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Z-function regularization, the multiplicative anomaly, and finite temperature
guantum field theory
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We discuss the role of the multiplicative anomaly for a complex scalar field at finite temperature and density.
It is argued that physical considerations must be applied to determine which of the many possible expressions
for the effective action obtained by the functional integral method is correct. This is done by first studying the
non-relativistic field where the thermodynamic potential is well known. The relativistic case is also considered.
We emphasize that the role of the multiplicative anomaly in finite temperature quantum field theory is not to
lead to new physics, but rather to preserve the equality among the various expressions for the effective action.
[S0556-282(98)11320-9

PACS numbsd(s): 11.10.Wx, 05.30.Jp

I. INTRODUCTION venient to adopt the imaginary time formalism in which the
path integral extends over all fields periodic in time with
The Feynman functional integrédr path integralis now  period 8=1/T with T the temperature. We choose to work
the most widely used approach to quantum field theory awith real scalar fields.
zero as well as finite temperature. Of course, it is perfectly The problem of evaluating the second term of Ehl)
possible to use more standard techniques based on operatmw arises. To be explicit we will consider the case of a
methods with the Feynman path integral never appearingingle complex scalar field at finite charge density. Writing
What must be the case is that regardless of the approathe complex field in terms of its real and imaginary parts we
adopted, all valid methods lead to the same physical conséxave[2—6]
guences. Because of the lack of rigor in defining the Feyn-
man functional integral, care must be exercised in accepting — B 1. —
the results of the formal manipulations involved. In the end ~ SL#1= JO dtJEd"x > (P1—iendy)
we can only accept the results of the functional integral ap-
proach if they are in agreement with other methods of calcu- 1. =51 —5 1 —
lation. +5(hatiendy) + 5[Vt 5[V,
In a one-loop calculation of the effective action for a sca-
lar field theory the result typically involves the determinant 1 A —
of a differential operator, a result which is infinite and must + Emz(gi+$§)+ ﬂ(gi"' ¢3)°). 1.3
be defined through some regularization technique. If we use
the background field methdd], then the one-loop effective Here is the spatial part of the spacetineeis the electronic
action reads charge anduw is the chemical potential. If we choosg,

_ 1 _ =¢ and@:o as the background fields it is easy to show
I'=8¢]+3In det(1?S;;[ $]) (1) that

where ¢ denotes the background fielf, ¢] is the classical 8 ]
action functional, and e o
Op1(X) 61 (X")

A —
—O+m?—e?u?+ 5 ¢2> 85(x,x"),

— 1.4
— o°q ]
Sijl¢l= m (1.2 -
X X _
e %= —Dx+m2—62/1«2+§¢2>5(x,X’),
The second term of Eq1.1) contains the quantum correc-  8é(X) §do(X") 6
tions to the classical theorgat one-loop ordgrand arises (1.9
from performing the functional integral over a Gaussiaim
Eqg. (1.1 is a unit of length(the renormalization scaléntro- 528[5] 828[$] P
duced in order that the argument of the logarithm in @) — — =—— — =2ieu—6(x,x").
be dimensionless. In finite temperature field theory it is con- 8¢ 1(X) S¢pa(X") Sy (X) Shq(X") at e
1.6
*Email address: j.j.mckenzie-smith@ncl.ac.uk There are now several approaches one could take to evaluate
"Email address: d.jtoms@ncl.ac.uk In detqzsij[qﬂ). To illustrate this we will simplify the prob-
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lem by taking\ =0, so that the theory is free. We will com- ering the formal Feynman functional integral without re-

ment on the interacting case at the end of our paper. course to physics. We will justify this in the subsequent sec-
The first way is to take the determinant over thg2  tions. In Sec. Il we will consider the simpler non-relativistic
matrix first to obtain theory where there is no question as to the correct thermo-

dynamics. In Sec. Il we will return to the relativistic field.

