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The branch points of individual thermal self-energy diagram€ at4m?, k?=9m?, . . . areshown not to be
branch points of the full thermal self-energy. Branch points of the full theory are determined by the complex,
temperature-dependent energies of the quasiparticles, defined as the pole Id(g)afeiéfﬁ), of the exact
retarded propagator. The full retarded self-energy is found to have branch poikgs- 26(!2/2) and kg
=3£(IZ/3) as well as cuts in the space-like region. The discontinuities across the branch cuts are complex. The
advanced self-energy is related by reflection to the retaj@556-282198)06820-9

PACS numbgs): 11.10.Wx, 12.38.Mh, 25.75.q

I. INTRODUCTION k?=m?. To do perturbation theory with mass,, the full
o . propagator is writtenD’(k)=1/[k2—m§—ﬁ(k)] where
At finite temperature, self—gnergy f_unctlons _have moref[(k)=m2—m3+ﬁ(k). Of coursell does not vanish g2
branch cuts and more complicated discontinuities than at * 5 tke=m2 and this is th f th bl A
zero temperature. The finite-temperature discontinuities havErl? oratk’= mfi. an ;rS] 'S te solulrce 0 f € plro iem.
direct physical significancgl—9]. It is possible to compute tshe -tenelrgy |nseh[ ion on ¢ e internal lines of E#f.1) gives
the discontinuity of a self-energy diagram without having to'"'€ tWO-100p Seli-energy term

compute the real part by employing cutting rules that replace

. Y s . d*p -
certain propagators with Dirac delta functiofi—-15. All k) =i ZJ A(p)II(p)A(p)]A(p—K).
the known results about the location of branch cuts and the g (277)4[ PIP)A(PIALP
discontinuities across them apply at each order of perturba- 1.3

tion theory. The perturbation theory is defined by choosin

free thermal propagators that have poles at the zer o o brack h doubl 2
temperature mass. This paper will demonstrate that when ezquantlty In sqzuare rac et52 as a double poi® at
=mg. Using[A(p)]-=—JdA(p)/dp” leads to a two-particle

perturbation theory is summed, the full self-energy will have™, o
branch cuts in different places and with different discontinui-discontinuity
ties than given in perturbation theory.

gl_'his has a two-particle and a three-particle discontinuity.

i 2

Disc T12/(K) = 42 | a*pat(p?-md)i(p)

A. Example at zero-temperature Am
A simple zero-temperature example for a scalar field with X8, (p—k)?— mé). (1.9

interaction £,=g¢°%/6 will illustrate how higher order cor-
rections can shift the location of branch cuts. Supposenthat The presence of’(p?>—m2) requires an expansion of the
is the physical mass, but that one performs perturbative cakhifted self-energy fopzmmg;
culations using a free propagatdik) = 1/(k?’—m3), where
my is some different mass. For simplicityn, should be T(p?) = 6m2+TI(m2) + (p2—mZ)IT’ (m2) +---
finite and not the bare mass. The one-loop self-energy

ig? dp where 6m?=m?—mgZ. The integrated two-particle disconti-
H(l)(k)ZTJ —(277)4A(p)A(p—k) (1.)  nuity is

N2 2 2
has a branch cut fd{2>4mg. The discontinuity across the Disc I1? (k)= Q{ 25m +H2(m0) ;
branch cut is 7 [ K3(1—4mg/k?)Y?
2\ 1/2
: (1) —ig? [, , , () __0)
Disc IT 7 (k)= 5~ fd P (p=—mg) 8, [(p—k)=—mg] 0 k2 '
—ig? 4mg\ 2 The second term changes the coefficient of Bg2) as re-
= 16 ( o 7) (1.2 quired by wave function renormalization. The first terms is

more important: It is infinite ak2=4mS. The infinity is a
The indication thak?=4m2 is not a branch point of the full signal that the correct branch point is notkdt= 4mz. Mul-
theory comes from the two-loop contribution. The full propa-tiple self-energy insertions on the same skeleton have two
gator isD’ (k) = 1[k?*—m?—TII(k)] and by definitioril con-  effects. First, they modify the coefficient of (1
tains the necessary counter term to vanish at the true mass4mi/k?)~*2 to be
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SM2+TI(m2) + SmPII' (m2) + £ (6m?) 211" (m2) +- -+ mass. A proper calculation requires using unperturbed propa-
gators with poles at the same energy at which the thermal
= om?+II(m?) = sm?, self-energy vanishes so that there will be no double poles on

. 5 internal lines. An energy which is a pole of the unperturbed
where, in the last sted](m)=0 has been used. Thus only propagator and also a zero of the self-energy is automatically
sm? survives as the coefficient of inverse square root. Mul- pole in the full propagator. Poles in the full propagator will
tiple self-energy insertions also produce successively highe&ccur at energyozs(IZ) where€ is is an complicated func-

powers of the inverse square root: , - :
tion of |k| that depends on mass, coupling, and temperature.
4m§ 12 5 sm? 4m§ -1/2 Moreover £ is complex with the imaginary part being the
(1— —kz—) - —kz—( - —kz—) damping rate of the single particle excitation. For definite-
ness, the real part ¢f will be chosen positive and the imagi-
2( 4m2) -312 } nary part, negative. Thus§ is in the fourth quadrant of the

Disc H(k)z E

- kzo complex energy plane. The pole I&g:S(IZ) is called the
quasiparticle pole. This paper will show that there is no
This is the beginning of a Taylor series. All the correctionsPranch cut _ak2'=4m2. Instead there is a two-quasiparticle
diverge at the false threshokf=4m§. In the range m(z) branch point in the full self-energy at the complex,
<k?<4(m3+]|sm?|) each correction is finite, but the Taylor temperature-dependent enerdy=2£(k/2). The branch
series diverges. Thus perturbation theory fails throughouPint is the end point of a branch cut in which the two
this region ofk?. To obtain a convergent series, it is neces-quasiparticles share the enerdy= (k) +E(k,) wherek
sary to work in the rang&®>4(m3+|om?). In this region =K, +K,.
the Taylor series converges and the sum is the full two- The location of the quasiparticle pole in the full propaga-
particle discontinuity with branch point shifted to the physi- tor is determined by effects that are higher order in the cou-
cal massm2=m§+ sm?: pling. Approximating the full propagator by a simpler form
that has a pole at the correct position reorders the perturba-
tion series. This is similar to the Braaten-Pisarski re-
(1.5 summmatior] 16,17 of high temperature gauge theories, but
differs in several respects. First, the breakdown of perturba-
The true two-particle threshold is still a square root branction theory near the false thresholds is not an infrared effect.
point atk?=4m?. The breakdown of perturbation theory is The breakdown occurs even in theories with masses and
entirely due to a propagataﬁ(k)zl/(kZ_mg) with the  even if the temperature is small. Second, it is not necessary
wrong massm,. The breakdown is easily avoided by using to retain thek, dependence of the self-energy in the new

