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Domain walls out of equilibrium
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We study the nonequilibrium dynamics of domain walls in real time forf4 and sine-Gordon models in 1
11 dimensions in the dilute regime. The equation of motion for the collective coordinate is obtained by
integrating out the meson excitations around the domain wall to one-loop order. The real-time nonequilibrium
relaxation is studied analytically and numerically to this order. The constant friction coefficient vanishes but
there is dynamical friction and relaxation caused by off-shell non-Markovian effects. The validity of a Mar-
kovian description is studied in detail. The proper Langevin equation is obtained to this order; the noise is
Gaussian and additive but colored. We analyze the classical and hard thermal loop contributions to the
self-energy and noise kernels and show that at temperatures larger than the meson mass the hard contributions
are negligible and the finite temperature contribution to the dynamics is governed by the classical soft modes
of the meson bath. The long time relaxational dynamics is completely dominated by classical Landau damping
resulting in that the corresponding time scales are not set by the temperature but by the meson mass. The noise
correlation function and the dissipative kernel obey a generalized form of the fluctuation-dissipation relation.
@S0556-2821~98!08718-9#
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I. INTRODUCTION AND MOTIVATION

Kinks and domain walls play a fundamental role in t
equilibrium and non-equilibrium processes after phase tr
sitions to broken symmetry states in theories with scalar
der parameters. In scalar field theories that undergo a s
metry breaking phase transition the process of ph
ordering proceeds by the formation of domains of the
dered phase separated by domain walls. These domain w
are topological defects that separate regions in which
order parameter is locally ordered and therefore locally
system is in a broken symmetry ground state in each dom
Interest in the dynamics of these topological excitations
interdisciplinary. In condensed matter systems solitons~or
kinks! are collective excitations in quasi-one-dimension
charge density wave systems and conducting polym
@1,2,3#. In particle physics domain walls in the form o
sphalerons@4# have been argued to play an important role
baryogenesis@5#, and in cosmology domain walls and oth
topological defects could be responsible for structure form
tion @6,7#.

The classical statistical mechanics of a gas of kinks in
spatial dimension has been previously studied@8# and it was
established that the kink density at a temperatureT is ap-
proximately given bynK'e2M /T with M being the kink
mass. Therefore a study of the dynamics of single dom
walls or kinks will be valid in the dilute regimeM@T in
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which the interaction between kinks can be ignored beca
the mean separation between kinks is much larger than
typical width of a kink~of the order of the zero temperatur
correlation length or inverse meson mass!.

The focus of this article is to study the real time dynam
of relaxation of domain walls~kinks! in 111 dimensions via
the interaction between the domain wall and the meson fl
tuations in model field theories. In particular we study
detail scalarf4 and sine-Gordon kinks in the dilute regim
in which T!M . This problem is important in particle phys
ics, condensed matter and cosmology. In particle physics
sipative processes on the dynamics of sphaleron config
tions are important to establish corrections to the pro
transition rates. In quasi-one-dimensional condensed ma
systems kinks and domain walls are responsible for imp
tant transport phenomena and therefore a study of the d
pative aspects will provide a deeper understanding of th
phenomena. In cosmology the evolution of domain walls
dynamic of interfaces determines the scales in which ord
ing of horizon sized regions occur.

Although a study in 111 dimension may not be a prope
realization of the (311)-dimensional situations in particl
physics and cosmology, it will at least highlight importa
aspects of the dynamics that must be generalized to
proper situations.

In condensed matter there is a considerable effort in
derstanding dissipative aspects of solitons starting from
microscopic description@9–13# in terms of Mori’s formula-
tion of linear response, and more recently in terms o
system-bath formulation@13#.

Recently Khlebnikov@14# has studied the velocity of a
bubble wall in the case of a non-degenerate scalar potent
©1998 The American Physical Society03-1
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The bubble-wall velocity was related to the self-energy
the scalar field through the fluctuation-dissipation theore
Assuming a trilinear coupling to another massive field a lo
friction coefficient was extracted. Alternatively, Arnold@15#
provided an equivalent result to the one obtained in Ref.@14#
at one loop using reflection and transmission coefficients
particles scattering off the bubble wall.

Our approach is rather different. It is tailored to obtain
real time description of the dissipative processes and a
sistent derivation of the Langevin equation in a weak c
pling perturbative expansion. The main ingredient is the c
lective coordinate quantization of the kink that allows
obtain the non-equilibrium generating functional for the c
lective coordinate by integrating out the meson degrees
freedom, i.e. the fluctuations around the kink. The result
Langevin equation allows an unambiguous identification
the dissipative kernel and the noise correlation function t
obey a generalized fluctuation dissipation relation. The d
sipative processes arise from the interaction between the
lective coordinate and the orthogonal fluctuations around
kink, rather than from the coupling to other fields.

We provide analytic and numerical study of the solutio
of the equations of motion of the kink collective coordina
in lowest order~one loop! and establish that a Markovia
approximation fails to describe the dynamics at large te
peratures. Furthermore we analyze in detail the high te
perature low density regime in whichm!T!M with m be-
ing the meson mass focusing on the classical and h
thermal loop contribution to the dissipative kernel and
noise-noise correlation function. We argue that in lowest
der in perturbation theory, the long time dynamics is co
pletely dominated by classical Landau damping.

The main results of this article are the following.

A field-theoretical derivation of the real-time non
equilibrium equations of motion of the collective coo
dinate associated with translations of the domain w
and its solution in relevant cases for the sine-Gord
andf4 potentials.

A detailed microscopic derivation of the non
equilibrium influence functional, the quantum Langev
equation and the generalized fluctuation dissipat
theorem to one-loop order.

A detailed analytic and numerical study of the rela
ation in the one-loop approximation. The Markovia
approximation is compared to the ‘‘exact’’ dynamics
a wide range of temperature and the high tempera
and classical limits analyzed in detail. The long tim
dynamics to this order is analyzed both analytically a
numerically.

To our knowledge these aspects of domain wall dynam
had not been studied previously.

Section II summarizes briefly the main concepts in coll
tive coordinate quantization that are relevant for our stu
In Sec. III we introduce the main tools of non-equilibriu
field theory to study the kink in a bath of mesons in equil
rium and describe in general the relevant interactions,
equation of motion of the collective coordinate a Markovi
10500
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approximation and the Langevin equation. Section IV a
lyzes in detail thef4 and sine-Gordon models for which
Markovian approximation is shown to fail at large tempe
tures. In Sec. V we study the high temperature but low d
sity limit (m!T!M ) and establish that the long time dy
namics is dominated by classical Landau damping proces
In Sec. VI we discuss higher order corrections to the res
obtained within the one-loop approximation and we co
ment on generalization to higher dimensions. Section
presents our conclusions. Several appendices are include
technical details, in particular Appendix C establishes
generalized fluctuation-dissipation relation between
damping kernel and the noise-noise correlation function.

II. COLLECTIVE COORDINATE QUANTIZATION

To begin our study of the dynamics of kinks we focus
(111)-dimensional quantum field theories described
Hamiltonians of the form

H5E dxH p2

2
1

1

2 S df

dx D 2

1U~f!J ~1!

in which the potentialU(f) admits degenerate, broken sym
metry minima.

A static kink is a solution of the time independent fie
equation

2
d2fs

dx2 1
]U~fs!

]f
50 ~2!

with boundary conditions such thatfs(x→6`)5f6` and
U(f6`)50 @16–26#. Translational invariance implies tha
such solution is of the formfs(x2x0) with x0 an arbitrary
translation chosen such thatfs(0)50, thereforex0 is iden-
tified with the position of the kink.

Lorentz invariance results in that a kink moving with co
stant velocity is given byfs@(x2x02vt)/A12v2# @16–19#.
The mass of the kink, i.e., the energy of a static kink is giv
by

M[E@fs#5E dxS dfs

dx D 2

. ~3!

Quantization around the static kink solution implies wr
ing

f̂~x,t !5fs~x2x0!1ĉ~x2x0 ;t !. ~4!

Where the fluctuation operator is expanded in terms o
complete set of harmonic modes around the kink

ĉ~x2x0 ;t !5(
n

`

qn~ t !Un~x2x0! ~5!

where the mode functionsUn(x2x0) obey

F2
d2

dx2 1
d2U

df2U
fs

GUn~x2x0!5vn
2Un~x2x0! ~6!
3-2
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DOMAIN WALLS OUT OF EQUILIBRIUM PHYSICAL REVIEW D 58 105003
with the completeness relation given by

(
b
Ub* ~x2x0!Ub~x82x0!1E dkUk* ~x2x0!Uk~x82x0!

5d~x2x8! ~7!

and the subscriptb stands for summation over bound stat
andk for scattering states. For bound states, the eigenvec
are chosen to be real and for scattering states, we label t
asUk(x2x0) and are chosen such thatUk* 5U2k , in which
case the coordinate operators obey the Hermiticity condi
qk* (t)5q2k(t).

These eigenvectors are normalized as

E dxUp* ~x2 x̂0!Uq~x2 x̂0!5dp,q . ~8!

As a consequence of translational invariance, there
mode with zero eigenvalue given by@16–19#

U0~x2x0!5
1

AM
S dfs

dx D . ~9!

Depending on the particular form of the potentialU(f)
there may be other bound states~as is the case with thef4

potential!. There is a continuum of scattering states with f
quenciesvk

25k21v0
2; v0

25d2U(f)/d2fuf`
. These scatter-

ing states correspond asymptotically to phase shifted p
waves in the cases under consideration because the rel
potentials are reflectionless@16,17#. The continuum states ar
identified with meson states, whereas bound states~other
than the zero mode! are identified with excited states of th
kink @18#.

