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Numerical approach for high precision 3D relativistic star models
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A multidomain spectral method for computing very high precision three-dimensional stellar models is
presented. The boundary of each domain is chosen in order to coincide with a physical discofgiguithe
star’s surfacg In addition, a regularization procedure is introduced to deal with the infinite derivatives on the
boundary that may appear in the density field when stiff equations of state are used. Consequently all the
physical fields are smooth functions on each domain and the spectral method is absolutely free of any Gibbs
phenomenon, which yields to a very high precision. The power of this method is demonstrated by direct
comparison with analytical solutions such as MacLaurin spheroids and Roche ellipsoids. The relative numeri-
cal error is revealed to be of the order of 28 This approach has been developed for the study of relativistic
inspiralling binaries. It may be applied to a wider class of astrophysical problems such as the study of
relativistic rotating stars todS0556-282(198)06318-§

PACS numbd(s): 04.25.Dm, 02.60.Cb, 02.70.Hm

I. INTRODUCTION error decay of finite-difference methods, which behaves as
. o 1/NY, with g generally not larger than 3. For this reason,
One of the most promising sources of gravitational waves . . . .
. L9 L spectral methods are particularly interesting for treating 3D
is the coalescence of inspiralling compact binaries. The re- X ' : o .
. ) N problems—such as binary configurations—a situation in
cent development of interferometric gravitational waves deWhich the number of arid points is still severelv limited b
tectors[e.g., GEO600, Laser Interferometric Gravitational gna p y y

. the capability of present and next generation computers.
Wave ObservatoryLIGO), TAMA, and VIRGO] gives an Spectral methods lose much of their accuracy when non-

important motivation for studying this problem. Such a studygnooth functions are treated because of the so-called Gibbs
requires a relativistic formalism to derive the equations Ofphenomenon. This phenomenon is well known from the most
motion and then an accurate and tricky method to solve theymiliar spectral method, namely, the theory of Fourier se-
resulting system of partial differential equations. We haveyjes: the Fourier coefficientf) of a functionf which is of
recently[1] proposed a relativistic formalism able to tackle ¢|asscP but notCP+?! decrease as i? only. In particular, if

the problem of corotatings well ascounter-rotating binaries  the function has some discontinuity, its approximation by a
system, the latter being more relevant from the astrophysicaourier series does not converge towafds the discontinu-
point of view. We present now a very accurate approachity point: there remains a gap which is of the order 10%.
based on the multidomain spectral method that circumvents The multidomain spectral method described in this paper
the Gibbs phenomenon to numerically solve this problentircumvents the Gibbs phenomenon. The basic idea is to
and which can be applied to a wide class of other astrophysidivide the space into domains chosen so that the physical
cal situations. discontinuities are located onto the boundaries between the

Various astrophysical applications of spectral methodslomains(Sec. I). The simplest example is the case of a
have been developed in our grogfpr a review, see Ref. perfect fluid star, where two domains may be distinguished:
[2]), including three-dimensiondBD) gravitational collapse the interior and the exterior of the star. The boundary is then
of stellar core[3], neutron star collapse into a black hole simply the surface of the star. The second ingredient of the
[4-7], tidal disruption of a star near a massive black 8¢ technique is a mapping between the domains defined in this
rapidly rotating neutron starf9—12], magnetized neutron way and some simple mathematical domains, which are
stars[13,14 and their resulting gravitational radiati¢a5],  cross products of intervalga, ,a,]xX[b;,b,]X[¢c;,C5]. The
spontaneous symmetry breaking of rapidly rotating neutrorspectral expansion is then performed with respect to func-
stars[16,17], and protoneutron star evoluti¢t8—20. tions of the coordinates spanning these intery&lsc. lI).

In computational fluid dynamics, spectral methods areThe method of resolution of a basic equation, namely, the
known for their very high accurady21,27; indeed for aC” Poisson equation, is exposed in Sec. Il C. For stiff equations
function, the numerical error decreases as eXyj((evanes- of state, the above procedure is not sufficient to ensure the
cent erroh, whereN is the number of coefficients involved smoothness of all the functions. Indeed, for a polytrope with
in the spectral expansion, or equivalently the number of grichn adiabatic index greater than 2, the density field has an
points in the physical domain. This is much faster than thanfinite derivative on the surface of the star. We present in

Sec. IV a method for regularizing the density and recover the
spectral precision. The power of the multidomain spectral

*Email address: bona@mesiob.obspm.fr method is illustrated in Sec. V, where comparisons are per-
"Email address: Eric.Gourgoulhon@obspm.fr formed between numerical solutions obtained by an imple-
*Email address: Jean-Alain.Marck@obspm.fr mentation of the method and analytical solutigelipsoidal
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B. Mapping of the nucleus
The basic idea is to introduce the mapping

[0,1]X[0,7] X[ 0,27 — Dy,

(£,6".¢")—>(r.0,0) 2

so that the originO corresponds tg=0 and the boundary
Sp to é=const 1. Using the fact thaD, is starlike, a simple
FIG. 1. Splitting of the physical three-dimensional space intoform of the mapping2) can be chosen as

domainsDy, Dy, . .., Dy_4 (on the figureN=23), which are star-
like with respect to some origi®. The last domain(here D,) r=Ry(&6',¢"), ©)]
extends up to infinity.

0=16", 4
configurations of incompressible fluid$inally Sec. VI con- o, ®)
cludes the article by discussing the great advantages of the e=¢
multidomain spectral method for dealing with relativistic bi- whereR, is a smooth function subject to regularity proper-
nary neutron stars. ties which are discussed below. Thanks to Egs. (5), we

will make no distinction betweer and ¢', as well as be-

tween ¢ and ¢’, i.e., we will abandon the primes on the
Il. THE PHYSICAL DOMAINS AND THEIR MAPPING angles. The fact thaDy's boundary coincides wittgé=1
A. Splitting of the physical space into starlike domains translates as

In order to treat problems involving Poisson equations Ro(1,0,¢0)=Su(0,¢). (6)

with non-compact sources—as they appear in relativistic . ) .
gravitation—we take for the physical domain where the!n @ddition to Eq.(6), the functionR, must satisfy some
computation must be performed the whole three-dimensiondF9ularity properties mduced_by the slngular behavior of
spaceR®. In doing so, we know the physical boundary con- sphe_rlcal .co?f)rdmates at=0, 0_(.)’ .anda— 7. We define a
ditions we have to impose in order to solve the Poisson equa{EJnCtIcm f:*— K to be regular if it can be expressed as a

tions. These boundary conditions can be easily set at infinit)}:.)OIym)m'aI of the Cartesian coordinates

