)

The classical Langevin equation is an adequate phenom- - e
enological description of Brownian motion obtained by con- +XT(OGT (L)X (1)
sidering the dynamics of on@r few) degrees of freedom
that interact with a bath in equilibrium. +5<(t)G+(t,t')>'<+(t')]} (64)
It contains a term proportional to the velocity of the par-
ticle which incorporates friction and dissipation and a sto-
chastic term which reflects the random interaction of the he
bath with the particle. These two terms are related by the
classical fluctuation-dissipation relation which is derived in  G*+(t,t")=(F[a'*(t),a*(t)]F[a'(t’),a"(t")])
Appendix C[see Eq(CH)].
At the quantum mechanical level it is also possible to  g——(t,t")=(F[a'~(t),a~(t)]F[a’~(t’),a~(t)])
obtain a “reduced” or coarse grained description of the dy-
namics of one(or few) degrees of freedom in interaction G+‘(t,t’)=—(F[a”(t),a+(t)]F[a*‘(t’),a‘(t’)])
with a bath. The coarse graining procedure has a very precise
meaning: the full time dependent de_ns¢y matrix is t_raced G‘*(t,t’)=—<F[aT‘(t),a‘(t)]F[a“(t’),a*(t’)]).
over the bath degrees of freedom vyielding an effective or 6
“reduced” density matrix for the degrees of freedom whose
dynamics is studied. At this stage it is convenient to introduce the center of
Such a description of non-equilibrium dynamics of amass and relative coordinatesand R respectively, which
guantum mechanical particle coupled to a dissipative enviare defined as
ronment by a Langevin equation was presented by Caldeira
and Leggett{30] and by Schmid[31]. Their technique is
based on the influence-functional method of Feynman and x(t)=
Vernon[29] that naturally leads to a semiclassical Langevin
equation. These are recognized as the coordinates used in the Wigner
In this section we follow the procedure f80—34 gen-  transform of the density matri30—34 in terms of which
eralized to our case to derive the Langevin equation for kinkghe partition function becomes
in a heat bath to lowest order in the adiabdimeak cou-
pling. _ iS[x,R
The main step is to perform the path integrals over the Z[O]_f DXDRe™*R 67)
meson degrees of freedom, thus obtaining an effective func-
tional for the collective coordinate of the kink. Unlike the with the non-equilibrium effective action given by
most usually studied cases of a particle linearly coupled to an _
harmonic reservoir30—34 we have here a bilinear couplin . I , N
to the mesons. Tfirefoi the influence functional car?no?be S[X’R]:f dtR(t)[—Mx(t)— 2 f ALK, (t=t)X(")
obtained exactly, but it can be obtained in a consistent per-
turbative expansion. For this we treat the interaction term
Li[x*,y™,y**] in perturbation theory up to second order in
the vertex proportional ta™ (which is equivalent to lowest
order in the adiabatic coupling/M). Integrating over the in terms of the kernel&,(t—t') and K(t—t") which are
meson variables and usif&[a’,a])=0, we obtain given by (see Appendix B

in terms of the real-time meson correlation functidsse
ppendix (B)]

1
> [XT(O+x7(1)], RO=x"()—x"(1). (66)

—K(t—t’)R(t’)]} (69)
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K (t—t')=8i 0(t—t’)p%0 {TRTS (14N, +n) (wp+ @) cod (wp+ o) (t—t7)]

~ T T k(Np =N (wp— i) €0 (wp— wi) (t—t) ]}
= —2i3 p(t—t") (69

and
K(t—t')= —2%0 {TETE) (14 + N npn) (wp+ wp)? €08 (wp+ wi)(t—t')]

+2TH T 1+ ng) (0~ wi) *c0g (0p— wi) (t—t') T} (79

At this stage it proves convenient to introduce the identity

e~ (12 fdtdt’ RIOK(t-t")R(t) — C(t) f Dge—(1/2)fdtdt’ K™=t &t ) +ifdtaDR®) (71)

with C(t) being an inessential normalization factor, to cast the non-equilibrium effective action of the collective coordinate in
terms of a stochastic noise variable with a definite probability distribydn-34:

Z[O]szXDRDgP[g]exp[if dtR(t){—M'ﬁ((t)—% f dt’Kl(t—t’)k(t’)Jrg(t)”, (72)

where the probability distribution of the stochastic noise, If the kernels2,,, andK admit a Markovian limit then a

P[ £], is given by diffusion coefficient could be extracted by computing the
long time limit of the correlation function{{[x(t)
1 _ —x(0)]1%))/t where (()) stand for average over the noise
_ _ = 2 1oy 41 '
P[g]_J bé EXD{ 2 j dtdt' &Kt —t) )]' distribution function. However, when the kernels do not be-

(73 come Markovian, such a definition is not appropriate.
) o ) o ) This summarizes the general formulation of the descrip-
In this approximation we find that the noise is Gaussiantion of the dynamics of the collective coordinate both at the

additive and with correlation function given by level of the evolution equation for the expectation value as
b , well as for the effective Langevin dynamics in terms of sto-
(E(DEN))=K(t=t'). (74 chastic noise terms arising from the fluctuations in the meson