1 _
F<A1>=§|n detl%(12S ;[ ¢])
Il. NON-RELATIVISTIC THEORY

2 The action functional for a non-relativistic Schiinger

a2 field W is (in the imaginary time formalisin

@7 - _fﬁd f . (1 (\Iﬁ(w Al )
The remaining determinant in this last expression is under- Sw= 0 t s x\2 at at
stood to be a functional one. At this stage we note that this
step has been criticized recently by Dowk&t who claims
that it is incorrect to take the>22 determinant first. As we
will show in the next section, this need not be an incorrect
step. The relativistic case will be considered in Sec. lll.  We will not include self-interactions here for simplicity. The
A second expression fdi%) is obtained by diagonalizing theory defined by Eq2.1) is already complicated enough to
the functional matrixS;[¢] by a transformation of the demonstrate the di;crepancy betwe(_an different approaches.
fields to give Rather than deal with the complex field we can decom-
poseV into its real and imaginary parts and define

1
= Eln detl?| (—Oy+m?—e?u?)?—4e?u?

- L ewp e @1
2m » ' '

1
I'y’=—>In detl?

d
—O+m?—e?u?+ 2ie,uﬁ}

2 1
. V= E(¢1+i¢>z)- (2.2
1%
—5ln detl? —O,+ m2—e2,u2—2ie,uﬁ}.
This gives
(1.8
S[¢11¢2]

This can also be understood to correspond to a particular
factorization of Eq(1.7). B i : . 1 5
A third way to evaluate the effective action is to integrate = f dtf doy| 5 (P12~ dap1) + 7|V ¢l
- . 0 S 2 4m
over one of the fields, say,, first, and then perform the

remaining integral ovet),. This leads to a result 23

1 2 1 2 2
+am| Vel 5 u(it ¢2)

1
red=-— 5In det|?(— O+ m?—e?u?)
If we perform the Feynman functional integral over the two

1 52 real fields in Eq(2.3) it is easy to see that the one-loop part
- Eln detl?| (— O+ m2—e2,u2)—4e2,u2W of I'is
1, 0
X (—Oy+ m2—e2ﬂ2)—1}. (1.9 1 “omV TH =
F(l)zzln detl? P 1
The inverse operator<{[,+m?—e’x?)~* can be under- —i— V2
stood to be the Green function. This expression is equivalent Jt 2m
to factoring out ¢ [0, +m?—e?u?) from the determinant in 24
Eq. (1.7). s
A’g the formal _Ie_vel, _by ad_opting the_ usual rules for the _ Eln det? (_ LVZ—M) _ ‘7_} 2.5
manipulation of finite dimensional matrices, all of the three 2 2m at?

expressions for the effective action are identical. However,

as pointed out in Ref¢8, 9] based on the application of the In the second line above we have taken the determinant of
Wodzicki residue in Ref[10], the usual formal manipula- the 2x2 matrix which we claim is a valid step and that Eq.
tions are vitiated by the presence of an anomaly, called th€.5) is the correct answe(This will be justified below).
multiplicative anomaly. The essential feature is that this mul- In order to define Eq(2.5 we make use of-function
tiplicative anomaly leads to a difference between the thregegularization. Le{f,(x)} be a complete orthonormal set of
expressions for the effective actidhgll)B,c. The question solutions to

arises as to which, if any, of the three expressions is correct.

Our viewpoint is that this issue cannot be settled by consid- —V2f(X)=0pfn(X). (2.6
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o, represent the eigenvalues of the Laplacian fgfx)
obeying whatever boundary conditions apply to the sace
Because the field$,; and ¢, are periodic in imaginary time,
the eigenvalues of the operator in E@.5 are (o,/2m
— )+ f where

21|
©= 5 2.7
with j=0,+1,=2,... . We have the formal result
1 2
rv== _ 2
2 & In 14 om M +of|. (2.8

To give meaning to Eq(2.8) we introduce the generalized
{-function[11-13 defined by

2 -s
{(s)= 2 > [( ) +? (2.9
' is then defined to be
1 1
r<1>=—§g'(0)+§g(0)|n 14, (2.10

Knowledge of{(s) in a neighborhood o$=0 will therefore
give us an expression for the one-loop effective action.

