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Branch cuts due to finite-temperature quasiparticles
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~Received 12 May 1998; published 1 October 1998!

The branch points of individual thermal self-energy diagrams atk254m2, k259m2, . . . areshown not to be
branch points of the full thermal self-energy. Branch points of the full theory are determined by the complex,

temperature-dependent energies of the quasiparticles, defined as the pole location,k05E(kW ), of the exact

retarded propagator. The full retarded self-energy is found to have branch points atk052E(kW /2) and k0

53E(kW /3) as well as cuts in the space-like region. The discontinuities across the branch cuts are complex. The
advanced self-energy is related by reflection to the retarded.@S0556-2821~98!06820-9#

PACS number~s!: 11.10.Wx, 12.38.Mh, 25.75.2q
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I. INTRODUCTION

At finite temperature, self-energy functions have mo
branch cuts and more complicated discontinuities than
zero temperature. The finite-temperature discontinuities h
direct physical significance@1–9#. It is possible to compute
the discontinuity of a self-energy diagram without having
compute the real part by employing cutting rules that repl
certain propagators with Dirac delta functions@10–15#. All
the known results about the location of branch cuts and
discontinuities across them apply at each order of pertu
tion theory. The perturbation theory is defined by choos
free thermal propagators that have poles at the z
temperature massm. This paper will demonstrate that whe
perturbation theory is summed, the full self-energy will ha
branch cuts in different places and with different discontin
ties than given in perturbation theory.

A. Example at zero-temperature

A simple zero-temperature example for a scalar field w
interactionLI5gf3/6 will illustrate how higher order cor-
rections can shift the location of branch cuts. Suppose tham
is the physical mass, but that one performs perturbative
culations using a free propagatorD(k)51/(k22m0

2), where
m0 is some different mass. For simplicity,m0 should be
finite and not the bare mass. The one-loop self-energy

P~1!~k!5
ig2

2 E d4p

~2p!4 D~p!D~p2k! ~1.1!

has a branch cut fork2>4m0
2. The discontinuity across th

branch cut is

Disc P~1!~k!5
2 ig2

8p2 E d4pd1~p22m0
2!d1@~p2k!22m0

2#

5
2 ig2

16p S 12
4m0

2

k2 D 1/2

. ~1.2!

The indication thatk254m0
2 is not a branch point of the ful

theory comes from the two-loop contribution. The full prop
gator isD8(k)51/@k22m22P(k)# and by definitionP con-
tains the necessary counter term to vanish at the true m
0556-2821/98/58~10!/105002~13!/$15.00 58 1050
e
at
ve

e

e
a-
g
o-

-

h

l-

-

ss

k25m2. To do perturbation theory with massm0 , the full

propagator is writtenD8(k)51/@k22m0
22P̃(k)# where

P̃(k)5m22m0
21P̃(k). Of courseP̃ does not vanish atk2

5m2 or at k25m0
2 and this is the source of the problem.

self-energy insertion on the internal lines of Eq.~1.1! gives
the two-loop self-energy term

P~2!~k!5 ig2E d4p

~2p!4 @D~p!P̃~p!D~p!#D~p2k!.

~1.3!

This has a two-particle and a three-particle discontinu
The quantity in square brackets has a double pole atp2

5m0
2. Using @D(p)#252]D(p)/]p2 leads to a two-particle

discontinuity

Disc P~2!~k!5
ig2

4p2 E d4pd18 ~p22m0
2!P̃~p!

3d1„~p2k!22m0
2
…. ~1.4!

The presence ofd8(p22m0
2) requires an expansion of th

shifted self-energy forp2'm0
2:

P̃~p2!5dm21P~m0
2!1~p22m0

2!P8~m0
2!1¯

wheredm25m22m0
2. The integrated two-particle discont

nuity is

Disc P~2!~k!5
ig2

8p F dm21P~m0
2!

k2~124m0
2/k2!1/2

2P8~m0
2!S 12

4m0
2

k2 D 1/2G .
The second term changes the coefficient of Eq.~1.2! as re-
quired by wave function renormalization. The first terms
more important: It is infinite atk254m0

2. The infinity is a
signal that the correct branch point is not atk254m0

2. Mul-
tiple self-energy insertions on the same skeleton have
effects. First, they modify the coefficient of (1
24m0

2/k2)21/2 to be
© 1998 The American Physical Society02-1
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dm21P~m0
2!1dm2P8~m0

2!1 1
2 ~dm2!2P9~m0

2!1¯

5dm21P~m2!5dm2,

where, in the last step,P(m2)50 has been used. Thus on
dm2 survives as the coefficient of inverse square root. M
tiple self-energy insertions also produce successively hig
powers of the inverse square root:

Disc P~k!5
2 ig2

16p F S 12
4m0

2

k2 D 1/2

2
2dm2

k2 S 12
4m0

2

k2 D 21/2

2
1

2 S 2dm2

k2 D 2S 12
4m0

2

k2 D 23/2

1¯G .
This is the beginning of a Taylor series. All the correctio
diverge at the false thresholdk254m0

2. In the range 4m0
2

,k2,4(m0
21udm2u) each correction is finite, but the Taylo

series diverges. Thus perturbation theory fails through
this region ofk2. To obtain a convergent series, it is nece
sary to work in the rangek2.4(m0

21udm2u). In this region
the Taylor series converges and the sum is the full tw
particle discontinuity with branch point shifted to the phy
cal massm25m0

21dm2:

Disc P~k!5
2 ig2

16p S 12
4m2

k2 D 1/2

. ~1.5!

The true two-particle threshold is still a square root bran
point at k254m2. The breakdown of perturbation theory
entirely due to a propagatorD(k)51/(k22m0

2) with the
wrong massm0 . The breakdown is easily avoided by usin
1/(k22m2) for the free particle propagator.

B. Non-zero temperature

In the previous example, individual diagrams of the p
turbation series have branch points at the wrong thresh
k254m0

2, although the full theory does not. In finite
temperature field theory, it is customary to perform pert
bative calculations using free thermal propagators that h
poles at the zero-temperature, physical massm. With this
choice, the one-loop self-energy has a branch point ak2

54m2. However this is not a true branch point of the fu
theory. The insertion of the thermal self-energy on an int
nal propagator produces a two-loop correction analogou
Eq. ~1.3! in which there is a double pole atp25m2 because
the one-loop self-energy does not vanish there. The do
pole produces a discontinuity proportional to (
24m2/k2)21/2, which diverges atk254m2. This claim is
easily checked by applying the Kobes-Semenoff cutting ru
@10# to compute the discontinuity. Both Le Bellac@14# and
Gelis @15# display the two-loop discontinuity as an integr
over d4p containingd8(p22m2). This is the same structur
as in Eq.~1.4!. It is computed explicitly in Appendix A and
the result is proportional to (124m2/k2)21/2, which is infi-
nite at the false threshold just as in the T50 example.