. . . o . h. W [ iti ifi Is.
The semiclassical Langevin equation is obtained by ex—bat e are now in condition to study specific models

tremizing the effective action in E¢72) with respect tdR(t)
[30-34 IV. TWO MODELS

. In the previous sections we established the general aspects
M')'((t)JrJ' dt’S (t—t)x(t")—j(t)=&t). (75  of the real-time dynamics of kinks in the presence of the
—o meson bath, obtaining the equation of motion as well as the
Langevin equation for the collective coordinate in lowest
Two features of the semiclassical Langevin equation deadiabatic order. Further progress in the understanding of the
serve comment. The first is that the kera(t—t’), as can  dynamics necessarily involves the details of particular mod-
be seen from Eq69), is non-Markovian. The second is that g|s which determine the matrix elemefté'S and therefore
the noise correlation functiol(t—t') is colored, i.e., itis the time dependence of the kernels involved. In this section

not a delta functions(t—t"). The relationship between the \ye study these details for the sine-Gordon afdmodels.
kernelsK(t—t’) andK(t—t’) established in Appendix C

constitutes a generalized quantum fluctuation dissipation re-

lation[30—34] [see Eq{(C6)]. Finally we recognize that tak- A. Sine-Gordon

ing the average of Eq75) with the noise probability distri- For the sine-Gordon model the potential is given by

butionP[ £] yields the equation of motion for the expectation 2

value of the collective coordinafé&q. (45)]. U(d)= — (1—cod VN 76
A classical description is expected to emerge when the (9) A ( S{\/—(ﬁ]) (76)

occupation distribution for the mesons can be approximated
by their classical counterparf80], i.e. whenn,~T/w) . and the static kink solution is given B%7,16,24
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which determine the symmetric and antisymmetric matrix

Pe(X)= \/_ arctafie™] (77)  elements
the kink mass and the adiabatic ratio are given by e 1 (ﬂ) 1/2_ (ﬁ) 1/2 (42— p?)
4|\ o m (q+p)
8m m A q P
M=—"— ¥~ & (78) Awq pSIm—{Z m
The normal modes of this theory are the solutions of the 1 12 12 (62— p?)
following equation[see Eq.(6)]: TAZ = (ﬁ) +(ﬂ) a-p
d2 2m? " alleg “p dwqw sm}{w (a*p)
_ 2_ = _ 2
dx2 +m cosﬁ(mx) In(X) = 0piha(x). (79 (82)

The solutions of the above differential equation are well
known [45,17,28. There is only one bound state with zero Since in this theory there are no bound states other than
eigenvalue, the zero mode, followed by a continuum Wlththe zero modeF[a',a] is given only by the first two terms

wave functions given by n Eqg. (B6). We recognize the “structure factor”
1 . 2
_ ; © dx 2m Q
U(X)= [—ik+m tanmx)]e®*  (80) :f 9X iox _
V2w S(Q) .27 cosH[mx I_{Qw} - (83
sinh —
with wﬁ=k2+m i.e. wg=m. The scattering states repre- 2m

sent the meson excitations around the Kithg].
The matrix element®, were already calculated by de This structure factor will play an important role in under-

Vega[26] [see Egs(29), (16)] and are given by standing the large energy behavior of the one-loop contribu-
i(p2— K2 tion. The important point to notice is that the structure factor
Dyp=ip 8(k+p)+ i(p°—k9) for p#k is dominated by moment®~m, falling off exponentially
T (P+K) for |Q[>m.

4wkpr|nP’{ 2 m Substituting Eq(82) in Egs.(41) and Eq.(44), we obtain

(81) the final form of the kernels in this case

2
Poit=t)= 55 [ aaisi@ [ ak S5 (1 20000 i o sit(og o t-)]
Q7
—(Ng—k— N (@o_k+ @) ?siN (wg-_— o) (t—t') ]} (84)
)3
Lit-t)= o [ dQISQIFR[ dk S (L ng g i aeod (-t 1)
—(Ng_k— N (wg_kt+ ®)Cog (wq_k— w) (t—t')]}. (85

The introduction ofS(Q) clarifies thatQ is the momentum transferred into the meson loop, and be@(@ris peaked at
Q=0 with a width of the order of the meson mass we conclude that the momentum transferred into the meson loop is of the
order of the meson mass. This observation will prove to be very important in the analysis of the high temperature limit in a
later section.

It proves useful to expreds, (t—t’) and (t—t’) in terms of dimensionless quantities to display at once the nature of the
adiabatic expansion. To achieve this let us make the following change of variables

Q' k k' = dT—T 86
Q_)E’ - r=mt an = (86)

ThenT (t—t") and3(t—t') can be written as
(t—t)=m’T(7—7") and Z(t—t")=m>3(7—17), (87)
where
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I'(r)= fjmdeHS(Q)|z{rl(Qak)Sir{(Wka‘I'Wk)(T)]+F2(Q1k)5ir[(Wka_Wk)(T)]} (88)
3(r)= ﬁdeM&Q)lz{El(Q,k)cos{(wQ_k+wk><r>]+22(Q,k>coi<wq_k—wk><r>]} (89
|
with time scalerg~m~1. Similarly, the kernell’ varies slowly

