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z-function regularization, the multiplicative anomaly, and finite temperature
quantum field theory

J. J. McKenzie-Smith* and D. J. Toms†

Department of Physics, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
~Received 27 May 1998; published 30 September 1998!

We discuss the role of the multiplicative anomaly for a complex scalar field at finite temperature and density.
It is argued that physical considerations must be applied to determine which of the many possible expressions
for the effective action obtained by the functional integral method is correct. This is done by first studying the
non-relativistic field where the thermodynamic potential is well known. The relativistic case is also considered.
We emphasize that the role of the multiplicative anomaly in finite temperature quantum field theory is not to
lead to new physics, but rather to preserve the equality among the various expressions for the effective action.
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I. INTRODUCTION

The Feynman functional integral~or path integral! is now
the most widely used approach to quantum field theory
zero as well as finite temperature. Of course, it is perfe
possible to use more standard techniques based on ope
methods with the Feynman path integral never appear
What must be the case is that regardless of the appro
adopted, all valid methods lead to the same physical co
quences. Because of the lack of rigor in defining the Fe
man functional integral, care must be exercised in accep
the results of the formal manipulations involved. In the e
we can only accept the results of the functional integral
proach if they are in agreement with other methods of ca
lation.

In a one-loop calculation of the effective action for a sc
lar field theory the result typically involves the determina
of a differential operator, a result which is infinite and mu
be defined through some regularization technique. If we
the background field method@1#, then the one-loop effective
action reads

G5S@f̄#1
1

2
ln det~ l 2S,i j @f̄# ! ~1.1!

wheref̄ denotes the background field,S@f̄# is the classical
action functional, and

S,i j @f̄#5
d2S@f̄#

df̄ i~x!df̄ j~x8!
. ~1.2!

The second term of Eq.~1.1! contains the quantum correc
tions to the classical theory~at one-loop order! and arises
from performing the functional integral over a Gaussian.l in
Eq. ~1.1! is a unit of length~the renormalization scale! intro-
duced in order that the argument of the logarithm in Eq.~1.1!
be dimensionless. In finite temperature field theory it is c
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venient to adopt the imaginary time formalism in which t
path integral extends over all fields periodic in time wi
period b51/T with T the temperature. We choose to wo
with real scalar fields.

The problem of evaluating the second term of Eq.~1.1!
now arises. To be explicit we will consider the case of
single complex scalar field at finite charge density. Writi
the complex field in terms of its real and imaginary parts
have@2–6#

S@f̄#5E
0

b

dtE
S
dsxS 1

2
~fG 12 iemf̄2!2

1
1

2
~fG 21 iemf̄1!21

1

2
u¹f̄1u21

1

2
u¹f̄2u2

1
1

2
m2~f̄1

21f̄2
2!1

l

4!
~f̄1

21f̄2
2!2D . ~1.3!

HereS is the spatial part of the spacetime,e is the electronic
charge andm is the chemical potential. If we choosef̄1

5f̄ and f̄250 as the background fields it is easy to sho
that

d2S@f̄#

df̄1~x!df̄1~x8!
5S 2hx1m22e2m21

l

2
f̄2D d~x,x8!,

~1.4!

d2S@f̄#

df̄2~x!df̄2~x8!
5S 2hx1m22e2m21

l

6
f̄2D d~x,x8!,

~1.5!

d2S@f̄#

df̄1~x!df̄2~x8!
52

d2S@f̄#

df̄2~x!df̄1~x8!
52iem

]

]t
d~x,x8!.

~1.6!

There are now several approaches one could take to eva
ln det(l2S,ij@f̄#). To illustrate this we will simplify the prob-
© 1998 The American Physical Society01-1
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lem by takingl50, so that the theory is free. We will com
ment on the interacting case at the end of our paper.

The first way is to take the determinant over the 232
matrix first to obtain

GA
~1!5

1

2
ln det l 2~ l 2S,i j @f̄# !

5
1

2
ln det l 4S ~2hx1m22e2m2!224e2m2

]2

]t2D .

~1.7!

The remaining determinant in this last expression is und
stood to be a functional one. At this stage we note that
step has been criticized recently by Dowker@7# who claims
that it is incorrect to take the 232 determinant first. As we
will show in the next section, this need not be an incorr
step. The relativistic case will be considered in Sec. III.

A second expression forG (1) is obtained by diagonalizing
the functional matrixS,i j @f̄# by a transformation of the
fields to give

GB
~1!52

1

2
ln det l 2F2hx1m22e2m212iem

]

]t G
2

1

2
ln det l 2F2hx1m22e2m222iem

]

]t G .
~1.8!

This can also be understood to correspond to a partic
factorization of Eq.~1.7!.