1(26m?
2l k2

. _i92 4m2 1/2
Disc H(k)= E 1- —kz—

1/(k?—m?) for the free particle propagator. propagators, only the pole positicifk).
A systematic method to organize the reordering of pertur-
B. Non-zero temperature bation theory is to employ the integral equation that relates
the full self-energy to the exact Minkowski propagaff,

In the previous example, individual diagrams of the per-
turbation series have branch points at the wrong threshol
k?=4mj, although the full theory does not. In finite- ig? d*p
temperature field theory, it is customary to perform pertur- Iad(k)=—=- f (ZT)ADéb(D)Déc(D—k)rbcd(p,P—k)-
bative calculations using free thermal propagators that have
poles at the zero-temperature, physical massWith this  Although one does not know the full propaga®f,, the
choice, the one-loop self-energy has a branch poirit?at natural first approximation is to use a free quasiparticle
=4m?. However this is not a true branch point of the full propagator that has a pole at the correct position. However
theory. The insertion of the thermal self-energy on an interthe Minkowski integral equation is awkward to work with,
nal propagator produces a two-loop correction analogous tgince it involves propagators witl? Zomponents and verti-
Eqg. (1.3) in which there is a double pole af=m? because ces with 2 components. It is simpler to use the imaginary-
the one-loop self-energy does not vanish there. The doublgme formalism because there is only one propagator and one
pole produces a discontinuity proportional to (1 vertex function. In the imaginary-time approach, the full
—4m?/k?)~ %2, which diverges ak?=4m?. This claim is  self-energy is related to the full propaga®t and vertex
easily checked by applying the Kobes-Semenoff cutting rulegy the single integral equation
[10] to compute the discontinuity. Both Le Bellat4] and 5 5
Gelis [15] display the two-loop discontinuity as an integral -9 P ANt B Nty D
overd*p containings’ (p?—m?). This is the same structure M(rk)=—~ f dQlZJO dr'dr" D (k) D' (7" ko)
as in Eq.(1.4). It is computed explicitly in Appendix A and
the result is proportional to (24m?/k?) Y2 which is infi- XL (7' Ky 7 Ko;7,K), (1.6)
nite at the false threshold just as in theT example. .. -

The branch points of the full theory are not obtained bywhere dQ;,=d%k;d%k,8%(k—k;—kp)/(27)%. The exis-
trivially replacingm? by a temperature-dependent effective tence of a quasiparticle pole B§=£(K) in the Minkowski

8nd vertexl':
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propagator determines the approximation to be used for thpropagator must also have a pole in the third quadrant at

Euclidean propagator. By Fourier transformifigr,k) and ko= —&". Also because of Eq2.1), the residues of these
then analytically continuing, it is possible to obtain both thetwo poles are related:

retarded and advanced self-enerdibga(kq,K). This deter- lim (ko— £)Di(k) = Z/2E

mines everything since each of the four real-time propagators ko€

D;,(k) are linear combinations of the retarded and advanced

propagators. lim (ko+&)Dg(k)=—Z*/2E. 2.3
The paper is organized as follows. Section Il discusses the kg — &

exact retarded thermal propagaf@f(k) and separates the

quasiparticle pole from the self-energy effects. Section llIHere Z plays the role of the wave-function renormalization
introduces the quasiparticle approximation to the propagatagonstant. The retarded propagator is directly related to the
in both Minkowski and Euclidean space-time. Section |Vretarded self-energy

computes the one-loop self-energy with quasiparticle propa-

gators. The results are displayed in E¢s5) to (4.9). The DR(K)=[k*—m?—TIg(k)]~*. (2.9
calculations are performed in the imaginary time formalism
and then analytically continued to obtdihy 5. As a check,
Appendix D performs the one-loop calculation entirely in the
real-time formalism. The calculation is more difficult, but
produces exactly the same results. Section V computes the 1 (k) T2(K)
two self-energy diagrams that contribute at two-loop order. — , R — , R Y 2.5
The diagram in which there is a first-order self-energy inser- ke=m*  (k*=m9)°  (k"=m")

tion on an internal line is the direct analogue of E#.3). . , .
Because the quasiparticle self-energy vanishdgat, this is not useful. The first term has a smple_polekét: m’, the .
diagram does not shift the location of the two quasiparticleSecond term ha; a double pqle, the third term ha32 a triple
branch point. The effect of this contribution is a only apo!e,... : Perf(_)rmmg_ perturbation theory_ aroukt=m? is
change in the coefficient of the two-quasiparticle cut. Bothauite misleading. It is much better to write the full retarded
two-loop diagrams have branch cuts for three—quasiparticl@ropagator as

processes and these are computed. Section VI contains the Ly — _ _ -1

conclusions and the general relation between the real-time Dr(k)=[(ko=E) (ko &) ~Trad )15, (2.6

Dap andlIl,, and the retarded or advanced quantities. where the retarded quasiparticle self-energy is defined by

Because the full retarded propagator does not have poles at
k?=m?, the proper self-energylg(k) does not vanish at
k?=m?. Therefore the usual Dyson-Schwinger expansion

Il. EXACT PROPAGATORS Mgae k) =TIg(k) +K2+m?—[£[2+iTky.  (2.7)

A. Minkowski space By constructionITzq,(k) vanishes aky,=¢ and also akq
The quasiparticle poles occur in the Minkowski-space:_é*i
propagator and it is necessary to begin there and then convert
to Euclidean propagators. The exact propagator in

Mmkowskl-space has 322 matrix structure. All four com- The natural expansion around the quasiparticle poles is
ponents are linear combinations of the exact retarded and