1 (1+2n)(Q— 2K)2(w w)? over a large time scales5—10m 1,
AN Q-k— Wk

F(Q.k)= 64 WékaE 1. Equation of motion: Exact solution vs Markovian
approximation

I,(Q,k) = i ”k(Q_Zk)Z(WQ—k+Wk)2 In terms of dimensionless quantities the equation of mo-
2T 32 WO Wy tion (45) becomes in this case
= ) N (7
21((g1k) (WQ7K+WK)F1(ka) U(T)‘f’gf dT’E(T_TI)U(TI):J, (91)
0

32(Q.K) = (Wo k=W T'2(Q.K)
where J=j/(mM) and the dot stands for derivative with
2 2. 1 respect to the dimensionless variable
Wi=k+1 = gmor—- (90 As shown in Fig. 3, the kernél(7) has “memory” on
time scales a few times the inverse of the meson frequency.
Figure 3 shows the numerical evaluationlif) and>(7) If the velocity of the domain wall varies on time scales larger
vs. 7 for different values of7. We clearly see that the self- than the “memory” of the kernel a Markovian approxima-
energy kernel is peaked near=0 and localized within a tion to the dynamics may be reasonable. The first step in the

002 T , : . : 025 .
!‘ ' / \\ — - Temp. 10 = ;::g;?
oats T-\-/-,w ----- o o 02 [4----- R SR IR
--------------------------- Rl AALRCET EEREES L i S REE RIS ST EE FEESTP PUPRETS EEPPR
! ! I'(x) !
e ARRHERRELE L L L EUEEEEI SERREE TR N S S S S
A o (/AR S WO A R S O
lli 0 ‘;——_l
8 10 12 14 10 12 14 .
FIG. 3. The functiond’(7) and
T T 3(7) for temperatures7=0, 1.0,
008 ; ‘ . " 5.0 and 10.0 for sine-Gordon
D Temto oei _________ o | [~ Temp.100 theory.
v |—1zero Temp. ‘\ — Temp.50
' .
£2 | | . i L |
0 2 4 6 8 10
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1 1
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FIG. 4. Numerical evaluation of the velocity of the kinkt)/v for j=0 for temperature§=0, 1.0, 5.0 and 10.0 in sine-Gordon theory.

Markovian approximation corresponds to replacirig’) by We will now focus on the initial value problem with
v(7) inside the integral in Eq91) and taking it outside the =0 andv(7=0)=v,. The formal solution of the equation
integral. A second stage of approximation would take theof motion in the Markovian approximation is given by
upper limit of the integral toe thus integrating the peak of
the kernel. However, we have shown above that the total _ —(N/8) [T ot Nl ot
integral of the kernel vanishes, thus this second stage cannot v(7)=voe fol'(r")d7". ©3
be invoked. Recognizing thafi2(7—7')dr'=I'(7) the . _ o .
Markovian approximation to Eq91) is given by Even in the Markovian approximation the relaxation of the
velocity at long times is not exponential becalge’) —0 at
_ A long times as can be seen in Fig. 3.
v(7)+§v(7)r(r)=J. (92
2. Velocity relaxation and wave function renormalization

As advanced in the previous section, we now identify the In order to display more clearly the dissipative effects, we
kernelI'(7) as the dynamical friction coefficient in the Mar- now study the relaxation of the kink velocity. For this con-
kovian approximation. The propert{46) determines that sider the initial value problem withi(t>0)=0 and initial
I'(7—®©)=0. velocity v (t=0)=v,.

As the kink moves through the bath, its velocity decreases

TABLE I. Numerical evaluation ofZg and v../vy in sine-  because of the interaction with the mesons, the asymptotic

Gordon theory fom/M =0.1,0.25. final velocity is related to the initial velocity through the
wave function renormalization as explained Sec. Il B above.
Vol Zs We present the numerical solution of the homogeneous equa-

tion for v(t)/vq in Fig. 4, where we also present the homo-
geneous solution in the Markovian approximation described
Zero Temp. 0.999808  0.999521  0.999808  0.999521 above. We clearly see that the initial velocity relaxes to an
Temp. 1.0 0.993438 0.983754  0.993438  0.983753 asymptotic valuev./vy. However, the time dependence
Temp. 5.0 0.96055 0.906885  0.96055 0.90687 cannot be fit with an exponential. We can see that even at

Temp. 10.0  0.923458  0.828352  0.923446  0.828303 high temperatures the Markovian approximation grossly fails
to describe the dynamics.

mM=0.1 m/M=0.25 mM=0.1 m/M=0.25
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FIG. 5. The correlation func-
tion K(7) for temperatures/=0,
1.0, 5.0 and 10.0 in the sine-
Gordon theory.

According to the analysis of the general solution, the ratioscattering off in medium mesons and has its origin in the
v./vg should be given by the wave function renormaliza-Landau damping diagram shown in Fig. 1.

tion, i.e.,

1 Voo
S e
M (s=0)

Table | below compares the ratio, /v, obtained from

the numerical solution to the exact evolution equation, with
the value of the wave-function renormalization. Clearly the
agreement is excellent, confirming the analysis of th

asymptotic behavior of the solution in real time.

