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Numerical approach for high precision 3D relativistic star models

Silvano Bonazzola,* Eric Gourgoulhon,† and Jean-Alain Marck‡

Département d’Astrophysique Relativiste et de Cosmologie, UPR 176 du CNRS, Observatoire de Paris, F-92195 Meudon Cedex
~Received 10 February 1998; published 20 October 1998!

A multidomain spectral method for computing very high precision three-dimensional stellar models is
presented. The boundary of each domain is chosen in order to coincide with a physical discontinuity~e.g., the
star’s surface!. In addition, a regularization procedure is introduced to deal with the infinite derivatives on the
boundary that may appear in the density field when stiff equations of state are used. Consequently all the
physical fields are smooth functions on each domain and the spectral method is absolutely free of any Gibbs
phenomenon, which yields to a very high precision. The power of this method is demonstrated by direct
comparison with analytical solutions such as MacLaurin spheroids and Roche ellipsoids. The relative numeri-
cal error is revealed to be of the order of 10210. This approach has been developed for the study of relativistic
inspiralling binaries. It may be applied to a wider class of astrophysical problems such as the study of
relativistic rotating stars too.@S0556-2821~98!06318-8#

PACS number~s!: 04.25.Dm, 02.60.Cb, 02.70.Hm
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I. INTRODUCTION

One of the most promising sources of gravitational wa
is the coalescence of inspiralling compact binaries. The
cent development of interferometric gravitational waves
tectors @e.g., GEO600, Laser Interferometric Gravitation
Wave Observatory~LIGO!, TAMA, and VIRGO# gives an
important motivation for studying this problem. Such a stu
requires a relativistic formalism to derive the equations
motion and then an accurate and tricky method to solve
resulting system of partial differential equations. We ha
recently@1# proposed a relativistic formalism able to tack
the problem of corotatingas well ascounter-rotating binaries
system, the latter being more relevant from the astrophys
point of view. We present now a very accurate approa
based on the multidomain spectral method that circumve
the Gibbs phenomenon to numerically solve this probl
and which can be applied to a wide class of other astroph
cal situations.

Various astrophysical applications of spectral metho
have been developed in our group~for a review, see Ref
@2#!, including three-dimensional~3D! gravitational collapse
of stellar core@3#, neutron star collapse into a black ho
@4–7#, tidal disruption of a star near a massive black hole@8#,
rapidly rotating neutron stars@9–12#, magnetized neutron
stars@13,14# and their resulting gravitational radiation@15#,
spontaneous symmetry breaking of rapidly rotating neut
stars@16,17#, and protoneutron star evolution@18–20#.

In computational fluid dynamics, spectral methods
known for their very high accuracy@21,22#; indeed for aC `

function, the numerical error decreases as exp(2N) ~evanes-
cent error!, whereN is the number of coefficients involve
in the spectral expansion, or equivalently the number of g
points in the physical domain. This is much faster than

*Email address: bona@mesiob.obspm.fr
†Email address: Eric.Gourgoulhon@obspm.fr
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error decay of finite-difference methods, which behaves
1/Nq, with q generally not larger than 3. For this reaso
spectral methods are particularly interesting for treating
problems—such as binary configurations—a situation
which the number of grid points is still severely limited b
the capability of present and next generation computers.

Spectral methods lose much of their accuracy when n
smooth functions are treated because of the so-called G
phenomenon. This phenomenon is well known from the m
familiar spectral method, namely, the theory of Fourier
ries: the Fourier coefficients (cn) of a functionf which is of
classC p but notC p11 decrease as 1/np only. In particular, if
the function has some discontinuity, its approximation by
Fourier series does not converge towardsf at the discontinu-
ity point: there remains a gap which is of the order 10%.

The multidomain spectral method described in this pa
circumvents the Gibbs phenomenon. The basic idea is
divide the space into domains chosen so that the phys
discontinuities are located onto the boundaries between
domains~Sec. II!. The simplest example is the case of
perfect fluid star, where two domains may be distinguish
the interior and the exterior of the star. The boundary is th
simply the surface of the star. The second ingredient of
technique is a mapping between the domains defined in
way and some simple mathematical domains, which
cross products of intervals:@a1 ,a2#3@b1 ,b2#3@c1 ,c2#. The
spectral expansion is then performed with respect to fu
tions of the coordinates spanning these intervals~Sec. III!.
The method of resolution of a basic equation, namely,
Poisson equation, is exposed in Sec. III C. For stiff equati
of state, the above procedure is not sufficient to ensure
smoothness of all the functions. Indeed, for a polytrope w
an adiabatic index greater than 2, the density field has
infinite derivative on the surface of the star. We present
Sec. IV a method for regularizing the density and recover
spectral precision. The power of the multidomain spec
method is illustrated in Sec. V, where comparisons are p
formed between numerical solutions obtained by an imp
mentation of the method and analytical solutions~ellipsoidal
©1998 The American Physical Society20-1
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BONAZZOLA, GOURGOULHON, AND MARCK PHYSICAL REVIEW D58 104020
configurations of incompressible fluids!. Finally Sec. VI con-
cludes the article by discussing the great advantages o
multidomain spectral method for dealing with relativistic b
nary neutron stars.