The branch points of the full theory are not obtained
trivially replacing m2 by a temperature-dependent effecti
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mass. A proper calculation requires using unperturbed pro
gators with poles at the same energy at which the ther
self-energy vanishes so that there will be no double poles
internal lines. An energyE which is a pole of the unperturbe
propagator and also a zero of the self-energy is automatic
a pole in the full propagator. Poles in the full propagator w
occur at energyk05E(kW ) whereE is is an complicated func-
tion of ukW u that depends on mass, coupling, and temperat
Moreover E is complex with the imaginary part being th
damping rate of the single particle excitation. For defini
ness, the real part ofE will be chosen positive and the imag
nary part, negative. ThusE is in the fourth quadrant of the
complex energy plane. The pole atk05E(kW ) is called the
quasiparticle pole. This paper will show that there is
branch cut atk254m2. Instead there is a two-quasipartic
branch point in the full self-energy at the comple
temperature-dependent energyk052E(kW /2). The branch
point is the end point of a branch cut in which the tw
quasiparticles share the energy:k05E(kW1)1E(kW2) wherekW

5kW11kW2 .
The location of the quasiparticle pole in the full propag

tor is determined by effects that are higher order in the c
pling. Approximating the full propagator by a simpler form
that has a pole at the correct position reorders the pertu
tion series. This is similar to the Braaten-Pisarski
summmation@16,17# of high temperature gauge theories, b
differs in several respects. First, the breakdown of pertur
tion theory near the false thresholds is not an infrared eff
The breakdown occurs even in theories with masses
even if the temperature is small. Second, it is not neces
to retain thek0 dependence of the self-energy in the ne
propagators, only the pole positionE(kW ).

A systematic method to organize the reordering of pert
bation theory is to employ the integral equation that rela
the full self-energy to the exact Minkowski propagatorDab8
and vertexG:

Pad~k!5
ig2

2 E d4p

~2p!4 Dab8 ~p!Dac8 ~p2k!Gbcd~p,p2k!.

Although one does not know the full propagatorDab8 , the
natural first approximation is to use a free quasiparti
propagator that has a pole at the correct position. Howe
the Minkowski integral equation is awkward to work with
since it involves propagators with 22 components and verti
ces with 23 components. It is simpler to use the imaginar
time formalism because there is only one propagator and
vertex function. In the imaginary-time approach, the f
self-energy is related to the full propagatorD8 and vertexG
by the single integral equation

P~t,kW !5
2g2

2 E dV12E
0

b

dt8dt9D8~t8,kW1!D8~t9,kW2!

3G~t8,kW1 ;t9,kW2 ;t,kW !, ~1.6!

where dV125d3k1d3k2d3(kW2kW12kW2)/(2p)3. The exis-
tence of a quasiparticle pole atk05E(kW ) in the Minkowski
2-2
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BRANCH CUTS DUE TO FINITE-TEMPERATURE . . . PHYSICAL REVIEW D 58 105002
propagator determines the approximation to be used for
Euclidean propagator. By Fourier transformingP(t,kW ) and
then analytically continuing, it is possible to obtain both t
retarded and advanced self-energiesPR/A(k0 ,kW ). This deter-
mines everything since each of the four real-time propaga
Dab8 (k) are linear combinations of the retarded and advan
propagators.

The paper is organized as follows. Section II discusses
exact retarded thermal propagatorDR8 (k) and separates th
quasiparticle pole from the self-energy effects. Section
introduces the quasiparticle approximation to the propag
in both Minkowski and Euclidean space-time. Section
computes the one-loop self-energy with quasiparticle pro
gators. The results are displayed in Eqs.~4.5! to ~4.8!. The
calculations are performed in the imaginary time formali
and then analytically continued to obtainPR/A . As a check,
Appendix D performs the one-loop calculation entirely in t
real-time formalism. The calculation is more difficult, b
produces exactly the same results. Section V computes
two self-energy diagrams that contribute at two-loop ord
The diagram in which there is a first-order self-energy ins
tion on an internal line is the direct analogue of Eq.~1.3!.
Because the quasiparticle self-energy vanishes atk05E, this
diagram does not shift the location of the two quasiparti
branch point. The effect of this contribution is a only
change in the coefficient of the two-quasiparticle cut. Bo
two-loop diagrams have branch cuts for three-quasipart
processes and these are computed. Section VI contain
conclusions and the general relation between the real-
Dab andPab and the retarded or advanced quantities.

II. EXACT PROPAGATORS

A. Minkowski space

The quasiparticle poles occur in the Minkowski-spa
propagator and it is necessary to begin there and then con
to Euclidean propagators. The exact propagator
Minkowski-space has a 232 matrix structure. All four com-
ponents are linear combinations of the exact retarded
advanced propagatorsDR8 (k) andDA8 (k) as displayed in Eq.
~6.2!. Since DA8 (k)5DR8 (2k), it suffices to investigate
DR8 (k). The retarded propagator is analytic in the upper-h
of the complexk0 plane and satisfies the condition

DR8 ~k0 ,kW !5@DR8 ~2k0* ,kW !#* . ~2.1!

At zero temperature, the exact propagator has poles ak0

56(m21kW2)1/2. At non-zero temperature, the location
these poles is temperature-dependent and complex. For
niteness, let the pole in the exact retarded propagator
occurs in the fourth quadrant be atk05E where

E~kW !5E~kW !2 iG~kW !/2 ~E.0;G.0!. ~2.2!

Both E andG are complicated functions of momentum, tem
perature, and coupling. The complex energyE will be called
the quasiparticle energy. Because of Eq.~2.1!, the retarded
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propagator must also have a pole in the third quadran
k052E* . Also because of Eq.~2.1!, the residues of these
two poles are related:

lim
k0→E

~k02E!DR8 ~k!5Z/2E

lim
k0→2E*

~k01E* !DR8 ~k!52Z* /2E. ~2.3!

Here Z plays the role of the wave-function renormalizatio
constant. The retarded propagator is directly related to
retarded self-energy

DR8 ~k!5@k22m22PR~k!#21. ~2.4!

Because the full retarded propagator does not have pole
k25m2, the proper self-energyPR(k) does not vanish a
k25m2. Therefore the usual Dyson-Schwinger expansion

1

k22m2 1
PR~k!

~k22m2!2 1
PR

2~k!