The {-function is considered in the Appendix. If we take
u=0 in Eg. (Al) and alsoE,=c,/2m—u then we may
deduce{(0) and ¢’ (0) from Eg. (A7) once we have evalu-
ated the energy-function of the first term. From EqA4)
we have

) 1-a

in this case. If we now specialiZe to be flat space with the
large volume limit taken, then we have

E(a)=; (;—r';— (2.11

on—k?, (2.12
d3k
It is now easy to show that
I(a=5/2) (m\3

Assuming thatE(2s) is analytic ats=0, referring to Eq.
(A7) we find

£(0)=0, (2.19

{'(0)=—BE(0)—2>, In[1—e Alon2m-w],
n
(2.16
We therefore have, from E@2.10),
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1
[W=2BE0)+2 In[1—e A2 =m]. (217
n

The first term inl () is the regularized zero-point energy. In
the simple case we are considering h&@))=0, so that the
zero-point energy makes no contribution. We are left with
the second term of Eq2.17 which is in agreement with
what is written down in standard statistical mechanics. We
can therefore be certain that E@.5 and -function regu-
larization have led to results which agree with those found
by other methods. If we use EgR.12) and (2.13 in Eq.
(2.17 we find

m 32
rv= _V(W) Lig(ePH) (2.18

where

z"

Liy(2)= Z ~ (2.19

defines the polylogarithm. This result may now be used to
discuss Bose-Einstein condensation of the ideal ¢@se
Ref.[14] for example)

In order to see what can go wrong, suppose that we return
to Eqg.(2.5). This time, by noting that

2 2
T S R
2m K at?
1 bl 1 0
= —_—— 2— _—— _—— 2— —_—
( 2m K at)( 2m 'u+¢9t
(2.20
we will write
~ 1 1 J
M= 2l L Ty,
r 2In detl ( 2mV at)
+1| detl? ! V2 2.2
o ae om i 22D

Formally Egs.(2.21) and (2.5 are the same, since we have
simply written the determinant of a product as a product of
determinants. However, as pointed out in Ré8. 9] this
may not be justified for differential operators. Because of the
simplicity of the model, we can evaluaf&d? in Eq. (2.22)
explicitly and see if it agrees withi(*), which we know to be
correct.

We will define the generalizeg+-function

)

Us)= E E

Jf—oc

(2.22

L

Because the only difference between the two terms in Eq.
(2.2)) lies in the sign oft, and the sum ovey in Eq. (2.22
goes from—x to +« it is easy to see that
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TW=-7(0)+Z(0)In I% (2.23
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3/2
:V(W) Lig(ePm). (2.31)

This is also the result which would be obtained by perform-
ing the Feynman functional integral over the complex ﬂeldWe also must havésincel is related to the Helmholtz free

V¥ using Eq.(2.1). (See Ref[15].)
From Egs.(2.12 and(2.13 we have

- I'(s—3/2) [ m\%?
oy 32 (1)

[(s) \2m
+ o

x 2 (o= w3 (224
j=—»

after performing the integral ovéds. The sum in Eq(2.24
was evaluated in the Appendix §15]. Making use of this
result we find

~ . T(s=32) [ m 82 o s
5(5)—Vw(ﬂ) (—m)¥
m 312 s
+V( m) ﬁLiS/Z,S(eB’M). (2.25
Expansion abous=0 shows that
2(0)=0, (2.26

m 3/2
m) Lig(e").
(2.2

~ 4 3/2
e P A

We therefore find

m 3/2 m 3/2
i
(2.28

with the definition(2.21).
Comparison of Eq(2.28 with the correct result2.18
shows that

- 4 m 3/2
r—_r®=_.7v _ K ) (2.29
3 2

energy

1 (al“(l))
N=—— . (2.32

B\ dw gy
The result(2.18 used in Eq.(2.32 agrees with Eq(2.3)),
but if we use the resul2.28 in Eq. (2.32 we do not get the
correct particle number. The only conclusion to be drawn is
that Eq.(2.28 which arose from Eq(2.2]) is not correct.

This leads us to the role of the multiplicative anomaly. As
discussed i18,9] on general grounds we would not expect
Egs.(2.21) and(2.5) to agree, since dei(A,) will not be the
same as (dedg)(detA)) if A; andA, are differential opera-
tors. The difference between détf,) and (detA;)(detA,)
is called the multiplicative anomaly. Our interpretation of the
multiplicative anomaly is not that it is irrelevant to the phys-
ics as suggested by Evaphs6] and Dowker[7], but rather
that it is crucial for obtaining the correct physic¢#. should
be noted that the authors of Ref8, 9] have also responded
[17,18 to the criticisms in Refd.7, 16].) When we factored
the differential operator in Eq2.5) to obtain Eq.(2.21) we
should have included an additional term as discussed in
[8,9]. The role of this term, which is the multiplicative
anomaly, is to ensure that no matter how we handle(E§)
we end up with the correct resul2.18. Thus the multipli-
cative anomaly precisely cancels the first term of £328
resulting in the same answer for the effective action. This
does not lead to any new physics in the case we have con-
sidered, but nevertheless does illustrate the importance of the
multiplicative anomaly.