II. THE PHYSICAL DOMAINS AND THEIR MAPPING

A. Splitting of the physical space into starlike domains

In order to treat problems involving Poisson equatio
with non-compact sources—as they appear in relativi
gravitation—we take for the physical domain where t
computation must be performed the whole three-dimensio
spaceR3. In doing so, we know the physical boundary co
ditions we have to impose in order to solve the Poisson eq
tions. These boundary conditions can be easily set at infin
We divideR3 into N domains (Dl)0< l<N21 (N>2). In the
present work, these domains are taken to bestarlike ~in the
mathematical sense! with respect to a some originO, which
means that for every pointM in the domainDl , the segment
OM is entirely included inø i< lDl ~see Fig. 1!. The multi-
domain spectral method we are going to describe can
extended to more general domains, at the price of a gre
technical~but nonconceptual! difficulty. However, for stellar
configurations, the starlike hypothesis is sufficient for m
applications. Let us denote bySl the boundary surface be
tween the domainsDl andDl 11 . D0 is simply connected and
its boundary isS0 ; we call it the nucleus. For 1< l<N22,
Dl ’s inner boundary isSl 21 and outer boundarySl . The last
domainDN21 hasSN22 as inner boundary and extends
infinity ~see Fig. 1!.

Let us choose some Cartesian frame ofR3 centered atO
and let us call (r ,u,w) the associated spherical coordinat
r P@0,1`@ , uP@0,p# andwP@0,2p@ . The mapping of each
domain onto the cross product of intervals@a1 ,a2#
3@b1 ,b2#3@c1 ,c2# will be defined with respect to the
spherical coordinates (r ,u,w). Since each domainDl is star-
like with respect toO, the equation of the boundariesSl can
be written in the form

r 5Sl~u,w!, ~1!

whereSl is a smooth function on@0,p#3@0,2p@ .

FIG. 1. Splitting of the physical three-dimensional space i
domainsD0 , D1 , . . . , DN21 ~on the figureN53), which are star-
like with respect to some originO. The last domain~hereD2)
extends up to infinity.
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B. Mapping of the nucleus

The basic idea is to introduce the mapping

@0,1#3@0,p#3@0,2p@→D0 ,

~j,u8,w8!°~r ,u,w! ~2!

so that the originO corresponds toj50 and the boundary
S0 to j5const51. Using the fact thatD0 is starlike, a simple
form of the mapping~2! can be chosen as

r 5R0~j,u8,w8!, ~3!

u5u8, ~4!

w5w8, ~5!

whereR0 is a smooth function subject to regularity prope
ties which are discussed below. Thanks to Eqs.~4!, ~5!, we
will make no distinction betweenu and u8, as well as be-
tween w and w8, i.e., we will abandon the primes on th
angles. The fact thatD0’s boundary coincides withj51
translates as

R0~1,u,w!5S0~u,w!. ~6!

In addition to Eq.~6!, the functionR0 must satisfy some
regularity properties induced by the singular behavior
spherical coordinates atr 50, u50, andu5p. We define a
function f :R3→R to be regular if it can be expressed as
polynomial of the Cartesian coordinates

x5r sin u cosw, ~7!

y5r sin u sin w, ~8!

z5 cosu. ~9!

We will assume that all the physical fields are regular fun
tions on each domainDl ~the domainsDl are in fact chosen
in this manner! with respect to the previous definition. It i
easy to see that any regular function is expandable as

f ~r ,u,w!5 (
m52M

M

(
l 5umu

L

r l T~r 2!sinumu u Pl 2umu~cosu!eimw,

~10!

whereL andM are positive integers,L>M , Pl 2umu is some
polynomial of degreel 2umu andT(r 2) is some even poly-
nomial.

A simple form of the mapping~3!–~5! has already been
introduced in the literature@23–25#, namely, R0(j,u,w)
5S0(u,w)j, whereS0(u,w) is the equation of the star’s sur
face @Eq. ~1!#. However, for such a mapping the regulari
condition ~10! would be quite complicated when express
in terms of (j,u,w). We choose instead the mapping defin
by

R0~j,u,w!5a0@j1A0~j!F0~u,w!1B0~j!G0~u,w!#,
~11!
0-2
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whereA0 andB0 are the following even and odd polynom
als:

A0~j!53j422j6, ~12!

B0~j!5~5j323j5!/2, ~13!

and the constanta0 as well as the two functionsF0(u,w)
and G0(u,w) are such that~i! the Fourier expansion o
F0(u,w) @G0(u,w)# with respect tow contains only even
@odd# harmonics and~ii ! the equation of the surfaceS0 can
be written

a0@11F0~u,w!1G0~u,w!#5S0~u,w!. ~14!

The polynomialsA0 and B0 defined by Eqs.~12!, ~13! are
such that

A0~0!5B0~0!50, ~15!

A08~0!5B08~0!50, ~16!

A0~1!5B0~1!51, ~17!

A08~1!5B08~1!50. ~18!

The properties~14! and ~17! ensure that Eq.~6! is satisfied,
i.e., that the mapping~11! is from @0,1#3@0,p#3@0,2p@ to
D0 . The polynomialsA0 andB0 are chosen in order to sa
isfy at the minimum level the regularity conditions me
tioned above. In particular, near the originr behaves asr
;a0j and is independent of (u,w), which would not have
been the case of the mappingr 5S0(u,w) j introduced in
Refs.@23–25#.