MragE)=0 Tge —E*)=0. 2.8

advanced propagatoBs(k) andD (k) as displayed in Eq. 1 Mgy k)
(6.2. Since Dp(k)=Dj(—k), it suffices to investigate (K= 2) (ko + &) + (ko &)%(kg+ £°)2 + (29
Dx(k). The retarded propagator is analytic in the upper-half
of the complexk, plane and satisfies the condition The second term has only simple poleskgt € and atk,
. _ =—£&*. Itis convenient to define the derivative of the self-

Dr(ko, k) =[Dr(—kg ,K)]*. (2.9 energy at these positions in terms of a complex condant
At zero temperature, the exact propagator has polés, at dlgrqeke) [2EB, ko=§, 2.10
=+ (m?+k?)Y2 At non-zero temperature, the location of dky [ —2EB*, ko=—¢&". '

these poles is temperature-dependent and complex. For defi- ) ) _

niteness, let the pole in the exact retarded propagator thdihis constanB is related to the wave-function renormaliza-

occurs in the fourth quadrant be lag= € where tion constant in Eq(2.3) by

. . . Z=1+B+B?+---=1/(1-B). (2.11
Ek)=E(k)—il'(k)/2 (E>0;I">0). (2.2

It will be helpful to have similar results for the advanced

Both E andT are complicated functions of momentum, tem- propagator. From the definition

perature, and coupling. The complex eneéwill be called . ,

the quasiparticle energy. Because of E21), the retarded Da(k)=Dg(—=k), (212
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the advanced propagator is analytic in the lower-half of the 1
complexk, plane. It must have poles in upper-half plane at DrK) = —a ka9
ko=E&* andk,= —&. To emphasize these poles, it is conve- (ko= &) (ko &%)
nient to write the advanced propagator as

DaK)= =7 —a
DA =[(Ko+E) (ko= ) ~Taqg(K)] L, (2.13 (Kot &) (ko= &)

The corresponding Euclidean propagator for free quasiparti-
where the advanced quasiparticle self-energy is defined to tlﬂes foIIows[,)frorrI1 gq'(lé_lln: propag quastpart

(3.9

M aqp(K) =TTA(K) + K2+ m?—|€>~iTky.  (2.14 D B -1
iwn,K)= = -
O ([on = E)(iwg| + €)
B. Euclidean space 1
The finite-temperature Euclidean propagator is defined at - wﬁ+[‘|wn|+|g|2' 3.2

discrete, imaginary frequencies

The transform to Euclidean time requires the Fourier sum-

w,=127nT, mation

wheren is any integer. The full Euclidean propagator is *
D(r,K)=T >, e '“™D(iw, k) (3.3
—Di(iwg,K) if n=0, e
—DA(iwn,R) if n<0, (2.19 for — B<r<p. Since EQq.(3.2) is an even function of the
integern, Eq. (3.3 is automatically an even function of
with the overall minus sign chosen for later convenienceTo perform the summation, it is convenient to write E242)
Relation (2.12 for k, imaginary implies that without the absolute value bars onas

Di(i2|n|T,K)=Dx(—i27|n|T,k). It follows that
D'(iw,,K) is an even function oh. The Euclidean propa-
gator may be expressed in terms of the self-energy as

D' (iw,,K)=

-1 2iwn(E — &)
Gon—Blante) Vel e

) . . ) . Using this gives for the Fourier sum
D' (iwp,K)=[(0y)?+ K>+ m2+TI(iw,,k) ] ?

1
" — —C|T| g* al
where the Euclidean self-energy is D(rk)=5gil1+n(&)]e Al n(e)e” )
-~ [Hg(iw,.k) if n=0, . " 2l w,
(i 0, k)= . 2.1 —T2, e“n , (3.4
(o= o k) it <o, @19 & et Y
The relations ITx(Kg,K) = [T — K’ ,IZ)]* and HA(kO,IZ) where the Bose-Einstein function is
=[TIa(—kg K)]* guarantee that Eq2.16 is real. To em- n(&)=1exp BE) —1].
phasize the quasiparticle aspect, the propagator may be writ-
ten This is the form of the quasiparticle propagator that will be
used in the subsequent self-energy calculatighs. Bellac
D'(iw, E)z[—(i|wn|—5)(i|wn|+€*)+qu(iwn E)]fl and Mabilat[18] also use this form for the regularized form

(2.17) of the free thermal propagator, in which cais replaced by
the free particle energy addbecomes infinitesimgl All the

where the quasiparticle self-energy is rdependence in E43.4) is of the form expfA|7) whereA
is a member of the set below

Mypiwn, K) =T(iw,,K)+K2+m?—|£?—T|w,|. (2.1 Ae{&,—E —iwy,—iwy,—iws,...} ImA<O.

(3.9
The presence ofn| rather thatn in these results is very
important, but will cause complications later. Each A has a negative imaginary part. The propagator will
be written compactly as

lIl. QUASIPARTICLE PROPAGATOR

= —Al7]
The natural approximation to the full Minkowski-space () ; f(A)e 3.6
propagators is to retain the quasiparticle poles. Thus approxi-
mate(2.6) and(2.13 by in which the coefficient functions are
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f(&)=[1+n(E)]I2E 1
f(—&*)=n(E*)I2E 3.7
f(—iw,)=—2TTw, /(02+E2) (w2t E2). 2

. s FIG. 1. One-loop self-energy.
Although Eq.(3.4) will be used throughout, the infinite P i

sum conceals several properties that are important to note... ; ;

First, the time dependence expf|7) with Im A<O0 will i@sp%iéggtsépressed concisely using the nota6of for
lead to a Euclidean self-energy that can be easily extended to

the retarded self-energy in Minkowski space. However the . —g

starting pointD(iwy,K) in Eq. (3.2 favors neither the re-  11'(7.K)= —— f dleAEA f(AF(Ay)e MatA2l,
tarded nor the advanced forms. Although it is not apparent, Lz 4.2
Eq. (3.4 is actually real: '

. . The transform fromr to discrete frequency,, is
D(1,k)* =D(7,k). (3.9

N B . .
This allows the time dependence to also be WrittenH'(iwn,k)=J dre'enII'(7,k)
exp(—A*|7) if continuation to the advanced form of the 0