Ill. RELATIVISTIC FIELD

As we have already explained, the Feynman functional
integral method should lead to a result for the effective ac-
tion which is in agreement with other methods. Accordingly,
we will first use more standard methods to determine what
the effective action should be, and then see what different
functional integral expressions lead to.

The results are different. It might be thought that the differ-
ence(2.29 is just a trivial constant which can lead to no
physical consequences; however this is incorrect. The differ-
ence depends on the chemical potengiaand can affect The effective action is related to the Helmholtz free en-
thermodynamic quantities, such as the particle number ogrgy, and can therefore be used in a standard way using
internal energy. Use of @ rather than'Y will lead to  thermodynamical relations to derive various physical results.
results which are not in agreement with those found fromConversely, we can use known results for physical quantities
statistical mechanics, and therefore not in agreement witBnd the thermodynamical relations to tell us the effective
observations of physical systems. In particular, the particléction.

number follows from the normal Bose-Einstein distribution ~ Of particular importance to us is the total cha@evhich

A. Thermodynamics and the charge

function as

N= D, [eflon2m—p) _1]-1 (2.30
n

is given by

_1ar a1
Q= B,y '

105001-4
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Because a complex scalar field contains parti@scharge
e) and antiparticlegof charge—e) with the Bose-Einstein
distribution function, we must have

Q= ez {[eB(En*eM)_ 1] 1—[eBEnten) — 1771,
’ (3.2
Here E, are the energy eigenvalues. We have
Eqn=(o,+m?)H? (3.3
with o, the eigenvalues of V2. If we now use Eq(3.2) in

Eqg. (3.1) and integrate with respect t@ keeping8 andV
fixed we find

=2 {InN[1—e AEn~e]4|n[1—e AEntem 4T,
n
(3.9
whereTI; is independent ofx. We can fixI"; by settingu

=0 and demanding thdf be the result for an uncharged
complex scalar field. This fixeB; to be

rlzg BE,. (3.5

(I'y must of course be regularized’; has the interpretation
of the zero-point energy contribution 16 We end up with
the expression

= E {BE +In[1—e AEn—em) ]+ n[1—e AEnter)]]
(3.6

which is equivalent to the result found in Rg8]. It can be
expressed as

r=r,+r_ (3.7

where
1 _
r.=>, E,B(Enie,u)+In[l—e’B(En*e")] . (3.9
n

I' . has the interpretation of the particle contribution dhd

PHYSICAL REVIEW D 58 105001

U=, Ep{1+[efEn—em) 1] 14 [efEnten) 1)1
n
(3.10

In the zero temperature limit, the net contribution.tas the
zero-point energy contribution, which has its origin in the
first term of Eq.(3.6).

B. Partition function and canonical quantization

The standard expression for the partition function is
Z=tr e PH-1Q) (3.11

with H the Hamiltonian operator an@ the charge operator.
The Hamiltonian operator may be expressed as

H=> H, (3.12
n
with

R S
H,=E, anan+§+bnbn+ (3.13

E .

a,, al are the annihilation and creation operators for par-

ticles andb,,, b! are those for antiparticles. They satisfy the
standard commutation relations for bosons. The charge op-
erator is

Q:E Qn (3.19

where
Qn=e(ata,—biby). (3.19

It is worth noting that the charge operator has been normal
ordered. It is the normal ordered expression which leads to
Eq. (3.2.

BecausdH,,,H, ]=0=[Q,,Q, ] we can write

z=11 z, (3.19

where

Z,=tr e AlHn=1Qn) (3.17

the antiparticle contribution. Apart from the different relativ- This is a standard manipulation. Finally we can comgje

istic expression foE,, each of the termE , andI’ _ has the

by noting thata/a,, is the particle number operator ah¢b,,

same form as we found in the non-relativistic case in Eqis the antipartic|e number operator. Hence we have

(2.17).