3. Kernels for the semiclassical Langevin equation

Knowledge of the matrix elemen®®, T allow us to

obtain the final form of the kernels that enter in the semiclas-

sical Langevin equation given by Eq$9) and(70), and Eqg.

(82). These kernels can be written in terms of the dimension-

less quantities given by EQ.86). Since Ki(t—t’)
=—2i3,(t—t") we focus onK(t—t’). In term of dimen-
sionless quantities (t)=m*K(7) where

K(n- | dodk@Is@?

X{C1(Q,k)cog (Wq_+wWy)(7)]

+C2(Q,k)cog (Wo— k=W ) (7)1} (95)
with
2 (I ng gt Nyt ng i) (Q—2k)*
Cl(ka)—F Wg—kwﬁ ,
(96)
1 n(l+ng_ —2k)*
Co Q)= 55 RO WOTH0 ©7

I
Waq— kWi

The contribution fromC; is recognized to arise from the
process of emission and annihilatigspontaneous and in-

duced of two mesons, whereas that fra@y arises from the

e

Figure 5 showdC(7) for different temperatureg. Notice
that at large temperatures the kernel becomes strongly
peaked atr=0 and one would be tempted to conclude that
the classical limit corresponds to a delta function. However
the coefficientg96),(97) are such that the total integral in
(leading to delta functions of sums and differences of fre-
guencieg vanishes. We then conclude that even in the high
temperature limit the noise-noise correlation function is not a
delta function, i.e., the noise is “colored,” the classical fluc-
tuation dissipation relation in terms of a delta function noise
correlation does not emerge and a diffusion coefficient can-
not be appropriately defined. We postpone until a later sec-
tion a discussion of the high temperature limit and the clas-
sical regime.

B. Theory
In this model the potential is given by

2

m 2\2
U(g.¢)= 5 (1-\g?)%, (98)
the static kink solution is given by
1
$s(X—Xo) = n tan m(x—Xo) ], (99
and the kink mass is given by
M= am 100
= 3% (100

and the normal modes are the solutions to the equasiea
Eq. (6)]

d? 6m?

— —— +4Am?—

e Yn(X) = 0piin(x). (10D

cost(mx)

The solution of the above differential equation is well known
[45,17. It has two bound states followed by a continuum.
The normalized eigenvectors are given by
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\V3m d K
Uo(X)= —— sech[m,x]x % with w,=0 N sec+ﬁ}
Dbk: T WZ_ \/k2+ m2(k2+ 3m2)
wy
3m
Up(x)= —— seclim,x]taniim,x]  with wi=3m? (from the bound staje
_ 3im(k?—p?)(p?+kZ+4m?)
Dpk=ikdo(p+k)+
_ 4 | (p+k)
2aikx P 4m*NpN;sin 5
U(X) = e — [Btan [mx]
2(ke+m
V2m(k2 )y for p#k, (103
k k?
— 3 - tanf mx]—1— W] (1020  whereNy is defined as
277wk(k2+ m?)
with og=k?+4m?. The scattering states are identified with m
mesozn modes and the meson frequency is identified with \ye notice that the coupling to the continuum through the
wo= m.

) ) bound state given by the matrix elemédy, is of the same
The bound state with zero frequency is the “zero mode,” order as the coupling to the continuum-continugmatrix

whereas the bound state with;=3m’ corresponds to an elementsD ). This will have interesting consequences for

amplitude distortiorj18,16 or excited state of the kink. the dissipational dynamics. The symmetric and antisymmet-
The matrix element® , are given byfsee Eqs(29),(16)] ric matrix elements for the continuum states are given by

o 3 (“’p)m (%)1’2} (0%=p?)(p?+g?+4m?)
PA” 32l w. ] o n
co el | g T o opsiny 3 P
w3 (ﬂ)lﬁ(ﬂ)m} (0?=p?)(p*+q*+4m?) 105
Pa 32 + ’
vol el G ugeysiny 3 P

whereas those involving the bound state are obtained by replacing the matrix el@ygeits the D ..

Since in this model there is one bound state other than the zero mode, the interactiorFyaftey is given by Eq.(B6)
in the appendix. The contributions from bound-state-continuum virtual transitions do not mix with the continuum-continuum
to this order in the adiabatic expansion. As a consequence of this simplification the dimensionless|iketasiss of the
dimensionless variables introduced in E&6)] become

Pr)= | dpTSp)SIT (wy+wo) (1) 1+ T3S (w~we) ()1} + | dQIS(Q)IPAK{I QK (g ) ()]

+T2(Q,K)sin (W —wi) (7)1}

S()= f:dp{22<p>coi(wp+wb>(r)]+22<p)cos{<wp—wb><r)]}+ f:dQ|S<Q>|2dk{21<Q,k)cos{(wQ,wwk)(r)]

+325(Q,k)cog (Wo—k—wWi) (7)1} (106)

with
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o & WG Q= 2K(Wg QKK 4T
Q=7 W W@ 7+ 1)(2F 1)

o & (g )(Q= 2K W) T(Q—K) K+ AT
Q=7 W W@ K2 H LI 1)