Minkowski self-energy is desired. Although E@.8) is not g — e (A1+AR)B
obvious, it must be true, sin@®(i w, k) is real and an even f dle 2 f(ADT(AL) ﬁ-
function of n. Appendix B proves Eq(3.8) explicitly. Sec- v

ond, since expf,B)=1, the quasiparticle propagat¢s.3) 4.3

satisfies the KMS condition ) ) )
This can be extended froma,, for n>0 to complexk, with

D(B—T, K)=D(r,K). (3.9 Im ky>0. It is analytic for Imky>0 because\; andA, have
negative imaginary parts. The extension therefore gives the
Without the infinite sum in Eq(3.4), the KMS property retarded self-energy:
would not hold. Appendix B proves Ed3.9) explicitly. ) (AgtApB
Third, another way to obtain Eq3.4) is to begin with the 1 (k E)_g_ f 40 E FADF(A )1—e 1472
time-ordered propagator in Minkowski space, which is given ~R\"0'% 7 5 124 1 2 ko= A=Ay
by the following linear combination of the retarded and ad- (4.9
vanced propagators:
Although this is analytic fok, in the upper-half of the com-
[1+nko)] n(ko) plex plane, wherk, is continued into the lower half-plane,
(ko= &E)(kg+&*)  (kot+&E)(ko—E*)" the singularities ako=A;+ A, produce branch cuts in the
(3.10 self-energy.
. Physical Cuts:lt is useful to write out the various cases
The Fourier transformD4(t,k), for real positive timet is  for the differentA;. First, if A;=&; andA,=&,, the con-
determined by all the poles in the lower-half of the complextribution to the self-energy is
ko plane. These poles are &y=¢&, ko=—&* and atk,
=—iw, for n>0. The propagator in Euclidean time results g2 dQq [1+n(ED][L1+n(&E)]— n(El)n(Ez)
from continuing from positive, real to negative, imaginary ) f 2E,2E, ko—E1— &,

time —i7. The Euclidean propagator iQD(T,IZ)ziD11 (4.5
(—i7,k) and gives precisely Eq3.4).

Dyi(k)=

The discontinuity across the cut is complex. The statistical
factors provide for the Bose-Einstein enhanced emission of
two quasiparticles minus the absorption of two quasiparti-

It is always easy to perform loop corrections by integrat-cles. The second contribution is foA;=¢& and A,
ing over Euclidean time and then Fourier transforming=—¢ :
[1,19. That method will be employed here. The first ap-
proximation to the integral equatiofl.6) for the full self- o° dQp, [1+n(E)In(E)—n(ED[L1+n(E)]
energy is to use the quasiparticle propagdtd) and the 2 J 2E;2E, ko—E1+ES '
bare vertex without corrections. This approximation treats (4.6)
the energy€ exactly even though it is a function of the cou-
pling g. The one-loop correction shown in Fig. 1 is The statistical factors account for a direct process in which
quasiparticle 1 is emitted and quasiparticle 2 is absorbed mi-
nus the inverse process.Af;= — &7 andA,=¢,, the result
is

IV. ONE-LOOP SELF-ENERGY

e = v
H(T,k)—T dQ ,D(7,k)D(7,k5). 4.9
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g_zf dQy, N(ED[1+n(E)]-[1+n(ET)In(Ey)
5 :

2E,2E, kot & —&, 1 3 1
4.7)
If A,=—& andA,=—¢&5, the self-energy is 5
g° J‘ dQq, n(EINE)—[1+n(EH]L+n(&E)] FIG. 2. Two-loop self-energy due to one self-energy insertion.
2 ) 2E2E, Kot & + 65 '

(4.9 This is exactly the same self-energy as Eg3). However in
this form, it is easily extended fromw, to a function of
The one-loop self-energy is the sum of E¢&5)—(4.8) and complexkg that is analytic for Imky<<0. This extension gives
Eq. (4.9 displayed below. Appendix D computes the samethe advanced self-energy
guantity using the Minkowski propagators and obtains ex- o
actly the same answer. | oy 2
Unphysical CutsThere are some additional contributions Matko k) 2 f dQlZA%\Z FADT(AL)

to Eq.(4.9. If both A; and A, are positive integer multiples
of —i2#T, then the numerator of E@4.3) vanishes. How- >
ever if only one of theA; is a positive integer multiple of Kot Ai+A, -~
—i27T, the numerator does not vanish. Since Eg3) is
symmetric under interchange 6{<—>|22, it is only necessary
to consider the cask,=—iw,, A,=&, or —&; and double
the result to obtain

e~ (A1+A2)B_q

It satisfiesIT5(k)=IIg(—k) as required and has all its
branch points in the upper half of the complexplane.

Mixed RepresentationBecause of the KMS condition,
one can also represent the self-energy using a mixed form

D(7,k;)D(B— 7.ky). This leads to

zf dle = ZTF]_(,L)/

2E, A1 (024 E3)(wo+E%?) . g2
SR H'(iwn,k>=g—fd9122 f(A1)(Ay)
2 A7.Ay

-1 1
X - + - .
k0+|(1)/_(€2 k0+lw/+8§

(49) e_Az,B_e—A]_B
X ————.
|(1)n_A1+A2
Th rms have branch in the lower half-plan - . .
ese terms have branch cuts in the lower half-planik at Although this is the same self-energy, this representation

=~iw,+& and atko=—iw,—&; . The cuts are unphysi- P easily extended to either the retarded or the ad-
cal in that they are not entirely due to quasiparticle thresh-

L . . X vanced form of the self-energy. In Sec. V B it will be nec-
olds. The coefficient of this cut is proportional to the damp'essar to use the KMS identity in a similar wav to maniou-
ing ratel’; and is in this sense a higher order effect. Sectio y y y P

: . Nate the two-loop self-energy into a form whose Fourier
V will show that Eq.(4.9} IS e>.(a.ctly canceled by two-loop transform will be analytic in the lower half-plane.
effects. For later comparison, it is useful to return to the term

. | g N .
in IT'(7,k) whose frequency transform produced this cut: V. TWO-LOOP SELF-ENERGY
21T 0, The simplicity of the one-loop calculation makes it likely
(02+E2) (w2t £X2) that the two-loop contributions can be computed by the same
e e method. The contributions of Figs. 2 and 3 will be denoted
by IT} andIly, respectively.