We will call Eq. (3.6) the correct expression for the effec-

tive action. It leads, via Eq3.1), to the standard resul8.2)
for the charge. In addition, the internal energy

ar

=— (3.9
P Bur.V

takes the familiar form

Z,= E E e*BEn*ﬁ(En*eM)n'*ﬁ(En+eM)n"
n’=0n"=0

= e—BEn[]__ e—B(En—eu)]—l[l_ e_B(En+eM)]—l_
(3.18

Because the effective actidnis related to the partition func-
tion Z by

105001-5
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'=-Inz, (3.19 The regularized result for E¢1.9) reads
we arrive at 1 1
rg'=—-4"(0)+ 56 (0)n 12
= {BE,+In[1—e AEnew]+In[1—e AEntem]) . .
n
(3.20 —§g8>’(0)+ EggZ)(O)m 12, (3.27
This is consistent with the previous res(Bt6).
Thus we can have some faith in the express{8r20  The results fol'§" and ') may be regarded as different

which has been arrived at using standard methods which d@ays of factoring Eq(1.7), althoughl"(cl) has the functional
not involve functional integrals of-function regularization, integral interpretation we have mentioned. If we manipulate

as the correct result for the effective action. the formal unregularized expressions Fi{}, . then they are
_ _ all identical. However the-function regularized results do
C. Functional integral approach not share this equality, as pointed ou{®j. The only way to

We now refer back to the result fdr(l) found from the decide WhiCh, if any, of the expreSSiOHS 1691) is correct is

functional integral in Eq(1.7). The determinant can be de- by comparison with a result which does not have any ambi-

dard result(3.20 holds. (Of course we have only written
o 1 1 4 down three possible expressions 1orand there are many
A= 58a0)+ 52A(0)In ] (321 other ways to evaluate the functional integral.

We turn first toI'") because it is the easiest to evaluate,
where and as we shall show leads to a result in agreement with Eq.
(3.20. We will first show this formally using the result of the

_ Appendix, specifically Eq(A7). To do this we need to know
gA(S):j:z_w ; [(0f + o+ m?—e?u?)2+ 4eu20f] 7>, th%pbehaviof of the gne?gyfunction E(2s) nears=0. We

(3.22 have

+ oo

(Recall thato,, are the eigenvalues of V?2.)
Alternatively we could factor the fourth order differential E(2s)=2, EL 5= (g,+m)¥2 s (3.29
operator in Eq.(1.7) into a product of two second order " A

operators, and definB{") as in Eq.(1.8). If we define o . .
Although it is possible to proceed generally, without know-

* ing the eigenvalues,, of —V? explicitly, we will for sim-
(s(s)= 2 X [(oj+iep)?+o,+m?]™% (3.23  plicity specialize to flat space in the infinite volume limit. In
I===n this case3.28 becomes

then it is easy to see that

E(2s)=V d3k k2 2\1/2—s
)=~ £5(0)+£(0)In 12 (3.24 (29)=V | Gz m)
is the -function regularized expressiofBoth terms in Eq. V.  T(s—2)

(1.8) involve the same-function. Because the sum gnin (m?)27s, (3.29
Eqg. (3.23 extends from—o to +oo the sign ofu in each

term is not relevant and each of the two terms gives an iden-
tical contributior. This resultT'(", is the one used if6,6], ~ The first term of Eq(A7) therefore involves

and is equivalent to that used [ia—4,19.

T 8aya L(s—112)

The third result we discussed in Sec. | was more compli- B T(s—1/2) BV (m?)Z s
cated and was given in Eq1.9). This time we can define —— = o E@28) = 5 3.30
two ¢-functions 2(m  TI(9) 167 (s—1)(s—2)
- BV 3
(D)= 2 X (wj2+0n+m2—92,u2)_5, (3.29 =32ﬁ_2m4 1+5s-s In m2+--- (3.3)
j==="n

when expanded aboat 0. We can use EqA7) to conclude

2 22,2
(wj+op+m —e‘u?) that

(o= 2 2

4ez,u,2wj2 -s

(wj2+ ot m?—e?u?)

Vv
(3.26 {s(0)= %m“,

105001-6
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\Y 3
{p(0)= —23[;7 m4(§—ln m2>

_ ; {|n[1_ e—ﬁ(En—eM)]

+In[1—e AEa—em ]y

Thus
=2 {In[1—e AEnew]
n

%zm“(g—ln(mzlz)).

(3.32

The last term in Eq(3.32, which is independent of the
chemical potentiaj, contains the contribution of the zero-
point energy after regularization.