A third way to evaluate the effective action is to integra
over one of the fields, sayf1 , first, and then perform the
remaining integral overf2 . This leads to a result

GC
~1!52

1

2
ln det l 2~2hx1m22e2m2!

2
1

2
ln det l 2F ~2hx1m22e2m2!24e2m2

]2

]t2

3~2hx1m22e2m2!21G . ~1.9!

The inverse operator (2hx1m22e2m2)21 can be under-
stood to be the Green function. This expression is equiva
to factoring out (2hx1m22e2m2) from the determinant in
Eq. ~1.7!.

At the formal level, by adopting the usual rules for th
manipulation of finite dimensional matrices, all of the thr
expressions for the effective action are identical. Howev
as pointed out in Refs.@8, 9# based on the application of th
Wodzicki residue in Ref.@10#, the usual formal manipula
tions are vitiated by the presence of an anomaly, called
multiplicative anomaly. The essential feature is that this m
tiplicative anomaly leads to a difference between the th
expressions for the effective actionGA,B,C

(1) . The question
arises as to which, if any, of the three expressions is corr
Our viewpoint is that this issue cannot be settled by con
10500
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ering the formal Feynman functional integral without r
course to physics. We will justify this in the subsequent s
tions. In Sec. II we will consider the simpler non-relativist
theory where there is no question as to the correct ther
dynamics. In Sec. III we will return to the relativistic field

II. NON-RELATIVISTIC THEORY

The action functional for a non-relativistic Schro¨dinger
field C is ~in the imaginary time formalism!

S@C,C†#5E
0

b

dtE
S
dsxX12 S C†

]C

]t
2

]C†

]t
C D

1
1

2m
u¹Cu22muCu2C. ~2.1!

We will not include self-interactions here for simplicity. Th
theory defined by Eq.~2.1! is already complicated enough t
demonstrate the discrepancy between different approac
Rather than deal with the complex fieldC we can decom-
poseC into its real and imaginary parts and define

C5
1

&
~f11 if2!. ~2.2!

This gives

S@f1 ,f2#

5E
0

b

dtE
S
dsxS i

2
~f1ḟ22f2ḟ1!1

1

4m
u¹f1u2

1
1

4m
u¹f2u22

1

2
m~f1

21f2
2! D . ~2.3!

If we perform the Feynman functional integral over the tw
real fields in Eq.~2.3! it is easy to see that the one-loop pa
of G is

G~1!5
1

2
ln det l 2S 2

1

2m
¹22m i

]

]t

2 i
]

]t

1

2m
¹22m

D
~2.4!

5
1

2
ln det l 4F S 2

1

2m
¹22m D 2

2
]2

]t2G . ~2.5!

In the second line above we have taken the determinan
the 232 matrix which we claim is a valid step and that E
~2.5! is the correct answer.~This will be justified below.!

In order to define Eq.~2.5! we make use ofz-function
regularization. Let$ f n(x)% be a complete orthonormal set o
solutions to

2¹2f n~x!5snf n~x!. ~2.6!
1-2
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sn represent the eigenvalues of the Laplacian forf n(x)
obeying whatever boundary conditions apply to the spaceS.
Because the fieldsf1 andf2 are periodic in imaginary time
the eigenvalues of the operator in Eq.~2.5! are (sn/2m
2m)21v j

2 where

v j5
2p j

b
~2.7!

with j 50,61,62,... . We have the formal result

G~1!5
1

2 (
j ,n

ln l 4F S sn

2m
2m D 2

1v j
2G . ~2.8!

To give meaning to Eq.~2.8! we introduce the generalize
z-function @11–13# defined by

z~s!5 (
j 52`

1`

(
n

F S sn

2m
2m D 2

1v j
2G2s

. ~2.9!

G (1) is then defined to be

G~1!52
1

2
z8~0!1

1

2
z~0!ln l 4. ~2.10!

Knowledge ofz(s) in a neighborhood ofs50 will therefore
give us an expression for the one-loop effective action.

The z-function is considered in the Appendix. If we tak
m50 in Eq. ~A1! and alsoEn5sn/2m2m then we may
deducez~0! and z8(0) from Eq. ~A7! once we have evalu
ated the energyz-function of the first term. From Eq.~A4!
we have

E~a!5(
n

S sn

2m
2m D 12a

~2.11!

in this case. If we now specializeS to be flat space with the
large volume limit taken, then we have

sn→k2, ~2.12!

(
n
→VE d3k

~2p!3 . ~2.13!

It is now easy to show that

E~a!5V
G~a25/2!

G~a21! S m

2p D 3/2

~2m!5/22a. ~2.14!

Assuming thatE(2s) is analytic ats50, referring to Eq.
~A7! we find

z~0!50, ~2.15!

z8~0!52bE~0!22(
n

ln@12e2b~sn/2m 2m!#.