~k22m2!3 1¯ ~2.5!

is not useful. The first term has a simple pole atk25m2, the
second term has a double pole, the third term has a tr
pole,... . Performing perturbation theory aroundk25m2 is
quite misleading. It is much better to write the full retard
propagator as

DR8 ~k!5@~k02E!~k01E* !2PRqp~k!#21, ~2.6!

where the retarded quasiparticle self-energy is defined b

PRqp~k!5PR~k!1kW21m22uEu21 iGk0 . ~2.7!

By construction,PRqp(k) vanishes atk05E and also atk0
52E* :

PRqp~E!50 PRqp~2E* !50. ~2.8!

The natural expansion around the quasiparticle poles is

1

~k02E!~k01E* !
1

PRqp~k!

~k02E!2~k01E* !2 1¯ . ~2.9!

The second term has only simple poles atk05E and atk0
52E* . It is convenient to define the derivative of the se
energy at these positions in terms of a complex constanB:

dPRqp~k0!

dk0
5 H2EB, k05E,

22EB* , k052E* . ~2.10!

This constantB is related to the wave-function renormaliz
tion constant in Eq.~2.3! by

Z511B1B21¯51/~12B!. ~2.11!

It will be helpful to have similar results for the advance
propagator. From the definition

DA8 ~k!5DR8 ~2k!, ~2.12!
2-3
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H. ARTHUR WELDON PHYSICAL REVIEW D58 105002
the advanced propagator is analytic in the lower-half of
complexk0 plane. It must have poles in upper-half plane
k05E* andk052E. To emphasize these poles, it is conv
nient to write the advanced propagator as

DA8 ~k!5@~k01E!~k02E* !2PAqp~k!#21, ~2.13!

where the advanced quasiparticle self-energy is defined t

PAqp~k!5PA~k!1kW21m22uEu22 iGk0 . ~2.14!

B. Euclidean space

The finite-temperature Euclidean propagator is define
discrete, imaginary frequencies

vn5 i2pnT,

wheren is any integer. The full Euclidean propagator is

D8~ ivn ,kW !5H 2DR8 ~ ivn ,kW ! if n>0,

2DA8 ~ ivn ,kW ! if n<0,
~2.15!

with the overall minus sign chosen for later convenien
Relation ~2.12! for k0 imaginary implies that
DR8 ( i2punuT,kW )5DA8 (2 i2punuT,kW ). It follows that

D8( ivn ,kW ) is an even function ofn. The Euclidean propa
gator may be expressed in terms of the self-energy as

D8~ ivn ,kW !5@~vn!21kW21m21P~ ivn ,kW !#21

where the Euclidean self-energy is

P~ ivn ,kW !5H PR~ ivn ,kW ! if n>0,

PA~ ivn ,kW ! if n<0.
~2.16!

The relations PR(k0 ,kW )5@PR(2k0* ,kW )#* and PA(k0 ,kW )

5@PA(2k0* ,kW )#* guarantee that Eq.~2.16! is real. To em-
phasize the quasiparticle aspect, the propagator may be
ten

D8~ ivn ,kW !5@2~ i uvnu2E!~ i uvnu1E* !1Pqp~ ivn ,kW !#21

~2.17!

where the quasiparticle self-energy is

Pqp~ ivn ,kW !5P~ ivn ,kW !1kW21m22uEu22Guvnu. ~2.18!

The presence ofunu rather thatn in these results is very
important, but will cause complications later.

III. QUASIPARTICLE PROPAGATOR

The natural approximation to the full Minkowski-spac
propagators is to retain the quasiparticle poles. Thus appr
mate~2.6! and ~2.13! by
10500
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DR~k!5
1

~k02E!~k01E* !

DA~k!5
1

~k01E!~k02E* !
. ~3.1!

The corresponding Euclidean propagator for free quasipa
cles follows from Eq.~2.17!:

D~ ivn ,kW !5
21

~ i uvnu2E!~ i uvnu1E* !

5
1

vn
21Guvnu1uEu2 . ~3.2!

The transform to Euclidean time requires the Fourier su
mation

D~t,kW !5T (
n52`

`

e2 ivntD~ ivn ,kW ! ~3.3!

for 2b<t<b. Since Eq.~3.2! is an even function of the
integern, Eq. ~3.3! is automatically an even function oft.
To perform the summation, it is convenient to write Eq.~3.2!
without the absolute value bars onn as

21

~ ivn2E!~ ivn1E* !
2u~2n!

2ivn~E* 2E!
~vn

21E 2!~vn
21E* 2!

.

Using this gives for the Fourier sum

D~t,kW !5
1

2E
$@11n~E!#e2Eutu1n~E* !eE* utu%

2T(
n51

`

eivnutu 2Gvn

~vn
21E 2!~vn

21E* 2!
, ~3.4!

where the Bose-Einstein function is

n~E!51/@exp~bE!21#.

This is the form of the quasiparticle propagator that will
used in the subsequent self-energy calculations.~Le Bellac
and Mabilat@18# also use this form for the regularized form
of the free thermal propagator, in which caseE is replaced by
the free particle energy andG becomes infinitesimal.! All the
t dependence in Eq.~3.4! is of the form exp(2Lutu) whereL
is a member of the set below

LP$E,2E* ,2 iv1 ,2 iv2 ,2 iv3 , . . . % Im L,0.
~3.5!

EachL has a negative imaginary part. The propagator w
be written compactly as

D~t!5(
L

f ~L!e2Lutu ~3.6!

in which the coefficient functions are
2-4
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f ~E!5@11n~E!#/2E

f ~2E* !5n~E* !/2E ~3.7!

f ~2 iv l !522TGv l /~v l
2 1E 2!~v l

2 1E* 2!.

Although Eq. ~3.4! will be used throughout, the infinite
sum conceals several properties that are important to n
First, the time dependence exp(2Lutu) with Im L,0 will
lead to a Euclidean self-energy that can be easily extende
the retarded self-energy in Minkowski space. However
starting pointD( ivn ,kW ) in Eq. ~3.2! favors neither the re-
tarded nor the advanced forms. Although it is not appar
Eq. ~3.4! is actually real:

D~t,kW !* 5D~t,kW !. ~3.8!

This allows the time dependence to also be writ
exp(2L* utu) if continuation to the advanced form of th
Minkowski self-energy is desired. Although Eq.~3.8! is not
obvious, it must be true, sinceD( ivn ,kW ) is real and an even
function of n. Appendix B proves Eq.~3.8! explicitly. Sec-
ond, since exp(ivnb)51, the quasiparticle propagator~3.3!
satisfies the KMS condition

D~b2t,kW !5D~t,kW !. ~3.9!

Without the infinite sum in Eq.~3.4!, the KMS property
would not hold. Appendix B proves Eq.~3.9! explicitly.
Third, another way to obtain Eq.~3.4! is to begin with the
time-ordered propagator in Minkowski space, which is giv
by the following linear combination of the retarded and a
vanced propagators:

D11~k!5
@11n~k0!#

~k02E!~k01E* !
2

n~k0!