The Jacobian of the transformation (r ,u,w)°(j,u,w) is

J:5
]~r ,u,w!

]~j,u,w!
5

]R0

]j

5a0@11A08~j!F0~u,w!1B08~j!G0~u,w!#. ~19!

SinceA08(j)>0 andB08(j)>0 for any jP@0,1#, the map-
ping could become singular ifF0(u,w) or G0(u,w) is nega-
tive and has an important amplitude. We cannot control
sign of the functionF0(u,w) because it contains only od
harmonics ofw. However, by a suitable choice ofa0 , one
can impose

G0~u,w!>0, ~20!

as we shall see below. We have found that this condition
sufficient to ensure thatJ5” 0, i.e., that the mapping is regu
lar, for all the astrophysically relevant situations we ha
encountered.

The equation for the surface of the domainD0 having
been given, in the form of Eq.~1!, r 5S0(u,w), so the pro-
cedure which leads toa0 , F0(u,w), and G0(u,w), i.e., to
the full determination of the functionR0(j,u,w), is the fol-
lowing one. First let us choose a point (u* ,w* ) on the sur-
faceS0 . Equation~14! implies the following relation:
10402
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a0@11F0~u* ,w* !1G0~u* ,w* !#5S0~u* ,w* !. ~21!

Let us introduce the following auxiliaries quantities:

m:5a0@F0~u* ,w* !1G0~u* ,w* !#, ~22!

F̃0~u,w!:5a0F0~u,w!, ~23!

G̃0~u,w!:5a0G0~u,w!2m. ~24!

Equation~21! then translates as

a01m5S0~u* ,w* !, ~25!

whereas Eq.~14! becomes

F̃0~u,w!1G̃0~u,w!5S0~u,w!2S0~u* ,w* !. ~26!

Having expandedf (u,w):5S0(u,w)2S0(u* ,w* ) into Fou-
rier series with respect tow, one deduces the function
F̃0(u,w) @G̃0(u,w)# by taking only the odd@even# harmon-
ics of this Fourier expansion.m is then computed as

m52min$G̃0~u,w!,~u,w!P@0,p#3@0,2p@%. ~27!

In doing so, condition~20! will automatically be satisfied.
The value of the coefficienta0 is deduced from the abov
value ofm via Eq. ~25!. Finally the functionsF0(u,w) and
G0(u,w) are computed from Eqs.~23! and ~24!.

C. Mapping of the intermediate domains

For 1< l<N22, we introduce the mapping

@21,1#3@0,p#3@0,2p@→Dl ,
~28!

~j,u8,w8!°~r ,u,w!

under the form

r 5Rl~j,u8,w8!, ~29!

u5u8, ~30!

w5w8, ~31!

whereRl is a smooth function which satisfies

Rl~21,u,w!5Sl 21~u,w!, ~32!

Rl~11,u,w!5Sl~u,w!, ~33!

which means that the inner~outer! boundary ofDl is defined
by j521 (j511).

We chooseRl(j,u,w) as

Rl~j,u,w!5a l@j1Al~j!Fl~u,w!1Bl~j!Gl~u,w!#1b l ,
~34!

whereAl andBl are the following polynomials:

Al~j!5~j323j12!/4, ~35!
0-3



e

rg

th

n
nt

s

dy
in

.

BONAZZOLA, GOURGOULHON, AND MARCK PHYSICAL REVIEW D58 104020
Bl~j!5~2j313j12!/4, ~36!

and the constantsa l andb l and the two functionsFl(u,w)
andGl(u,w) are defined from the equations of the surfac
Sl 21 andSl by

a l@211Fl~u,w!#1b l5Sl 21~u,w!, ~37!

a l@111Gl~u,w!#1b l5Sl~u,w!, ~38!

Fl~u,w!<0, ~39!

Gl~u,w!>0. ~40!

Note that the polynomialsAl and Bl defined by Eqs.~35!,
~36! are such that

Al~21!51 and Bl~21!50, ~41!

Al~11!50 and Bl~11!51, ~42!

Al8~21!5Bl8~21!5Al8~11!5Bl8~11!50. ~43!

The properties~37! and ~41! @~38! and ~42!# ensure that Eq.
~32! @Eq. ~33!# is satisfied, i.e., that the mapping~34! is from
@21,1#3@0,p#3@0,2p@ toDl . The conditions~39! and~40!
ensure that this mapping is not singular, by the same a
ment as that presented forR0 in Sec. II B, the sign of
Fl(u,w) being opposite to that ofGl(u,w) becauseAl is a
decreasing function ofj, whereasBl is an increasing func-
tion of j.

The equation for the inner and outer boundaries of
domain Dl being given, in the form of Eq.~1!: r
5Sl 21(u,w) ~inner boundary! andr 5Sl(u,w) ~outer bound-
ary!, the procedure which leads toa l , b l , Fl(u,w), and
Gl(u,w), i.e., to the full determination of the functio
Rl(j,u,w), is the following one. First let us choose a poi
(u* ,w* ) on the surfaceSl 21 along with the corresponding
point (u* ,w* ) on the surfaceSl . Equations~37! and ~38!
imply the following relations:

a l@211Fl~u* ,w* !#1b l5Sl 21~u* ,w* !, ~44!

a l@11Gl~u* ,w* !#1b l5Sl~u* ,w* !. ~45!