~2.16!

We therefore have, from Eq.~2.10!,
10500
G~1!5
1

2
bE~0!1(

n
ln@12e2b~sn/2m 2m!#. ~2.17!

The first term inG (1) is the regularized zero-point energy. I
the simple case we are considering here,E(0)50, so that the
zero-point energy makes no contribution. We are left w
the second term of Eq.~2.17! which is in agreement with
what is written down in standard statistical mechanics. W
can therefore be certain that Eq.~2.5! and z-function regu-
larization have led to results which agree with those fou
by other methods. If we use Eqs.~2.12! and ~2.13! in Eq.
~2.17! we find

G~1!52VS m

2pb D 3/2

Li 5/2~ebm! ~2.18!

where

Li p~z!5 (
n51

`
zn

np ~2.19!

defines the polylogarithm. This result may now be used
discuss Bose-Einstein condensation of the ideal gas.~See
Ref. @14# for example.!

In order to see what can go wrong, suppose that we re
to Eq. ~2.5!. This time, by noting that

S 2
1

2m
¹22m2D 2

2
]2

]t2

5S 2
1

2m
¹22m2

]

]t D S 2
1

2m
¹22m1

]

]t D
~2.20!

we will write

G̃~1!5
1

2
ln det l 2S 2

1

2m
¹22m2

]

]t D
1

1

2
ln det l 2S 2

1

2m
¹22m1

]

]t D . ~2.21!

Formally Eqs.~2.21! and ~2.5! are the same, since we hav
simply written the determinant of a product as a product
determinants. However, as pointed out in Refs.@8, 9# this
may not be justified for differential operators. Because of

simplicity of the model, we can evaluateG̃ (1) in Eq. ~2.21!
explicitly and see if it agrees withG (1), which we know to be
correct.

We will define the generalizedz-function

z̃~s!5 (
j 52`

1`

(
n

S sn

2m
2m1 iv j D 2s

. ~2.22!

Because the only difference between the two terms in
~2.21! lies in the sign oft, and the sum overj in Eq. ~2.22!
goes from2` to 1` it is easy to see that
1-3
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G̃~1!52 z̃8~0!1 z̃~0!ln l 2. ~2.23!

This is also the result which would be obtained by perfor
ing the Feynman functional integral over the complex fie
C using Eq.~2.1!. ~See Ref.@15#.!

From Eqs.~2.12! and ~2.13! we have

z̃~s!5V
G~s23/2!

G~s! S m

2p D 3/2

3 (
j 52`

1`

~ iv j2m!3/22s ~2.24!

after performing the integral overk. The sum in Eq.~2.24!
was evaluated in the Appendix of@15#. Making use of this
result we find

z̃~s!5V
G~s23/2!

G~s! S m

2p D 3/2

~2m!3/22s

1VS m

2pb D 3/2 bs

G~s!
Li 5/22s~ebm!. ~2.25!

Expansion abouts50 shows that

z̃~0!50, ~2.26!

z̃8~0!5
4

3
ApVS m

2p D 3/2

~2m!3/21VS m

2pb D 3/2

Li 5/2~ebm!.

~2.27!

We therefore find

G̃~1!52
4

3
ApVS 2

mm

2p D 3/2

2VS m

2pb D 3/2

Li 5/2~ebm!

~2.28!

with the definition~2.21!.
Comparison of Eq.~2.28! with the correct result~2.18!

shows that

G~1!2G̃~1!5
4

3
ApVS 2

mm

2p D 3/2

. ~2.29!

The results are different. It might be thought that the diff
ence~2.29! is just a trivial constant which can lead to n
physical consequences; however this is incorrect. The dif
ence depends on the chemical potentialm and can affect
thermodynamic quantities, such as the particle numbe

internal energy. Use ofG̃ (1) rather thanG (1) will lead to
results which are not in agreement with those found fr
statistical mechanics, and therefore not in agreement w
observations of physical systems. In particular, the part
number follows from the normal Bose-Einstein distributi
function as

N5(
n

@eb~sn/2m 2m!21#21 ~2.30!
10500
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5VS m

2pb D 3/2

Li 3/2~ebm!. ~2.31!

We also must have~sinceG is related to the Helmholtz free
energy!

N52
1

b S ]G~1!

]m D
b,V

. ~2.32!

The result~2.18! used in Eq.~2.32! agrees with Eq.~2.31!,
but if we use the result~2.28! in Eq. ~2.32! we do not get the
correct particle number. The only conclusion to be drawn
that Eq.~2.28! which arose from Eq.~2.21! is not correct.