The fluctuation along the functional direction correspon
ing to the zero frequency mode represents an infinitesi
translation of the kink that costs no energy. Since this m
has no restoring force, any arbitrarily large amplitude flu
tuation along this direction is energetically allowed a
therefore must be treated non-perturbatively. The varia
x0 , i.e. the center of mass of the kink is elevated to the sta
of a quantum mechanical variable, and the fluctuations
orthogonal to the zero mode. This treatment is the basi
the collective coordinate method@16,19,20–28#.

In collective coordinates quantization instead of the
pansion~4! with ~5! we expandf(x,t) as

f~x,t !5fs@x2 x̂0~ t !#1 (
nÞ0

`

Qn~ t !Un@x2 x̂0~ t !#. ~10!

This amounts to a change of basis in functional spa
from the ‘‘Cartesian’’ coordinates$qn% to ‘‘curvilinear’’ co-
ordinates$x̂0 ,QnÞ0% @16,19,22,27#.

The next step is to express the Hamiltonian in terms of
new variables x̂0(t) and Qn(t). For this we follow
@16,19,22,27# and which we summarize below for the cas
under consideration.
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A. Kinetic and potential energies

In the Schro¨dinger representation the kinetic energy c
be expressed as a functional derivative as

T52
1

2 E dx
d

df

d

df
, ~11!

where the functional derivative is written in the new coord
nates using the chain-rule

d

df~x!
5

d x̂0

df~x!

d

d x̂0
1 (

mÞ0

dQm

df~x!

d

dQm
. ~12!

Taking the functional variation of the fieldf, Eq.~10!, we
obtain

df~x!5
df~x!

d x̂0
d x̂01 (

mÞ0

df~x!

dQm
dQm

5F ]fs~x2 x̂0!

] x̂0
1 (

mÞ0
Qm

]Um~x2 x̂0!

] x̂0
Gd x̂0

1 (
nÞ0
Un~x2 x̂0!dQn . ~13!

Projecting both sides of the above equation onU0* (x
2 x̂0) and thenUp* (x2 x̂0) with pÞ0, using Eq.~9! and the
orthonormalization condition Eq.~8!, we obtain

d x̂0

df~x!
52

1

AM

1

@11~1/AM !SmÞ0QmSm#
U0* ~x2 x̂0!

~14!

dQp

df~x!
5Up* ~x2 x̂0!2

1

AM

(nÞ0GpnQn

@11~1/AM !(mÞ0QmSm#

3U0* ~x2 x̂0!, ~15!

where the matrix elementsGpm are defined as

Gpm5E dxUp* ~x2 x̂0!
]Um~x2 x̂0!

]x
~16!

Sm[G0m5E dxU0~x2 x̂0!
]Um~x2 x̂0!

]x
. ~17!

At this stage it is straightforward to follow the procedu
detailed in @19,22,27# to find the final form of the kinetic
term in the Hamiltonian in the Schro¨dinger representation o
the coordinatesx̂0 ,QmÞ0 :
3-3
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T52
1

2 H 1

D

d

d x̂0

d

d x̂0
1

1

AD

d

d x̂0
(

p,mÞ0
FGpmQm

AD

d

dQp

1
d

dQp

GpmQm

AD
G1

1

AD
(

p,q,m,nÞ0

d

dQp
Fd2p,qAD

1
GpmQm

AD
GqnQnG d

dQq
J , ~18!

whereAD is the Jacobian associated with the change of
ordinates@16,19,22,27# and given by

AD[AMF11
1

AM
(

mÞ0
QmSmG . ~19!

The total potential energy, including the elastic ter
V@f# @see Eq.~1!#, is given by

V@f#[E dxF1

2 S ]f

]x D 2

1U~f!G . ~20!

Using the expansion given by Eq.~10! we find that it can
be written in terms of the new coordinates as

V@f#5M1
1

2 (
mÞ0

QmQ2mvm
2 1O~Q3!1¯ . ~21!

By translational invariance the potential energy does not
pend on the collective coordinate. Identifying the canoni
momenta conjugate tox̂0 ,Qn as

p0[P52 i
d

d x̂0
;pk52 i

d

dQ2k
for kÞ0, ~22!

and using the commutation relation ofAD and 1/AD with
Qn , pn andP given by

@pn ,AD#52 iSn and Fpn ,
1

AD
G52 i

Sn

D
, ~23!

we find the final form of the Hamiltonian:

H5M1
1

2 H P2

D
1

P

AD
(

p,mÞ0
FGpmQm

AD
p2p

1p2p

GpmQm

AD
G1 (

pÞ0
vp

2QpQ2p

1
1

AD
(

p,q,m,nÞ0
p2pFd2p,qAD

1
GpmQm

AD
GqnQnGp2qJ 1O~Q3!1¯ , ~24!

whereQp are now operators. The coordinatesQk associated
with the scattering states describe the meson degree
10500
-

,

e-
l

of

freedom with frequency v2(k)5k21v0
2; v0

2

5d2U(f)/d2fuf`
. Since the Hamiltonian does not depen

on x̂0 its canonical momentumP is conserved, it is identified
with the total momentum of the kink-meson syste
@16,19,22#. The kink velocity, however, is not proportional t
P and depends on the momentum of the meson field.

Since our goal is to study the dynamics of the kink
obtaining the equation of motion for the expectation value
the kink collective coordinate, we introduce an extern
source term linearly coupled tox̂0 . This source term has a
dual purpose, one is to allow to obtain the correlation fun
tion of the collective coordinate as functional derivativ
with respect to this source, the other is to use this sourc
a Lagrange multiplier to turn the evolution equation into
initial value problem. This second use will become cle
later when we study the solutions to the equations of moti
Therefore we add the termj (t) x̂0 to the Hamiltonian.

III. A DOMAIN WALL IN THE MESON HEAT BATH

Our goal is to study the dynamics of a domain wall
interaction with the mesons. This is achieved by obtain
the real-time equations of motion of the collective coordin
x̂0 by treating the mesons as a ‘‘bath’’ and obtaining
influence functional@29–34# by ‘‘tracing out’’ the meson
degrees of freedom and the excited states of the kink.
assume that the total density matrix for the kink-meson s
tem decouples at the initial timet i , i.e.

r~ t i !5rs~ t i ! ^ rR~ t i !, ~25!

where rs(t i) is the density matrix of the system which
taken to be that of a free particle associated with the col
tive coordinate of the kink, i.e.rs(t i)5ux0&^x0u andrR(t i) is
the density matrix of the meson bath and describes meson
thermal equilibrium at a temperatureT.

Since the kinks can never be separated from the me
fluctuations, this factorization must be understood to hold
the limit in which the initial timet i→2` with an adiabatic
switching of the kink-meson interaction.

The time evolution is completely contained in the tim
dependent density matrix

r~ t !5U~ t,t i !r~ t i !U
21~ t,t i ! ~26!

with U(t,t i) the time evolution operator. Real time non
equilibrium expectation values and correlation functions c
be obtained via functional derivatives with respect to sour
of the generating functional@35–42#:

Z@ j 1, j 2#5Tr U~`,2`; j 1!

3r iU
21~`,2`; j 2!/Tr r~ t i !, ~27!

where j 6 are sources coupled to the meson field and
collective coordinate. This generating functional is read
obtained using the Schwinger-Keldysh method which
volves a path integral in a complex contour in time@35–43#:
a branch corresponding to the time evolution forward
backward branch corresponding to the inverse time evolu
3-4
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operator and a branch along the imaginary time axis fromt i
to t i2 ib to represent the initial thermal density matrix. W
will obtain the equation of motion for the kink collectiv
coordinate in an expansion of the ‘‘adiabatic’’ parame
v0 /M which is also the weak coupling limit of the scal
field theories under consideration@16#. As it will be shown
explicitly below in the particular cases studied, the mat
elements given by Eqs.~16!,~17! will provide the necessary
powers of the meson massv0 . The lowest order inv0 /M is
formally obtained by keeping only the 1/M terms in the
Hamiltonian and neglecting the non-linearO(Q3) terms. Un-
der these approximations, 1/D.1/M and the Hamiltonian
has the following form:

H5M1
1

2M S P1 (
m,nÞ0

DmnpmQnD 2

1
1

2 (
mÞ0

@pmp2m1vm
2 QmQ2m#1 j ~ t !x̂0 , ~28!

where we define

Dmn5G2mn . ~29!

At this point it proves convenient to write the coordinat
and momenta of the mesons in terms of creation and ann
lation operators obeying the standard Bose commutation
lations,

Qk5
1

A2vk

@ak1a2k
† #;pk52 iAvk

2
@ak2a2k

† #. ~30!

The Hamiltonian can be expressed in terms ofa anda† as

H5
1

2M
~P1F@a†,a# !21 (

kÞ0
vk~ak

†ak11/2!1 j ~ t !x̂01M ,

~31!

where

F@a†,a#5 (
p,kÞ0

@Tpk
~S!~apak2a2p

† a2k
† !

1Tpk
~A!~a2p

† ak2a2k
† ap!#. ~32!

We have made use of the symmetries of the operators
defined the symmetricTpk

(S) and antisymmetricTpk
(A) matrices

that provide the interaction vertices as

Tkp
~S!5

1

4i FAvk

vp
2Avp

vk
GDkp ;
10500
r
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Tkp
~A!5

1

4i FAvk

vp
1Avp

vk
GDkp . ~33!

To use the path integral formulation we need the Lagra
ian, which to the order that we are working@O(v0 /M )# and
properly accounting for normal ordering, is given by

L@ ẋ̂0 ,a,a†#5
M

2
ẋ̂0

22 ẋ̂0F@a†,a#

2 (
kÞ0

vk~ak
†ak11/2!2 j ~ t !x̂02M . ~34!

The interaction of the collective coordinate and the m
sons is now clear. Only time derivatives of the collecti
coordinate couple, a consequence of the Goldstone char
of the collective coordinate. There are two processes
scribed by the interaction:~i! creation and destruction of two
mesons and~ii ! scattering of mesons. Whereas the first ty
can contribute with the mesons in their ground state,
second can only contribute if the meson states are occup
The two processes are depicted in Fig. 1. As it will beco
clear below, the second type of processes will lead to Lan
damping.