Let us introduce the following auxiliaries quantities:

l:5a lFl~u* ,w* !, ~46!

m:5a lGl~u* ,w* !, ~47!

F̃ l~u,w!:5a lFl~u,w!2l, ~48!

G̃l~u,w!:5a lGl~u,w!2m. ~49!

Equations~44! and ~45! then translate as

2a l1l1b l5Sl 21~u* ,w* !, ~50!

a l1m1b l5Sl~u* ,w* !, ~51!
10402
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whereas Eqs.~37! and ~38! become

F̃ l~u,w!5Sl 21~u,w!2Sl 21~u* ,w* !, ~52!

G̃l~u,w!5Sl~u,w!2Sl~u* ,w* !. ~53!

From the values ofF̃ l(u,w) andG̃l(u,w) obtained above,l
andm are computed as

l52max$F̃ l~u,w!,~u,w!P@0,p#3@0,2p@%, ~54!

m52min$G̃l~u,w!,~u,w!P@0,p#3@0,2p@%. ~55!

In doing so, the conditions~39! and ~40! will automatically
be satisfied. The value of the constantsa l andb l are deduced
from the above values ofl and m via Eqs.~50! and ~51!.
Finally the functionsFl(u,w) and Gl(u,w) are computed
from Eqs.~48! and ~49!.

D. Compactification of the infinite domain

In the case where the external domainDext:5DN21 ex-
tends to infinity we introduce the mapping

@21,1#3@0,p#3@0,2p@→Dext,

~j,u8,w8!°~r ,u,w!, ~56!

in the form

u:51/r 5U~j,u8,w8!, ~57!

u5u8, ~58!

w5w8, ~59!

whereU is a smooth function which satisfies

U~21,u,w!5Sext~u,w!21, ~60!

U~11,u,w!50, ~61!

where Sext(u,w):5SN22(u,w). The above two equation
show that the inner boundary ofDext is defined byj521,
whereasj511 corresponds to the infinity. We have alrea
introduced such a compactification of the infinite domain
Ref. @9#, in the case of a spherical inner boundary.

We choose the functionU(j,u,w) as

U~j,u,w!5aext@j1Aext~j!Fext~u,w!21#, ~62!

whereAext is the same polynomial ofj as that defined in Eq
~35!, and the constantaext and the functionFext(u,w) are
defined from the equations of the surfaceSN22 by

aext@221Fext~u,w!#5Sext~u,w!21, ~63!

Fext~u,w!<0. ~64!

The condition~64! ensures that]U/]j5” 0, i.e., that the map-
ping ~62! is not singular.
0-4
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The equation for the inner boundary of the domainDext
being given, in the form of Eq.~1!: r 5Sext(u,w), the proce-
dure which leads toaext andFext(u,w), i.e. to the full deter-
mination of the functionU(j,u,w), is the following one.
First let us choose a point (u* ,w* ) on the surfaceSext.
Equation~63! implies the following relation:

aext@221Fext~u* ,w* !#5Sext~u* ,w* !21. ~65!

By introducing the auxiliaries quantities

l:5aextFext~u* ,w* !, ~66!

F̃ext~u,w!:5aextFext~u,w!2l, ~67!

this equation translates as

22aext1l5Sext~u* ,w* !21, ~68!

whereas Eq.~63! becomes

F̃ext~u,w!5Sext~u,w!212Sext~u* ,w* !21. ~69!

From the above value ofF̃ext(u,w), l is computed according
to

l52min$F̃ext~u,w!,~u,w!P@0,p#3@0,2p@%. ~70!

In doing so, the condition~64! will automatically be satisfied
~recall thataext,0). The value ofaext is deduced from the
above value ofl via Eq.~68!. Finally the functionFext(u,w)
is computed from Eq.~67!.

III. MULTIDOMAIN SPECTRAL METHOD

A. Spectral expansion of a physical field

The spirit of the multidomain spectral method is to pe
form spectral expansions on each domainDl , and with re-
spect to the coordinates (j,u,w) instead of the physical co
ordinates (r ,u,w). We shall take as basis function
separablefunctions of (j,u,w), i.e., functions that can be
put under the formX(j)Q(u)F(w). The variablew being
periodic, it is natural to use Fourier series inw, i.e., to
choose

Fk~w!5eikw 2Nw/2<k<Nw/2, ~71!

whereNw is an even integer that we will call the number
degrees of freedom inw. The associated collocation poin
~‘‘grid points’’ ! are

wk52p k/Nw , 0<k<Nw21. ~72!

ConcerningQ(u), one must use functions that are comp
ible with the expansion~10! of any regular scalar fieldf . We
shall not use sinumu uPl 2umu(cosu), as suggested by Eq.~10!,
but a wider set, namely, the functions

Qk j~u!5cos~ j u!, 0< j <Nu21 for m even, ~73!