V3 (p*+4p%+3)2(wy—wp)(1+n,+ny) mp
Y p” Wo b Mp
I'i(p)= 128 W3 W, W) seci >

V3 (p*+4p%+3)2(wy+wy)(n,—n,) mp
by p T Wp)Np—Tp
F2(P =135 S — sechf| —-

31(Q,K)=(Wo x FWIT1(Q,K);  Z(Q,K)=(Wo_x—W)T2(Q,k)
32(p)=(Wp+ W) TR(p);  25(p)=(Wp—w,)T5(p)

wi=k?+4, (107

whereX(7) andI'(7) are defined as in E¢87). The functions - o
(7 andT'(7) where evaluated numerically at different tem- E(S)Zf dQ|S(Q)|*dk
peratures/, the results are displayed in Fig. 6. The behavior o
of these functions differ from those in the sine-Gordon 3,(Q,k)s ) foo

2l(ka)S
SZ+ (WQ—k+Wk)2

3%(p)s

S%+ (Wp+Wp)?

theory because of the presence of the bound state which is dp
interpreted as an excited state of the kink. As the kink moves

in the dissipative medium, energy is transferred between the Eg(p)s }

S%+ (W k—Wi)?

—o0

kink and the bound state resulting in the Rabi-like oscilla-
tions displayed in the figure. We notice that the contribution
of the bound state is of the same order of magnitude as that
of the continuum. S(s)=sl(s)

S%+ (Wp—Wp)?

1. Equation of motion: Exact solution vs Markovian
approximation ['1(Q, k) (wp+wy)

s°+ (WQ—k+ Wk)2

f(S)=fldQIS(Q)|2dk

The solution to the equation of motion and the compari-
son to the Markovian approximation proceeds just as in the

" b
the case of the sine-Gordon model. The equation of motion is Fg(ka)(Wp_sz)) f dp F21(D)(W,)+sz)
again solved as an initial value problem. The exact and Mar- S+ (Wo—k—Wy) — s°+(Wp+wy)
kovian solutions are displayed in Fig. 7.

The new feature of the solution are the oscillations that Fg(p)(Wp—Wb)] (109
result from virtual transitions to the bound state. We interpret 52+(Wp—Wb)2 '

these in the following manner: as the kink moves it excites

the bound state that corresponds to a kink distofftid@), this

- ey b b oy

excitation in turn reacts-back in the dynamics of the collec- With the quantities® I'> given above. The homoge-

tive coordinate in a retarded manner. NEoUs gquatlons O.f mo_t|on given by I.:“(Ql.) (exac) and its
While the exact solution in this model is qualitatively M.arkowan apprOX|mat|or(92) both with j=0 are solved

similar to that of the sine-Gordon model, we see however!Vith the kernelsX(7); I'(7) given above foru(t)/v,. The

that quantitatively they are different: there is stronger dy-2Symptotic behavior of the exact solution will be compared
namical dissipation in the:* model as compared to the sine- With the predictionv..lvo=Zs, with the wave_function
Gordon case, due to the strong coupling to the bound statéenormalizationZs given by Eq.(94) but with theI'(s=0)

continuum intermediate states. appropriate to thep* model. _
Figure 7 shows the numerical solutions of E§1) and

Eq. (92 with j=0 for [v(t)/v,] for temperature§=0, 1.0,

5.0 and 10.0. Again the Rabi-like oscillations associated with
In this model the Laplace transform of the functidig)  the excitation of the bound state is apparent in the solutions.

andX(7) are given by We have checked numerically that asymptotically the veloc-

2. Velocity relaxation and wave function renormalization
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FIG. 6. The functiond’(7) and3(7) for temperature§=0, 1.0, 5.0 and 10.0 in thé* theory. Contributions from bound and scattering
states are displayed separately.

. . 3. Kernels for the semiclassical Langevin equation
ity tends to a constant value, but not exponentially. Table g .

Il shows the values 0f.. /vy andZg for these temperatures From the definition of the kernel&(t—t') and K(t

for mM/M=0.1 and 0.25 where . /vy was evaluated at  —t’), Egs.(69) and(70), and Eq(105), these kernels can be
=200 for the exact solution. Within our numerical errors, wewritten in terms of the dimensionless quantities given by Eqg.
can see that Eq94) is fulfilled. (86) as
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FIG. 7. Numerical evaluation of the velocity of the kinkt)/v, for j=0 for temperature§=0, 1.0, 5.0 and 10.0 ig* theory.
Ki(r—7")==2i3(r—1"), (109
where3 (7— 7') is given by Eq.(106) andK(t)=m*K(7) with

K()= fidp{ct{(mcoi(wwwb)(r)]+CB(p>coi<wp—wb><r>]}+ f ~ dQISQ? f:dk{cm,k)