This leads us to the role of the multiplicative anomaly. A
discussed in@8,9# on general grounds we would not expe
Eqs.~2.21! and~2.5! to agree, since det(A1A2) will not be the
same as (detA1)(detA2) if A1 andA2 are differential opera-
tors. The difference between det(A1A2) and (detA1)(detA2)
is called the multiplicative anomaly. Our interpretation of t
multiplicative anomaly is not that it is irrelevant to the phy
ics as suggested by Evans@16# and Dowker@7#, but rather
that it is crucial for obtaining the correct physics.~It should
be noted that the authors of Refs.@8, 9# have also responde
@17,18# to the criticisms in Refs.@7, 16#.! When we factored
the differential operator in Eq.~2.5! to obtain Eq.~2.21! we
should have included an additional term as discussed
@8,9#. The role of this term, which is the multiplicativ
anomaly, is to ensure that no matter how we handle Eq.~2.5!
we end up with the correct result~2.18!. Thus the multipli-
cative anomaly precisely cancels the first term of Eq.~2.28!
resulting in the same answer for the effective action. T
does not lead to any new physics in the case we have
sidered, but nevertheless does illustrate the importance o
multiplicative anomaly.

III. RELATIVISTIC FIELD

As we have already explained, the Feynman functio
integral method should lead to a result for the effective
tion which is in agreement with other methods. According
we will first use more standard methods to determine w
the effective action should be, and then see what differ
functional integral expressions lead to.

A. Thermodynamics and the charge

The effective action is related to the Helmholtz free e
ergy, and can therefore be used in a standard way u
thermodynamical relations to derive various physical resu
Conversely, we can use known results for physical quanti
and the thermodynamical relations to tell us the effect
action.

Of particular importance to us is the total chargeQ which
is given by

Q52
1

b

]G

]m U
b,V

. ~3.1!
1-4
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Because a complex scalar field contains particles~of charge
e! and antiparticles~of charge2e! with the Bose-Einstein
distribution function, we must have

Q5e(
n

$@eb~En2em!21#212@eb~En1em!21#21%.

~3.2!

HereEn are the energy eigenvalues. We have

En5~sn1m2!1/2 ~3.3!

with sn the eigenvalues of2¹2. If we now use Eq.~3.2! in
Eq. ~3.1! and integrate with respect tom keepingb and V
fixed we find

G5(
n

$ ln@12e2b~En2em!#1 ln@12e2b~En1em!#%1G1

~3.4!

whereG1 is independent ofm. We can fixG1 by settingm
50 and demanding thatG be the result for an uncharge
complex scalar field. This fixesG1 to be

G15(
n

bEn . ~3.5!

~G1 must of course be regularized!. G1 has the interpretation
of the zero-point energy contribution toG. We end up with
the expression

G5(
n

$bEn1 ln@12e2b~En2em!#1 ln@12e2b~En1em!#%

~3.6!

which is equivalent to the result found in Ref.@3#. It can be
expressed as

G5G11G2 ~3.7!

where

G65(
n

H 1

2
b~En7em!1 ln@12e2b~En7em!#J . ~3.8!

G1 has the interpretation of the particle contribution andG2

the antiparticle contribution. Apart from the different relati
istic expression forEn , each of the termsG1 andG2 has the
same form as we found in the non-relativistic case in E
~2.17!.

We will call Eq. ~3.6! the correct expression for the effe
tive action. It leads, via Eq.~3.1!, to the standard result~3.2!
for the charge. In addition, the internal energy

U5
]G

]b U
bm,V

~3.9!

takes the familiar form
10500
.

U5(
n

En$11@eb~En2em!21#211@eb~En1em!21#21%.

~3.10!

In the zero temperature limit, the net contribution toU is the
zero-point energy contribution, which has its origin in th
first term of Eq.~3.6!.

B. Partition function and canonical quantization

The standard expression for the partition function is

Z5tr e2b~H2mQ! ~3.11!

with H the Hamiltonian operator andQ the charge operator
The Hamiltonian operator may be expressed as

H5(
n

Hn ~3.12!

with

Hn5EnS an
†an1

1

2
1bn

†bn1
1

2D . ~3.13!

an , an
† are the annihilation and creation operators for p

ticles andbn , bn
† are those for antiparticles. They satisfy th

standard commutation relations for bosons. The charge
erator is

Q5(
n

Qn ~3.14!

where

Qn5e~an
†an2bn

†bn!. ~3.15!

It is worth noting that the charge operator has been nor
ordered. It is the normal ordered expression which lead
Eq. ~3.2!.

Because@Hn ,Hn8#505@Qn ,Qn8# we can write

Z5)
n

Zn ~3.16!

where

Zn5tr e2b~Hn2mQn!. ~3.17!