We divide R® into A/ domains ©0))g<|< -1 (NV=2). In the X=r sin 0 cos o, )
present work, these domains are taken tcstaglike (in the

mathematical sengeavith respect to a some origi@, which y=r sin 6 sin ¢, (8)
means that for every poi in the domairD,, the segment

OM is entirely included inU;< D, (see Fig. 1L The multi- Z= Ccosé. 9

domain spectral method we are going to describe can be
extended to more general domains, at the price of a greaté(?/e will assume tha’g all the physi(;al fields are regular func-
technical(but nonconceptugifficulty. However, for stellar  ions on each domai, (the domainsD; are in fact chosen
configurations, the starlike hypothesis is sufficient for mosi" this manner with respect to the previous definition. It is
applications. Let us denote b§j the boundary surface be- easy to see that any regular function is expandable as
tween the domain®, andD, . 1. Dy is simply connected and
its boundary isSy; we call it the nucleus. For£I<N-2, St 2y il im
Dy’s inner boundary isS,_; and outer boundar$, . The last f(r,ﬁmp):m:ZM /;ml r/T(r?)sin™ 6P, |y (cos 6)e™,
.do.m_ainDN_l .hasSN_z as inner boundary and extends to ' (10)
infinity (see Fig. L

Let us choose some Cartesian frameRdfcentered aD  whereL andM are positive integers, =M, P, _|m is some
and let us call (,6,¢) the associated spherical coordinatespolynomial of degree”—|m| andT(r?) is some even poly-
re[0,+o[, #e[0,77] ande €[0,27[. The mapping of each nomial.

M L

domain onto the cross product of intervals,,a,] A simple form of the mapping3)—(5) has already been
X[by,bs]X[cq,c5] will be defined with respect to the introduced in the literaturd23—25, namely, Ry(&,6,¢)
spherical coordinates (6, ¢). Since each domaiB, is star- = Sy(6,¢) &, whereSy(0, ¢) is the equation of the star’s sur-
like with respect tdO, the equation of the boundari€scan  face[Eq. (1)]. However, for such a mapping the regularity
be written in the form condition (10) would be quite complicated when expressed
in terms of ¢, 6,¢). We choose instead the mapping defined
r:SI(0!<P)1 (1) by

RO(&! 01(10) = aO[§+AO(§)FO( 01(10) + BO(&)GO( 01 QD)],
whereS, is a smooth function of0,7]X[0,27]. 11
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whereA, andB,, are the following even and odd polynomi-
als:

Ag(£)=3¢"-2¢°,
Bo(é)=(5£°-3¢°)/2,

and the constan, as well as the two functionkq(6,¢)
and Gy(6,¢) are such that(i) the Fourier expansion of
Fo(0,0) [Go(6,¢)] with respect toe contains only even
[odd] harmonics andii) the equation of the surfac§, can
be written

ag[1+Fo(0,0)+Go(8,9)]1=So(6,¢).

The polynomialsA, and B, defined by Eqs(12), (13) are
such that

(12

(13

14

Ag(0)=By(0)=0, (15
A4(0)=B4(0)=0, (16)
Ao(1)=By(1)=1, (17)
Aj(1)=Bj(1)=0. (18)

The propertieg14) and (17) ensure that Eq(6) is satisfied,
i.e., that the mappingll) is from[0,1] X[0,7]X[0,2#[ to
Dy. The polynomialsA, andB, are chosen in order to sat-

isfy at the minimum level the regularity conditions men-

tioned above. In particular, near the originbehaves as
~apé and is independent off(¢), which would not have
been the case of the mapping Sy(6,¢) & introduced in
Refs.[23-25.

The Jacobian of the transformation, §,¢)— (&, 0,¢) is

_9(r.6,0) Ry
A 0,0)  OE

= ao[ 1+ Ag(§)Fo(8,9) +Bo(£)Go(0,9)].

Since Aj(£)=0 andBy(£)=0 for any £€[0,1], the map-
ping could become singular Ky(8,¢) or Go(0,¢) is nega-

19

tive and has an important amplitude. We cannot control the

sign of the functionFy(8,¢) because it contains only odd
harmonics of¢. However, by a suitable choice of,, one
can impose

Go(6,9)=0, (20

PHYSICAL REVIEW D 58 104020

a0[1+F0(0* !QD*)+GO(0* !‘P*)]:SO(Q* rQD*)- (21)

Let us introduce the following auxiliaries quantities:

wi=aol Fo( 0 @x)+Gol 0y ,04)], (22)
Fo(0,0):=agFo(6,9), (23)
Go(0,0):=aoGo( 8, ¢) — . (24)
Equation(21) then translates as
aO+M:SO(0* ,QD*), (25)
whereas Eq(14) becomes
Fo(0,0)+Go(0,0)=S5(0,0) —So( 0, ,¢4).  (26)

Having expanded (0, ¢):=Sy(6,¢) — So( b, , ¢, ) into Fou-
rier series with respect t@, one deduces the functions
Fo(6,0) [Go(8,¢)] by taking only the oddever] harmon-
ics of this Fourier expansionu is then computed as

p=—min{Go(6,¢),(6,¢) €[0,m]X[0,2[}. (27)

In doing so, condition20) will automatically be satisfied.
The value of the coefficient, is deduced from the above
value of 4 via Eq. (25). Finally the functionsF,(#8,¢) and
Go(6,¢) are computed from Eg$23) and (24).

C. Mapping of the intermediate domains

For 1=I<N\-2, we introduce the mapping

[—1,%X[0,7]X[0,2a[ =D, ,

(28)
(£.0",¢")—=>(r,0,¢)
under the form

r=Ri(&6,0"), (29
0=10', (30)
=0, (31)

whereR, is a smooth function which satisfies
Ri(=1.0,0)=5-1(0,0), (32)
Ri(+1,0,0)=5(6,¢), (33

as we shall see below. We have found that this condition was

sufficient to ensure that#0, i.e., that the mapping is regu-

lar, for all the astrophysically relevant situations we haveby &=

encountered.