~k01E!~k02E* !
.

~3.10!

The Fourier transform,D11(t,kW ), for real positive timet is
determined by all the poles in the lower-half of the comp
k0 plane. These poles are atk05E, k052E* and at k0
52 ivn for n.0. The propagator in Euclidean time resu
from continuing from positive, realt to negative, imaginary
time 2 i t. The Euclidean propagator isD(t,kW )5 iD 11

(2 i t,kW ) and gives precisely Eq.~3.4!.

IV. ONE-LOOP SELF-ENERGY

It is always easy to perform loop corrections by integr
ing over Euclidean time and then Fourier transformi
@1,19#. That method will be employed here. The first a
proximation to the integral equation~1.6! for the full self-
energy is to use the quasiparticle propagator~3.4! and the
bare vertex without corrections. This approximation tre
the energyE exactly even though it is a function of the co
pling g. The one-loop correction shown in Fig. 1 is

P I~t,kW !5
2g2

2 E dV12D~t,kW1!D~t,kW2!. ~4.1!
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This may be expressed concisely using the notation~3.6! for
the propagators:

P I~t,kW !5
2g2

2 E dV12 (
L1 ,L2

f ~L1! f ~L2!e2~L11L2!utu.

~4.2!

The transform fromt to discrete frequencyvn is

P I~ ivn ,kW !5E
0

b

dteivntP I~t,kW !

5
g2

2 E dV12 (
L1 ,L2

f ~L1! f ~L2!
12e2~L11L2!b

ivn2L12L2
.

~4.3!

This can be extended fromivn for n.0 to complexk0 with
Im k0.0. It is analytic for Imk0.0 becauseL1 andL2 have
negative imaginary parts. The extension therefore gives
retarded self-energy:

PR
I ~k0 ,kW !5

g2

2 E dV12(
L

f ~L1! f ~L2!
12e2~L11L2!b

k02L12L2
.

~4.4!

Although this is analytic fork0 in the upper-half of the com-
plex plane, whenk0 is continued into the lower half-plane
the singularities atk05L11L2 produce branch cuts in th
self-energy.

Physical Cuts:It is useful to write out the various case
for the differentL i . First, if L15E1 andL25E2 , the con-
tribution to the self-energy is

g2

2 E dV12

2E12E2

@11n~E1!#@11n~E2!#2n~E1!n~E2!

k02E12E2
.

~4.5!

The discontinuity across the cut is complex. The statisti
factors provide for the Bose-Einstein enhanced emission
two quasiparticles minus the absorption of two quasipa
cles. The second contribution is forL15E1 and L2

52E2* :

g2

2 E dV12

2E12E2

@11n~E1!#n~E2* !2n~E1!@11n~E2* !#

k02E11E2*
.

~4.6!

The statistical factors account for a direct process in wh
quasiparticle 1 is emitted and quasiparticle 2 is absorbed
nus the inverse process. IfL152E1* andL25E2 , the result
is

FIG. 1. One-loop self-energy.
2-5



ex

s

f

t
-
sh
p
io

rm

t-

s

,
orm

tion
ad-

c-
u-
ier

ly
me
ed

n.

H. ARTHUR WELDON PHYSICAL REVIEW D58 105002
g2

2 E dV12

2E12E2

n~E1* !@11n~E2!#2@11n~E1* !#n~E2!

k01E1* 2E2
.

~4.7!

If L152E1* andL252E2* , the self-energy is

g2

2 E dV12

2E12E2

n~E1* !n~E2* !2@11n~E1* !#@11n~E2* !#

k01E1* 1E2*
.

~4.8!

The one-loop self-energy is the sum of Eqs.~4.5!–~4.8! and
Eq. ~4.9! displayed below. Appendix D computes the sam
quantity using the Minkowski propagators and obtains
actly the same answer.

Unphysical Cuts:There are some additional contribution
to Eq.~4.3!. If both L1 andL2 are positive integer multiples
of 2 i2pT, then the numerator of Eq.~4.3! vanishes. How-
ever if only one of theL j is a positive integer multiple o
2 i2pT, the numerator does not vanish. Since Eq.~4.3! is
symmetric under interchange ofkW1↔kW2 , it is only necessary
to consider the caseL152 iv l , L25E2 or 2E2* and double
the result to obtain

g2E dV12

2E2
(

l 51

`
2TG1v l

~v l
2 1E 1

2!~v l
2 1E 1*

2!

3S 21

k01 iv l 2E2
1

1

k01 iv l 1E2*
D . ~4.9!

These terms have branch cuts in the lower half-plane ak0

52 iv l 1E2 and atk052 iv l 2E2* . The cuts are unphysi
cal in that they are not entirely due to quasiparticle thre
olds. The coefficient of this cut is proportional to the dam
ing rateG1 and is in this sense a higher order effect. Sect
V will show that Eq.~4.9! is exactly canceled by two-loop
effects. For later comparison, it is useful to return to the te
in P I(t,kW ) whose frequency transform produced this cut:

g2E dV12(
l 51

`

eiv l t
2TG1v l

~v l
2 1E 1

2!~v l
2 1E 1*

2!

3S @11n~E2!#
1

2E2
e2E2t1n~E2* !

1

2E2
eE2* tD . ~4.10!

Advanced Self-Energy:Since quasiparticle propagator sa
isfies the KMS condition, the integrand of Eq.~4.1! could
equally be writtenD(b2t,kW1)D(b2t,kW2). The Fourier
transform toivn is then expressed as

P I~ ivn ,kW !5
g2

2 E dV12 (
L1 ,L2

f ~L1! f ~L2!

3
e2~L11L2!b21

ivn1L11L2
.

10500
e
-

-
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n

This is exactly the same self-energy as Eq.~4.3!. However in
this form, it is easily extended fromivn to a function of
complexk0 that is analytic for Imk0,0. This extension gives
the advanced self-energy

PA
I ~k0 ,kW !5

g2

2 E dV12 (
L1 ,L2

f ~L1! f ~L2!

3
e2~L11L2!b21

k01L11L2
.

It satisfies PA(k)5PR(2k) as required and has all it
branch points in the upper half of the complexk0 plane.

Mixed Representations:Because of the KMS condition
one can also represent the self-energy using a mixed f
D(t,kW1)D(b2t,kW2). This leads to

P I~ ivn ,kW !5
g2

2 E dV12 (
L1 ,L2

f ~L1!~L2!

3
e2L2b2e2L1b

ivn2L11L2
.