92f d9122 eiw/T
/=1

X

1 1 &
[1+n(&)] s=—e 27+n(&) =—e%27|. (4.10
2E, 2E, A. Self-energy insertion on quasiparticle propagator

Advanced Self-Energsince quasiparticle propagator sat- The value of the diagram shown in Fig. 2 is

isfies the KMS condition, the integrand of E@t.1) could R R R
equally be writtenD(B8— 7,k;)D(B—7,k;). The Fourier HlA'(T.k)Z—QZJ dQ;D'(7,k) Dy(7.kp),  (5.2)
transform toi w, is then expressed as

) 1 4
Mo K= [0y S fAfA) .
Ap A,
e-(A1+A2B_1q 2
ioptAy+Ay " FIG. 3. Two-loop self-energy due to vertex correction.
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whereD' is the one-loop corrected propagator:
| . B .
D(7,k)=| d7'd7"D(7—7",k)
0

XMgp(7" =7, K)D(7',K).

This is not the most convenient way to compa®. It is
easier to employ the method discussed after(Bd.0. This

requires the Minkowski-space time-ordered propagator, now A
with one insertion of the retarded and advanced self-

energies:

[1+n(k0)]Hqu( )
(Ko—&)4(Ko+E*)?

To Fourier transform to real, positive timeequires closing
thek, contour in the lower-half of the compléyg plane. The
singularities inky in the lower-half plane are as followét)
a simple pole aky=¢, (2) a simple pole aky=—¢&*, (3)
simple poles im(ky) atko=—iw,, and(4) branch cuts in
[Trq4(k). Consequently, the Fourier transform is

n(kO)H qp(k)
 (ko+E)2(ko— )

1(

- B . B*
ID}y(tK)=[1+n(&)] 5ge +n(er) 5z
0 H:qqp(k) *Ikot )
> ((ko kot &),
(VI w,
i gkt )
21\ (Kot &) (Ko~ E)? K= —i
0~ Tlwy
_ [euts dkO | ikt
1 o 2 Dbl

The self-energie$lzq, andll o4, can be expressed in terms
of I1g andIl, using the definition$2.7) and(2.14). Evalu-
ating the propagator at the Euclidean titre—i7 gives

D' (7,K)=[1+n(&E)] Ee—m n(&*) —*eé*
: 2E 2E
ZFw/

(054 E?)(wo+EX?)

+TD, el
1

AT w [ (02+ EE*) (K2 + mP— E6%) + T 2w?]
_l’_

(w?/+52)2(w§+5*2)2
s lp(-iw,)  Tglie)
(024 EE-Tw))? (02+EE+Tw,)?

dko

fcuts | ‘
+i ——D,(kg)e o7, 5.2
m k0<0 277. ll( O) ( )

One way of proceeding is to add this correctlon to the free

quasiparticle propagat@B.4). In the sumD+ D' the coeffi-
cients of the quasiparticle terms are modified to B and
1+B* and the term proportional t6 in Eq. (3.4) cancels in

PHYSICAL REVIEW D 58 105002

the sum. It was this term that produced the unphysical cuts in
the one-loop self-energy. The cancellatiorlr D' guaran-
tees that unphysical one-loop cuts will be canceled in two-
loop order. The following discussion shows these features
explicitly as well as the three-quasiparticle cuts that arise.
Wave Function Correction to the Two Quasiparticle Cut:
To compute the self-energy requires substituting &q2)
into Eq (5.1). The contribution of the first line of E¢5.2) to

(7, k) is
Bi )

[1+n(&)] —e‘517+ n(&y) E
1

-9 f dQq,

(5.3

1 =& 1 &
X [1+n(&)] Z_EZe 2 +n(5”§) 2—Eze 20,

This may be symmetrized so thB} andB, appear equally.
When added to Ed4.2), it merely introduces the wave func-
tion correction B;~Z;.

Cancellation of Unphysical CutsThe 7 dependence in
Eq. (4.10 produced the unphysical cuts in E@.9). When
the second line of Eq5.2) is substituted into Eq(5.1), it
gives

2TF1w/
(02+ED)(w2+EF?)

~g?[ 40,3, e
/=1

(5.9

1 &1 1 &
X|[1+n(&)] 2—Eze 27+ n(&5) 2_Eze 2

This exactly cancels Eq4.10 so that the one-loop unphysi-
cal cuts are removed. Obviously, the third and fourth lines of
Eq. (5.2 will produce new unphysical cuts in the two-loop
self-energy. These will be canceled by higher loop effects.

Cut for Three QuasiparticlesThe last term in Eq(5.2)
requires integrating ifk, around the branch cuts in the one-
loop self energy:

dky, TTR(K)[1+n(ko)]

cuts
iJ 2 e ko
im ky<0 27 (ko= E1)%(Ko+EF)

(5.9

It is convenient to use the representat{dw), but to change
the internal momentum variables kg andk, in correspon-
dence with Fig. 2:

gz
(ko) =5 J das 2, f(A3)T(As)

1— e—(A3+A4)B

ko~ Aam
The denominatoky— A3;— A, produces the branch cut in
ko. The integration around the cut is performed by inter-
changing the order of integration to get

S [ a3
A3 Ag

(Agt+AyT

f(A3)f(Aye
(Ag+Ay=ED3(Az+ Ay +E)%
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This is the explicit evaluation ab(7,k), i.e., the last line
of Eq (5.2). When substituted into E@5.1), the contribution

to IT! AlT, K) is

f(A)f(Ag)f(Ay)e NatAstiar
(Agt+Ag—ED)*(Ag+ Ay +EF)°

f 401005,
{A}

This is easily transformed to gEI (lwp ,k) The extension
from i w,, to complexk, analytic in the upper half-plane is

f(/\z)f(/\s)f(/\ )

1 (ko R =~ & > [ 00,40,
{A}

e~ (A2tAg+AmB_q

X .
(Az+ A= ED3( A3+ Ayt EF)2

(5.6

This contains the cuts for three quasiparticleskgt A,
+ A3+ A,4. The unphysical values of will be canceled by
higher loops. This completes the analysis of Fig. 2.