The equation for the surface of the domdny having
been given, in the form of Ed1), r=Sy(0,¢), so the pro-
cedure which leads tey, Fo(6,¢), andGgy(6,¢), i.e., to
the full determination of the functioRy(¢&, 6,¢), is the fol-
lowing one. First let us choose a poird,(,¢,) on the sur-
face Sy. Equation(14) implies the following relation:

which means that the innéoutep boundary ofD, is defined
-1 (é=+1).
We chooseR|(¢,0,¢) as

R|(§,0,go)=a|[§+A|(§)F|(0,<p)+B|(§)G|(0,<p)]+/3(|é4)

whereA, andB, are the following polynomials:

Al(§)=(E-3¢+2)14, (35

104020-3
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Bi(§)=(—&+3&+2)/4, (36)

and the constanta; and B, and the two functions- (6, ¢)

PHYSICAL REVIEW D58 104020

whereas Eqs37) and (38) become

Fi(0,9)=S_1(60,0)—S-1(6 ,¢s), (52

andG,(6,¢) are defined from the equations of the surfaces

Si_, andS, by
a[=1+F(0,0)]+B=S-1(0,¢), (37
a[+1+Gi(0,0) ]+ B=S(0.¢), (38)
Fi(6,90)=<0, (39
Gi(6,9)=0. (40)

Note that the polynomial#\, and B, defined by Eqs(35),
(36) are such that

A(-1)=1 andB(—-1)=0, (41)
A(+1)=0 andB(+1)=1, (42)
Al(—1)=B/(—1)=A/(+1)=B/(+1)=0. (43

The propertieg37) and(41) [(38) and(42)] ensure that Eq.
(32 [Eq. (33)] is satisfied, i.e., that the mappiligd) is from
[—1,1]X[0,7]X[0,27[ to D;. The conditiong39) and(40)

ensure that this mapping is not singular, by the same argu-

ment as that presented fd®, in Sec. Il B, the sign of
Fi(68,¢) being opposite to that o&(6,¢) becauseh, is a

decreasing function of, whereasB, is an increasing func-
tion of ¢.

The equation for the inner and outer boundaries of the

domain D, being given, in the form of Eq.(1): r
=5 _1(6,¢) (inner boundaryandr =S,(6,¢) (outer bound-
ary), the procedure which leads t@,, 8, F|(0,¢), and
G(0,¢), i.e., to the full determination of the function
Ri(&,0,¢), is the following one. First let us choose a point
(04 ,94) on the surfaceS,_, along with the corresponding
point (6, ,¢,) on the surfaceS,. Equations(37) and (38)
imply the following relations:

a[=1+F (0, ,0) ]+ 8= -1(0, ,04),

a[1+G(0, ,0,) ]+ BI1=S(04 ,04).

Let us introduce the following auxiliaries quantities:

(44)

(49)

Ni=aF(O,95), (46)
pi=aGy( 6, ,¢,), (47)
Fi(6,0):=aF|(6,9)—\, (48)
Gi(6,¢):=aGy(6,0) — . (49)

Equations(44) and (45) then translate as
@t A+ B=S 1(6, ,0,), (50)
a+pt =S, 04, (51)

Gi(6,0)=51(60,0)=S (6, ,¢,) (53
From the values oF(6,¢) andG,(6,¢) obtained abovey
and u are computed as

A

= —maxXF(0,¢),(6,¢) e[0,7]X[0,2n]}, (54)

p=—min{G,(8,¢),(6,¢) [0,m]X[0,2n[}. (55

In doing so, the condition&39) and (40) will automatically
be satisfied. The value of the constantsand g, are deduced
from the above values of and u via Egs.(50) and (51).
Finally the functionsF(6,¢) and G,(6,¢) are computed
from Eqgs.(48) and (49).

D. Compactification of the infinite domain

In the case where the external domdpg,;: =Dy, €x-
tends to infinity we introduce the mapping

[— 1,1 X[0,7]X[0,27r[ — Deyys

(£.0",¢")—=>(r,0,0), (56)
in the form

w=1r=U(§0',¢), (57)
0=10', (58)
e=¢', (59

whereU is a smooth function which satisfies
U(—1,0,¢)=Sex( 0,¢) 7, (60)
U(+1,6,¢)=0, (61)

where Sg,(0,¢):=Sy—2(6,¢). The above two equations
show that the inner boundary @, is defined byé=—1,
whereast= +1 corresponds to the infinity. We have already
introduced such a compactification of the infinite domain in
Ref.[9], in the case of a spherical inner boundary.

We choose the functioldd (¢,0,¢) as

U(£,0,0)= o] §+ Acxd §) Fexd( 0,0) — 1],

whereA.,; is the same polynomial ¢f as that defined in Eq.
(35), and the constani,,; and the functionF(#,¢) are
defined from the equations of the surfage_, by

Aoxd =2+ Fexd( 0,0) 1= Sexd 0:@)711

Fext( H,QD)gO

(62

(63
(64)

The condition(64) ensures thatU/d¢é#0, i.e., that the map-
ping (62) is not singular.
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The equation for the inner boundary of the doma@lg, whereN, is an integer that we will call the number of de-
being given, in the form of Eq1): r =S,,( 6,¢), the proce- grees of freedom i® andm is the degree of the harmonic in
dure which leads ter.,; andFq,( 6, ¢), i.e. to the full deter- the Fourier series with respect to: m=Kk in the present
mination of the functionU(¢,6,¢), is the following one. case. The advantages of this choice are to allow the use of
First let us choose a pointd( ,¢,) on the surfaceSgy;. Fast-Fourier-Transform algorithms for computing the coeffi-
Equation(63) implies the following relation: cients, as well as very simple matrices for the usual differ-

ential operator$26]. The associated collocation points are
Qoxd =2+ Fexd Ok 105 ) 1= Sexd( Os v(P*)71- (65

0;=m j/(Ny—1), O<j<N,—1 (75
By introducing the auxiliaries quantities

Concerning the variablg, we also choose a set wider than

N = aeF e 05 1 04 ), (66)  merely&”: namely,
Fexl(0,0):= oy ex( 6,0) =\, (67) Xji(§)=Tai(§), Os<isN,—1 forjeven, (76
this equation translates as Xji(6)=Ty+1(€), 0<is=N,—2 forjodd, (77
— 20t N =Sexl( 0, 04 ) L, (680  whereN, is an integer that we will call the number of de-
grees of freedom im andT,, denotes thath degree Cheby-
whereas Eq(63) becomes shev polynomial. The associated collocation points are
Foxd 0,0)=Sexd 0,0) "= Sod 05 ,0:) " (69 7o
ex exi ext Ux » Px &=sin > N=1) 0<i=<N,—1. (78)
From the above value (ffext(e,go), \ is computed according '
to The above choice concerns the nuclédg only. For the
. intermediate and external domains, we choose instead
A=—min{Fqo0,0),(0,0) e[0,7]X[0,27[}. (70
Xji(§)=Ti(&), (79