Since we have preferred to work in terms of the creat
and annihilation operators it is convenient to write the p
integral for the non-equilibrium generating functional in th
coherent state representation@13,44#.

Following the steps outlined in@13,44# we find the gen-
erating functional of non-equilibrium Green’s functions
the coherent state representation to be given by

Z@ j 1, j 2#5E Dx1E Dx2E D2g1E D2g2

3expH i E dt~L@ ẋ1,g* 1,g1, j 1#

2L@ ẋ2,g2,g* 2, j 2# !J ~35!

FIG. 1. The nonequilibrium one-loop contributions to the se
energy. The upper two contributions correspond to emissi
annihilation of two mesons. The lower two correspond to scatter
of in-medium mesons and are responsible for Landau damping
3-5
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with the Lagrangian density defined on each branch given

L@ ẋ6,g6,g* 6, j 6#

5
M

2
~ ẋ6!21 (

kÞ0
F igk*

6
dgk

6

dt
2vkg* 6

gk
6

1gk
6 j k*

61gk*
6 j k

6G ẋ6F@g* 6,g6#2 j ~ t !x6

~36!

and with proper boundary conditions on the fields that refl
the factorized initial condition with the mesons in therm
equilibrium. The signs6 in the above expressions corr
spond to the fields and sources on the forward~1! and back-
ward ~2! branches. The contribution from the branch alo
the imaginary time is cancelled by the normalization fact
This is the non-equilibrium generalization of the cohere
state path integrals~see details in Appendix A!. Non-
equilibrium Green’s functions are now obtained as functio
derivatives with respect to the sourcesj 6. There are 4 types
of free meson propagators@35–42#:

^ak
†1~ t !ap

1~ t8!&5dk,pe2 ivk~ t82t !@u~ t82t !1nk#

^ak
1~t!ap

†1~t8!&5dk,peivk~ t82t !@u~ t2t8!1nk#

^ak
†~6 !~ t !ap

†~6 !~ t8!&50

^ak
~6 !~ t !ap

~6 !~ t8!&50

^ak
†1~t!ap

2~t8!&5dk,pe2 ivk~ t82t !@11nk#

^ak
1~t!ap

†2~t8!&5dk,peivk~ t82t !nk , ~37!

wherenk is Bose Einstein distribution for mesons of qua
tum numberk and ^ & refer to averages in the initial densit
matrix. The11 ~22! propagators correspond to the tim
ordered~anti-time-ordered!, whereas the67 are the Wight-
man functions.

An important point to notice is that

^F@a†,a#&50 ~38!

in the non-interacting case, since it is proportional
(kDk,2k50.

A. The equation of motion for the collective coordinate

The equation of motion of the expectation value of t
collective coordinate for the kink̂x̂0&5q(t), can be derived
by expandingx6(t)5q(t)1j6(t) and requiring ^j6(t)&
50 to all orders in perturbation theory@46#. Imposing the
condition ^j1(t8)&50, treating the interaction term up t
second order in perturbation theory and using Eq.~38!, we
obtain the following linearized equation of motion:
10500
y

t
l

.
t

l

E
2`

`

dt8^j1~ t !j̇1~ t8!&F H Mq̇~ t8!

1E
2`

t

dt9Gm~ t82t9!q̇~ t9!J
1^j1~ t !j1~ t8!& j ~ t8!G50, ~39!

where the retarded kernel is given by

2 iGm~ t2t8!u~ t2t8!

5^F@a†1~ t !,a1~ t !#F@a†1~ t8!,a1~ t8!#&

2^F@a†1~ t !,a1~ t !#F@a†2~ t8!.a2~ t8!#&.

~40!

Since we restrict ourselves to non-relativistic kinks w
considerq̇!1. The non-equilibrium Feynman diagrams th
contribute to one loop order~second order! are shown in Fig.
1.

Alternatively this equation of motion may be obtained
computing the influence functional@29–34# in second order
perturbation theory. The resulting influence functional
quadratic in the collective coordinate, performing the sh
x6(t)5q(t)1j6(t) the above equation of motion is ob
tained by requesting that the linear terms inj6 vanish~there
are two linear terms, both give the same equation of motio!.

The kernelGm(t2t8) is found by using Eq.~40! and Eq.
~38! and it is given by

Gm~ t2t8!524 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~112np!

3sin@~vp1vk!~ t2t8!#22Tpk
~A!T2p2k

~A! np

3sin@~vp2vk!~ t2t8!#%. ~41!

Performing the integral overt8 in Eq. ~39! by parts, we
obtain the final form of the equation of motion

Mq̈~ t !1E
2`

t

dt8Sm~ t2t8!q̇~ t8!5 j ~ t !, ~42!

where the non-local kernel is given by

Sm~ t2t8!5
]Gm~ t2t8!

]t
52

]Gm~ t2t8!

]t8
. ~43!

Using Eq.~41! we find the final expression for the kern
Sm :

Sm~ t2t8!524 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~112np!~vp1vk!

3cos@~vp1vk!~ t2t8!#

22Tpk
~A!T2p2k

~A! np~vp2vk!

3cos@~vp2vk!~ t2t8!#%. ~44!
3-6
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We will see in the next sections that the two kernelsSm ; Gm
have very special significance: whereasSm is identified with
the real-time retarded self-energy of the collective coor
nate,Gm will provide the coefficient ofdynamical frictionin
the Markovian approximation.

It is more convenient to express the equation of motion
the kink in terms of the velocity

MV̇~ t !1E
2`

t

dt8Sm~ t2t8!V~ t8!5 j ~ t ! ~45!

with Sm given by Eq.~44!.
The relation~44!, ensures to this order in the perturbati

expansion, that with an adiabatic switching on converge
factor introduced to regularize the lower limit of the integr
and to provide an initial factorization of the density matrix
t i→2` the total integral of the retarded self-energy kern
vanishes, i.e,

E
2`

t

Sm~ t2t8!dt850. ~46!

This result is consistent with that found in Refs.@14,15#.
Therefore forj 50, any constant velocity of the kink is

solution of the equation of motion~45!. This result is physi-
cally clear: whenj 50, the total Hamiltonian commutes wit
P, the canonical momentum conjugate tox̂0 because of trans
lational invariance, i.e. the total momentum of the system
conserved. One can then go to a frame in whichP50 and
since the meson bath is in equilibrium this must result in t
the domain wall must have a constant velocity, therefore
j 50 there must be a constant velocity solution to the eq
tions of motion of the collective coordinate resulting in E
~46!.

B. General properties of the solution

Since in the absence of an external driving term we h
found that the domain wall moves with constant velocity,
can now use the external source term to cast the evolutio
an initial value problem. For this consider the situation
which at timet50 a force is applied, therefore changing t
velocity of the domain wall. Assuming that fort,0 the kink
traveled with a constant velocityv0 , after switching on the
external force the domain wall will accelerate, but it will als
transfer energy and excite the meson degrees of freedom
this will lead to dissipative processes. Therefore writi
V(t)5v01v(t) with j (t,0)50; j (t.0)Þ0 and using the
property~46! the equation of motion for the velocity chang
becomes

M v̇~ t !1E
0

t

dt8Sm~ t2t8!v~ t8!5 j ~ t !. ~47!

The solution of this equation is found by Laplace tran
form, in terms ofṽ(s); S̃m(s); J̃(s), the Laplace transforms
of the velocity, self-energy kernel and current respective
in terms of the Laplace variables. We find that the solution
is given by
10500
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ṽ~s!5
v01@ J̃~s!/M #

s1
1

M
S̃m~s!

, ~48!

and consistently with the linearized equation of motion a
the non-relativistic dynamicsv(t); v0!1. The quantity

G~s!5
1

s1
1

M
S̃m~s!

~49!

is the Laplace transform of the propagator of the velocity
the collective coordinate. The real time evolution is found
the inverse Laplace transform

v~ t !5
1

2p i EC
estṽ~s!ds ~50!

whereC refers to the Bromwich contour running along th
imaginary axis to the right of all the singularities ofṽ(s) in
the complexs plane. Therefore we need to understand
analytic structure ofG(s) in Eq. ~48! to obtain the real time
dynamics. The Laplace transform of the self-energy kerne
conveniently written as a dispersion relation in the form

S̃m~s!5sG̃m~s! ~51!

G̃m~s!5E r~p0!

s21p0
2 dp0 ~52!

r~p0!524 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~112np!

3d~p02vp2vk!2Tpk
~A!T2p2k

~A! ~np2nk!

3d~p02vp1vk!%, ~53!

whereG̃m(s) is the Laplace transform of the kernelG̃m given
above.

This dispersive form for the Laplace transform of the ke
nel reveals thatG̃m(s) has a discontinuity in the comple
s-plane along the imaginary axis, since

G̃mI~s5 iv106!57
p sgn~v!

2uvu @r~ uvu!2r~2uvu!#.

~54!

The imaginary part changes sign withv as a result of the
retarded nature of the kernel. Therefore the propagatorG(s)
has cuts along the imaginary axis in the complex s-pla
The two different contributions to the spectral density~53!
yield to two different cut structures. Forv.0, the first term,
proportional tod(v2vp2vk) gives a two-meson cut begin
ning at 2v0 corresponding to the process of spontaneous
induced two-meson creation and annihilation. The sec
contribution corresponding tod(v2vp1vk) gives a cut,
which we identify as the Landau damping cut@47,46#, pinch-
ing the origin and originates in the process of scattering
3-7
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mesons present in the medium off the domain wall. As it w
be seen in detail for the examples in the next section
discontinuity vanishes linearly asv→0 allowing an analytic
continuation into the second Riemann sheet and to isolate
pole. This linear vanishing of the self energy is consist
with the case studied by@14,15#. This process is present onl
for finite temperature as there must be mesons presen
this process to exist. This contribution is identified as Land
damping from the in medium mesons and will be seen
provide the leading contribution to the long time relaxatio

The presence of a static friction coefficient will be r
vealed by a pole inG(s) with a negative real part, since th
will translate into an exponential relaxation of the velocit

In the absence of interactionsG(s) has a simple pole a
s50. Since we obtained the expression for the kernels
perturbation theory the position of a pole must be found i
consistent perturbative expansion by writingsp5(1/M )s1
1¯ , we find

sp52
1

M
S̃m~s50![0. ~55!