B. Vertex correction

PHYSICAL REVIEW D58 105002

g* °
1l 1(T,k)=ZJdQ{EA} J_1;[1 f(A))

o (A+Ay)7

X

(A1=Ay=As)(A1+ A= A3—Ay)
o (Ag+Agr

+

(A= Azt As)(A1+Ar—Az—Ay)
o (Ag+Ag+Ag)T

+ . (5.8

(A=A Ao (Aot Aa—hg) O

The 7 dependence of these three terms will easily lead to
two-particle cuts akg=A 1+ A,, kg=A3+ A4, and a three-
particle cut atky=A,+ A4+ As. The next integration, B2,
gives the same answer as E§.8), but with the interchanges
A=A, andAz—A,.

Integration B3 can best be done by using the Kubo-
Martin-SchwingenKMS) condition to rewrite it as

4
Hg3(7',|2)=gz J dQJBdT’f/?dT”Dl(T/)DZ(TH)
Di(B+7—7")Dy(B+7— 7 )Dg(B+ 7" —7").

The time argument for each of the quasiparticle propagators
is positive. For example, foD; the time dependence is

Figure 3 shows the two-loop diagram containing a vertexexd —A5(8+7—7")]. The integrand written in this form leads
correction. Two of the loop momenta are independent. Foto the most convenient form for the final answer wiflr) a

definiteness, the independent momenta are takén asdk,
anddQ=d3k,d%ks/(27)8. The remaining,,k, ks are lin-
ear combinations of the these two and the exteknalThe
self-energy contribution is

I E:g_4 o) A ’ A " ’ '
Mg (7,k) 7 d OdT OdT D1(7")Dy(7")

X Da(7" = 7)Dy(7' — 7)Ds(7 (5.7

,—T’)

The three times, 7', and7” lie in the interval0,8] and may
be ordered in six different ways as follows:

Bl:r'<7'<r B2:7/'<7'<r
B3:7<7' <7 Bd:r<7'<7
B5: 7' <7< B6:7'<r<7’

The left and right columns differ by an interchangertfand

7. Because of the structure of the integral, this is the same

as interchanging\;— A, andA3—A,. Thus, only B1, B3,
and B5 need to be computed. With the representdto®

product of terms of the form exp(A7) as desired. Direct
integration gives

4 5
=5 [ @03 1T 1a)
{A} =1
o (A1+Ap) e~ (Ag+Ag+As)B
A=A Ag) (At Ag— A
e (A3+A4)T (A1+Ay+Ag5)B
A=Ayt Ag) (A1 +Ar—Az—Ay)
e (A+Ag+Ag)ra—(Az+ApB

T A A A (— A+ Agthg) 9

Ay)

i

The tau dependence of these terms will again produce two
particle cuts ako=A;+A,, kg=A3+A,, but a different
three-particle cut aky=A;+ A3+ As5. Integration B4 re-
quires interchangingh;— A, and Az—A,.

The contribution of B5 is more difficult. First use the
KMS condition to write it as

- g T (F
Hgs(r,k)z%fdnfodr'f d7"Dy(7)Dy(7")

X Dy( B+ 7= 7")Dyl7= 1) Ds( B+ 7' —7").

for the quasiparticle propagators, the integration over Bl

gives

The integration gives
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. g 5 The last term contains tau dependence exp{r) which,
Mgs(7.K) = T f daX II f(apc when Fourier transformed, is difficult to extend analytically
Ap =1 in the upper half-plane. It is useful to isolate all the

X (e~ (M1+A2)7g=(As+As)8 dependence of this term by defining
+e (AastATa—AzB_ o= (Ar+AgtAs)Tg—A8 o~ As(B-7
—e(TA2m At Ag)Tem (At Ag)B) Q= (A1—Ag+As)(—Ay+Az+Asg)”

C= 1 ) (5.10 The generalized KMS relatiofC9) proven in Appendix C

(A1=A4+As) (= A+ Azt As) shows that

|
f(Ag)e s
—As)(—Ayt+Az—Ag)

% 1(A90=2 =

+ e MM (— A+ Ay) el T RIBTIR(— Ayt A )
A1+A2_A3_ A4

whereF is the function defined in EC1). When this is substituted into E¢.10, the result is

w9 > ﬁ ~(A1+A2) 7= (Ag+As)B 4 @—(Ag+ A Ta—A2B_ @=(A1+Ag+As)ra—AgB
IT ,kz—fdﬂ fA-(fA
sk =g & j=1 (Aj)| T(As) (A= Ayt As)(— Ayt Azt As)

e—(/\2+/\4+/\5)7'e—/\3,B e—(/\l+A2)Te—/\3BF5(_A1+ A4)_e—(/\3+/\4)7'e—/\2ﬁ|:5(_A2+A3)

Xf(A —
(As) (A1—=Ay—As)(Ay—Az+As) A+ A= Az—Ay

(5.11

The 7 dependence determines tkgdependence. The terms trapping in the equal mass case, i.e., when all the internal
exfl—(A1+Az)7] and exp—(Az+A4)7] produce two particle  jines have the same dispersion relati{k). In that case the

cuts at ko=Ai+A, and ko=Az+A,. The terms pole of the integrand at,=&(k,) +&(k,) produces an end
exqd —(A1+Az+Ag)7] and exp—(A,+A,+As)7] produce S . - e o o
three particle cuts aky=A,+ A+ Ag and ko= A,+ A, point S|nguJar|ty fromk; =k,=k/2. The branch point is thus
+As. Integration B6 requires interchanginy;<sA, and  at k0=2§(k/2). For 3 quasiparticles, the branch poirlt is at
A=Ay ko=3&(k/3). The poles of the integrand dt,=¢£(k,)
—&(Ky)* and ko= —&(ky)* +E(K,) produce end point sin-
VI. CONCLUSION gularities from the regiork, = ak, k,=(1—a)k where a
The above results follow from the existence of poles in— = . Since all radiative corrections vanish at infinite mo-

- : h h poi h | axi
the full retarded propagatdd(ko.K;) at energiesky=1, mentum, the branch points are near the real axikeat

where =+|k|—i#. These results hold only for equal masses. In
general, the branch point locations will depend upon the
)\j=5(12]-) or —g*(lzj) Im A<0. (6.1  functions&(K).