In doing so, the conditio64) will automatically be satisfied

(recall thatae<0). The value ofa., is deduced from the along with the collocation points

above value oh via Eq.(68). Finally the functionF.,( 6, ¢)

is computed from Eq(67). §=—cogmi/(N,—1)], OsisN,—1. (80)

Note that for the nucleus the above choice is the same as that
presented in Ref27], once¢ is replaced by . We refer the
A. Spectral expansion of a physical field interested reader to that paper for a more detailed discussion

The spirit of the multidomain spectral method is to per-2Pout this choicésee also Appendixes A, B, and D of Ref.

form spectral expansions on each dom&n and with re- [18)).

spect to the coordinates;(9, ¢) instead of the physical co- Whenksyrl?metry IS present, we use glffe_rent bases, mfor-
ordinates ¢.6.0). We shall take as basis functions der to take the symmetry into account. For instance, an often

separablefunctions of &,6,¢), i.e., functions that can be exi.sting symmetry is the symmetry with respect to the equa-
out under the formX(£)©(9)d(¢). The variableg being f[onal plane, i.e., the plan®= /2. In this case, we use,
periodic, it is natural to use Fourier series ¢ i.e., to instead of Eqs(73), (74),
choose O;(6)=cog2j6) formeven, (81

Dy (p)=€*¢  —N2<k=N_/2, (71)

IIl. MULTIDOMAIN SPECTRAL METHOD

Oy(0)=sin(2j+1)¢#] for modd. (82
whereN,, is an even integer that we will call the number of ] ] ] ]
degrees of freedom ip. The associated collocation points "€ @ssociated collocation points span drilyr/2], instead
(“grid points”) are of [0,7]:

J

o=2m kIN,, O=<k=N,—L1. (72
Ng_ 1,

b= 0<j=<N,~1. (83)
Concerning®(6), one must use functions that are compat-

ible with the exFansio(llO) of any regular scalar fiel. We  Another usual symmetry is the above equatorial symmetry
shall not use sifi 6P, _|m(cosé), as suggested by E¢L0), ~ augmented by the symmetry under the transformation
but a wider set, namely, the functions ¢— @+ . This is the case of a triaxial ellipsoid, or of an
axisymmetric star perturbed by evemmodes. In this case,

0j(0)=cogjh), O<j<Ny,—1 for m even, (73)  the ¢-basis functions are
O;(0)=sin(jo), 1<j<N,—2 for m odd, (74) O (p)=e2ke, (84)
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The associated collocation points sppby[, instead of
[0,27[:

ek=7kIN,, O<ks=N,—1. (85
The basis ind become
®(6)=cog2j 9), (86)

instead of Eqs(81), (82), the collocation points i remain-
ing those given by Eq83). In this case, the basis fg@rin the
nucleus contain only even polynomials:

Xji(§)=T2i(§), (87)

PHYSICAL REVIEW D58 104020

(38%-28%)0F 190" + (1/2)(562—3£%)9Go/ 6’
- 1+ (38— 28%)Fo+ (562— 364Gy

2

(94)

in order to avoid any division by a vanishing quantityéat
=0. The same thing is done fdg.

The above expressions are valid for the nucleus and the
intermediate domains, i.e. for=0, ... AN—2. For the
compactified domairD,,;, the quantity to be considered is
r2vf insteadVf. Indeed, gradients in the compactified do-
main are used in the computation of nonlinear terms in the
relativistic gravitational field equation&calar products of
gradients of the metric potentialdVe shall see below that
the source of the Poisson equationmg, is to be multiplied

the collocation points remaining the same as those given by r*, so that if each gradient is multiplied by, this mul-

Eq. (78).

B. Differential operators

In this section, we present how a first order differential
operator, the gradient, and a second order one, the Laplacian,

tiplication by r* is automatically performed. The orthonor-
mal components of?Vf on D, are

both applied to a scalar field, are expressed in terms of the

coordinates system described above. The computation of any

other kind of operator is straightforward.
The components of the gradient of a scalar fielsh an

orthonormal basis associated with the spherical coordinates

(r.0.¢) are

of _J_laf 88
or — V1 (9§’ ( )
1of 1 of J,0f 89
rag R g Iy 9€’ 89

1 of 1 of Jz0f
e — (90

rsing do  Rising’ g’ J1 9¢

where the following abbreviations have been introduced:

IR,
ni=7g, 91)
iR o
2R g0
o .

J3:: " .
R;sind’ d¢’

Note that we have reintroduced the primes ®and ¢ [cf.

Egs. (4), (5)] to avoid any confusion between the partial
derivatives. The partial derivatives that appear in the quanti-

ties J; are computed byi) a (banded matrix multiplication

Zxaf_ U\ ~1of o5
r o 07_§ (9—5, (95
2><1 of 1 af  [oU\7t1 oU of 9
r38 Ugy (3 Ugga P
2, L 0 1 (au)l 19U of
rsind do  Using’ 9o’ \ 9] U sin@ dp’ IE
(97)
The Laplacian of a scalar fielfireads
Af=J71 J*1(1+J2+32)'92f+ 2 - ! Ao f
1 1 2 3 aé_z Rl (9§ R|2 O
_12J2 072f+ J; 0% . 1A R
L R 960& " R sin 6 deog| |R2 %
PR J, °R
-1 -1 2, 12 _ sl Y2
+J; (Jl (1+J35+J3) pre 2(R| FFYT:
. Js a2R,) of o8
R, sin 0 dpdé 8_5 ' (98)

where the primes 0l and¢ have been abandoned again and
the following abbreviation has been introduced:

92 1 9 1 &
Ag =

+ —t ——— —.
¢ 992 tand af st 6 g2 (99

C. Resolution of the Poisson equation

For many astrophysical applications, one has to solve the

on the coefficients of the spectral expansion of the functionggjsson-like equation

Fi(6,¢) andG,(0,¢) and(ii) analytically for the polynomi-
alsAi(£) andB,(&). In the nucleus), is re-expressed as

Af=o(f), (100
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for some “potential” f. Note that for relativistic computa-
tions, o(f) is not compactly supportetsee, e.g., Refl9)) R(f):=[Jl_l
and generally decreases as*lWwhenr— + .
When expressed in terms of the variablésé& ¢), the
Laplacian takes the complicated fo88), for which it is not [Jl 2
obvious to find eigenfunctions. Therefore, we introduce, in (§+Biey)
each domairD,, a new radial coordinate
_1{ (J2 9%f J; 9%
+J77 2

—_— +
R| (96(9% R| sin @ (9@(75

2 of
IR, 0¢

R,

————(14+J35+35) -1
§+B|/a|( 2+J3)