Therefore the coefficient of static friction vanishes. This i
consequence of the vanishing of the integral~46!. Therefore
up to this order in perturbation theory the position of the p
in the s-variable remains ats50 resulting in that the static
friction coefficient vanishes.

In summary, the analytic structure ofG(s) in the complex
s-plane corresponds to a pole ats50 with residue

Zs5
1

11
1

M
G̃m~0!

~56!

and cuts along the imaginary axis beginning at62iv0 ; 6 i e
with e→0 to clarify that the beginning of this cut pinches th
pole at the origin but the continuum contribution to the sp
tral density ~discontinuity! vanishes at the position of th
pole ats50.

The residueZs has a very clear interpretation, it is th
‘‘wave function renormalization’’ and its effect can be u
derstood in two alternative manners.

Consider the case in whichJ̃50 in Eq. ~48!. Performing
the inverse Laplace transform and invoking the Riema
Lebesgue lemma, the long time behavior will be complet
dominated by the pole ats50. Therefore, if the velocity of
the kink has been changed att50 by some external source
this disturbance will relax in time to an asymptotic val
given by

v`5Zsv0 . ~57!

Alternatively, consider the case ofv050 but with an ex-
ternal source term switched on att50 and constant in time
thereafter. Again the inverse Laplace transform at long ti
will be dominated by the pole, and we find that the ki
moves with constant acceleration given by
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e

v̇5
̃

Meff
with Meff5

M

Zs
. ~58!

Thus the wave function renormalization can also be und
stood as a renormalization of the kink mass. The ratio of
asymptotic acceleration to the initial acceleration is given
Zs . As the kink moves, the interaction with the meson ba
‘‘dress’’ it changing its effective mass, which will be seen
specific models to be larger than the bare mass.

Furthermore we can now derive the following importa
sum rule. Consider the casej [0. Isolating the contribution
from the pole and the cuts@by replacingd(p02vp1vk)
→d(p02vp1vk2e) and taking the limite→0 at the end
of the computation# separating the pole and continuum co
tributions, and deforming the contour of integration for t
inverse Laplace transform as shown in Fig. 2 we find
time evolution~for j 50! to be given by

v~ t !

v0

5Zs1
2

pM
E

e

` dv

v

@2G̃Im~v!#cos~vt !

F11
G̃Rm~v!

M
G 2

1F G̃Im~v!

M
G 2 .

~59!

Evaluating att50 we obtain the sum rule

Zs1
2

pM
E

e

` dv

v

@2G̃Im~v!#

F11
G̃Rm~v!

M
G 2

1F G̃Im~v!

M
G 2 51.

~60!

Since the spectral densityr~v! is positive~semi!definite as it
will be explicitly shown below for specific models, the su
rule above determines that

Zs,1⇒ v`

v0
,1. ~61!

Although a sum rule similar to Eq.~60! is obtained in
quantum field theory from the canonical commutation re
tions, its validity for the collective coordinate associated w

FIG. 2. Contour in the complex s-plane for inverse Lapla
transform.
3-8
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the domain wall is far from obvious since the kinematic a
canonical momentum conjugate to the collective coordin
are different.

The continuum contribution in Eq.~59! is dominated at
long times by the smallv region. Therefore forTÞ0 the
asymptotic long time relaxation of the velocity is complete
determined by the Landau damping cut which has suppo
small v, whereas the two-meson cut vanishes below
threshold at 2v0 .

A further understanding of the dynamics will necessar
require knowledge of the matrix elements to establish
details of the kernels. This will be studied in particular mo
els in the next section.

C. Semiclassical Langevin equation

The classical Langevin equation is an adequate phen
enological description of Brownian motion obtained by co
sidering the dynamics of one~or few! degrees of freedom
that interact with a bath in equilibrium.

It contains a term proportional to the velocity of the pa
ticle which incorporates friction and dissipation and a s
chastic term which reflects the random interaction of the h
bath with the particle. These two terms are related by
classical fluctuation-dissipation relation which is derived
Appendix C@see Eq.~C6!#.

At the quantum mechanical level it is also possible
obtain a ‘‘reduced’’ or coarse grained description of the d
namics of one~or few! degrees of freedom in interactio
with a bath. The coarse graining procedure has a very pre
meaning: the full time dependent density matrix is trac
over the bath degrees of freedom yielding an effective
‘‘reduced’’ density matrix for the degrees of freedom who
dynamics is studied.

Such a description of non-equilibrium dynamics of
quantum mechanical particle coupled to a dissipative e
ronment by a Langevin equation was presented by Cald
and Leggett@30# and by Schmid@31#. Their technique is
based on the influence-functional method of Feynman
Vernon@29# that naturally leads to a semiclassical Lange
equation.

In this section we follow the procedure of@30–34# gen-
eralized to our case to derive the Langevin equation for ki
in a heat bath to lowest order in the adiabatic~weak! cou-
pling.

The main step is to perform the path integrals over
meson degrees of freedom, thus obtaining an effective fu
tional for the collective coordinate of the kink. Unlike th
most usually studied cases of a particle linearly coupled to
harmonic reservoir@30–34# we have here a bilinear couplin
to the mesons. Therefore the influence functional canno
obtained exactly, but it can be obtained in a consistent p
turbative expansion. For this we treat the interaction te
LI@ ẋ6,g6,g* 6# in perturbation theory up to second order
the vertex proportional toẋ6 ~which is equivalent to lowes
order in the adiabatic couplingm/M !. Integrating over the
meson variables and using^F@a†,a#&50, we obtain
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Z@ j 1, j 250#5E Dx1Dx2ei *2`
` dt8~L0@ ẋ1#2L0@ ẋ2# !

3F@ ẋ1,ẋ2#, ~62!

where

L0@ ẋ6#5
1

2
M ~ ẋ6!22 jx6 ~63!

andF@ ẋ1,ẋ2# is the influence functional@29–34#. To lowest
adiabatic order we find

F@ ẋ1,ẋ2#5expH 2
1

2 E dt dt8@ ẋ1~ t !G11~ t,t8!ẋ1~ t8!

1 ẋ2~ t !G22~ t,t8!ẋ2~ t8!

1 ẋ1~ t !G12~ t,t8!ẋ2~ t8!

1 ẋ2~ t !G21~ t,t8!ẋ1~ t8!#J ~64!

in terms of the real-time meson correlation functions@see
Appendix ~B!#

G11~ t,t8!5^F@a†1~ t !,a1~ t !#F@a†1~ t8!,a1~ t8!#&

G22~ t,t8!5^F@a†2~ t !,a2~ t !#F@a†2~ t8!,a2~ t8!#&

G12~ t,t8!52^F@a†1~ t !,a1~ t !#F@a†2~ t8!,a2~ t8!#&

G21~ t,t8!52^F@a†2~ t !,a2~ t !#F@a†1~ t8!,a1~ t8!#&.
~65!

At this stage it is convenient to introduce the center
mass and relative coordinates,x and R respectively, which
are defined as

x~ t !5
1

2
@x1~ t !1x2~ t !#, R~ t !5x1~ t !2x2~ t !. ~66!

These are recognized as the coordinates used in the Wi
transform of the density matrix@30–34# in terms of which
the partition function becomes

Z@0#5E DxDReiS@x,R# ~67!

with the non-equilibrium effective action given by

S@x,R#5E dtR~ t !F2Mẍ~ t !2
i

2 E dt8@K1~ t2t8!ẋ~ t8!

2K~ t2t8!R~ t8!#G ~68!

in terms of the kernelsK1(t2t8) and K(t2t8) which are
given by ~see Appendix B!
3-9
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K1~ t2t8!58iu~ t2t8! (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~11np1nk!~vp1vk!cos@~vp1vk!~ t2t8!#

2Tpk
~A!T2p2k

~A! ~np2nk!~vp2vk!cos@~vp2vk!~ t2t8!#%

522iSm~ t2t8! ~69!

and

K~ t2t8!522 (
p,kÞ0

$Tpk
~S!T2p2k

~S! ~11np1nk1npnk!~vp1vk!
2 cos@~vp1vk!~ t2t8!#

12Tpk
~A!T2p2k

~A! nk~11np!~vp2vk!
2cos@~vp2vk!~ t2t8!#%. ~70!

At this stage it proves convenient to introduce the identity

e2~1/2!*dtdt8R~ t !K~ t2t8!R~ t8!5C~ t !E Dje2~1/2!*dtdt8j~ t !K21~ t2t8!j~ t8!1 i *dtj~ t !R~ t ! ~71!

with C(t) being an inessential normalization factor, to cast the non-equilibrium effective action of the collective coordi
terms of a stochastic noise variable with a definite probability distribution@31–34#:

Z@0#5E DxDRDjP@j#expH i E dtR~ t !F2Mẍ~ t !2
i

2 E dt8K1~ t2t8!ẋ~ t8!1j~ t !G J , ~72!
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where the probability distribution of the stochastic nois
P@j#, is given by

P@j#5E Dj expH 2
1

2 E dtdt8j~ t !K21~ t2t8!j~ t8!J .

~73!

In this approximation we find that the noise is Gaussi
additive and with correlation function given by

^j~ t !j~ t8!&5K~ t2t8!. ~74!

The semiclassical Langevin equation is obtained by
tremizing the effective action in Eq.~72! with respect toR(t)
@30–34#

Mẍ~ t !1E
2`

t

dt8Sm~ t2t8!ẋ~ t8!2 j ~ t !5j~ t !. ~75!