Cuts in the retarded propagator automatically give those
These poles were shown to produce singularities in retardegf the advanced propagator becalsg k) =D4(—k). This

self-energy integrands. In the two-quasiparticle channelsalso determines the four real-time propagators
there are singularities atkg=A;+\,. In the three-

guasiparticle channels, the singularities arekgt\;+\,
+\3. Contributions withA=¢& correspond to stimulated
emission of quasiparticles weighted by-h(&); contribu-
tions with A\=—&* correspond to absorption of quasiparti- D1,(k) =€ n(ko)[D (k) —Da(K)]
cles weighted byn(&£*).
The singularities in the integrands dlg(k) produce

branch points when they are trapped at end points of the
three-momentum integrations. Without knowing the momen-

tum dependence df(k), it is only possible to analyze this D (k) =n(Ko)Dr(K) —[1+n(Ko) D A(K). 6.2

D 11(k) =[1+n(Ko) IDg(K) = (ko) D (k)

D 34(k) =e'#~7on(ko)[Dg(k) —~ DA(K)]

105002-9



H. ARTHUR WELDON PHYSICAL REVIEW D58 105002

Each branch cut of thB/, is completely below the real axis APPENDIX A: BREAKDOWN OF PERTURBATION
or completely above. There are no branch cuts that cross the THEORY

reallaxis. In addition, thED,éb hf"“’e simple poles ak, If one applies the Kobes-Semenoff cutting ru[d€)] to
=+i2anT from the Bose-Einstein functions. Although the g 5 sing free thermal propagators, it has the same break-
Dap can be written in terms of the thermal Feynman propa-own near threshold as the=0 example discussed in Sec.
gators Dgg, this introduces step functiong(ko) which | A The formula for this particular discontinuity is displayed

make the analytic properties &fg,z more complicated. in Le Bellac[14] and in Gelig15]. The two-particle discon-
The real-time self-energies are related to the inverse fulinity is

propagator by

i 2
o | @b+ n(po) +niko—po)]

[D'(K)]ap = (k2=m?) o3, —TT4p(k). 6.9 Disc Hg(k)=

In terms of the retarded and advanced self-energies this im- X €(po) &' (p?—m?)Re I1x(po)
plies X e(ko—po)AL(p—K)Z-m?]. (A1)

I133(k) =[1+n(ko) ITr(k) = (ko) (k) The contribution of ImMlIz has been dropped, since it pro-

) duces a three-particle discontinuity. To display the result, it

I115(k) =e7n(ko)[ —Ir(k) +11a(k)] is useful to let k=|k|] and K?=k3-k? and a=(1
—4m?/K?)2, Direct integration gives

I 5y(k) =e'#~7¥on(ko)[ — (k) + TTa(K)]

D' H k _ _|92 14 ko‘l‘Clk n ko_ak
T (k) = (ko) [T R(K) — [ 14+ N(kg) JTTA(K). (6.4) Ise He(k)= 55k 1T~ 32 N2
Several interesting points require further investigation. x| (k+ ako)ReHR( Ko— ak)
The separation of free quasiparticle effects was done by re- 2
arranging the propagator. It would be useful to have a opera- Kt ok
tor method for separating the free quasiparticles from the +(k— aky)Re Il ﬂ) e(ko— ak)
interactions. Work on this is in progress. A related problem 2
is whether the discontinuities can be computed directly with- (A2)

out having to compute the entire self-energy as done here. In

the perturbative approach, the cutting rules of Kobes angyhere kinematics requires that eith€f<0 or K2>4m?. At
SemenOff[lo] aCCOmp|iSh this. However their derivation the perturbative two-partide thresho|ﬁ12_>4m2, so that
also requires using the operator structure. The physical sigy— 0 and

nificance of the discontinuities requires further investigation.

Since the true branch points lie off the rdg) axis, it is _ —ig? Ko ko
natural that the discontinuities across the branch cuts are Disc HR(k)_)W 1+2n| | |Rellg| =]
complex. For example, the two-particle discontinuity of Eqg. (A3)
(4.5 is

, The behavior of this discontinuity like (24m?/K?)~12
Disc (k)= — 9 dQ, 21 8(ko— E1— &) produces an infinite correction at the false threshold which
R 2 2E,2E, 0 "1 =2 signals the breakdown of perturbation theory just as in the
zero-temperature example of Sec. | A. One can also check

X{[1+n(EPI[L1+n(E)]—n(E)n(E)} from Eq. (A2) that at the lightcone threshol&2—0", the
(6.5 discontinuity does not diverge. In retrospect, this is because
the quasiparticle effects do not change the location of the

This is very much like what would be expected for the dif- space-like branch cut for equal massesk|<ko<|k, as
ference between the production rate of two quasiparticlediscussed in Sec. VI.
minus their absorption rate, except that the quasiparticle en-

ergiesé are complex. APPENDIX B: REALITY AND KMS CONDITIONS

It is not obvious that the quasiparticle propagafyrr, IZ)
displayed in Eq(3.4) and used throughout the paper satisfies
This work was supported in part by National Sciencethe reality and KMS conditions claimed in Eg8.8) and
Foundation Grant No. PHY-9630149. It is a pleasure to(3.9). The infinite sum in Eq(3.4) obscures these properties.
thank the Institute for Nuclear Theory at the University of One can rewrite that sum in another way using

Washington and the Department of Energy for partial sup-
port during the completion of this work. elenl=e=1nl7 4 2i sin(w,|7]).
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The sum over sing,|7) can be performed using the identity wheref(A) are the functions given in Eq3.7). It also has

poles in the upper half-plane k= —
—2ilw,

(2 +ED) (2 E7D) —fa)

T2 sin(w|7)

1
= {-[1+ e £l
4E{ [1+n(&)]e n(&)e KMS Identity: BecauseF (ky) vanishes sufficiently rap-

e i idly in all directions of the complex plane aky|—«, the
+[1+n(E)]e +n(&)e. (B1)  contour integralC3) vanishes when the conto@ris a circle

Using this in Eq.(3.4) gives of infinite radius:

D(T,'Z): %{[LLn(é‘*)]e_mTWn(é‘)eg'T'} % — F(ko)eko(ﬂ—’f) (0$ T$I[)’) (CS)