We now turn to the high temperature expansiord’§f .
Haber and Weldo3] obtained a result which ignored the
zero-point energy, and we will sho(following [5]) how to
obtain their result directly from the generalizédunction.
Separating off thg =0 term in Eq.(3.23 we have

+In[1- e—ﬁ(En_eM)]}_

{a(S)=Ca(S)+F(s)+F_(s) (3.33

where

{s(s)= 2 (op+m?—e?u?)s, (3.34

©

Fi(s)zzl > [(wjxiep)®+o,+m?] 7S (3.39
= n

Specializing to flat space, replacing,—k?® and =,
— V[ [d3k/(27)3] we find

vV T(s—3/2

'n'\/; ['(s)

X (m2_ e2M2)3/27S,

ZB(S) = s

(3.39

Vv F(S—S/Z)(
877\/; ['(s)

[

X 2 [(j*iew)?+m?¥2s,
=1

2ur 3-2s
F.(s)= F)

(3.3

with ;:,[))IU,/ZW and m= pm/27. The binomial expansion
may be used to evaluate the leading termd$-ofs) in the
high temperature limit. After a bit of calculation we find

BV

322"

F.(0)+F_(0)=

(3.3

(which is an exact resyltand

PHYSICAL REVIEW D 58 105001

d
d—S(F+(5)+ F_(s)|s=0

B 4772V 1 . BZeZMZ ,3494#«4
- 38% 160" 872 3272
\V/ 1 2e2 2
+—=m? — <+ ’8—5
28 6 A4m
+ m* 2y+2In£ o (3.39
327 4 ’ :

wherey is the Euler-Mascheroni constant. The expansion for
r'Y becomes

772V+ Vo2 oe2,?
2558 T g (M 2e )

=

\
l"g-): _ G(mZ_ 92M2)3/2—

4
— =M +In
167 (7

+ W92M2(62M2—3m2)+"' . (3.40

Removing the zero-point energy term using E2132 shows
complete agreement between this result and that of Haber
and Weldon[3]. We can safely conclude that the correct
physics is contained in the expressibf’ .

We now turn to the other two expressiofi§” andT'{ .
We have not found such an elegant way to analyze(the
functions in these two cases as that presented in the Appen-
dix. Instead we will content ourselves with the high tempera-
ture limit only and compare with Eq3.40. We will show
that different results are obtained in these two cases.

We takela(s) in Eq. (3.22 and expand in powers gi,
keeping terms up to order®. If we define

—+ oo

G(zk= > 2 owl+o,+mP-e’u?)?
j===n

(3.41)
it is easy to show that
La(S)=G(2s,0)—4e®u?sG(2s+2,1)
+8e*u’s(s+1)G(2s+4,2+-- . (3.42

Taking the case of flat space in the large box limit we find

vV T(z—3/2)
G(ka)=(4ﬂ_)3/2 F(Z)

X 2 oMol+m?-e?u?)¥2 2 (3.43

j=—

For k=1, we can expan@(z,k) to find (noting that thej
=0 term in the sum makes no contribution foe 1)

105001-7
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vV T(z-3/2
dnn T2

X {R(22—3—2k)+(;—z)(mz—ez,uz)

G(z,k)=

2a 3+2k—2z
5

X

B
1/3 2
+§ E_Z)(rnZ_eZILLZ)Z(7

2 1+2k—2z
) (r(22—1—2K)

)2k122

X{r(22+1—-2K)+---

. (3.49

Here {r(a) denotes the Rieman&ifunction. Fork=0 the
j=0 term does make a contribution and we find

vV T'(z—-3/2
877\/; I'(2)

. \Y; F(z—3/2)[(21)3‘21
anr T2 B

3 2a 1-2z
R

1 )(277)122
2 ¢ B

. (3.45

G(z,0=

( 2__ e2M2)3/2—Z

X {r(22—3)+

i
XgR(22—1)+§ E_Z

X (m?—e?u?){p(2z+1)+- -

These results are sufficient to show that

gA(O):Wm : (3.49
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4583

\Y
(A(0)=5—(m?—e®u?)¥2+

\Y, BV B
(2 0a2,,2 4 ~
6,8(m 2e‘u )+78’7T m*| y+In 477)

BV

2 2
+We,u +eee,

(3.47

2 2,2
m-— e
3= M

Used in Eq.(3.21) we find

v,

2 2\3/2__
e u ) 45ﬁ3

V
i

+

48772e2,u2(ez,u2—3m2)+-~~ . (3.48
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Comparison with Eq(3.40 shows that all terms are the
same apart from the last one. In fact the difference between
'Y and 'Y corresponds precisely to the multiplicative
anomaly computed if9]. We will return to this at the end of
the section.