This is a standard manipulation. Finally we can computeZn

by noting thatan
†an is the particle number operator andbn

†bn

is the antiparticle number operator. Hence we have

Zn5 (
n850

`

(
n950

`

e2bEn2b~En2em!n82b~En1em!n9

5e2bEn@12e2b~En2em!#21@12e2b~En1em!#21.

~3.18!

Because the effective actionG is related to the partition func
tion Z by
1-5
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G52 ln Z, ~3.19!

we arrive at

G5(
n

$bEn1 ln@12e2b~En2em!#1 ln@12e2b~En1em!#%.

~3.20!

This is consistent with the previous result~3.6!.
Thus we can have some faith in the expression~3.20!

which has been arrived at using standard methods which
not involve functional integrals orz-function regularization,
as the correct result for the effective action.

C. Functional integral approach

We now refer back to the result forG (1) found from the
functional integral in Eq.~1.7!. The determinant can be de
fined usingz-function regularization. We have

GA
~1!52

1

2
zA8 ~0!1

1

2
zA~0!ln l 4 ~3.21!

where

zA~s!5 (
j 52`

1`

(
n

@~v j
21sn1m22e2m2!214e2m2v j

2#2s.

~3.22!

~Recall thatsn are the eigenvalues of2¹2.!
Alternatively we could factor the fourth order differenti

operator in Eq.~1.7! into a product of two second orde
operators, and defineGB

(1) as in Eq.~1.8!. If we define

zB~s!5 (
j 52`

`

(
n

@~v j1 iem!21sn1m2#2s ~3.23!

then it is easy to see that

GB
~1!52zB8 ~0!1zB~0!ln l 2 ~3.24!

is the z-function regularized expression.@Both terms in Eq.
~1.8! involve the samez-function. Because the sum onj in
Eq. ~3.23! extends from2` to 1` the sign ofm in each
term is not relevant and each of the two terms gives an id
tical contribution#. This result,GB

(1) , is the one used in@5,6#,
and is equivalent to that used in@2–4,19#.

The third result we discussed in Sec. I was more com
cated and was given in Eq.~1.9!. This time we can define
two z-functions

zC
~1!~s!5 (

j 52`

1`

(
n

~v j
21sn1m22e2m2!2s, ~3.25!

zC
~2!~s!5 (

j 52`

1`

(
n

F ~v j
21sn1m22e2m2!

1
4e2m2v j

2

~v j
21sn1m22e2m2!G

2s

. ~3.26!
10500
do

n-

i-

The regularized result for Eq.~1.9! reads

GC
~1!52

1

2
zC

~1!8~0!1
1

2
zC

~1!~0!ln l 2

2
1

2
zC

~2!8~0!1
1

2
zC

~2!~0!ln l 2. ~3.27!

The results forGB
(1) and GC

(1) may be regarded as differen
ways of factoring Eq.~1.7!, althoughGC

(1) has the functional
integral interpretation we have mentioned. If we manipul
the formal unregularized expressions forGA,B,C

(1) then they are
all identical. However thez-function regularized results do
not share this equality, as pointed out in@9#. The only way to
decide which, if any, of the expressions forG (1) is correct is
by comparison with a result which does not have any am
guity. We have found in Secs. III A and III B that the sta
dard result~3.20! holds. ~Of course we have only written
down three possible expressions forG, and there are many
other ways to evaluate the functional integral.!

We turn first toGB
(1) because it is the easiest to evalua

and as we shall show leads to a result in agreement with
~3.20!. We will first show this formally using the result of th
Appendix, specifically Eq.~A7!. To do this we need to know
the behavior of the energyz-function E(2s) nears50. We
have

E~2s!5(
n

En
122s5(

n
~sn1m2!1/22s. ~3.28!

Although it is possible to proceed generally, without kno
ing the eigenvaluessn of 2¹2 explicitly, we will for sim-
plicity specialize to flat space in the infinite volume limit. I
this case~3.28! becomes

E~2s!5VE d3k

~2p!3 ~k21m2!1/22s

5
V

8pAp

G~s22!

G~s21/2!
~m2!22s. ~3.29!

The first term of Eq.~A7! therefore involves

b

2Ap

G~s21/2!

G~s!
E~2s!5

bV

16p2

~m2!22s

~s21!~s22!
~3.30!

5
bV

32p2 m4F11
3

2
s2s ln m21¯ G ~3.31!

when expanded abouts50. We can use Eq.~A7! to conclude
that

zB~0!5
bV

32p2 m4,
1-6
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zB8 ~0!5
bV

32p2 m4S 3

2
2 ln m2D

2(
n

$ ln@12e2b~En2em!#

1 ln@12e2b~En2em!#%.