X cog (Wo-k+Wi)(7) ]+ Ca(Q,k)cog (Wo—k—Wi) (1)} (110

with the dimensionless matrix elements

18 Q¥(1+ng_ k+nk+nQ N (Q—2K)[(Q—K)?+k?+ 472

CuQ0=3s w3 W (Q—k)2+ 1](K2+ 1)
= 9 NkQ*(1+ng_ ) (Q—2K)*[(Q—k)?+k*+4]?
CAQW=7 wi_ Wi (Q—k)Z+ 1](K2+1)
Ch(p)= mf 3 (p*+4p2+3)2(p?+1)(1+np+ny+npny)
wgcosﬁ _p}
2
4 2 2/ R2
CZ(p)wa;/? (p*+4p~+3)“(p +l)np(l+nb). 111
4 s
wgcosi‘? 7}
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Figure 8 shows((7) vs. 7 for temperatureg=0,1,5,10.  gion. This is a consequence of the small phase space avail-
Again the oscillations are a consequence of the bound statle for the loop integrals in+1 space-time dimensions.
contribution, and as in the sine-Gordon case we find that This analysis allows us to conclude that the high tempera-
despite the fact that in the high temperature limit the kerneture limit is dominated by the classical contribution with a
becomes very localized in time, the total integrallineal dependence on temperature in the regirsem. This
[7Z.d7K(7)=0 preventing a representation of the noise-behavior is clearly displayed in Fig. 9 that shows the inte-
noise correlation function as a delta function in time even ingralsl; I, with
the high temperature limit. The “color” in the noise-noise 3
correlation function is enhanced by the coupling to the con- - f” dk (Q—2k)*(wq—k— wk)

. ! L . n
tinuum via the bound state which is also responsible for the w%,kwﬁ :
strong oscillatory behavior of the real-time correlation func-
tion. = (Q=2K) 3 (wg_k+ wy)
l,=] dk 33 ks
— a)Q_kwk
V. HARD THERMAL LOOPS VS CLASSICAL LIMIT (114

The high temperature limit correspondsTe-m with m  corresponding to the contributions fromy; 2, to the self-
the meson mass. However we are restricted to the dilute limgnergy kern4e| ar=0 for sine-Gordon theory, with similar
in which the treatment of isolated domain walls is meaning"esults for¢®. We clearly see that fof =2m the tempera-
ful. Because the kink density is suppressed by an Arrhenjuiiré dependence becomes lineal. Furthermore we have nu-

activation facto8] merically checked that most of the contribution in this re-
gime arises from the “soft” region of the loop momentum
nkme—M/T’ (112 ksmandQ=m.

Combined together the hard-thermal loop analysis and the
the study of the high temperature limit for the dynamics Ofnumerlcal evidence lead us to conclude unambiguously that

isolated domain walls requires that the temperature range t}ge high temperature Iir_ni_t of the self-energy kgrne] is domi-
such that nated by the classical finite temperature contribution.

This analysis also holds for the noise-noise correlation
m function(since the same matrix elements contribute to them
m<T<M~ —. (113 However for the noise-noise correlation function there is an
A extra factor of the Bose occupation factors in the integrals.
This results in one extra power of temperature in the “soft”
For weak coupling.<1 there is a wide temperature range in region while the temperature dependence from the hard-
which the high temperature and the dilute kink gas approXithermal loop region is mostly unaffected by the extra Bose
mation will be reliable. In order to understand the high tem-factor. Therefore we conclude that the self-energy kernel is
perature limit it is convenient to separate the loop integral@(mZT) and the noise-noise correlation function is
into the “soft part” in which both the integrated and trans- o(m2T2) in the high temperature limit. This is in accord
ferred momenta are “soft,” i.e.k, Q<T and the “hard”  \jth the classicalfluctuation-dissipation theorem in which
part, in which the loop momenturk is O(T). Since the the noise-noise correlation function has an extra power of
structure factorS(Q) is strongly suppressed f@>m, the  temperature compared with the dissipative contribution.
transferred momentui is always of order om<T hence it At long times the contribution from the two meson cut
is always “soft.” The “hard” k region with “soft” trans-  gives a rapidly oscillating contribution leading to a rapid fall
ferred momentum is the domain of validity of the hard- off of the time dependence. On the other hand, the contribu-
thermal loop resummation programme of Braaten and Pisation from the Landau damping cut gives the leading contri-
ski [48]. bution at long times because the discontinuity has support at
Then for the soft region of the remainirigintegral, we  very low frequencies and completely dominates long time
can replace the occupation factarg~T/wy. This soft re-  pehavior. Therefore we conclude that the long time, high
gion therefore gives the classical contribution to the kernelsemperature behavior in the dilute kink limit is completely
3, I'. A simple WKB analysis of the continuum solutions for
both cases considered, reveals that the matrix eleni®nts TABLE Il. Numerical evaluation oZ andv., /v, in ¢* theory
fall off as ~S(p+k)/k in the limit in whichQ=k+p~m; for m/M=0.1,0.25.
k—oo. This simple analysis is confirmed by the exact expres
sion for the matrix elementg, , [see Eqs(82),(105] which v.1vg Zs
in this limit (Q=k+ p~m,k— ) behave a§(Q)/k. There- M/M=01 m/M=025 m/M=0.1 m/M=0.25
fore in the meson loop, the matrix elements yield a contribu- i i i i
tion of O(1/k?) in the hard thermal loop limit, for which a Zero Temp. 0.999225  0.998064  0.999176  0.997943
simple scaling analysis reveals a large temperature behavigemp. 1.0 0.961561  0.911004 0.96376 0.914072
of O(1/T). Hence we see that in thetll dimensional case Temp. 5.0 0.784934 0.593058 0.787734  0.597494

the hard-thermal loop limit yields subleadingcontribution  Temp. 10.0  0.642698  0.417231  0.646577  0.422562
as compared to the classical contribution from the soft re
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1.0, 5.0 and 10.0 in the* theory.