Finally we will examine the high temperature limit of
F(Cl). Again a straightforward binomial expansion can be
used. Leaving out the details, we find

BV

(0)= 57 (m?—e?u?)?,

, \Y VvV Vv
é/(cl) (0)= E(rnZ_eZIbLZ)C*}/Z_f_ 4533 _ 12ﬂ(m2_e2ﬂ2)
B
2_A2,,2\2 =
+16772(m e“u)?| y+in ype + ,

BV
é’(CZ)(O) = 167T2 ezlu’z(zmz_ ezlu’z)l

! ! V BV
((0)=¢" (0 + gre®u®+ refui(m?—eu?)

1 B BV 4 4 11
X 'y+§+|nE +me,u, ’y+1—2
B

+Inﬂ +

These results lead to
Vv VvV VvV

M _ " m2_a2,,2\32_ L m2_9a2,,2

BvY ., B
62™ | YT g
BV

= T (3.49

1
2.2 m2_ 2.2
e,u<m 128,u

Again it is only the final term which differs from the result
(3.40.

We are in the situation that we have three different ways
of evaluating the formal expression for the effective action.
Only one of these expressiorié(Bl) corresponds to a result
found using canonical methods. The difference between the
three results for the effective action cannot be due to the fact
that we have not renormalizdd The only renormalization
ambiguity resides in our choice of the renormalization length
I. Rescaling in any of the expressions we have found only
alters the effective action by a term proportional @y’ m?,
which does not involver. The only way to decide which of
the expressions we have found is correct is by comparison
with physical results as we have doiAlternatively a more
careful definition of the functional integral might settle the
issue, but it must lead tBS" if results of standard statistical
mechanics are to be corrécfTo emphasize this point as
clearly as possible, we can compute the charge in the high
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temperature limit using Eq3.1). Because thg--dependence It is also worth commenting on the theory used in two
in T, TS andT') are all different, we will obtain three recent criticismg7,16] of the work in[8,9]. (See also Refs.

different results for the charge. Only one of these results cahl7, 18.) The model consists of two non-interacting scalar
correspond to that found from a direct high temperature exfields of different masses. The effective action can be ex-

pansion of Eq(3.2), and this comes fronf'{" . pressed in two ways:

At this stage we return to the multiplicative anomaly. Al-
though we claim that it does not lead to any new physics in r,=—=In detl4(—[lx+m§)(— O, + m%), (4.1)
the example presented, we do not agree with the authors of 2

Refs.[7, 16] that it is of no importance. Rather we support

the view of Refs[8, 9, 17, 18 that it is extremely important. 1 ) . 1 5 5
Having settled on the correct expression for the effective 12~ — 3N detl®(= L my) = 7ln detl*(= L+ mj).
actionT'${" in Eq. (1.8), the multiplicative anomaly is what 4.2

ensures that if we combine the two operators to obtain Eq1._ . .

(1.7) the correct result will be obtained. The reason is that itThese expressions are formally equal. As shown8hif

is necessary to add on the anomaly term when the operatofsfunction regularization is used there is a multiplicative
are combined as found if8,9] and this leads to the same anomaly present so that an explicit evaluation lead$ fo
result as found froni'" . A similar comment applies t5) #I';. However this theory is too simple to settle any issues
with a different anomaly because of the different factoriza-2P0ut the role of the multiplicative anomaly. The difference
tion. The multiplicative anomaly guarantees that formal ma.Pétween the two expressioi andI'; is proportional to

. . . . ; . . 2 2 e i R H
nipulations of different factorizations of the effective action 8Y(Mi—mz)?. This is a constant term in the effective po-
all lead to the same physics. tential which has no physical significance. As for the self-

interacting theory at zero temperature, the anomaly is unim-

portant once a renormalized result is considered by adopting

a renormalization condition, in this case on the vacuum en-
We have argued in the preceding sections that to deteergy.