Thus

GB
~1!5(

n
$ ln@12e2b~En2em!#

1 ln@12e2b~En2em!#%2
bV

32p2 m4S 3

2
2 ln~m2l 2! D .

~3.32!

The last term in Eq.~3.32!, which is independent of the
chemical potentialm, contains the contribution of the zero
point energy after regularization.

We now turn to the high temperature expansion ofGB
(1) .

Haber and Weldon@3# obtained a result which ignored th
zero-point energy, and we will show~following @5#! how to
obtain their result directly from the generalizedz-function.
Separating off thej 50 term in Eq.~3.23! we have

zB~s!5 z̃B~s!1F1~s!1F2~s! ~3.33!

where

zB~s!5(
n

~sn1m22e2m2!2s, ~3.34!

F6~s!5(
j 51

`

(
n

@~v j6 iem!21sn1m2#2s. ~3.35!

Specializing to flat space, replacingsn→k2 and (n
→V* @d3k/(2p)3# we find

z̃B~s!5
V

8pAp

G~s23/2!

G~s!

3~m22e2m2!3/22s, ~3.36!

F6~s!5
V

8pAp

G~s23/2!

G~s! S 2p

b D 322s

3(
j 51

`

@~ j 6 iem̄ !21m̄2#3/22s, ~3.37!

with m̄5bm/2p and m̄5bm/2p. The binomial expansion
may be used to evaluate the leading terms ofF6(s) in the
high temperature limit. After a bit of calculation we find

F1~0!1F2~0!5
bV

32p2 m4, ~3.38!

~which is an exact result!, and
10500
d

ds
„F1~s!1F2~s!…us50

5
4p2V

3b3 S 1

60
1

b2e2m2

8p2 2
b4e4m4

32p2 D
1

V

2b
m2S 2

1

6
1

b2e2m2

4p2 D
1

bV

32p2 m4S 2g12 ln
b

4p D1¯ , ~3.39!

whereg is the Euler-Mascheroni constant. The expansion
GB

(1) becomes

GB
~1!52

V

6p
~m22e2m2!3/22

p2V

45b3 1
V

12b
~m222e2m2!

2
bV

16p2 m4S g1 ln
b

4p l D
1

bV

24p2 e2m2~e2m223m2!1¯ . ~3.40!

Removing the zero-point energy term using Eq.~3.32! shows
complete agreement between this result and that of Ha
and Weldon@3#. We can safely conclude that the corre
physics is contained in the expressionGB

(1) .
We now turn to the other two expressionsGA

(1) andGC
(1) .

We have not found such an elegant way to analyze thez-
functions in these two cases as that presented in the Ap
dix. Instead we will content ourselves with the high tempe
ture limit only and compare with Eq.~3.40!. We will show
that different results are obtained in these two cases.

We takezA(s) in Eq. ~3.22! and expand in powers ofm,
keeping terms up to orderm4. If we define

G~z,k!5 (
j 52`

1`

(
n

v j
2k~v j

21sn1m22e2m2!2z

~3.41!

it is easy to show that

zA~s!5G~2s,0!24e2m2sG~2s12,1!

18e4m4s~s11!G~2s14,2!1¯ . ~3.42!

Taking the case of flat space in the large box limit we fin

G~z,k!5
V

~4p!3/2

G~z23/2!

G~z!

3 (
j 52`

1`

v j
2k~v j

21m22e2m2!3/22z. ~3.43!

For k>1, we can expandG(z,k) to find ~noting that thej
50 term in the sum makes no contribution fork>1!
1-7
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G~z,k!5
V

4pAp

G~z23/2!

G~z! H S 2p

b D 312k22z

3zR~2z2322k!1S 3

2
2zD ~m22e2m2!

3S 2p

b D 112k22z

zR~2z2122k!

1
1

2 S 3

2
2zD ~m22e2m2!2S 2p

b D 2k2122z

3zR~2z1122k!1¯J . ~3.44!

Here zR(a) denotes the Riemannz-function. Fork50 the
j 50 term does make a contribution and we find

G~z,0!5
V

8pAp

G~z23/2!

G~z!
~m22e2m2!3/22z

1
V

4pAp

G~z23/2!

G~z! H S 2p

b D 322z

3zR~2z23!1S 3

2
2zD ~m22e2m2!S 2p

b D 122z

3zR~2z21!1
1

2 S 3

2
2zD S 1

2
2zD S 2p

b D 2122z

3~m22e2m2!zR~2z11!1¯J . ~3.45!

These results are sufficient to show that

zA~0!5
bV

32p2 m4, ~3.46!

zA8 ~0!5
V

3p
~m22e2m2!3/21

2p2V

45b3

2
V

6b
~m222e2m2!1

bV

8p2 m4S g1 ln
b

4p D
1

bV

8p2 e2m2S m22
1

3
e2m2D1¯ . ~3.47!