R . o 1
]

{=aé+ B, (101
1 . o R,
— AR+ JIl(1+J2+J3)—2
Ri a¢

where a; and B, are the same constants as in Eds) and +
(34) (in the nucleus:87;=0). In the exterior domain, we
introduce <J2 PR, J; @R ))

—_— +
R, 000¢& R, sin 6 dpdé

of

7= ae( 1), (102
In order to let appear only the operatarin the left-hand

wherea,,; Is the same constant as in E§2). We may then side of Eq.(109), we introduce

split the Laplacian operata¥ into a pseudo-Laplaciah and a1 =maxa, (108
a part which would vanish if the domairi3, were exactly )

spherical(in this case, the coordinatgsand » introduced

here above would coincide with the physical coordinates and recast Eq105) into

andu= 1/r respectively. By pseudo-Laplacian, we mean the L

operator which once expressed in terms ofé{ ¢) has the T ~

same structure than the Laplacian operator in spherical coor- af= a[a(f) RO+ (a—a)af]. (109

dinates:
Sincef appears on the right-hand side of this equation, we
solve it by iteration. In addition, we introduce some relax-

~ #2494 1 ation in the computation of the terdf in the right-hand

A= 22 Trat ?AW’ (103 side of Eq.(109. More specifically, we solve at each step of
the iterative scheme the equation
whereA ,, is defined by Eq(99). In the exterior domain, the AfITi=0, (110

pseudo-Laplacian is defined instead by
where the index denotes the step at which the quantities are
taken ando” is the following source, computed from the

~ 9 1 .
A:ZFJF_ZA%- (104) value off at the step):
7 n EJ:al_l{O'(f'])+R(fJ)+(a|—a)[)\’(}‘]_1+(1—)\);"]_2]}.

(111

It is much easier to invert the operatdrthan the operator : . . . .

R . . In this expression)\ is a relaxation parametdia typical
A using spherical harmonics irf(¢), the problem reduces value ish =1/2) andR(f?) is to be computed according to
to a system of second order ordinary differential equations : 3 ~ﬁl ~3_z 9
with respect to the variablé. Moreover, the junction condi- Ed- (107). For the first step=0), f°, o*"7, ando™"“ are
tions between the various domains are easily imposed, &t t0 zero or to their value at a previous step in an evolu-

explained below. tionary scheme. .
The Poisson equatiofLl00) becomes We have exposed the method of resolution of Bd.0)
elsewherg27,9]. Let us simply mention that we first perform

a transformation from the bases if, () described in Sec.
alkf=o(f)+R(f), (105  IIMA (Chebyshev polynomials in cas Fourier expansion in
@) to spherical harmonic¥7(8,¢), by means of a matrix
multiplication onto the coefficients of thé expansion. For
where each value of £,m), Eq. (110 gives then a second order
ordinary differential equation with respect o the solution
by o - of which amounts to inverting a banded matrix. Two solu-
ar=aj J; 7 (1+33+33), (106 tions of the homogeneous equatichf(=0) are then added
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in order to connect the solution and its first derivative acrossvherea=1/(y—1), F is an arbitrary regular function argl

the boundaries between thi¢ domains. More precisely, the is a new radial variable such th&t=1 at the surface of the
global boundary condition, generalfy~0 whenr —+o, is  star (see Sec. )l It is easy to see thahd gy, has a term
imposed by setting the value 6fat the exterior boundary of vanishing at the surface as {X¥)“ (i.e., with the same
the external domain, which is exactly +« as explained in  pathological behavior as). We have indeed

Sec. IID. The matching between the various domains

amounts then to the resolution of a simple system &f 2 Ady,=AFEY(1—¢2)at2)
—1 linear equations for the coefficients of the homogeneous
solutions to be added in each domain. Note that this match- —4(a+2)E(1- )Yy, F

ing is performed for each value of’(m). @+ 2)[—6(1— 2@t

IV. REGULARIZATION OF THE SOURCE +4(a+1)E4(1- 9)TF, (114
OF POISSON EQUATION

whereA is the Laplacian computed with respect & 4, ¢)

[cf. Eq.(103)].

The analytical properties of the source of the gravitational The choice of the factor of (4 ¢)(**2) is done in order
field at the boundary of the star depend on the equation Q:'hatq)div has the required regu|arity propertiesgato and
state(EOS. For a polytrope of adiabatic index (P«n?),  the required behavior at the boundary of the star. The choice
the matter densityn behaves as1¥""%) whereH is the  of F(¢,0,¢) is arbitrary. If we choose foF (£,6,¢) an har-
specific enthalpy. Consequently, for>2, the derivative  mqnic function, AF =0, the first term of the right-hand side

dn/dH has an infinite value foH=0, i.e., at the surface of ¢ £q (114 vanishes. This is an advantage because this term
the star andin/dr diverges at surface of the star. For values g, pe quite large and, consequently, give rise to a large

of y<2 only derivatives of higher order diverdactually  oror in computing®,eq,. We write ®gy=3 maim®im,
there exists some value of, e.g., y=4/3, for which all \ypere 9 ’
derivatives vanish or have a finite value at the surface of the
stay. e g2 (a2 m

In a steady state configuratidth is Taylor expandable at Pim:=£(1=8) Yin(0.e) (119
the neighborhood of the star’s surfdtieis can be easily seen
on Eq. (123 below]. ThereforeH vanishes as —R(4, ¢),
where R(6,¢) is the equation of the star's surface and
behaves asi~[r—R(8,¢)]¥~ 1 (this analysis remains
valid even for EOS more general than the polytropic ong if N
is defined agy=d In(P)/d In(H)|,;_o). Consequentiy is gen- Ci(§):=(a+2)[—(41+6)(1—&)letb¢
erally not aC” function. This singular behavior implies that +4(a+1)E1HD(1- )7, (116
the £2 truncation error of the spectral approximation is no
more evanescent and moreover that Gibbs phenomenon \Iﬁ
present. This fact is especially awkward when studying th
stability of equilibrium configurations or looking for bifurca-
tion points because high accuracy is required. In practice
cannot be larger than[36,17]. Note that in the literature the
potential in spherical coordinates is often computed by ex