Two features of the semiclassical Langevin equation
serve comment. The first is that the kernelK1(t2t8), as can
be seen from Eq.~69!, is non-Markovian. The second is th
the noise correlation functionK(t2t8) is colored, i.e., it is
not a delta functiond(t2t8). The relationship between th
kernelsK1(t2t8) and K(t2t8) established in Appendix C
constitutes a generalized quantum fluctuation dissipation
lation @30–34# @see Eq.~C6!#. Finally we recognize that tak
ing the average of Eq.~75! with the noise probability distri-
butionP@j# yields the equation of motion for the expectatio
value of the collective coordinate@Eq. ~45!#.

A classical description is expected to emerge when
occupation distribution for the mesons can be approxima
by their classical counterparts@30#, i.e. whennk'T/vk .
10500
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If the kernelsSm and K admit a Markovian limit then a
diffusion coefficient could be extracted by computing t
long time limit of the correlation function ^^@x(t)
2x(0)#2&&/t where ^^ && stand for average over the nois
distribution function. However, when the kernels do not b
come Markovian, such a definition is not appropriate.

This summarizes the general formulation of the desc
tion of the dynamics of the collective coordinate both at t
level of the evolution equation for the expectation value
well as for the effective Langevin dynamics in terms of s
chastic noise terms arising from the fluctuations in the me
bath. We are now in condition to study specific models.

IV. TWO MODELS

In the previous sections we established the general asp
of the real-time dynamics of kinks in the presence of t
meson bath, obtaining the equation of motion as well as
Langevin equation for the collective coordinate in lowe
adiabatic order. Further progress in the understanding of
dynamics necessarily involves the details of particular m
els which determine the matrix elementsT(A,S) and therefore
the time dependence of the kernels involved. In this sec
we study these details for the sine-Gordon andf4 models.

A. Sine-Gordon

For the sine-Gordon model the potential is given by

U~f!5
m2

l
~12cos@Alf#! ~76!

and the static kink solution is given by@17,16,26#
3-10
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fs~x!5
4

Al
arctan@emx# ~77!

the kink mass and the adiabatic ratio are given by

M5
8m

l
;

m

M
5

l

8
. ~78!

The normal modes of this theory are the solutions of
following equation@see Eq.~6!#:

F2
d2

dx2 1m22
2m2

cosh2~mx!Gcn~x!5vn
2cn~x!. ~79!

The solutions of the above differential equation are w
known @45,17,26#. There is only one bound state with ze
eigenvalue, the zero mode, followed by a continuum w
wave functions given by

Uk~x!5
1

A2pvk

@2 ik1m tanh~mx!#eikx ~80!

with vk
25k21m2, i.e. v05m. The scattering states repre

sent the meson excitations around the kink@18#.
The matrix elementsDpk were already calculated by d

Vega @26# @see Eqs.~29!,~16!# and are given by

Dkp5 ipd~k1p!1
i ~p22k2!

4vkvpsinhFp2 ~p1k!

m G for pÞk,

~81!
10500
e

ll

which determine the symmetric and antisymmetric mat
elements

Tpq
~S!5

1

4 F S vp

vq
D 1/2

2S vq

vp
D 1/2G H ~q22p2!

4vqvpsinhFp2 ~q1p!

m G J
Tpq

~A!5
1

4 F S vp

vq
D 1/2

1S vq

vp
D 1/2G H ~q22p2!

4vqvpsinhFp2 ~q1p!

m G J .

~82!

Since in this theory there are no bound states other t
the zero mode,F@a†,a# is given only by the first two terms
in Eq. ~B6!. We recognize the ‘‘structure factor’’

S~Q!5E
2`

` dx

2p
eiQx

2m2

cosh2@mx#
5

Q

sinhFQp

2mG . ~83!

This structure factor will play an important role in unde
standing the large energy behavior of the one-loop contri
tion. The important point to notice is that the structure fac
is dominated by momentaQ'm, falling off exponentially
for uQu@m.

Substituting Eq.~82! in Eqs.~41! and Eq.~44!, we obtain
the final form of the kernels in this case
is of the
mit in a

f the
Gm~ t2t8!5
1

43 E
2`

`

dQuS~Q!u2E
2`

`

dk
~Q22k!2

vQ2k
3 vk

3 $~112nk!~vQ2k2vk!
2sin@~vQ2k1vk!~ t2t8!#

2~nQ2k2nk!~vQ2k1vk!
2sin@~vQ2k2vk!~ t2t8!#% ~84!

Sm~ t2t8!5
1

43 E
2`

`

dQuS~Q!u2QE
2`

`

dk
~Q22k!3

vQ2k
3 vk

3 $~11nQ2k1nk!~vQ2k2vk!cos@~vQ2k1vk!~ t2t8!#

2~nQ2k2nk!~vQ2k1vk!cos@~vQ2k2vk!~ t2t8!#%. ~85!

The introduction ofS(Q) clarifies thatQ is the momentum transferred into the meson loop, and becauseS(Q) is peaked at
Q50 with a width of the order of the meson mass we conclude that the momentum transferred into the meson loop
order of the meson mass. This observation will prove to be very important in the analysis of the high temperature li
later section.

It proves useful to expressGm(t2t8) andSm(t2t8) in terms of dimensionless quantities to display at once the nature o
adiabatic expansion. To achieve this let us make the following change of variables

Q→
Q

m
; k→

k

m
; t5mt and T5

T

m
. ~86!

ThenGm(t2t8) andSm(t2t8) can be written as

Gm~ t2t8!5m2G~t2t8! and Sm~ t2t8!5m3S~t2t8!, ~87!

where
3-11
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G~t!5E
2`

`

dQdkuS~Q!u2$G1~Q,k!sin@~wQ2k1wk!~t!#1G2~Q,k!sin@~wQ2k2wk!~t!#% ~88!

S~t!5E
2`

`

dQdkuS~Q!u2$S1~Q,k!cos@~wQ2k1wk!~t!#1S2~Q,k!cos@~wQ2k2vk!~t!#% ~89!
-

o-

h

ncy.
er
-
the
with

G1~Q,k!5
1

64

~112nk!~Q22k!2~wQ2k2wk!
2

wQ2k
3 wk

3

G2~Q,k!5
1

32

nk~Q22k!2~wQ2k1wk!
2

wQ2k
3 wk

3

S1~Q,k!5~wQ2k1wk!G1~Q,k!

S2~Q,k!5~wQ2k2wk!G2~Q,k!

wk
25k211; nk5

1

ewk /T21
. ~90!

Figure 3 shows the numerical evaluation ofG~t! andS~t!
vs. t for different values ofT. We clearly see that the self
energy kernelS is peaked neart50 and localized within a
10500
time scalets'm21. Similarly, the kernelG varies slowly
over a large time scale'5210m21.

1. Equation of motion: Exact solution vs Markovian
approximation

In terms of dimensionless quantities the equation of m
tion ~45! becomes in this case

v̇~t!1
l

8 E
0

t

dt8S~t2t8!v~t8!5J, ~91!

where J5 j /(mM) and the dot stands for derivative wit
respect to the dimensionless variablet.

As shown in Fig. 3, the kernelS~t! has ‘‘memory’’ on
time scales a few times the inverse of the meson freque
If the velocity of the domain wall varies on time scales larg
than the ‘‘memory’’ of the kernel a Markovian approxima
tion to the dynamics may be reasonable. The first step in
FIG. 3. The functionsG~t! and
S~t! for temperaturesT50, 1.0,
5.0 and 10.0 for sine-Gordon
theory.
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FIG. 4. Numerical evaluation of the velocity of the kinkv(t)/v0 for j 50 for temperaturesT50, 1.0, 5.0 and 10.0 in sine-Gordon theor
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Markovian approximation corresponds to replacingv(t8) by
v(t) inside the integral in Eq.~91! and taking it outside the
integral. A second stage of approximation would take
upper limit of the integral tò thus integrating the peak o
the kernel. However, we have shown above that the t
integral of the kernel vanishes, thus this second stage ca
be invoked. Recognizing that*0

tS(t2t8)dt85G(t) the
Markovian approximation to Eq.~91! is given by

v̇~t!1
l

8
v~t!G~t!5J. ~92!

As advanced in the previous section, we now identify
kernelG~t! as the dynamical friction coefficient in the Ma
kovian approximation. The property~46! determines that
G(t→`)50.

TABLE I. Numerical evaluation ofZs and v` /v0 in sine-
Gordon theory form/M50.1,0.25.

v` /v0 Zs

m/M50.1 m/M50.25 m/M50.1 m/M50.25

Zero Temp. 0.999808 0.999521 0.999808 0.99952
Temp. 1.0 0.993438 0.983754 0.993438 0.98375
Temp. 5.0 0.96055 0.906885 0.96055 0.90687
Temp. 10.0 0.923458 0.828352 0.923446 0.82830
10500
e

al
ot

e

We will now focus on the initial value problem withJ
50 andv(t50)5v0 . The formal solution of the equation
of motion in the Markovian approximation is given by

v~t!5v0e2~l/8!*0
tG~t8!dt8. ~93!

Even in the Markovian approximation the relaxation of t
velocity at long times is not exponential becauseG(t)→0 at
long times as can be seen in Fig. 3.

2. Velocity relaxation and wave function renormalization

In order to display more clearly the dissipative effects,
now study the relaxation of the kink velocity. For this co
sider the initial value problem withj (t.0)50 and initial
velocity v(t50)5v0 .