Used in Eq.~3.21! we find

GA
~1!52

V

6p
~m22e2m2!3/22

p2V

45b3

1
V

12b
~m222e2m2!2

bV

16p2 m4S g1 ln
b

4p l D
1

bV

48p2 e2m2~e2m223m2!1¯ . ~3.48!
10500
Comparison with Eq.~3.40! shows that all terms are th
same apart from the last one. In fact the difference betw
GA

(1) and GB
(1) corresponds precisely to the multiplicativ

anomaly computed in@9#. We will return to this at the end o
the section.

Finally we will examine the high temperature limit o
GC

(1) . Again a straightforward binomial expansion can
used. Leaving out the details, we find

zC
~1!~0!5

bV

32p2 ~m22e2m2!2,

zC
~1!8~0!5

V

3p
~m22e2m2!3/21

p2V

45b3 2
V

12b
~m22e2m2!

1
bV

16p2 ~m22e2m2!2S g1 ln
b

4p D1¯ ,

zC
~2!~0!5

bV

16p2 e2m2~2m22e2m2!,

zC
~2!8~0!5zC

~1!8~0!1
V

6b
e2m21

bV

4p2 e2m2~m22e2m2!

3S g1
1

2
1 ln

b

4p D1
bV

8p2 e4m4S g1
11

12

1 ln
b

4p D1¯ .

These results lead to

GC
~1!52

V

6p
~m22e2m2!3/22

p2V

45b3 1
V

12b
~m222e2m2!

2
bV

16p2 m4S g1 ln
b

4p l D
2

bV

16p2 e2m2S m22
1

12
e2m2D1¯ . ~3.49!

Again it is only the final term which differs from the resu
~3.40!.

We are in the situation that we have three different wa
of evaluating the formal expression for the effective actio
Only one of these expressions,GB

(1) corresponds to a resu
found using canonical methods. The difference between
three results for the effective action cannot be due to the
that we have not renormalizedG. The only renormalization
ambiguity resides in our choice of the renormalization len
l . Rescalingl in any of the expressions we have found on
alters the effective action by a term proportional tobVm4,
which does not involvem. The only way to decide which o
the expressions we have found is correct is by compari
with physical results as we have done.~Alternatively a more
careful definition of the functional integral might settle th
issue, but it must lead toGB

(1) if results of standard statistica
mechanics are to be correct!. To emphasize this point a
clearly as possible, we can compute the charge in the h
1-8
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temperature limit using Eq.~3.1!. Because them-dependence
in GA

(1) , GB
(1) andGC

(1) are all different, we will obtain three
different results for the charge. Only one of these results
correspond to that found from a direct high temperature
pansion of Eq.~3.2!, and this comes fromGB

(1) .
At this stage we return to the multiplicative anomaly. A

though we claim that it does not lead to any new physics
the example presented, we do not agree with the author
Refs. @7, 16# that it is of no importance. Rather we suppo
the view of Refs.@8, 9, 17, 18# that it is extremely important
Having settled on the correct expression for the effect
action GB

(1) in Eq. ~1.8!, the multiplicative anomaly is wha
ensures that if we combine the two operators to obtain
~1.7! the correct result will be obtained. The reason is tha
is necessary to add on the anomaly term when the opera
are combined as found in@8,9# and this leads to the sam
result as found fromGB

(1) . A similar comment applies toGC
(1)

with a different anomaly because of the different factoriz
tion. The multiplicative anomaly guarantees that formal m
nipulations of different factorizations of the effective actio
all lead to the same physics.

IV. DISCUSSION AND CONCLUSIONS

We have argued in the preceding sections that to de
mine the validity of the inequivalent but formally identic
expressions for the effective action obtained from the fu
tional integral, physical considerations are of greater imp
tance than mathematical ones. The functional integ
method is merely one way of calculation, and obviously
valid methods of finding the effective action must lead to
same physical conclusions. We studied both the relativi
and non-relativistic scalar fields. In the non-relativistic ca
two results for the effective action, which are equivalent
the formal level, were evaluated, and the one which agr
with the results of standard thermodynamics was identifi
In the relativistic case we evaluated three possible exp
sions for the effective action. The correct expression w
identified both from looking at the charge, and from a dire
evaluation of the partition function using canonical metho
Once the correct expression had been found we emphas
the crucial role of the multiplicative anomaly in maintainin
equality between the correct expression and other form
equivalent expressions.