dominated by classical finite temperature dynamics and VIl. CONCLUSIONS AND FURTHER QUESTIONS

dominated by the contribution from Landau damping. We have studied the non-equilibrium dynamics of domain

walls in 1+ 1 dimensional scalar field theories at finite tem-
perature in the dilute regime. We obtained the real time
VI HIGHER ORDERS AND HIGHER DIMENSIONS equations of motion for the expectation value of the collec-

At two-loops and higher orders we expect that collisions
will provide a non vanishing static friction coefficient and [
result in an exponential relaxation of the velocity in some 7 [----
time regime. However, the contribution from these terms [
will be of higher order in coupling M) and therefore ~ 6 f~---
there will be a competition between the time scales associ-
ated with lowest order relaxation via off-shell Landau damp-
ing and the higher order collisional relaxation leading to an 4 f. ...
exponential fall-off. Therefore we anticipate several different |
relaxational regimes with wide separation of the time scales 3 f----
for weak couplings and in the dilute regime. s

In 3+1 dimensions for degenerate scalar potentials the 2 [~~~
situation is clearly more complicated. The zero mode from
translation invariance now gives rise to two-dimensional
massless degree of freedom corresponding to small local dis-, t.
tortions perpendicular to thglanay wall. These are the cap- 0 o5 1 15 2 25 3 35 4 45 5
illary waves fluctuations of the interface that will dominate Temperature
the long-wavelength small frequency dynamics. We expect
to report on further studies of hlgher order collisional relax- FiG. 9. Integrald 4,1, corresponding to the contributions from
ation as well as new phenomena if-3 dimensions in the 3,3, to the self-energy kernel at=0 vs T in the sine-Gordon
near future. theory.
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tive coordinate and also the quantum Langevin equation tdau damping processes in the medium leading to the conclu-
lowest order in the weak couplin¢padiabati¢ expansion. sion that to the order studied the long time dynamics is com-
Two specific models were studieg? and sine-Gordon sca- pletely determined bylassicalLandau damping.
lar field theories providing detailed analytic and numerical We have restricted our study to a perturbative expansion
studies of the equations of motion and a Markovian approxiwhich already showed the complicated nature of the problem
mation to it. even at lowest order. Pursuing a higher order calculation in
To lowest order in weak coupling we found that the real-perturbation theory will clearly be a major task. When the
time equation of motion involves a non-Markovian self- velocity of the soliton becomes very large one must abandon
energy kernel and that the static friction coefficient vanishesthe approach advocated in this article and pursue a non-
However, there is dynamical friction which is a result of the perturbative approach that accounts for strongly non-linear
memory effects in the self-energy and is associated with twgrocesses. We are currently implementing such an approach
different types of two-meson processes: spontaneous and im terms of a self-consistent variational methHd®] and ex-
duced two-meson creation and annihilation and scattering offect to report on new results in the near future.
in medium mesons. The second type processes only occur at
finite temperature and Iea(_JI to Landa_u da_mplng. ACKNOWLEDGMENTS
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tions to the self energy and noise kernels. We find that the
hard contrlbutlon is suppressed aF high temperature because ,ppeNDIX A: REAL-TIME MESON CORRELATION
the matrix elements fall of as an inverse power of the hard FUNCTIONS
momentum. The small one dimensional phase space leads to
a suppression of the hard momenta and therefore the leading In this appendix, we will calculate the Green’s functions
contribution at high temperature arises from the “soft” re- which are defined in Eq65) in terms of the vertex given by
gion with momenta of the order of the meson mass yieldingeq. (32).
the classical result in the high temperature limit. Furthermore Applying Wick's theorem and Eq38), it is a matter of
the long time dynamics is completely determined by the Lanstraightforward algebra to find the following results:

G (tt)=-2 > (TRTS_ e p 0t n n+ g(t—t")(1+ny+ny) ] +et (@ptent=t)
p.k#0

X [N+ Ot =) (14N, +n) T+ 2TRTA Lo i eom @ n+n 6(t' —t) +nd(t—t')1})

=G (t,t")o(t—t")+G=(t,t")o(t' —1)
S

G__(t,t'): -2 2 (TE)SK)T(S) k{e—i(wp+a)k)(t—t/)[npnk+ e(t/_t)(1+np+nk)]+e+i(u)p+wk)(t—t')
p.k#0

X [Nyt Ot =t ) (14N, +n) T+ 2TWTA Lo i @om @ non 41, 0(t" —t) +ny0(t—t')1})

=G7(t,t) et —t) + G (t,t")o(t—t")