A. Description of the method

and where a;,, are some numerical coefficients to
be determined. We then obtain ng(¢,6,¢)
=2 maimCi(§)Y,"(0,¢), with

e now have to determine the values of the coefficiapts
Qvhich give the most regular functioneg,: =n—ng,. The
criterion which seems to give the best results is the following
one. We expanah and ng, as truncated series of spherical
harmonicsY,™(6,¢) and Chebyshev polynomidl; (&)

panding the source in spherical harmoni8(9,¢) and by LM
computing the radial part with a finite difference method. In NéE 0 o)= N T(&) Y0 11
this case the Gibbs phenomenon will appear in the angular (£.0.9) i,|2:o mTi(8) Yi7(6.¢) 19

part of the solution. The situation is even worse if the radial
part of the potential is computed with a spectral method. Agnd each of the function8(£) in a Chebyshev series
method to recover spectral accuracy in such cases is as fol-
lows. [
We first introduce a known potentiaby, such that Ci(&)=2, C; Ti(9). (118
Ngiv: =A®y, has the same pathological behaviorrasind [
such thatn—ny;, is a regular functior(at least more regular
thenn) and numerically solve The value ofa,, is computed in such a way that théh
coefficient of the truncated series gy, vanishes:
A(I)regu: N—Ngjy (112
_ _ Am=Nym /Cy; . (119
where® oy, =P — dy;,. Consider, for instance,
By means of the above procedure, we eliminata ithe
Dy =F(£,0,0)(1—&>)(@t2), (113  pathological term vanishing as £1£)* but we introduce an-
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FIG. 2. Original and regularized density profiles for=3 andy= 10 polytropes. The regularized profiled are rescaled to take the value

1 at the origin.

other pathological term<(1—£2)*1. However, the diver-

gence occurs in a higher order derivative of this term so that = —[arcsinr +r(1-r%)-2r(1-r?)%2].
it has a much weaker effect on the accuracy of the result. The

method can be improved by taking

Dy, =F(&0,0)(1— &) [a;+ay(1-¢£%)

+ag(1- )%+ +a(1-) 1 (120
instead of Eq(113. The coefficients, are chosen in such a
way that the first, second,. ., Kth derivatives o g, van-
ish at £=1. Let us callK the regularization degree of the
procedure.

Note that, sinceby, and d.® 4, vanish at the surface of

the star, the boundary condition one has to impose to solve

A® o= Nregy is the same as that fakd=n. We want to

point out that the above regularization technique can be use!

mutatis mutandisalso when a finite difference method is
used.

B. Examples

Consider two polytropic EOS of adiabatic indgx 3 and
y=10 with a spherically symmetric distribution of the en-
thalpy H=1—£2. The corresponding sources density are
ns(&)=(1—¢&%)? and n (&) =(1— £2)¥°. Figure 2 shows
the mass distributiona and n g, for various values of the
regularization degreK [Eq. (120]. Note that in the case of

y=10 the procedure improves considerably the behavior of

the sourcen ey, even forK=1.
The method can be tested in the caseysef3 by direct

comparison with the analytical solution. In this case the

gravitational fieldG=0,® reads

G

1(r
_Zf (1_U2)1/2U2du
r<Jo

o (121

Figure 3 shows the relativé* errore on G as a function of

the number of degrees of freeddw) . The errore follows
approximately a power IawocN[ﬁ. The dependence of the
exponentB with respect to the regularization degrieis
shown in Fig. 4. A value as high §~17 can be achieved
with only K=6. Note that the relatiom=N, # is only an
approximate law. This means that the error tends to become
evanescent when the regularization degree increases.

tive error

°10™"°

1 0—12

-1

10

107® .
10

number of coefficients N,

100

FIG. 3. Relativel * error e on the gravitational field as a func-

tion of the number of degrees of freeddw for different regular-

ization degree«.
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0 ' ' ' ' ' ' boundary of which is spherical and the external donfajn
(cf. Sec. Il D. In fact, if one treats only the Newtonian case,
one domain would be sufficiert.e., the nucleusbecause
Eqg. (122 has a compact support, which is no longer true in
5| | the relativistic case.

A solution is specified by the central value Idf (or p),
H. say, the value of) and the expression ob;y.. These
quantities being given, the iterative method of resolution is
as follows. TheN domains are first taken to be exactly
-10 7 spherical. One starts from a very crude density profile, for
instancep=const inDy. Solving the Poisson equatioh22)
by means of the method presented in Sec. Ill C leads to the
gravitational potential®y,,. Inserting its value into Eq.
(123 gives a new profile for the specific enthalpy [the
constant on the right-hand side of Ed23) is fully deter-
mined by the requirement th&t=H_ at the center of the
. . ) . . ) . stal]. The surface of the star being definedHby: 0, its equa-
Y 1 2 3 4 5 6 tion r=Sy(0,¢) [using the notation of Eq1)] is found by

Regularization degree K searching for the equipotentidl=0 in the newly deter-

mined H field. This defines a new domaiR,. The corre-
sponding mappindry(&, 6,¢), i.e., the value of the constant

convergence index 3

FIG. 4. Dependence of the exponefiton the regularization

degreek. ag and the function$ (6, ¢) andGy(6,¢) [cf. Eq.(1D)] is
V. ILLUSTRATIVE APPLICATIONS computed according to the procedure described in Sec. Il B.
The new intermediate domaf;, is defined by the new inner
A. 3D stationary configurations boundary S, (the surface of the starand the unchanged

In this section, we sketch the general structure of a codéPherical outer boundar§,. The corresponding mapping
for computing single star stationary configurations under théX1(¢.6,¢) is computed according to the procedure described
influence of rotation and a tidal potential. For simplicity we in Sec. Il C. The external domaiR, remains unchanged.
present only the Newtonian case, the relativistic one showing The physical locationr( 6,¢) of the collocation points
no new qualitative feature but simply involving more equa-(!.¢i.0;, k) (wherel is the domain indexcorresponding to
tions. these new mappings ia priori different than that of the