We have restricted our attention to non-interacting sca
field theories here. The role of interactions complicates
details, but does not lead to any differences of substance
zero temperature the presence of a quartic self-interaction
the scalar field leads to a term in the multiplicative anom
proportional to the interaction as found in@8#. However in
this case the anomaly term is of no physical significance
contrast to the view taken in@8#, because the effective actio
~or potential! has not been renormalized. Once a renorm
ization condition has been imposed the anomaly is abso
by the counterterms and the usual effective potential is
tained. At finite temperature the situation is slightly mo
complicated@9#, but the approach we have outlined abo
settles the issue in favor of the standard expression for
effective action as used in@2–6# for example.
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It is also worth commenting on the theory used in tw
recent criticisms@7,16# of the work in @8,9#. ~See also Refs.
@17, 18#.! The model consists of two non-interacting sca
fields of different masses. The effective action can be
pressed in two ways:

G152
1

2
ln det l 4~2hx1m1

2!~2hx1m2
2!, ~4.1!

G252
1

2
ln det l 2~2hx1m1

2!2
1

2
ln det l 2~2hx1m2

2!.

~4.2!

These expressions are formally equal. As shown in@8# if
z-function regularization is used there is a multiplicati
anomaly present so that an explicit evaluation leads toG1
ÞG2 . However this theory is too simple to settle any issu
about the role of the multiplicative anomaly. The differen
between the two expressionsG1 and G2 is proportional to
bV(m1

22m2
2)2. This is a constant term in the effective po

tential which has no physical significance. As for the se
interacting theory at zero temperature, the anomaly is un
portant once a renormalized result is considered by adop
a renormalization condition, in this case on the vacuum
ergy.

In conclusion, we support the authors of@8,9# that the
multiplicative anomaly is important, but we do not agree th
it contains any new physical consequences in the finite t
perature field theory examples considered here. Rather
multiplicative anomaly is needed to explain the equality
formally identical expressions for the effective action arisi
from the functional integral. In this respect the multiplicativ
anomaly plays a vital and important role in the function
integral approach to quantum field theory.
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APPENDIX: THE GENERALIZED z-FUNCTION

We have the general definition

z~s!5 (
j 52`

1`

(
n

@~v j1 im!21En
2#2s. ~A1!

This will be an analytic function ofs in some region of the
complex plane and the objective is to analytically continue
to a neighborhood ofs50 and findz~0! and z8(0). There
are many ways to do this, and we will outline one way he

The order of summations is irrelevant in the region of t
complexs-plane where Eq.~A1! converges. We will perform
the sum overj first. By making use of the summation for
mula

(
j 52`

1`

f ~ j !5E
2`

1`

f ~ j !d j1E
2`1 i e

`1 i e

dz~e22p iz21!21

3@ f ~z!1 f ~2z!# ~A2!
1-9
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we obtain

z~s!5
b

2Ap

G~s21/2!

G~s! (
n

En
122s

1(
n
E

2`1 i e

`1 i e

dz~e22p iz21!21H F S 2pz

b
1 im D 2

1En
2G2s

1F S 2pz

b
2 im D 2

1En
2G2sJ . ~A3!

In arriving at the first term we have made use of the defi
tion of theG-function. If we define an energyz-function by

E~a!5(
n

En
12a ~A4!

which will be analytic forR~a! large enough, we can write

z~s!5
b

2Ap

G~s21/2!

G~s!
E~2s!

1(
n
E

2`1 i e

`1 i e

dz~e22p iz21!21

3H F S 2pz

b
1 im D 2

1En
2G2s

1F S 2pz

b
2 im D 2

1En
2G2sJ . ~A5!

In order to obtain the analytic continuation ofz(s) to s
50 we must modify Eq.~A5! since the second term of Eq
~A5! diverges ats50 as it stands. The integrand has bran
ys

D

10500
i-

h

points at 2pz/b5 i (En6m) in the upper half plane. By tak
ing branch cuts along the imaginary axis, and deforming
contour around the branch cuts it is straightforward to sh
that

z~s!5
b

2Ap

G~s21/2!

G~s!
E~2s!12 sin~ps!

3(
n

H E
b~En2m!/2p

`

dx~e2px21!21

3F S 2p

b
x1m D 2

2En
2G2s

1E
b~En1m!/2p

`

dx~e2px21!21

3F S 2p

b
x2m D 2

2En
2G2sJ . ~A6!

~An equivalent analytic continuation was found earlier
Ford @20#!. By expanding the second term in Eq.~A6! about
s50 it is easy to show that

z~s!5
b

2Ap

G~s21/2!

G~s!
E~2s!2s(

n
$ ln~12e2b~En2m!!

1 ln~12e2b~En1m!!%1¯ ~A7!

where terms of orders2 and higher have been dropped. Th
details of expanding the first term depend on the spect
En . Another way of obtaining Eq.~A7! is given in the Ap-
pendix of @21#.
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