- o] 2w, The vanishing of the integral implies that the residues of the
—TZ e (021 ED) (W2 +E%D) (B2 lower half-plane poles cancel those of the upper half-plane:
n n

Each term on the right hand side is the complex conjugate of f(A)e-AB—7) = A7
e = f(A)e 2. C4
2 () 2 () (C4

the corresponding term in the original expressi@h4).
Hence,D(T,IZ) is real.
To prove that the quasiparticle propagator satisfies th&ince the left and right sides of this are the Euclidean propa-
KMS condition requires writing the propagator in yet an- gator(3.6), this just proves the KMS theorem
other way. In the original forn3.4) use R
_ D(B—1,k)=D(7,k). C5
el = cog w|7|) +i sin(wp|7]). (B=rk)=D(rk) €3
Theorem 1¥For C a circular contour at infinity ang any
complex number inside the contour, the following integral
vanishes

The sum over sing,|7) can be performed with the identity
(B1) to give the result

(Tk)——{[1+n(8)]e‘5‘7‘+n(é‘*)eg*“‘ ko(B=7)
0= i; (0=7=<p). (Co)

+[1+n(&)]e 1M+ n(E)ed Ty
The contribution to the integral of the poles lgj=A, kg

- 2l'w, =—A, andk,=x must all cancel. This impli
_ , 0 . plies
Tnzl COS(wn|7'|) (wﬁ+52)(wﬁ+g*2) .
e AB-7 —A7
(B3) Z HA) 2 f(A) — —Fooe# 7.
In this form the KMS conditiorD(8— ,k) = D(7,K) is sat- (C?

isfied manifestly.
This is a generalization of the KMS identity. If the differen-
APPENDIX C: GENERALIZED KMS IDENTITIES tial operator k+d/dr) is applied to both sides of E4C7),

it reduces to Eq(C4).
In Sec. V B it is necessary to use some relations that are Theorem 2: For the same contour as before and

generalizations of the KMS identity. To demonstrate these, ib< r< g, the integral(C8) vanishes
is useful to define

(ko) (ko) dkg gko(B—7)
_ N(Ko B N(Ko 0= F(Ko) v— o ——- (C8
P = oo &) kot O &) P o 27 " o=x) (k=)
This satisfies Evaluating the integral by Cauchy’s theorem gives
F(—ko) =€ oF (k). (C2 e AB=7 e A7
3 Ny 2 W Eroc iy
F has poles in the lower-half of the compl&y plane atk, A A
=A whereA e {&,— & ,—iw,}. At the poles . F(x)eXB~7—F(y)eV#~"
E e ABf(A) X—y '
( O)HkOT’ (C9
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Applying (y+d/d7), this reproduces EqC7). This identity  are the linear combination.2) of the approximate retarded

is used in rewriting Eq(5.10 in the form(5.11). Obviously, and advanced quasiparticle propagators

these identities could be generalized to polynomial denomi- 1

nators of any order. (k)= ——— I —
(ko= &) (ko+&*) (kot+&)(ko—&*)

APPENDIX D: ONE-LOOP CALCULATION IN THE The retarded self-energy that implied by E6.4) is

REAL-TIME FORMALISM
(eP0+ 1) (k) =€l 3(k) — T (k). (DY

Da(k)=

Calculations may also be done directly in the real-time
formalism. This appendix will compute the one-loop self- The one-loop contribution has two propagators with mo-
energy in the real-time formalism and show that the answementakj andk4 . Integration will be oveik, with the other
is the same as obtained rather easily in Sec. IV. In the quadefined byk,=k;—k. The necessary one-loop self-energies
siparticle approximation, the real-time propagatdrg,(k) are

ig? d*k
Hll(k):% f (ZT)lzln(kl)n(kZ)[eBkmDR(kl)_DA(kl)][eBKOZDR(kZ)_DA(kZ)]

ig? d*k
=5 [ Goankn(e)Datky) - (k) TDx(ko) ~ €D k)] ©2)

When these are substituted into E@1), the termDa(k;)Dgr(k,) cancels. The remaining three products of the form
D(k,)D(k,) are multiplied by combinations of exponentials that cancel one of the Bose-Einstein funttighsor n(ks).
The result is

i d*k
(P DRk = "5 | 5 tan(kD ko)L (€0+ 11Dr(ky) — (0 o0 D k)]

i d*k
*%f (23 N(k2)Dr(ky)[ ~ (€%0+ 1)Da(ky) + (e#0r+ 1)Di(ky) ). (03)

Note thatDg(k;)Da(k,) appears in both lines. It is convenient to compute the first integral by closingtfe@ntour below.
The poles in the lower half of thiey; come from two source®g(k;) has quasiparticle poles kg, =&, andky,=—£&7 and
n(k,) has poles atg;= —iw, . After thek,, integration is performed, there is a common faet@fio+ 1 on the right hand side.
The contribution tdlg from the first line of Eq(D3) is

9° f d3k, 1( (&) - n(—&r)
(2m)° 2B\ (ko= E1=E)(Ko—E1+E5) (Kot & — &) (Ko+EF +E5)

o0

g f d3k1 1 2iw (& &)
277)3 / 1 (kotiow,—&)(Kotiow, +E) (02+E2)(wi+EF?)’

(D4)

where Z,=¢&,+&; . To compute the integral on the second line of E3B), it is convenient to close thigy; contour above.
The poles in the upper-half of the, plane come fronD A(k,) (recallkg,= kg1—kg) atkg;=ko+ &5 andkg,=ky— &, and from
the Bose-Einstein function(k,) atky;=ko+iw,. The second line of ED3) contributes

g f dk, 1 n(&) B n(—&,)
27T) 2E2 ko+ gj_)(ko'f‘ +€1<) (kO_SZ_Sl)(kO_gZ_}_g;)
g2 d3k1 * 1 2i w/(ff’z‘ -&)
+7f (2m)3 21 (kotiw,—&E)(Kotion, +E) (02+E5)(w2+E5?)" ®S

The sum of Eqs(D4) and(D5) givesIIg(k) to one-loop order. It agrees completely with the sum of E4&)—(4.9). In this
method of calculating, the unphysical branch cuts produced by the denominators corkgining + z arise from poles in the
Bose-Einstein functions. They are not artifacts of the Euclidean calculation performed in Sec. IV.
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