Although this is the same self-energy, this representa
cannot be easily extended to either the retarded or the
vanced form of the self-energy. In Sec. V B it will be ne
essary to use the KMS identity in a similar way to manip
late the two-loop self-energy into a form whose Four
transform will be analytic in the lower half-plane.

V. TWO-LOOP SELF-ENERGY

The simplicity of the one-loop calculation makes it like
that the two-loop contributions can be computed by the sa
method. The contributions of Figs. 2 and 3 will be denot
by PA

II andPB
II , respectively.

A. Self-energy insertion on quasiparticle propagator

The value of the diagram shown in Fig. 2 is

PA
II ~t,kW !52g2E dV12D I~t,kW1!D2~t,kW2!, ~5.1!

FIG. 2. Two-loop self-energy due to one self-energy insertio

FIG. 3. Two-loop self-energy due to vertex correction.
2-6



o
el

s

re

s in

o-
res
.
t:

-

i-
of

p
s.

e-

n
r-

BRANCH CUTS DUE TO FINITE-TEMPERATURE . . . PHYSICAL REVIEW D 58 105002
whereD I is the one-loop corrected propagator:

D I~t,kW !5E
0

b

dt8dt9D~t2t9,kW !

3Pqp~t92t8,kW !D~t8,kW !.

This is not the most convenient way to computeD I . It is
easier to employ the method discussed after Eq.~3.10!. This
requires the Minkowski-space time-ordered propagator, n
with one insertion of the retarded and advanced s
energies:

D11
I ~k!5

@11n~k0!#PRqp
I ~k!

~k02E!2~k01E* !2 2
n~k0!PAqp

I ~k!

~k01E!2~k02E* !2 .

To Fourier transform to real, positive timet requires closing
thek0 contour in the lower-half of the complexk0 plane. The
singularities ink0 in the lower-half plane are as follows:~1!
a simple pole atk05E, ~2! a simple pole atk052E* , ~3!
simple poles inn(k0) at k052 iv l , and~4! branch cuts in
PRqp(k). Consequently, the Fourier transform is

iD 11
I ~ t,kW !5@11n~E!#

B

2E
e2 iEt1n~E* !

B*

2E
eiE* t

1T (
l 51

` S PRqp
I ~k!e2 ik0t

~k02E!2~k01E* !2D
k052 iv l

2T (
l 51

` S PAqp
I ~k!e2 ik0t

~k01E!2~k02E* !2D
k052 iv l

1 i E
Im k0,0

cuts dk0

2p
D11

I ~k0!e2 ik0t.

The self-energiesPRqp andPAqp can be expressed in term
of PR andPA using the definitions~2.7! and ~2.14!. Evalu-
ating the propagator at the Euclidean timet52 i t gives

D I~t,kW !5@11n~E!#
B

2E
e2Et1n~E* !

B*

2E
eE* t

1T (
l 51

`

eiv l tS 2Gv l

~v l
2 1E 2!~v l

2 1E* 2!

1
4Gv l @~v l

2 1EE* !~kW21m22EE* !1G2v l
2 #

~v l
2 1E 2!2~v l

2 1E* 2!2

1
PR

I ~2 iv l !

~v l
2 1EE* 2Gv l !2 2

PR
I ~ iv l !

~v l
2 1EE* 1Gv l !2D

1 i E
Im k0,0

cuts dk0

2p
D11

I ~k0!e2k0t. ~5.2!

One way of proceeding is to add this correction to the f
quasiparticle propagator~3.4!. In the sumD1D I the coeffi-
cients of the quasiparticle terms are modified to 11B and
11B* and the term proportional toG in Eq. ~3.4! cancels in
10500
w
f-

e

the sum. It was this term that produced the unphysical cut
the one-loop self-energy. The cancellation inD1D I guaran-
tees that unphysical one-loop cuts will be canceled in tw
loop order. The following discussion shows these featu
explicitly as well as the three-quasiparticle cuts that arise

Wave Function Correction to the Two Quasiparticle Cu
To compute the self-energy requires substituting Eq.~5.2!
into Eq.~5.1!. The contribution of the first line of Eq.~5.2! to
PA

II (t,kW ) is

2g2E dV12S @11n~E1!#
B1

2E1
e2E1t1n~E1* !

B1*

2E1
eE1* tD

3S @11n~E2!#
1

2E2
e2E2t1n~E2* !

1

2E2
eE2* tD . ~5.3!

This may be symmetrized so thatB1 andB2 appear equally.
When added to Eq.~4.2!, it merely introduces the wave func
tion correction 12Bj'Zj .

Cancellation of Unphysical Cuts:The t dependence in
Eq. ~4.10! produced the unphysical cuts in Eq.~4.9!. When
the second line of Eq.~5.2! is substituted into Eq.~5.1!, it
gives

2g2E dV12(
l 51

`

eiv l t
2TG1v l

~v l
2 1E 1

2!~v l
2 1E 1*

2!

3S @11n~E2!#
1

2E2
e2E2t1n~E2* !

1

2E2
eE2* tD . ~5.4!

This exactly cancels Eq.~4.10! so that the one-loop unphys
cal cuts are removed. Obviously, the third and fourth lines
Eq. ~5.2! will produce new unphysical cuts in the two-loo
self-energy. These will be canceled by higher loop effect

Cut for Three Quasiparticles:The last term in Eq.~5.2!
requires integrating ink0 around the branch cuts in the on
loop self energy:

i E
Im k0,0

cuts dk0

2p

PR
I ~k!@11n~k0!#

~k02E1!2~k01E1* !2 e2k0t. ~5.5!

It is convenient to use the representation~4.4!, but to change
the internal momentum variables tok3 andk4 in correspon-
dence with Fig. 2:

PR
I ~k0!5

g2

2 E dV34 (
L3 ,L4

f ~L3! f ~L4!

3
12e2~L31L4!b

k02L32L4
.

The denominatork02L32L4 produces the branch cut i
k0 . The integration around the cut is performed by inte
changing the order of integration to get

g2

2 E dV34 (
L3 ,L4

f ~L3! f ~L4!e2~L31L4!t

~L31L42E1!2~L31L41E1* !2 .
2-7
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This is the explicit evaluation ofD cut
I (t,kW ), i.e., the last line

of Eq. ~5.2!. When substituted into Eq.~5.1!, the contribution
to PA

II (t,kW ) is

2
g4

2 E dV12dV34(
$L%

f ~L2! f ~L3! f ~L4!e2~L21L31L4!t

~L31L42E1!2~L31L41E1* !2 .

This is easily transformed to getPA
II ( ivn ,kW ). The extension

from ivn to complexk0 analytic in the upper half-plane is

PA
II ~k0 ,kW !52

g4

2 E dV12dV34(
$L%

f ~L2! f ~L3! f ~L4!

k02L22L32L4

3
e2~L21L31L4!b21

~L31L42E1!2~L31L41E1* !2 .