The equilibrium configuration of a cold star rotating rig- Previous mappings, where all the fields were known. There-
idly at the angular velocity) with respect to some inertial fore, one has to compute the values of the fields at the new

frame and embedded in a tidal potentia)ye is governed by ~ collocation points. In the present case, it is sufficient to do so
the following three equations: only for the specific enthalpyd. In domainl, the collocation

point (¢ ,6;,¢,) has the physical radial coordinate
ADyo=47G p, (122

1 r=RY(& 0,0, (125
H+® g~ 5 (Q2r sin )2+ dyge=const, (123

where the superscripl refers to the step in the iterative
p=p(H). (124 procedureRf(g, 0,¢) is the current value of the mapping of
the domairD,, whereasR} (¢, 6,¢) is the previous value.
Equation(122) is the Poisson equation linking the gravita- Let us denote the inverse mapping at the previous step by
tional potential® y,, to the mass density. Equation(123)  [L?7(r,8,¢),E77*(r,6,¢)]. This inverse mapping is com-
is the first integral which can be derived from the Euler equaputed by searching for the zero of the function&j—r
tion governing theperfec) fluid velocity under the station- —R(&,6,¢). The values oH at the collocation points of the
arity assumption; this equation relates the specific enthalppew mapping are given by
of the fluidH to the internal and external potentials. Finally
Eq. (124 is the matter equation of state in the zero-

temperature approximation. H(1.& 094

The number of domains used for solving this problem is =H LN, 65,00, E07 1, 61,00, 6, 01,
N=3: one domainD, for the star(the nucleus, cf. Sec.
I B), one intermediate domaifr; (cf. Sec. Il Q, the outer (126)

wherer’: = Rﬂ(gi ,0;,¢x). The value ofH on the right-hand
Isee Ref[28] for a discussion of these equations, including the side is to be taken at a point whiehpriori does not coincide
relativistic case. with a collocation point iné. It is computed by a direct
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FIG. 5. Logarithm of the relative error of the numerical solution ~ F!C- 6. Logarithm of the relative global error of the numerical
with respect to the number of degrees of freedon¥ifor a Ma- solution with respect to the number of degrees of freedor fiar

cLaurin spheroid at the Jacobi-Dedekind bifurcation pditite & 2Roche ellipsoid for an equal mass binary system and
number of degrees of freedomiiris N, =2N,—1). Also shown is ~ {*/(7Gp)=0.1147 (the numbers of degrees of freedom in the
the error in the verification of the virial theorem. other directions arél,=2N,—1 andN,=N,—1). Also shown is

the error in the verification of the virial theorem.
summation, by means the spectral expansioH obsing the

notations of Sec. Il A, it is writen as Gibbs phenomenon. With classical spectral methods, the

H(l,£,0,0) Gibbs phenomenon would have been very severe since the
density itself, and not some of its derivatives, is discontinu-
ous across the stellar surface for incompressible fluids. This

Do), gives us the opportunity to quantify the accuracy of the
method since exact analytical solutions are known for in-

(127  compressible bodies: the so-called ellipsoidal figures of equi-

. librium (see, e.g., Ref.30]). Note that an ellipsoid is not a

whereH,y;; are the coefficients dfi in domainl. Note that  particular case for the mapping1): all the coefficients of

from the computational point of view, this summation is thethe expansion of 4(6,¢) and Gy(6,¢) with the bases de-
most expensive operation of the method: it scales indeed agribed in Sec. Ill A are nonzero. In this respect, the ellip-

(N:N,N,)?. It may be possible to replace the whole summa-goidal figures constitute a strong test of the method.

tion (127) by a truncated one or by some interpolation from  For single rigidly rotating objects in the Newtonian re-

the values oH at the collocation points, in order to reduce gime, the more simple ellipsoidal solutions are constituted by

the computational cost. The main advantage of the summahe family of MacLaurin spheroids, which are axisymmetric
tion (127) is that it does not introduce any additional error in ghout their rotation axis. We have computed them by means
the method: the right-hand side of Eq.27) is the value oH of the procedure presented in Sec. VA, Setmezo and

at the specified point within spectral accuracy. the equation of statél24) to be simplyp=const. The axi-

OnceH is CompUtEd at the collocation pOintS of the new Symmetry allows us to emp|0M‘P: 1. The code converges
mapping by means of E¢126), the equation of statd24) is  towards ellipsoidal configurations and we measure the error
qsed to find the va!ues (_)f the mass denpiltat the colloca- by comparing the eccentricity: = /—21_(rp/req) (wherer,

tion points. A new iteration may then begin. andr ., are, respectively, the polar and equatorial eafithe

In all the computations we have made, we have found thagymerical solution with that of the analytical solution. The
this procedure converges. For stationary rotating stars in geRasylt of this comparison is presented in Fig. 5 for a MacLau-
eral relativity, a rigorous proof of the convergence of suchyjy spheroid located on the MacLaurin sequence at the point
iterative methodexcept for the remapping of the physical \yhere the Jacobi and Dedekind sequences branch off: the
space at each stejhas been given by Schaudt and Pfistergccentricity ise=0.8127, which corresponds to the ratio

[29]. Ip/req=0.5827. Shown in Fig. 5 is the relative error on the

eccentricity as a function of the number of coefficients in the

6 expansion. For these calculations, the number of coeffi-

The multidomain spectral method can handle constantients in the¢ expansion in each domain N¥,=2N,—1.
density (incompressible mattgrotating bodies without any The straight line behavior of the left side of Fig. 5 shows that

Ng=1 [Ng=1 /N,~1
= { > ( 2 |:||kjixkji(§)) 04(0)

i=o \ =0

B. MacLaurin ellipsoids
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FIG. 7. Orthogonal plane sections in the numerical solution obtained for the Roche ellipsoid represented by the second set of points
starting from the left on Fig. 6.e., corresponding tdl, =13, N,=7, andN,=6). Shown are the isoenthalpy lines, as well as the numerical
grid. This computation took a few seconds on a R4400/150 MHz processor.

the error is evanescent, i.e., that it decreases as—é¥p( 2T+ SP‘ (128

For N,=20, the error saturates at the level of 1#8-10"1% &= ‘ 1 W]
This is due to the round-off errors in the computation, which

is performed with a 15-digit accuracy. It is instructive 10 For an exact solutiong =0. The triangles plotted in Fig. 5
compare this result with that obtained with a classical specgepict the value of loge for the numerical models. Figure 5
tral method, i.e., with fixed spherical domains, as exposed i8hows that the virial error is very well correlated with the
Ref. [9]. For instance, Fig. 5 can be directly compared witherror evaluated by a direct comparison with the analytical
Fig. 7 of Ref.[9]: this latter shows a power-law error decay solution. This gives us a great deal of confidence when using
only (of type Ng4'5), due to the Gibbs phenomenon at thethe virial error to evaluate the numerical error in more gen-
star’'s surface. Moreover, the error saturates at the level dfral cases, when no analytical solution is available.

10 5. Note that this result was obtained with a polytropic

equation of statéadiabatic indexy=2), for which the den- C. Roche ellipsoids

sity is continuous across the surface of star; the fixed-
spherical-domain spectral method presented in fdfwas
not able to treat incompressible fluid.