Qk j~u!5sin~ j u!, 1< j <Nu22 for m odd, ~74!
10402
-

-

whereNu is an integer that we will call the number of de
grees of freedom inu andm is the degree of the harmonic i
the Fourier series with respect tow: m5k in the present
case. The advantages of this choice are to allow the us
Fast-Fourier-Transform algorithms for computing the coe
cients, as well as very simple matrices for the usual diff
ential operators@26#. The associated collocation points are

u j5p j /~Nu21!, 0< j <Nu21. ~75!

Concerning the variablej, we also choose a set wider tha
merelyj l : namely,

Xk ji~j!5T2i~j!, 0< i<Nr21 for j even , ~76!

Xk ji~j!5T2i 11~j!, 0< i<Nr22 for j odd, ~77!

whereNr is an integer that we will call the number of de
grees of freedom inr andTn denotes thenth degree Cheby-
shev polynomial. The associated collocation points are

j i5sinS p

2

i

Nr21D , 0< i<Nr21. ~78!

The above choice concerns the nucleusD0 only. For the
intermediate and external domains, we choose instead

Xk ji~j!5Ti~j!, ~79!

along with the collocation points

j i52cos@p i /~Nr21!#, 0< i<Nr21. ~80!

Note that for the nucleus the above choice is the same as
presented in Ref.@27#, oncej is replaced byr . We refer the
interested reader to that paper for a more detailed discus
about this choice~see also Appendixes A, B, and D of Re
@18#!.

When symmetry is present, we use different bases, in
der to take the symmetry into account. For instance, an o
existing symmetry is the symmetry with respect to the eq
torial plane, i.e., the planeu5p/2. In this case, we use
instead of Eqs.~73!, ~74!,

Qk j~u!5cos~2 j u! for m even, ~81!

Qk j~u!5sin@~2 j 11!u# for m odd. ~82!

The associated collocation points span only@0,p/2#, instead
of @0,p#:

u j5
p

2

j

Nu21
, 0< j <Nu21. ~83!

Another usual symmetry is the above equatorial symme
augmented by the symmetry under the transformat
w°w1p. This is the case of a triaxial ellipsoid, or of a
axisymmetric star perturbed by evenm modes. In this case
the w-basis functions are

Fk~w!5e2ikw. ~84!
0-5
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The associated collocation points span@0,p@ , instead of
@0,2p@ :

wk5pk/Nw , 0<k<Nw21. ~85!

The basis inu become

Qk j~u!5cos~2 j u!, ~86!

instead of Eqs.~81!, ~82!, the collocation points inu remain-
ing those given by Eq.~83!. In this case, the basis forj in the
nucleus contain only even polynomials:

Xk ji~j!5T2i~j!, ~87!

the collocation points remaining the same as those given
Eq. ~78!.

B. Differential operators

In this section, we present how a first order different
operator, the gradient, and a second order one, the Lapla
both applied to a scalar field, are expressed in terms of
coordinates system described above. The computation of
other kind of operator is straightforward.

The components of the gradient of a scalar fieldf in an
orthonormal basis associated with the spherical coordin
(r ,u,w) are

] f

]r
5J1

21 ] f

]j
, ~88!

1

r

] f

]u
5

1

Rl

] f

]u8
2

J2

J1

] f

]j
, ~89!

1

rsinu

] f

]w
5

1

Rlsinu8

] f

]w8
2

J3

J1

] f

]j
, ~90!

where the following abbreviations have been introduced:

J1 :5
]Rl

]j
, ~91!

J2 :5
1

Rl

]Rl

]u8
, ~92!

J3 :5
1

Rlsinu8

]Rl

]w8
. ~93!

Note that we have reintroduced the primes onu and w @cf.
Eqs. ~4!, ~5!# to avoid any confusion between the part
derivatives. The partial derivatives that appear in the qua
ties Ji are computed by~i! a ~banded! matrix multiplication
on the coefficients of the spectral expansion of the functi
Fl(u,w) andGl(u,w) and~ii ! analytically for the polynomi-
als Al(j) andBl(j). In the nucleus,J2 is re-expressed as
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J25
~3j322j5!]F0 /]u81 ~1/2!~5j223j4!]G0 /]u8

11~3j322j5!F01~5j223j4!G0

,

~94!

in order to avoid any division by a vanishing quantity atj
50. The same thing is done forJ3 .

The above expressions are valid for the nucleus and
intermediate domains, i.e. forl 50, . . . ,N22. For the
compactified domainDext, the quantity to be considered i
r 2¹ f instead¹ f . Indeed, gradients in the compactified d
main are used in the computation of nonlinear terms in
relativistic gravitational field equations~scalar products of
gradients of the metric potentials!. We shall see below tha
the source of the Poisson equation onDext is to be multiplied
by r 4, so that if each gradient is multiplied byr 2, this mul-
tiplication by r 4 is automatically performed. The orthono
mal components ofr 2¹ f onDext are

r 23
] f

]r
52S ]U

]j D 21 ] f

]j
, ~95!

r 23
1

r

] f

]u
5

1

U

] f

]u8
2S ]U

]j D 21 1

U

]U

]u8

] f

]j
, ~96!

r 23
1

rsinu

] f

]w
5

1

Usinu8

] f

]w8
2S ]U

]j D 21 1

U sin u8

]U

]w8

] f

]j
.

~97!