~5.6!

This contains the cuts for three quasiparticles atk05L2
1L31L4 . The unphysical values ofL will be canceled by
higher loops. This completes the analysis of Fig. 2.

B. Vertex correction

Figure 3 shows the two-loop diagram containing a ver
correction. Two of the loop momenta are independent.
definiteness, the independent momenta are taken askW1 andkW3

anddV[d3k1d3k3 /(2p)6. The remainingkW2 ,kW4 ,kW5 are lin-
ear combinations of the these two and the externalkW . The
self-energy contribution is

PB
II ~t,kW !5

g4

4 E dVE
0

b

dt8E
0

b

dt9D1~t8!D2~t9!

3D3~t92t!D4~t82t!D5~t92t8!. ~5.7!

The three timest, t8, andt9 lie in the interval@0,b# and may
be ordered in six different ways as follows:

B1:t8,t9,t B2:t9,t8,t

B3:t,t8,t9 B4:t,t9,t8

B5:t8,t,t9 B6:t9,t,t8

The left and right columns differ by an interchange oft8 and
t9. Because of the structure of the integral, this is the sa
as interchangingL1↔L2 andL3↔L4 . Thus, only B1, B3,
and B5 need to be computed. With the representation~3.6!
for the quasiparticle propagators, the integration over
gives
10500
x
r

e

1

PB1
II ~t,kW !5

g4

4 E dV(
$L%

)
j 51

5

f ~L j !

3S e2~L11L2!t

~L12L42L5!~L11L22L32L4!

1
e2~L31L4!t

~L22L31L5!~L11L22L32L4!

1
e2~L21L41L5!t

~L12L42L5!~2L21L32L5! D . ~5.8!

The t dependence of these three terms will easily lead
two-particle cuts atk05L11L2 , k05L31L4 , and a three-
particle cut atk05L21L41L5 . The next integration, B2,
gives the same answer as Eq.~5.8!, but with the interchanges
L1↔L2 andL3↔L4 .

Integration B3 can best be done by using the Kub
Martin-Schwinger~KMS! condition to rewrite it as

PB3
II ~t,kW !5

g4

4 E dVE
t

b

dt8E
t8

b

dt9D1~t8!D2~t9!

D3~b1t2t9!D4~b1t2t8!D5~b1t82t9!.

The time argument for each of the quasiparticle propaga
is positive. For example, forD3 the time dependence i
exp@2L3(b1t2t9)#. The integrand written in this form lead
to the most convenient form for the final answer withP~t! a
product of terms of the form exp(2Lt) as desired. Direct
integration gives

PB3
II ~t,kW !5

g4

4 E dV(
$L%

)
j 51

5

f ~L j !

3S e2~L11L2!te2~L31L41L5!b

~L22L32L5!~L11L22L32L4!

1
e2~L31L4!te2~L11L21L5!b

~L12L41L5!~L11L22L32L4!

1
e2~L11L31L5!te2~L21L4!b

~L12L42L5!~2L21L31L5! D . ~5.9!

The tau dependence of these terms will again produce
particle cuts atk05L11L2 , k05L31L4 , but a different
three-particle cut atk05L11L31L5 . Integration B4 re-
quires interchangingL1↔L2 andL3↔L4 .

The contribution of B5 is more difficult. First use th
KMS condition to write it as

PB5
II ~t,kW !5

g4

4 E dVE
0

t

dt8E
t

b

dt9D1~t8!D2~t9!

3D3~b1t2t9!D4~t2t8!D5~b1t82t9!.

The integration gives
2-8
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PB5
II ~t,kW !5

g4

4 E dV(
$L%

)
j 51

5

f ~L j !C

3~e2~L11L2!te2~L31L5!b

1e2~L31L4!te2L2b2e2~L11L31L5!te2L2b

2e~2L22L41L5!te2~L31L5!b!

C[
1

~L12L41L5!~2L21L31L5!
. ~5.10!
s
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The last term contains tau dependence exp(1L5t) which,
when Fourier transformed, is difficult to extend analytica
in the upper half-plane. It is useful to isolate all theL5
dependence of this term by defining

Q[
e2L5~b2t!

~L12L41L5!~2L21L31L5!
.

The generalized KMS relation~C9! proven in Appendix C
shows that
(
L5

f ~L5!Q5(
L5

S f ~L5!e2L5t

~L12L42L5!~2L21L32L5!

1
e~2L11L4!tF5~2L11L4!2e~2L21L3!~b2t!F5~2L21L3!

L11L22L32L4
D

whereF is the function defined in Eq.~C1!. When this is substituted into Eq.~5.10!, the result is

PB5
II ~t,kW !5

g4

4 E dV(
$L%

)
j 51

4

f ~L j !S f ~L5!
e2~L11L2!te2~L31L5!b1e2~L31L4!te2L2b2e2~L11L31L5!te2L2b

~L12L41L5!~2L21L31L5!

3 f ~L5!
e2~L21L41L5!te2L3b

~L12L42L5!~L22L31L5!
2

e2~L11L2!te2L3bF5~2L11L4!2e2~L31L4!te2L2bF5~2L21L3!

L11L22L32L4
D .

~5.11!
rnal

at
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The t dependence determines thek0 dependence. The term
exp@2(L11L2)t# and exp@2(L31L4)t# produce two particle
cuts at k05L11L2 and k05L31L4 . The terms
exp@2(L11L31L5)t# and exp@2(L21L41L5)t# produce
three particle cuts atk05L11L31L5 and k05L21L4
1L5 . Integration B6 requires interchangingL1↔L2 and
L3↔L4 .

VI. CONCLUSION

The above results follow from the existence of poles
the full retarded propagatorDR8 (k0 ,kW j ) at energiesk05l j

where

l j5E~kW j ! or 2E* ~kW j ! Im l,0. ~6.1!

These poles were shown to produce singularities in retar
self-energy integrands. In the two-quasiparticle chann
there are singularities atk05l11l2 . In the three-
quasiparticle channels, the singularities are atk05l11l2
1l3 . Contributions with l5E correspond to stimulated
emission of quasiparticles weighted by 11n(E); contribu-
tions with l52E* correspond to absorption of quasipar
cles weighted byn(E* ).