As the kink moves through the bath, its velocity decrea
because of the interaction with the mesons, the asympt
final velocity is related to the initial velocity through th
wave function renormalization as explained Sec. III B abo
We present the numerical solution of the homogeneous e
tion for v(t)/v0 in Fig. 4, where we also present the hom
geneous solution in the Markovian approximation describ
above. We clearly see that the initial velocity relaxes to
asymptotic valuev` /v0 . However, the time dependenc
cannot be fit with an exponential. We can see that even
high temperatures the Markovian approximation grossly fa
to describe the dynamics.
3-13



-

S. M. ALAMOUDI, D. BOYANOVSKY, AND F. I. TAKAKURA PHYSICAL REVIEW D 58 105003
FIG. 5. The correlation func-
tion K~t! for temperaturesT50,
1.0, 5.0 and 10.0 in the sine
Gordon theory.
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According to the analysis of the general solution, the ra
v` /v0 should be given by the wave function renormaliz
tion, i.e.,

Zs5
1

11
m

M
G̃~s50!

5
v`

v0
. ~94!

Table I below compares the ratiov` /v0 obtained from
the numerical solution to the exact evolution equation, w
the value of the wave-function renormalization. Clearly t
agreement is excellent, confirming the analysis of
asymptotic behavior of the solution in real time.

3. Kernels for the semiclassical Langevin equation

Knowledge of the matrix elementsT(A),T(S) allow us to
obtain the final form of the kernels that enter in the semicl
sical Langevin equation given by Eqs.~69! and~70!, and Eq.
~82!. These kernels can be written in terms of the dimensi
less quantities given by Eq.~86!. Since K1(t2t8)
522iSm(t2t8) we focus onK(t2t8). In term of dimen-
sionless quantities,K(t)5m4K(t) where

K~t!5E
2`

`

dQdkQ2uS~Q!u2

3$C1~Q,k!cos@~wQ2k1wk!~t!#

1C2~Q,k!cos@~wQ2k2wk!~t!#%. ~95!

with

C1~Q,k!5
2

44

~11nQ2k1nk1nQ2knk!~Q22k!4

wQ2k
3 wk

3 ,

~96!

C2~Q,k!5
1

43

nk~11nQ2k!~Q22k!4

wQ2k
3 wk

3 . ~97!

The contribution fromC1 is recognized to arise from th
process of emission and annihilation~spontaneous and in
duced! of two mesons, whereas that fromC2 arises from the
10500
o
-

h

e

-

-

scattering off in medium mesons and has its origin in
Landau damping diagram shown in Fig. 1.

Figure 5 showsK~t! for different temperaturesT. Notice
that at large temperatures the kernel becomes stro
peaked att50 and one would be tempted to conclude th
the classical limit corresponds to a delta function. Howe
the coefficients~96!,~97! are such that the total integral int
~leading to delta functions of sums and differences of f
quencies! vanishes. We then conclude that even in the h
temperature limit the noise-noise correlation function is no
delta function, i.e., the noise is ‘‘colored,’’ the classical flu
tuation dissipation relation in terms of a delta function no
correlation does not emerge and a diffusion coefficient c
not be appropriately defined. We postpone until a later s
tion a discussion of the high temperature limit and the cl
sical regime.

B. Theory

In this model the potential is given by

U~g,f!5
m2

2l
~12lf2!2, ~98!

the static kink solution is given by

fs~x2x0!5
1

Al
tanh@m~x2x0!#, ~99!

and the kink mass is given by

M5
4m

3l
~100!

and the normal modes are the solutions to the equation@see
Eq. ~6!#

F2
d2

dx2 14m22
6m2

cosh2~mx!Gcn~x!5vn
2cn~x!. ~101!

The solution of the above differential equation is well know
@45,17#. It has two bound states followed by a continuu
The normalized eigenvectors are given by
3-14
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U0~x!5
A3m

2
sech2@m,x#}

dfs

dx
with v050

Ub~x!5
A3m

2
sech@m,x#tanh@m,x# with vb

253m2

Uk~x!5
m2eikx

A2p~k21m2!vk
H 3 tanh2@mx#

23i
k

m
tanh@mx#212

k2

m2J ~102!

with vk
25k214m2. The scattering states are identified wi

meson modes and the meson frequency is identified w
v052m.

The bound state with zero frequency is the ‘‘zero mode
whereas the bound state withvb

253m2 corresponds to an
amplitude distortion@18,16# or excited state of the kink.

The matrix elementsDpk are given by@see Eqs.~29!,~16!#
10500
th

’

Dbk5
A3p

8

sechF pk

2mG
m3/2vk

Ak21m2~k213m2!

~ from the bound state!

Dpk5 ikd~p1k!1
3ip~k22p2!~p21k214m2!

4m4NpNksinhFp2 ~p1k!

m G
for pÞk, ~103!

whereNk is defined as

Nk5A2pvk
2~k21m2!

m4 . ~104!

We notice that the coupling to the continuum through t
bound state given by the matrix elementDbk is of the same
order as the coupling to the continuum-continuum~matrix
elementsDpk!. This will have interesting consequences f
the dissipational dynamics. The symmetric and antisymm
ric matrix elements for the continuum states are given by
tinuum
Tpq
~S!5

3

32 F S vp

vq
D 1/2

2S vq

vp
D 1/2G H ~q22p2!~p21q214m2!

Aq21m2Ap21m2vqvpsinhFp2 ~q1p!

m GJ
Tpq

~A!5
3

32 F S vp

vq
D 1/2

1S vq

vp
D 1/2G H ~q22p2!~p21q214m2!

Aq21m2Ap21m2vqvpsinhFp2 ~q1p!

m GJ , ~105!

whereas those involving the bound state are obtained by replacing the matrix elementsDbk for the Dpk .
Since in this model there is one bound state other than the zero mode, the interaction vertexF@a†,a# is given by Eq.~B6!

in the appendix. The contributions from bound-state-continuum virtual transitions do not mix with the continuum-con
to this order in the adiabatic expansion. As a consequence of this simplification the dimensionless kernels@in terms of the
dimensionless variables introduced in Eq.~86!# become

G~t!5E
2`

`

dp$G1
b~p!sin@~wp1wb!~t!#1G2

b~p!sin@~wp2wb!~t!#%1E
2`

`

dQuS~Q!u2dk$G1~Q,k!sin@~wQ2k1wk!~t!#

1G2~Q,k!sin@~wQ2k2wk!~t!#%

S~t!5E
2`

`

dp$S1
b~p!cos@~wp1wb!~t!#1S2

b~p!cos@~wp2wb!~t!#%1E
2`

`

dQuS~Q!u2dk$S1~Q,k!cos@~wQ2k1wk!~t!#

1S2~Q,k!cos@~wQ2k2wk!~t!#% ~106!

with
3-15
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G1~Q,k![
32

44

~11nQ2k1nk!~Q22k!2~wQ2k2wk!
2@~Q2k!21k214#2

wQ2k
3 wk

3@~Q2k!211#~k211!

G2~Q,k![
32

44

~nk2nQ2k!~Q22k!2~wQ2k1wk!
2@~Q2k!21k214#2

wQ2k
3 wk

3@~Q2k!211#~k211!

G1
b~p![

p)

128

~p414p213!2~wp2wb!~11nb1np!

wp
3~wp1wb!

sech2Fpp

2 G
G2

b~p![
p)

128

~p414p213!2~wp1wb!~nb2np!

wp
3~wp2wb!

sech2Fpp

2 G
S1~Q,k![~wQ2k1wk!G1~Q,k!; S2~Q,k!5~wQ2k2wk!G2~Q,k!

S1
b~p![~wp1wb!G1

b~p!; S2
b~p!5~wp2wb!G2

b~p!

wk
25k214, ~107!
-
io
on
h
ve
th

la
io
th

ri
th
n
a

ha
re
te

ec

ly
e
y

e-
a

-

ed

ith
ns.

oc-
whereS~t! andG~t! are defined as in Eq.~87!. The functions
S~t! andG~t! where evaluated numerically at different tem
peraturesT, the results are displayed in Fig. 6. The behav
of these functions differ from those in the sine-Gord
theory because of the presence of the bound state whic
interpreted as an excited state of the kink. As the kink mo
in the dissipative medium, energy is transferred between
kink and the bound state resulting in the Rabi-like oscil
tions displayed in the figure. We notice that the contribut
of the bound state is of the same order of magnitude as
of the continuum.

1. Equation of motion: Exact solution vs Markovian
approximation

The solution to the equation of motion and the compa
son to the Markovian approximation proceeds just as in
the case of the sine-Gordon model. The equation of motio
again solved as an initial value problem. The exact and M
kovian solutions are displayed in Fig. 7.

The new feature of the solution are the oscillations t
result from virtual transitions to the bound state. We interp
these in the following manner: as the kink moves it exci
the bound state that corresponds to a kink distortion@18#, this
excitation in turn reacts-back in the dynamics of the coll
tive coordinate in a retarded manner.

While the exact solution in this model is qualitative
similar to that of the sine-Gordon model, we see howev
that quantitatively they are different: there is stronger d
namical dissipation in thef4 model as compared to the sin
Gordon case, due to the strong coupling to the bound st
continuum intermediate states.

2. Velocity relaxation and wave function renormalization

In this model the Laplace transform of the functionsG~t!
andS~t! are given by
10500
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S̃~s!5E
2`

`

dQuS~Q!u2dkH S1~Q,k!s

s21~wQ2k1wk!
2

1
S2~Q,k!s

s21~wQ2k2wk!
2J 1E

2`

`

dpH S1
b~p!s

s21~wp1wb!2

1
S2

b~p!s

s21~wp2wb!2J
S̃~s![sG̃~s!

G̃~s!5E
2`

`

dQuS~Q!u2dkH G1~Q,k!~wp1wk!

s21~wQ2k1wk!
2

1
G2~Q,k!~wp2wk!

s21~wQ2k2wk!
2 J 1E

2`

`

dpH G1
b~p!~wp1wb!

s21~wp1wb!2

1
G2

b~p!~wp2wb!

s21~wp2wb!2 J . ~108!

With the quantitiesSb; Gb given above. The homoge
neous equations of motion given by Eq.~91! ~exact! and its
Markovian approximation~92! both with j 50 are solved
with the kernelsS~t!; G~t! given above forv(t)/v0 . The
asymptotic behavior of the exact solution will be compar
with the prediction v` /v05Zs , with the wave function
renormalizationZs given by Eq.~94! but with the G̃(s50)
appropriate to thef4 model.