Roche ellipsoids are equilibrium solutions for incom-
pressible fluid bodies in a synchronized binary system,
within the approximation of taking only the second order

h Also s_h_O\;vnhm Fig. 5 IS thef_redlatl\;‘e accuracy W'J_[h Wh'(_:hl term in the expansiotaround the center of mass of one star
the 3D virial theorem is satisfied. The 3D Newtonian virial o¢ 1o gravitational potential of the companion. They are

theoren states that for a stationary configuratio 23P obtained by setting
+W=0, whereT is the total kinetic energywith respect to

the inertial framg P is the integral of the pressure through- GMcomp( X 2x°—-y?*-7°
out the star andV is the gravitational potential energy. We Pige= —

have computed each of these three integrals for the numeri-

cal solution and evaluated the quantity

— 1+ -+
B a 2 (129

in Eq. (123, wherea is the abscissa of the center of mass of
the companion in the Cartesian framey(,z) centered at the
center of mass of the star under consideration. Note that in

2As opposed to the 2D virial identity, see Refl81] and[32] for Eqg. (123, r must now be the distance to the center of mass
a discussion. of the binary system and the angle with respect to the
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TABLE |. CPU time cost on a R4400/150MHz processor as a
function of the number of degrees of freedom for the calculation of
the Roche ellipsoid configuration corresponding to Fig. 6. The it-
eration is halted when the relative discrepancy between two succes-
sive steps reaches 18.

N, Ny N No. of steps CPU time per stép)

@

25 13 12 116 6.92

33 17 16 107 24.2

49 25 24 115 189.16

65 33 32 106 861.6 FIG. 8. Representation of the numerical domains that we use to

compute relativistic steady-state configurations of binary neutron
stars systems. The external domain extends to spatial infinity in
order to compute the exact gravitational potentials. Due to the sym-
metry of the problem, only the>0 part of space is taken into
account.

rotation axis of the system. Moreove®, must be chosen so
that 0?=G(M +Mmp/a®, in order that the linear term in
x which appears in Eq123) vanishes and one is left with an

ellipsoidal solution. o ~ latter being performed with a 15-digit accuracy. The cost in

The analytlcal solutions for Roche ellipsoid are given incpy time for different numbers of degrees of freedom is
the classic book by Chandrasekh&0]. However, they are  shown in Table |I.
given with an accuracy of five digits on{frable XVI in Ref. Also shown in Fig. 6 is the relative accuracy with which
[30]), which is not sufficient for our comparison project: the the 3D virial theorem is satisfied. This error estimator is
accuracy achieved by the numerical code is far better thadefined in the same way as in Sec. V B. As in the axisym-
107° as we shall see below. Therefore, we have written ametric caseMacLaurin ellipsoids we find a high correla-
small MATHEMATICA [33] program to compute Chan- tion between the virial error and the errors obtained by direct
drasekhar’s “index symbols'A;, A,, and A; and obtain comparison with the analytical solution.
Roche solutions with an arbitrary number of digits.

Figure 6 presents the results of the comparison between VI. CONCLUSION AND PERSPECTIVES
the numerical solution obtained by means of the method de-
scribed in Sec. V A and the analytical solution. Let us recall We have presented a new numerical approach capable of
that ellipsoidal shapes are not privileged in our formalism, sd'andling the surface discontinuities of stellar configurations,
that this type of comparison constitute a strong test of oupr_owded these dlscontmumes are star_llke,_whlch covers a
method. The comparison is conducted at fixed valueR/of wide range of astrophysically re_Ievant situations. When qsed
and the mass ratitl gomy/M. Two global errors can then be along with spectra! methods this adaptive-domain tephmque
defined:(i) the error on the axis ratia,/a; and(ii) the error ensures thfm no G'.bt.)s phenomenon can appear. This results

: . . . . . in a very high precisiorievanescent errjgras demonstrated

on the axis raticaz/a;, a; being the major axis of the tri-

axial ellipsoid(directed along the line of the two centers of In Sec. V by a comparison with exact analytical solutions.
psol 9 _ : The relative error for 3D configurations can reach fwith
mass, a, being the orthogonal axis in the orbital plane, and

, ) s X a relatively small number of degrees of freedoi, XN,
az being the axis perp_endl_cular to the orbital p_Iane.. Th?sexN(P:37>< 19x 18 in each domain Let us recall that very
tho errors are shown in Fig. 6 for a Roche ellipsoid with high accuracy is required for a lot of astrophysical problems
0°/(mGp)=0.1147 andM comp/M=1. The corresponding sych as numerical stability analysis. Among these problems
axis ratios area,/a;=0.7506 andag/a;=0.6853. The nu- |et us mention the study of symmetry breaking of rapidly
merical solution is depicted in Fig. 7 by three plane sectiongotating stars and the determination of the orbital frequency
obtained with the followingsmal) numbers of coefficients: of the last stable orbit of a neutron stars binary system.
N,=13, Ny,=7, andN,=6. Also show in this figure is the The multidomain spectral method is particularly well
numerical grid(collocation pointsused in the problerfonly  adapted to the computation of relativistic binary neutron star
the domairiD, and a part oD, are represented in the figore  system. Three sets of domains can be used in this problem
Even with such a small number of points, the relative error ifsee Fig. & two sets of(three or morgdomains centered on
of order 1xX 10" * (cf. Fig. 6). This explains why despite the each star and a third set @fvo or moré domains centered at
fact that the numerical grid is quite coarse, the isoenthalpyhe intersection between the rotation axis and the orbital
surfaces shown in Fig. 7 are so smooth. plane. This latter set of domains which reaches spatial infin-
Figure 6 gives the two global errors as a function of theity is required to compute the gravitational field of relativis-
number of coefficients in th@ expansiondN,. The number tic configurations. When needed, the quantities computed on
of coefficients employed in the other directions a¥e  one of the three domain sets are evaluated at the collocation
=2N,—1 andN,=N,—1. As in Fig. 5, the exponential points of another set by means of the method presented in
decay of the error foN,=<13 means that the error is evanes- Sec. V A. We are currently applying this numerical method
cent. ForN,=19, the error saturates at the level of a fewto the computation of steady-state configurations of relativ-
1020 due to the round-off errors in the computation, thisistic counter-rotatingi.e., irrotational with respect to an in-
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ertial frame neutron star binaries, following the formulation (measured by direct comparison with analytical solutions
developed in Ref[1]. We will report on the astrophysical only in the spherically symmetric case. We had inferred that
results in a forthcoming paper. this remains valid in the axisymmetric and 3D cases. In the

An interesting by-product of the present technical paper ipresent work, we have confirmed this conjecture, thanks to
as follows. In a previous worf9], we were able to demon- the ability of the present method to treat incompressible flu-
strate that the virial error is representative of the true erroids, for which 3D analytical solutions are available.
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