The singularities in the integrands ofPR(k) produce
branch points when they are trapped at end points of
three-momentum integrations. Without knowing the mom
tum dependence ofE(kW ), it is only possible to analyze thi
ed
s,

e
-

trapping in the equal mass case, i.e., when all the inte
lines have the same dispersion relationE(kW ). In that case the
pole of the integrand atk05E(kW1)1E(kW2) produces an end
point singularity fromkW15kW25kW /2. The branch point is thus
at k052E(kW /2). For 3 quasiparticles, the branch point is
k053E(kW /3). The poles of the integrand atk05E(kW1)
2E(kW2)* and k052E(kW1)* 1E(kW2) produce end point sin-
gularities from the regionkW15akW , kW25(12a)kW where a
→6`. Since all radiative corrections vanish at infinite m
mentum, the branch points are near the real axis atk0

56ukW u2 ih. These results hold only for equal masses.
general, the branch point locations will depend upon
functionsE(kW ).

Cuts in the retarded propagator automatically give th
of the advanced propagator becauseDA8 (k)5DR8 (2k). This
also determines the four real-time propagators

D118 ~k!5@11n~k0!#DR8 ~k!2n~k0!DA8 ~k!

D128 ~k!5esk0n~k0!@DR8 ~k!2DA8 ~k!#

D218 ~k!5e~b2s!k0n~k0!@DR8 ~k!2DA8 ~k!#

D228 ~k!5n~k0!DR8 ~k!2@11n~k0!#DA8 ~k!. ~6.2!
2-9
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Each branch cut of theDab8 is completely below the real axi
or completely above. There are no branch cuts that cross
real axis. In addition, theDab8 have simple poles atk0

56 i2pnT from the Bose-Einstein functions. Although th
Dab8 can be written in terms of the thermal Feynman pro
gators DF/F̄ , this introduces step functionsu(k0) which
make the analytic properties ofDF/F̄ more complicated.

The real-time self-energies are related to the inverse
propagator by

@D8~k!#ab
215~k22m2!sab

3 2Pab~k!. ~6.3!

In terms of the retarded and advanced self-energies this
plies

P11~k!5@11n~k0!#PR~k!2n~k0!PA~k!

P12~k!5esk0n~k0!@2PR~k!1PA~k!#

P21~k!5e~b2s!k0n~k0!@2PR~k!1PA~k!#

P22~k!5n~k0!PR~k!2@11n~k0!#PA~k!. ~6.4!

Several interesting points require further investigatio
The separation of free quasiparticle effects was done by
arranging the propagator. It would be useful to have a op
tor method for separating the free quasiparticles from
interactions. Work on this is in progress. A related probl
is whether the discontinuities can be computed directly w
out having to compute the entire self-energy as done here
the perturbative approach, the cutting rules of Kobes
Semenoff @10# accomplish this. However their derivatio
also requires using the operator structure. The physical
nificance of the discontinuities requires further investigati
Since the true branch points lie off the realk0 axis, it is
natural that the discontinuities across the branch cuts
complex. For example, the two-particle discontinuity of E
~4.5! is

Disc PR~k!52 i
g2

2 E dV12

2E12E2
2pd~k02E12E2!

3$@11n~E1!#@11n~E2!#2n~E1!n~E2!%.

~6.5!

This is very much like what would be expected for the d
ference between the production rate of two quasipartic
minus their absorption rate, except that the quasiparticle
ergiesE are complex.
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APPENDIX A: BREAKDOWN OF PERTURBATION
THEORY

If one applies the Kobes-Semenoff cutting rules@10# to
Fig. 2 using free thermal propagators, it has the same br
down near threshold as theT50 example discussed in Se
I A. The formula for this particular discontinuity is displaye
in Le Bellac@14# and in Gelis@15#. The two-particle discon-
tinuity is

Disc PR~k!5
2 ig2

8p2 E d4p@11n~p0!1n~k02p0!#

3e~p0!d8~p22m2!Re PR~p0!

3e~k02p0!d@~p2k!22m2#. ~A1!

The contribution of ImPR has been dropped, since it pro
duces a three-particle discontinuity. To display the result
is useful to let k5ukW u and K25k0

22kW2 and a5(1
24m2/K2)1/2. Direct integration gives

Disc PR~k!5
2 ig2

32pakK2 F11nS k01ak

2 D1nS k02ak

2 D G
3F ~k1ak0!Re PRS k02ak

2 D
1~k2ak0!Re PRS k01ak

2 D Ge~k02ak!

~A2!

where kinematics requires that eitherK2,0 or K2.4m2. At
the perturbative two-particle threshold,K2→4m2, so that
a→0 and

Disc PR~k!→
2 ig2

16paK2 F112nS k0

2 D GRe PRS k0

2 D .

~A3!

The behavior of this discontinuity like (124m2/K2)21/2

produces an infinite correction at the false threshold wh
signals the breakdown of perturbation theory just as in
zero-temperature example of Sec. I A. One can also ch
from Eq. ~A2! that at the lightcone threshold,K2→02, the
discontinuity does not diverge. In retrospect, this is beca
the quasiparticle effects do not change the location of
space-like branch cut for equal masses,2ukW u,k0,ukW , as
discussed in Sec. VI.

APPENDIX B: REALITY AND KMS CONDITIONS

It is not obvious that the quasiparticle propagatorD(t,kW )
displayed in Eq.~3.4! and used throughout the paper satisfi
the reality and KMS conditions claimed in Eqs.~3.8! and
~3.9!. The infinite sum in Eq.~3.4! obscures these propertie
One can rewrite that sum in another way using

eivnutu5e2 ivnutu12i sin~vnutu!.
2-10
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The sum over sin(vnutu) can be performed using the identi

T(
n51

`

sin~vnutu!
22iGvn

~vn
21E 2!~vn

21E * 2!

5
1

4E
$2@11n~E!#e2Eutu2n~E* !eE* utu

1@11n~E* !#e2E* utu1n~E!eEutu%. ~B1!

Using this in Eq.~3.4! gives

D~t,kW !5
1

2E
$@11n~E* !#e2E* utu1n~E!eEutu%

2T(
n51

`

e2 ivnutu 2Gvn

~vn
21E 2!~vn

21E * 2!
. ~B2!

Each term on the right hand side is the complex conjugat
the corresponding term in the original expression~3.4!.
Hence,D(t,kW ) is real.

To prove that the quasiparticle propagator satisfies
KMS condition requires writing the propagator in yet a
other way. In the original form~3.4! use

eivnutu5cos~vnutu!1 i sin~vnutu!.

The sum over sin(vnutu) can be performed with the identit
~B1! to give the result

D~t,kW !5
1

4E
$@11n~E!#e2Eutu1n~E* !eE* utu

1@11n~E* !#e2E* utu1n~E!eEutu%

2T(
n51

`

cos~vnutu!
2Gvn

~vn
21E 2!~vn

21E * 2!
.

~B3!

In this form the KMS conditionD(b2t,kW )5D(t,kW ) is sat-
isfied manifestly.

APPENDIX C: GENERALIZED KMS IDENTITIES

In Sec. V B it is necessary to use some relations that
generalizations of the KMS identity. To demonstrate these
is useful to define

F~k0!5
n~k0!