Figure 7 shows the numerical solutions of Eq.~91! and
Eq. ~92! with j 50 for @v(t)/v0# for temperaturesT50, 1.0,
5.0 and 10.0. Again the Rabi-like oscillations associated w
the excitation of the bound state is apparent in the solutio
We have checked numerically that asymptotically the vel
3-16
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FIG. 6. The functionsG~t! andS~t! for temperaturesT50, 1.0, 5.0 and 10.0 in thef4 theory. Contributions from bound and scatterin
states are displayed separately.
s

e
e

q.
ity tends to a constant valuev` but not exponentially. Table
II shows the values ofv` /v0 andZs for these temperature
for m/M50.1 and 0.25 wherev` /v0 was evaluated att
5200 for the exact solution. Within our numerical errors, w
can see that Eq.~94! is fulfilled.
10500
3. Kernels for the semiclassical Langevin equation

From the definition of the kernelsK1(t2t8) and K(t
2t8), Eqs.~69! and~70!, and Eq.~105!, these kernels can b
written in terms of the dimensionless quantities given by E
~86! as
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K1~t2t8!522iS~t2t8!, ~109!

whereS(t2t8) is given by Eq.~106! andK(t)5m4K(t) with

K~t!5E
2`

`

dp$C1
b~p!cos@~wp1wb!~t!#1C2

b~p!cos@~wp2wb!~t!#%1E
2`

`

dQuS~Q!u2E
2`

`

dk$C1~Q,k!

3cos@~wQ2k1wk!~t!#1C2~Q,k!cos@~wQ2k2wk!~t!#% ~110!

with the dimensionless matrix elements

C1~Q,k![
18

45

Q2~11nQ2k1nk1nQ2knk!~Q22k!4@~Q2k!21k214#2

wQ2k
3 wk

3@~Q2k!211#~k211!

C2~Q,k![
9

44

nkQ
2~11nQ2k!~Q22k!4@~Q2k!21k214#2

wQ2k
3 wk

3@~Q2k!211#~k211!

C1
b~p![

p)

44

~p414p213!2~p211!~11nb1np1nbnp!

wp
3cosh2Fpp

2 G
C2

b~p![
2p)

44

~p414p213!2~p211!np~11nb!

wp
3cosh2Fpp

2 G . ~111!

FIG. 7. Numerical evaluation of the velocity of the kinkv(t)/v0 for j 50 for temperaturesT50, 1.0, 5.0 and 10.0 inf4 theory.
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Figure 8 showsK~t! vs. t for temperaturesT50,1,5,10.
Again the oscillations are a consequence of the bound s
contribution, and as in the sine-Gordon case we find t
despite the fact that in the high temperature limit the ker
becomes very localized in time, the total integr
*2`

` dtK(t)50 preventing a representation of the nois
noise correlation function as a delta function in time even
the high temperature limit. The ‘‘color’’ in the noise-nois
correlation function is enhanced by the coupling to the c
tinuum via the bound state which is also responsible for
strong oscillatory behavior of the real-time correlation fun
tion.

V. HARD THERMAL LOOPS VS CLASSICAL LIMIT

The high temperature limit corresponds toT@m with m
the meson mass. However we are restricted to the dilute l
in which the treatment of isolated domain walls is meanin
ful. Because the kink density is suppressed by an Arrhen
activation factor@8#

nk'e2M /T, ~112!

the study of the high temperature limit for the dynamics
isolated domain walls requires that the temperature rang
such that

m!T!M'
m

l
. ~113!

For weak couplingl!1 there is a wide temperature range
which the high temperature and the dilute kink gas appro
mation will be reliable. In order to understand the high te
perature limit it is convenient to separate the loop integr
into the ‘‘soft part’’ in which both the integrated and tran
ferred momenta are ‘‘soft,’’ i.e.,k, Q!T and the ‘‘hard’’
part, in which the loop momentumk is O(T). Since the
structure factorS(Q) is strongly suppressed forQ@m, the
transferred momentumQ is always of order ofm!T hence it
is always ‘‘soft.’’ The ‘‘hard’’ k region with ‘‘soft’’ trans-
ferred momentum is the domain of validity of the har
thermal loop resummation programme of Braaten and Pi
ski @48#.

Then for the soft region of the remainingk integral, we
can replace the occupation factorsnk'T/vk . This soft re-
gion therefore gives the classical contribution to the kern
S, G. A simple WKB analysis of the continuum solutions fo
both cases considered, reveals that the matrix elementsDk,p
fall off as 'S(p1k)/k in the limit in which Q5k1p'm;
k→`. This simple analysis is confirmed by the exact expr
sion for the matrix elementsTk,p @see Eqs.~82!,~105!# which
in this limit (Q5k1p'm,k→`) behave asS(Q)/k. There-
fore in the meson loop, the matrix elements yield a contri
tion of O(1/k2) in the hard thermal loop limit, for which a
simple scaling analysis reveals a large temperature beha
of O(1/T). Hence we see that in the 111 dimensional case
the hard-thermal loop limit yields asubleadingcontribution
as compared to the classical contribution from the soft
10500
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l
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gion. This is a consequence of the small phase space a
able for the loop integrals in 111 space-time dimensions.

This analysis allows us to conclude that the high tempe
ture limit is dominated by the classical contribution with
lineal dependence on temperature in the regimeT@m. This
behavior is clearly displayed in Fig. 9 that shows the in
grals I 1 ; I 2 with

I 15E
2`

`

dk
~Q22k!3~vQ2k2vk!

vQ2k
3 vk

3 nk

I 25E
2`

`

dk
~Q22k!3~vQ2k1vk!

vQ2k
3 vk

3 nk ,

~114!

corresponding to the contributions fromS1 ; S2 to the self-
energy kernel att50 for sine-Gordon theory, with simila
results forf4. We clearly see that forT>2m the tempera-
ture dependence becomes lineal. Furthermore we have
merically checked that most of the contribution in this r
gime arises from the ‘‘soft’’ region of the loop momentu
k<m andQ<m.

Combined together the hard-thermal loop analysis and
numerical evidence lead us to conclude unambiguously
the high temperature limit of the self-energy kernel is dom
nated by the classical finite temperature contribution.

This analysis also holds for the noise-noise correlat
function~since the same matrix elements contribute to the!.
However for the noise-noise correlation function there is
extra factor of the Bose occupation factors in the integra
This results in one extra power of temperature in the ‘‘so
region while the temperature dependence from the ha
thermal loop region is mostly unaffected by the extra Bo
factor. Therefore we conclude that the self-energy kerne
O(m2T) and the noise-noise correlation function
O(m2T2) in the high temperature limit. This is in accor
with the classical fluctuation-dissipation theorem in whic
the noise-noise correlation function has an extra power
temperature compared with the dissipative contribution.

At long times the contribution from the two meson c
gives a rapidly oscillating contribution leading to a rapid fa
off of the time dependence. On the other hand, the contr
tion from the Landau damping cut gives the leading con
bution at long times because the discontinuity has suppo
very low frequencies and completely dominates long ti
behavior. Therefore we conclude that the long time, h
temperature behavior in the dilute kink limit is complete

TABLE II. Numerical evaluation ofZs andv` /v0 in f4 theory
for m/M50.1,0.25.

v` /v0 Zs

m/M50.1 m/M50.25 m/M50.1 m/M50.25

Zero Temp. 0.999225 0.998064 0.999176 0.99794
Temp. 1.0 0.961561 0.911004 0.96376 0.91407
Temp. 5.0 0.784934 0.593058 0.787734 0.59749
Temp. 10.0 0.642698 0.417231 0.646577 0.42256
3-19
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FIG. 8. The correlation func-
tion K~t! for temperaturesT50,
1.0, 5.0 and 10.0 in thef4 theory.
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dominated by classical finite temperature dynamics
dominated by the contribution from Landau damping.

VI. HIGHER ORDERS AND HIGHER DIMENSIONS

At two-loops and higher orders we expect that collisio
will provide a non vanishing static friction coefficient an
result in an exponential relaxation of the velocity in som
time regime. However, the contribution from these ter
will be of higher order in coupling (m/M ) and therefore
there will be a competition between the time scales ass
ated with lowest order relaxation via off-shell Landau dam
ing and the higher order collisional relaxation leading to
exponential fall-off. Therefore we anticipate several differe
relaxational regimes with wide separation of the time sca
for weak couplings and in the dilute regime.

In 311 dimensions for degenerate scalar potentials
situation is clearly more complicated. The zero mode fr
translation invariance now gives rise to two-dimensio
massless degree of freedom corresponding to small local
tortions perpendicular to the~planar! wall. These are the cap
illary waves fluctuations of the interface that will domina
the long-wavelength small frequency dynamics. We exp
to report on further studies of higher order collisional rela
ation as well as new phenomena in 311 dimensions in the
near future.
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VII. CONCLUSIONS AND FURTHER QUESTIONS

We have studied the non-equilibrium dynamics of dom
walls in 111 dimensional scalar field theories at finite tem
perature in the dilute regime. We obtained the real ti
equations of motion for the expectation value of the colle

FIG. 9. IntegralsI 1 ,I 2 corresponding to the contributions from
S1 ,S2 to the self-energy kernel att50 vs T in the sine-Gordon
theory.
3-20



-
ca
x

al
lf-
e

he
tw
d
o

ur

u
e

u
e
a

oi
n
il-

d

th
au
ar
ds
d
e-
in
or
an

clu-
m-

ion
lem

in
he
don
on-
ear
ach

, J.
s
for
s.
gh
u-

A.
ls
t.
nd

ns

DOMAIN WALLS OUT OF EQUILIBRIUM PHYSICAL REVIEW D 58 105003
tive coordinate and also the quantum Langevin equation
lowest order in the weak coupling~adiabatic! expansion.
Two specific models were studied:f4 and sine-Gordon sca
lar field theories providing detailed analytic and numeri
studies of the equations of motion and a Markovian appro
mation to it.