mine the validity of the inequivalent but formally identical In conclusion, we support the authors [&,9] that the

expressions for the effective action obtained from the funcmultiplicative anomaly is important, but we do not agree that

tional integral, physical considerations are of greater imporit contains any new physical consequences in the finite tem-

tance than mathematical ones. The functional integraperature field theory examples considered here. Rather the

method is merely one way of calculation, and obviously allmultiplicative anomaly is needed to explain the equality of

valid methods of finding the effective action must lead to theformally identical expressions for the effective action arising

same physical conclusions. We studied both the relativistifrom the functional integral. In this respect the multiplicative

and non-relativistic scalar fields. In the non-relativistic caseanomaly plays a vital and important role in the functional

two results for the effective action, which are equivalent atintegral approach to quantum field theory.

the formal level, were evaluated, and the one which agreed

with the results of standard thermodynamics was identified. ACKNOWLEDGMENTS

In the relativistic case we evaluated three possible expres- _

sions for the effective action. The correct expression was J-J-M-S. would like to thank EPSRC for grant 97304113.

identified both from looking at the charge, and from a direct

evaluation of the partition function using canonical methods. APPENDIX: THE GENERALIZED ¢-FUNCTION

Once the correct expression had been found we emphasized

the crucial role of the multiplicative anomaly in maintaining

IV. DISCUSSION AND CONCLUSIONS

We have the general definition

equality between the correct expression and other formally +oo
equivalent expressions. _ _ . {(s)= E E [(wj+i,u)2+Eﬁ]*S. (A1)
We have restricted our attention to non-interacting scalar j=—cn

field theories here. The role of interactions complicates the

details, but does not lead to any differences of substance. Athis will be an analytic function oé in some region of the
zero temperature the presence of a quartic self-interaction fé&iomplex plane and the objective is to analytically continue it
the scalar field leads to a term in the multiplicative anomalyto @ neighborhood 06=0 and find{(0) and {'(0). There
proportional to the interaction as found i8]. However in ~ are many ways to do this, and we will outline one way here.
this case the anomaly term is of no physical significance, in The order of summations is irrelevant in the region of the
contrast to the view taken {i8], because the effective action complexs-plane where EqA1) converges. We will perform
(or potential has not been renormalized. Once a renormalthe sum overj first. By making use of the summation for-
ization condition has been imposed the anomaly is absorbegula

by the counterterms and the usual effective potential is ob- e
tained. At finite temperature the situation is slightly more .
complicated[9], but the approach we have outlined above E f()
settles the issue in favor of the standard expression for the

effective action as used ir2—6] for example. X[f(z)+f(—2)] (A2)

+o wo+ie .
=f f(j)dj+f dz(e ?mz—1)7 1

j=— — o —o+ie
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we obtain
B I'(s—1/2)
(9= =T 2
wo+tie 2
7 _ dz(ez’ﬂz—l)lH(%H,u
-s 277 2 -s
+Eﬁ + (7—“&) +E§ ] (A3)

In arriving at the first term we have made use of the defini-

tion of theI'-function. If we define an energgfunction by
E(m)=2 E; “ (A4)
n

which will be analytic forR(«) large enough, we can write

B T(s—1/2)

\/_ F(s)
+2 o+tie

{(s)=——= 2s)

dz(e—Zﬂ'iZ_l)—l

—wo+tie

27TZ+_
— 1
5tk

2 -s

2

2
+E;

2
X +E;
272

%(ﬁ SI

In order to obtain the analytic continuation 6fs) to s
=0 we must modify Eq(A5) since the second term of Eq.

iw (A5)

PHYSICAL REVIEW [»8 105001

points at 2rz/8=i(E,*= u) in the upper half plane. By tak-
ing branch cuts along the imaginary axis, and deforming the
contour around the branch cuts it is straightforward to show
that

T(s—1/2)

{(s)= E(2s)+2 sin(7s)

f dx(e®™—1)"1
B(Eq-p)i2m

2 -s
o) ]

B

_|_

f dx(e*™-1)"*
B(En+u)i2m

)

(An equivalent analytic continuation was found earlier by
Ford[20]). By expanding the second term in E&6) about
s=0 it is easy to show that

2 2 2
—x—pu| —Ej

“1\ 7B

(A6)

B T(s-11)
= e

+|n(1_e_ﬁ(En+M))}+...

E(2s)—sY, {In(1—e AEn—r)

(A7)

where terms of ordes? and higher have been dropped. The
details of expanding the first term depend on the spectrum
E,. Another way of obtaining Eq(A7) is given in the Ap-

(A5) diverges as=0 as it stands. The integrand has branchpendix of[21].
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