The Laplacian of a scalar fieldf reads

D f 5J1
21H J1

21~11J2
21J3

2!
]2f

]j2
1

2

Rl

] f

]j J 1
1

Rl
2
Duw f

2J1
21H 2S J2

Rl

]2f

]u]j
1

J3

Rl sin u

]2f

]w]j D1F 1

Rl
2
DuwRl

1J1
21XJ1

21~11J2
21J3

2!
]2Rl

]j2
22S J2

Rl

]2Rl

]u]j

1
J3

Rl sin u

]2Rl

]w]j D CG ] f

]j J , ~98!

where the primes onu andw have been abandoned again a
the following abbreviation has been introduced:

Duw :5
]2

]u2
1

1

tan u

]

]u
1

1

sin2 u

]2

]w2
. ~99!

C. Resolution of the Poisson equation

For many astrophysical applications, one has to solve
Poisson-like equation

D f 5s~ f !, ~100!
0-6
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for some ‘‘potential’’ f . Note that for relativistic computa
tions, s( f ) is not compactly supported~see, e.g., Ref.@9#!
and generally decreases as 1/r 4 when r→1`.

When expressed in terms of the variables (j,u,w), the
Laplacian takes the complicated form~98!, for which it is not
obvious to find eigenfunctions. Therefore, we introduce,
each domainDl , a new radial coordinate

z:5a lj1b l , ~101!

wherea l andb l are the same constants as in Eqs.~11! and
~34! ~in the nucleus:b050). In the exterior domain, we
introduce

h:5aext~j21!, ~102!

whereaext is the same constant as in Eq.~62!. We may then
split the Laplacian operatorD into a pseudo-LaplacianD̃ and
a part which would vanish if the domainsDl were exactly
spherical~in this case, the coordinatesz and h introduced
here above would coincide with the physical coordinater
andu51/r respectively!. By pseudo-Laplacian, we mean th
operator which once expressed in terms of (z,u,w) has the
same structure than the Laplacian operator in spherical c
dinates:

D̃:5
]2

]z2
1

2

z

]

]z
1

1

z2 Duw , ~103!

whereDuw is defined by Eq.~99!. In the exterior domain, the
pseudo-Laplacian is defined instead by

D̃:5
]2

]h2
1

1

h2
Duw . ~104!

It is much easier to invert the operatorD̃ than the operator
D: using spherical harmonics in (u,w), the problem reduces
to a system of second order ordinary differential equati
with respect to the variablez. Moreover, the junction condi
tions between the various domains are easily imposed
explained below.

The Poisson equation~100! becomes

aD̃ f 5s~ f !1R~ f !, ~105!

where

a:5a l
2 J1

22 ~11J2
21J3

2!, ~106!
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R~ f !:5FJ1
21

Rl

j1b l /a l
~11J2

21J3
2!21G 2

J1Rl

] f

]j

1 FJ1
22

Rl
2

~j1b l /a l !
2 ~11J2

21J3
2!21G 1

Rl
2
Duw f

1J1
21H 2S J2

Rl

]2f

]u]j
1

J3

Rl sin u

]2f

]w]j
D

1F 1

Rl
2
DuwRl1J1

21XJ1
21~11J2

21J3
2!

]2Rl

]j2

22S J2

Rl

]2Rl

]u]j
1

J3

Rl sin u

]2Rl

]w]j
D CG ] f

]j J . ~107!

In order to let appear only the operatorD̃ in the left-hand
side of Eq.~105!, we introduce

al :5max
Dl

a, ~108!

and recast Eq.~105! into

D̃ f 5
1

al
@s~ f !1R~ f !1~al2a!D̃ f #. ~109!

Since f appears on the right-hand side of this equation,
solve it by iteration. In addition, we introduce some rela
ation in the computation of the termD̃ f in the right-hand
side of Eq.~109!. More specifically, we solve at each step
the iterative scheme the equation

D̃ f J115s̃J, ~110!

where the indexJ denotes the step at which the quantities a
taken ands̃J is the following source, computed from th
value of f at the stepJ:

s̃J5al
21$s~ f J!1R~ f J!1~al2a!@ls̃J211~12l!s̃J22#%.

~111!

In this expression,l is a relaxation parameter~a typical
value isl51/2) andR( f J) is to be computed according t
Eq. ~107!. For the first step (J50), f J, s̃J21, ands̃J22 are
set to zero or to their value at a previous step in an evo
tionary scheme.

We have exposed the method of resolution of Eq.~110!
elsewhere@27,9#. Let us simply mention that we first perform
a transformation from the bases in (u,w) described in Sec.
III A ~Chebyshev polynomials in cosu, Fourier expansion in
w) to spherical harmonicsYl

m(u,w), by means of a matrix
multiplication onto the coefficients of theu expansion. For
each value of (l ,m), Eq. ~110! gives then a second orde
ordinary differential equation with respect toz, the solution
of which amounts to inverting a banded matrix. Two so
tions of the homogeneous equation (D f 50) are then added
0-7
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BONAZZOLA, GOURGOULHON, AND MARCK PHYSICAL REVIEW D58 104020
in order to connect the solution and its first derivative acr
the boundaries between theN domains. More precisely, th
global boundary condition, generallyf→0 whenr→1`, is
imposed by setting the value off at the exterior boundary o
the external domain, which is exactlyr 51` as explained in
Sec. II D. The matching between the various doma
amounts then to the resolution of a simple system ofN
21 linear equations for the coefficients of the homogene
solutions to be added in each domain. Note that this ma
ing is performed for each value of (l ,m).