~k02E!~k01E* !
2

n~k0!

~k01E!~k02E* !
. ~C1!

This satisfies

F~2k0!5ebk0F~k0!. ~C2!

F has poles in the lower-half of the complexk0 plane atk0
5L whereLP$E,2E* ,2 ivn%. At the poles

F~k0!→
e2Lb f ~L!

k02L
,

10500
of
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where f (L) are the functions given in Eq.~3.7!. It also has
poles in the upper half-plane atk052L:

F~k0!→
2 f ~L!

k01L
.

KMS Identity: BecauseF(k0) vanishes sufficiently rap-
idly in all directions of the complex plane asuk0u→`, the
contour integral~C3! vanishes when the contourC is a circle
of infinite radius:

05 R
C

dk0

2p i
F~k0!ek0~b2t! ~0<t<b!. ~C3!

The vanishing of the integral implies that the residues of
lower half-plane poles cancel those of the upper half-pla

(
L

f ~L!e2L~b2t!5(
L

f ~L!e2Lt. ~C4!

Since the left and right sides of this are the Euclidean pro
gator ~3.6!, this just proves the KMS theorem

D~b2t,kW !5D~t,kW !. ~C5!

Theorem 1:For C a circular contour at infinity andx any
complex number inside the contour, the following integ
vanishes

05 R
C

dk0

2p i
F~k0!

ek0~b2t!

k02x
~0<t<b!. ~C6!

The contribution to the integral of the poles atk05L, k0
52L, andk05x must all cancel. This implies

(
L

f ~L!
e2L~b2t!

L1x
5(

L
f ~L!

e2Lt

2L1x
2F~x!ex~b2t!.

~C7!

This is a generalization of the KMS identity. If the differen
tial operator (x1d/dt) is applied to both sides of Eq.~C7!,
it reduces to Eq.~C4!.

Theorem 2: For the same contour as before a
0<t<b, the integral~C8! vanishes

05 R
C

dk0

2p i
F~k0!

ek0~b2t!

~k02x!~k02y!
. ~C8!

Evaluating the integral by Cauchy’s theorem gives

(
L

f ~L!
e2L~b2t!

~L1x!~L1y!
5(

L
f ~L!

e2Lt

~2L1x!~2L1y!

1
F~x!ex~b2t!2F~y!ey~b2t!

x2y
.

~C9!
2-11



m

e
lf-
we
u

d

o-

es

H. ARTHUR WELDON PHYSICAL REVIEW D58 105002
Applying (y1d/dt), this reproduces Eq.~C7!. This identity
is used in rewriting Eq.~5.10! in the form~5.11!. Obviously,
these identities could be generalized to polynomial deno
nators of any order.

APPENDIX D: ONE-LOOP CALCULATION IN THE
REAL-TIME FORMALISM

Calculations may also be done directly in the real-tim
formalism. This appendix will compute the one-loop se
energy in the real-time formalism and show that the ans
is the same as obtained rather easily in Sec. IV. In the q
siparticle approximation, the real-time propagatorsDab(k)
10500
i-

r
a-

are the linear combinations~6.2! of the approximate retarde
and advanced quasiparticle propagators

DR~k!5
1

~k02E!~k01E* !
DA~k!5

1

~k01E!~k02E* !
.

The retarded self-energy that implied by Eq.~6.4! is

~ebk011!PR~k!5ebk0P11~k!2P22~k!. ~D1!

The one-loop contribution has two propagators with m
mentak1

m andk2
m . Integration will be overk1 with the other

defined byk25k12k. The necessary one-loop self-energi
are
rm

.

P11~k!5
ig2

2 E d4k1

~2p!4 n~k1!n~k2!@ebk01DR~k1!2DA~k1!#@ebk02DR~k2!2DA~k2!#

P22~k!5
ig2

2 E d4k1

~2p!4 n~k1!n~k2!@DR~k1!2ebk01DA~k1!#@DR~k2!2ebk02DA~k2!#. ~D2!

When these are substituted into Eq.~D1!, the term DA(k1)DR(k2) cancels. The remaining three products of the fo
D(k1)D(k2) are multiplied by combinations of exponentials that cancel one of the Bose-Einstein functionsn(k1) or n(k2).
The result is

~ebk011!PR~k!5
ig2

2 E d4k1

~2p!4 n~k1!DA~k2!@~ebk011!DR~k1!2~ebk01ebk01!DA~k1!#

1
ig2

2 E d4k1

~2p!4 n~k2!DR~k1!@2~ebk011!DA~k2!1~ebk0111!DR~k2!#. ~D3!

Note thatDR(k1)DA(k2) appears in both lines. It is convenient to compute the first integral by closing thek01 contour below.
The poles in the lower half of thek01 come from two sources:DR(k1) has quasiparticle poles atk015E1 andk0152E1* and
n(k1) has poles atk0152 iv l . After thek01 integration is performed, there is a common factorebk011 on the right hand side
The contribution toPR from the first line of Eq.~D3! is

g2

2 E d3k1

~2p!3

1

2E1
S n~E1!

~k02E12E2!~k02E11E2* !
2

n~2E1* !

~k01E1* 2E2!~k01E1* 1E2* !
D

1
g2

2 E d3k1

~2p!3 T (
l 51

`
1

~k01 iv l 2E2!~k01 iv l 1E2* !

2iv l ~E1* 2E1!

~v l
2 1E 1

2!~v l
2 1E 1*

2!
, ~D4!

where 2E15E11E1* . To compute the integral on the second line of Eq.~D3!, it is convenient to close thek01 contour above.
The poles in the upper-half of thek01 plane come fromDA(k2) ~recallk025k012k0) at k015k01E2* andk015k02E2 and from
the Bose-Einstein functionn(k2) at k015k01 iv l . The second line of Eq.~D3! contributes

g2

2 E d3k1

~2p!3

1

2E2
S n~E2* !

~k01E2* 2E1!~k01E2* 1E1* !
2

n~2E2!

~k02E22E1!~k02E21E1* !
D

1
g2

2 E d3k1

~2p!3 T (
l 51

`
1

~k01 iv l 2E1!~k01 iv l 1E1* !

2iv l ~E2* 2E2!

~v l
2 1E 2

2!~v l
2 1E 2*

2!
. ~D5!

The sum of Eqs.~D4! and~D5! givesPR(k) to one-loop order. It agrees completely with the sum of Eqs.~4.5!–~4.9!. In this
method of calculating, the unphysical branch cuts produced by the denominators containingk01 iv l 1z arise from poles in the
Bose-Einstein functions. They are not artifacts of the Euclidean calculation performed in Sec. IV.
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