G (t,t)= ZpEO (TETE_ fe  opt o0t n e 1@t o n - ng+ i+ 1)+ 2TRTA
X [efi(“’p’wk)(t*t’)np(l-i- n)
=—-G~(1,t")
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G F(t,t)= zp%O {TETS) Lo i er @ (non+ng+nt 1)+ e @ el n n 4+ 2TRTA |
X[e (ep @t (14 n,)T}
=—G (t,t")=—G~(t',t). (A1)
These Green’s functions satisfy the following relation:
G""+G "+G* +G =0 (A2)

which is a consequence of unitary time evolut{@2)].
Furthermore, using the antisymmetry property of the matrix elem‘égﬁsone finds that

G (t,t") =[G~ *(t,t")]*. (A3)

The Green’s function§* " (t,t'); G~ (t,t’) can be written in terms o&* ~(t,t") and its complex conjugate, therefore we
see that there is only one independent Green'’s funciiand its complex conjugake

APPENDIX B: CALCULATING K, (t—t’) AND K(t—t’)

Performing the coordinate transformation in E66), the influence-functional becomes

ROR() [GH (L) +G ™ (Lt') =G (1,t)— G *(t,t")]+

> RIOK)G (L)

o 1
]f[x,R]=exp{ 3 J dtdt’

—G(t,t’)-l—G*(t,t’)—G*(t,t’)]+%)'((t)l.?(t’)[G++(t,t’)—G(t,t’)—G*(t,t’)]]

}. (B1)

Integrating the linear term iR by parts once and the quadratic term twice, the influence-functional can be cast in the
following form:

f[x,h]=exp{% f dtdt’[R(t)Kl(t—t’)i((t’)—R(t)K(t—t’)R(t’)]}, (B2)

where

19
2 at
+[GTT (' H)-G (', H)-GT (', 1)+ G T (t',)]}

Ky(t—t")= {IGT (1) -G ~(t,t)+ G (t,t') -G~ *(t,t)]

22%[G>(t,t’)—G<(t,t’)]0(t—t’) (B3)
142 o B ,
K(t—t’):ZP[G“(t,t’HG (t,tH)—GT (t,t") -G "(t,t")]
10 _
:EP[G (t,t")+G=(t,t")]. (B4)

Substituting the values of the Green’s functions from E&fl) in the above equations, one obtains the expressions for
Ki(t—t") andK(t—t') in Egs.(69) and(70).

In the case that there are bound states other than the zero mode, such as thegéathe sfum in Eq(32) runs over all
bound and scattering states, i.e.,

105003-22



DOMAIN WALLS OUT OF EQUILIBRIUM PHYSICAL REVIEW D 58 105003

F[aT, al=- fdpdk\/ Dodaa,—a’,a’ +a’a,—a’ pJ+ 5 2 Jdk\/ Dydaca,—a’ a;

1 w
t t b Tt t t
+a_ap—alal+ o Eb f dk w—k Dyplapax—apal tayag—a’ @yl

o0 \/ Danl ap8,—ajal+aja,—alayl, (B5)
a, b

where the indicea andb stand for summation over discrete bound statesmaddk stand for summation over continuum
scattering states. The models which we considered in this paper have at most one bound state, that is the ¢dsthéotize
In this case, the last term will not contribute siridg, vanishes. Thus for only one bound state, BBp) can be written as

F[aT,a]=f dpdK TR (apac—a’ jat )+ Tt aT_kap)]+fdk[Tgfk’)(akab—af_kag)+T<A>(a @p—ata)],  (B6)

where the matriceJ(}) and T$}) for scattering states are [whereF is given by Eq.(32)] admit a spectral representa-
given by Eq.(33) and |f one of the states is a bound state,tion, and their Fourier transforms in timg;” (w); g~ ()
then obey the KMS conditiori50]

o L], / / ‘o 9~ (w)=e 9" (w). (C3)
i 2 " From this expression we find th&i(w), the Fourier trans-

1 /— form in time of the kernelK (t—t")=2%(t—t") is given
E)'?( = 2_ \/ Dbk (B7) by

do’ 0'g” (e )[1—e #']

In the sine-Gordon theory, the last two terms in E86) ky(w)=2] —— o Fic ,  (CH
do not contribute since in this theory there are no bound
states other than the zero mode and the Green'’s functions aggding to the imaginary part
given by Eq.(Al) but with integration ovep andk instead
of the summation. IM[ky(w)]=—wg” (w)[1-e"#]. (CH

In the ¢* case, to lowest adiabatic order the contributions
from the bound and scattering states decouple. This |mpI|es
that the Green’s functions will have a contribution from the
bound state which is given by the same expression as that §fVeN Py k(@) with
the scattering states, with— b, but multiplied by a factor of w2 w2
1/2 since the bound state wave function is chosen to be realk(w)= — > [07(w)+g=(w)]=— > 9" (w)[1+e P]

On the other hand the kernel that determines the noise-
noise correlation functioik(t—t’) has a Fourier transform

APPENDIX C: GENERALIZED » Bw
FLUCTUATION-DISSIPATION RELATION = > Im[kl(w)]cot?{T

(C6)

The functions . . .
The relation between the Fourier transform of the noise-

G~ (t—t")=(F(t)F(t"), (Cy noise correlation function and the imaginary part of the self-
energy is the generalized fluctuation-dissipation relation
G=(t—t")=(F(t")F(1)) (C2) [33]
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