IV. REGULARIZATION OF THE SOURCE
OF POISSON EQUATION

A. Description of the method

The analytical properties of the source of the gravitatio
field at the boundary of the star depend on the equation
state~EOS!. For a polytrope of adiabatic indexg (P}ng),
the matter densityn behaves asH1/(g21) where H is the
specific enthalpy. Consequently, forg.2, the derivative
dn/dH has an infinite value forH50, i.e., at the surface o
the star anddn/dr diverges at surface of the star. For valu
of g,2 only derivatives of higher order diverge~actually
there exists some value ofg, e.g., g54/3, for which all
derivatives vanish or have a finite value at the surface of
star!.

In a steady state configurationH is Taylor expandable a
the neighborhood of the star’s surface@this can be easily see
on Eq. ~123! below#. ThereforeH vanishes asr 2R(u,w),
where R(u,w) is the equation of the star’s surface andn
behaves asn;@r 2R(u,w)#1/(g21)

„this analysis remains
valid even for EOS more general than the polytropic one ig
is defined asg5d ln(P)/d ln(H)uH50). Consequentlyn is gen-
erally not aC ` function. This singular behavior implies tha
the L 2 truncation error of the spectral approximation is
more evanescent and moreover that Gibbs phenomeno
present. This fact is especially awkward when studying
stability of equilibrium configurations or looking for bifurca
tion points because high accuracy is required. In practicg
cannot be larger than 3@16,17#. Note that in the literature the
potential in spherical coordinates is often computed by
panding the source in spherical harmonicsYl

m(u,w) and by
computing the radial part with a finite difference method.
this case the Gibbs phenomenon will appear in the ang
part of the solution. The situation is even worse if the rad
part of the potential is computed with a spectral method
method to recover spectral accuracy in such cases is as
lows.

We first introduce a known potentialFdiv such that
ndiv :5DFdiv has the same pathological behavior asn and
such thatn2ndiv is a regular function~at least more regula
thenn) and numerically solve

DF regu5n2ndiv , ~112!

whereF regu:5F2Fdiv . Consider, for instance,

Fdiv5F~j,u,w!~12j2!~a12!, ~113!
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wherea51/(g21), F is an arbitrary regular function andj
is a new radial variable such thatj51 at the surface of the
star ~see Sec. II!. It is easy to see thatDFdiv has a term
vanishing at the surface as (12j)a ~i.e., with the same
pathological behavior asn). We have indeed

D̃Fdiv5D̃Fj2~12j2!~a12!

24~a12!j~12j2!~a11!]jF

1~a12!@26~12j2!~a11!

14~a11!j2~12j2!a#F, ~114!

whereD̃ is the Laplacian computed with respect to (j,u,w)
@cf. Eq. ~103!#.

The choice of the factor of (12j)(a12) is done in order
that Fdiv has the required regularity properties atj50 and
the required behavior at the boundary of the star. The cho
of F(j,u,w) is arbitrary. If we choose forF(j,u,w) an har-
monic function,D̃F50, the first term of the right-hand sid
of Eq. ~114! vanishes. This is an advantage because this t
can be quite large and, consequently, give rise to a la
error in computingF regu. We write Fdiv5( l ,malmF lm ,
where

F lm :5j l~12j2!~a12!Yl
m~u,w! ~115!

and where alm are some numerical coefficients t
be determined. We then obtain ndiv(j,u,w)
5( l ,malmCl(j)Yl

m(u,w), with

Cl~j!:5~a12!@2~4l 16!~12j2!~a11!j l

14~a11!j~ l 12!~12j2!a#. ~116!

We now have to determine the values of the coefficientsalm
which give the most regular functionnregu:5n2ndiv . The
criterion which seems to give the best results is the follow
one. We expandn and ndiv as truncated series of spheric
harmonicsYl

m(u,w) and Chebyshev polynomialTi(j)

n~j,u,w!5 (
i ,l ,m50

I ,L,M

nilmTi~j! Yl
m~u,w! ~117!

and each of the functionsCl(j) in a Chebyshev series

Cl~j!5(
i

I

Cli Ti~j!. ~118!

The value ofalm is computed in such a way that theI th
coefficient of the truncated series ofnregu vanishes:

alm5nIlm /ClI . ~119!

By means of the above procedure, we eliminate inn the
pathological term vanishing as (12j)a but we introduce an-
0-8



alue

NUMERICAL APPROACH FOR HIGH PRECISION 3D . . . PHYSICAL REVIEW D 58 104020
FIG. 2. Original and regularized density profiles forg53 andg510 polytropes. The regularized profiled are rescaled to take the v
1 at the origin.
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other pathological term}(12j2)a11. However, the diver-
gence occurs in a higher order derivative of this term so
it has a much weaker effect on the accuracy of the result.
method can be improved by taking

Fdiv5F~j,u,w!~12j2!a12@a11a2~12j2!

1a3~12j2!21•••1aK~12j2!K21# ~120!

instead of Eq.~113!. The coefficientsak are chosen in such
way that the first, second,. . . , Kth derivatives ofnregu van-
ish at j51. Let us callK the regularization degree of th
procedure.