To lowest order in weak coupling we found that the re
time equation of motion involves a non-Markovian se
energy kernel and that the static friction coefficient vanish
However, there is dynamical friction which is a result of t
memory effects in the self-energy and is associated with
different types of two-meson processes: spontaneous an
duced two-meson creation and annihilation and scattering
in medium mesons. The second type processes only occ
finite temperature and lead to Landau damping.

We studied the Markovian approximation and shown n
merically that this approximation is unreliable in a wid
range of temperatures.

The quantum Langevin equation was obtained by comp
ing the influence functional obtained by tracing out the m
son degrees of freedom to the same order in the adiab
expansion. We found that the dissipative kernel and the n
correlation function obey a generalized form of fluctuatio
dissipation relation but that a Markovian limit is not ava
able, the noise is Gaussian, additive but colored.

The high temperature limit in the dilute regime was stu
ied in detail by analyzing the ‘‘soft’’ and ‘‘hard’’ contribu-
tions to the self energy and noise kernels. We find that
hard contribution is suppressed at high temperature bec
the matrix elements fall of as an inverse power of the h
momentum. The small one dimensional phase space lea
a suppression of the hard momenta and therefore the lea
contribution at high temperature arises from the ‘‘soft’’ r
gion with momenta of the order of the meson mass yield
the classical result in the high temperature limit. Furtherm
the long time dynamics is completely determined by the L
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dau damping processes in the medium leading to the con
sion that to the order studied the long time dynamics is co
pletely determined byclassicalLandau damping.

We have restricted our study to a perturbative expans
which already showed the complicated nature of the prob
even at lowest order. Pursuing a higher order calculation
perturbation theory will clearly be a major task. When t
velocity of the soliton becomes very large one must aban
the approach advocated in this article and pursue a n
perturbative approach that accounts for strongly non-lin
processes. We are currently implementing such an appro
in terms of a self-consistent variational method@49# and ex-
pect to report on new results in the near future.
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APPENDIX A: REAL-TIME MESON CORRELATION
FUNCTIONS

In this appendix, we will calculate the Green’s functio
which are defined in Eq.~65! in terms of the vertex given by
Eq. ~32!.

Applying Wick’s theorem and Eq.~38!, it is a matter of
straightforward algebra to find the following results:
G11~ t,t8!522 (
p,kÞ0

~Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!@npnk1u~ t2t8!~11np1nk!#1e1 i ~vp1vk!~ t2t8!

3@npnk1u~ t82t !~11np1nk!#%12Tpk
~A!T2p2k

~A! $e2 i ~vp2vk!~ t2t8!@npnk1npu~ t82t !1nku~ t2t8!#%!

5G.~ t,t8!u~ t2t8!1G,~ t,t8!u~ t82t !

G22~ t,t8!522 (
p,kÞ0

„Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!@npnk1u~ t82t !~11np1nk!#1e1 i ~vp1vk!~ t2t8!

3@npnk1u~ t2t8!~11np1nk!#%12Tpk
~A!T2p2k

~A! $e2 i ~vp2vk!~ t2t8!@npnk1nku~ t82t !1npu~ t2t8!#%…

5G.~ t,t8!u~ t82t !1G,~ t,t8!u~ t2t8!

G12~ t,t8!52 (
p,kÞ0

„Tpk
~S!T2p2k

~S! $e2 i ~vp1vk!~ t2t8!npnk1e1 i ~vp1vk!~ t2t8!@npnk1np1nk11#%12Tpk
~A!T2p2k

~A!

3@e2 i ~vp2vk!~ t2t8!np~11nk!#…

52G,~ t,t8!
3-21
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G21~ t,t8!52 (
p,kÞ0

$Tpk
~S!T2p2k

~S! @e2 i ~vp1vk!~ t2t8!~npnk1np1nk11!1e1 i ~vp1vk!~ t2t8!npnk#12Tpk
~A!T2p2k

~A!

3@e2 i ~vp2vk!~ t2t8!nk~11np!#%

52G.~ t,t8!52G,~ t8,t !. ~A1!

These Green’s functions satisfy the following relation:

G111G221G121G2150 ~A2!

which is a consequence of unitary time evolution@42#.
Furthermore, using the antisymmetry property of the matrix elementsTpk

(A) one finds that

G12~ t,t8!5@G21~ t,t8!#* . ~A3!

The Green’s functionsG11(t,t8); G22(t,t8) can be written in terms ofG12(t,t8) and its complex conjugate, therefore w
see that there is only one independent Green’s functions~and its complex conjugate!.

APPENDIX B: CALCULATING K1„t2t8… AND K„t2t8…

Performing the coordinate transformation in Eq.~66!, the influence-functional becomes

F@ ẋ,Ṙ#5expH 2
1

2 E dtdt8F Ṙ~ t !Ṙ~ t8!

4
@G11~ t,t8!1G22~ t,t8!2G12~ t,t8!2G21~ t,t8!#1H 1

2
Ṙ~ t !ẋ~ t8!@G11~ t,t8!

2G22~ t,t8!1G12~ t,t8!2G21~ t,t8!#1
1

2
ẋ~ t !Ṙ~ t8!@G11~ t,t8!2G22~ t,t8!2G12~ t,t8!#J G J . ~B1!

Integrating the linear term inṘ by parts once and the quadratic term twice, the influence-functional can be cast
following form:

F@ ẋ,Ṙ#5expH 1

2 E dtdt8@R~ t !K1~ t2t8!ẋ~ t8!2R~ t !K~ t2t8!Ṙ~ t8!#J , ~B2!

where

K1~ t2t8!5
1

2

]

]t
$@G11~ t,t8!2G22~ t,t8!1G12~ t,t8!2G21~ t,t8!#

1@G11~ t8,t !2G22~ t8,t !2G12~ t8,t !1G21~ t8,t !#%

52
]

]t
@G.~ t,t8!2G,~ t,t8!#u~ t2t8! ~B3!

K~ t2t8!5
1

4

]2

]t2 @G11~ t,t8!1G22~ t,t8!2G12~ t,t8!2G21~ t,t8!#

5
1

2

]2

]t2 @G.~ t,t8!1G,~ t,t8!#. ~B4!

Substituting the values of the Green’s functions from Eq.~A1! in the above equations, one obtains the expressions
K1(t2t8) andK(t2t8) in Eqs.~69! and ~70!.

In the case that there are bound states other than the zero mode, such as the case off4 the sum in Eq.~32! runs over all
bound and scattering states, i.e.,
105003-22
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F@a†,a#5
1

2i E dpdkAvp

vk
Dpk@akap2a2k

† a2p
† 1a2k

† ap2a2p
† ak#1

1

2i (
b
E dkAvb

vk
Dbk@akab2a2k

† ab
†

1a2k
† ap2a2p

† ak#1
1

2i (
b

E dkAvb

vk
Dkb@abak2ab

†a2k
† 1ab

†ak2a2k
† ab#

1
1

2i (
a,b

Ava

vb
Dab@abaa2ab

†aa
†1ab

†aa2aa
†ab#, ~B5!

where the indicesa andb stand for summation over discrete bound states andp andk stand for summation over continuum
scattering states. The models which we considered in this paper have at most one bound state, that is the case in thef4 theory.
In this case, the last term will not contribute sinceDbb vanishes. Thus for only one bound state, Eq.~B5! can be written as

F@a†,a#5E dpdk@Tpk
~S!~apak2a2p

† a2k
† !1Tpk

~A!~a2p
† ak2a2k

† ap!#1E dk@Tbk
~S!~akab2a2k

† ab
†!1Tbk

~A!~a2k
† ab2ab

†ak!#, ~B6!
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where the matricesTpk
(S) and Tpk

(A) for scattering states ar
given by Eq.~33! and if one of the states is a bound sta
then

Tbk
~S!5

1

2i FAvb

vk
2Avk

vb
GDbk

Tbk
~A!5

1

2i FAvb

vk
1Avk

vb
GDbk . ~B7!

In the sine-Gordon theory, the last two terms in Eq.~B6!
do not contribute since in this theory there are no bou
states other than the zero mode and the Green’s function
given by Eq.~A1! but with integration overp andk instead
of the summation.

In thef4 case, to lowest adiabatic order the contributio
from the bound and scattering states decouple. This imp
that the Green’s functions will have a contribution from t
bound state which is given by the same expression as th
the scattering states, withp→b, but multiplied by a factor of
1/2 since the bound state wave function is chosen to be

APPENDIX C: GENERALIZED
FLUCTUATION-DISSIPATION RELATION

The functions

G.~ t2t8!5^F~ t !F~ t8!&, ~C1!

G,~ t2t8!5^F~ t8!F~ t !& ~C2!
et

ys
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@whereF is given by Eq.~32!# admit a spectral representa
tion, and their Fourier transforms in time,g.(v); g,(v)
obey the KMS condition@50#

g,~v!5e2bvg.~v!. ~C3!

From this expression we find thatk1(v), the Fourier trans-
form in time of the kerneliK 1(t2t8)52Sm(t2t8) is given
by

k1~v!52E dv8

2p

v8g.~v8!@12e2bv8#

v2v81 i e
, ~C4!

leading to the imaginary part

Im@k1~v!#52vg.~v!@12e2bv#. ~C5!

On the other hand the kernel that determines the no
noise correlation functionK(t2t8) has a Fourier transform
given byk(v) with

k~v!52
v2

2
@g.~v!1g,~v!#52

v2

2
g.~v!@11e2bv#

5
v

2
Im@k1~v!#cothFbv

2 G . ~C6!

The relation between the Fourier transform of the noi
noise correlation function and the imaginary part of the se
energy is the generalized fluctuation-dissipation relat
@33#.
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