Note that, sinceFdiv and]jFdiv vanish at the surface o
the star, the boundary condition one has to impose to s
DF regu5nregu is the same as that forDF5n. We want to
point out that the above regularization technique can be u
mutatis mutandisalso when a finite difference method
used.

B. Examples

Consider two polytropic EOS of adiabatic indexg53 and
g510 with a spherically symmetric distribution of the e
thalpy H512j2. The corresponding sources density a
n3(j)5(12j2)1/2 and n10(j)5(12j2)1/9. Figure 2 shows
the mass distributionsn and nregu for various values of the
regularization degreeK @Eq. ~120!#. Note that in the case o
g510 the procedure improves considerably the behavio
the sourcenregu even forK51.

The method can be tested in the case ofg53 by direct
comparison with the analytical solution. In this case t
gravitational fieldG5] rF reads

G5
1

r 2E0

r

~12u2!1/2u2du
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5
1

8r 2
@arcsinr 1r ~12r 2!1/222r ~12r 2!3/2#. ~121!

Figure 3 shows the relativeL 1 errore on G as a function of
the number of degrees of freedomNr . The errore follows
approximately a power lawe}Nr

2b . The dependence of th
exponentb with respect to the regularization degreeK is
shown in Fig. 4. A value as high asb'17 can be achieved
with only K56. Note that the relatione5Nr

2b is only an
approximate law. This means that the error tends to beco
evanescent when the regularization degree increases.

FIG. 3. RelativeL 1 error e on the gravitational field as a func
tion of the number of degrees of freedomNr for different regular-
ization degreesK.
0-9
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V. ILLUSTRATIVE APPLICATIONS

A. 3D stationary configurations

In this section, we sketch the general structure of a c
for computing single star stationary configurations under
influence of rotation and a tidal potential. For simplicity w
present only the Newtonian case, the relativistic one show
no new qualitative feature but simply involving more equ
tions.

The equilibrium configuration of a cold star rotating ri
idly at the angular velocityV with respect to some inertia
frame and embedded in a tidal potentialF tide is governed by
the following three equations:1

DFgrav54pG r, ~122!

H1Fgrav2
1

2
~Vr sin u!21F tide5const, ~123!

r5r~H !. ~124!

Equation~122! is the Poisson equation linking the gravit
tional potentialFgrav to the mass densityr. Equation~123!
is the first integral which can be derived from the Euler eq
tion governing the~perfect! fluid velocity under the station
arity assumption; this equation relates the specific entha
of the fluid H to the internal and external potentials. Fina
Eq. ~124! is the matter equation of state in the zer
temperature approximation.

The number of domains used for solving this problem
N53: one domainD0 for the star~the nucleus, cf. Sec
II B !, one intermediate domainD1 ~cf. Sec. II C!, the outer

1See Ref.@28# for a discussion of these equations, including t
relativistic case.

FIG. 4. Dependence of the exponentb on the regularization
degreeK.
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boundary of which is spherical and the external domainD2
~cf. Sec. II D!. In fact, if one treats only the Newtonian cas
one domain would be sufficient~i.e., the nucleus! because
Eq. ~122! has a compact support, which is no longer true
the relativistic case.

A solution is specified by the central value ofH ~or r),
Hc say, the value ofV and the expression ofF tide. These
quantities being given, the iterative method of resolution
as follows. TheN domains are first taken to be exact
spherical. One starts from a very crude density profile,
instance,r5const inD0 . Solving the Poisson equation~122!
by means of the method presented in Sec. III C leads to
gravitational potentialFgrav. Inserting its value into Eq.
~123! gives a new profile for the specific enthalpyH @the
constant on the right-hand side of Eq.~123! is fully deter-
mined by the requirement thatH5Hc at the center of the
star#. The surface of the star being defined byH50, its equa-
tion r 5S0(u,w) @using the notation of Eq.~1!# is found by
searching for the equipotentialH50 in the newly deter-
mined H field. This defines a new domainD0 . The corre-
sponding mappingR0(j,u,w), i.e., the value of the constan
a0 and the functionsF0(u,w) andG0(u,w) @cf. Eq. ~11!# is
computed according to the procedure described in Sec. I
The new intermediate domainD1 is defined by the new inne
boundaryS0 ~the surface of the star! and the unchanged
spherical outer boundaryS1 . The corresponding mappin
R1(j,u,w) is computed according to the procedure describ
in Sec. II C. The external domainD2 remains unchanged.

The physical location (r ,u,w) of the collocation points
( l ,j i ,u j ,wk) ~wherel is the domain index! corresponding to
these new mappings isa priori different than that of the
previous mappings, where all the fields were known. The
fore, one has to compute the values of the fields at the n
collocation points. In the present case, it is sufficient to do
only for the specific enthalpyH. In domainl , the collocation
point (j i ,u j ,wk) has the physical radial coordinate

r 5Rl
J~j i ,u j ,wk!, ~125!

where the superscriptJ refers to the step in the iterativ
procedure:Rl

J(j,u,w) is the current value of the mapping o
the domainDl , whereasRl

J21(j,u,w) is the previous value.
Let us denote the inverse mapping at the previous step
@LJ21(r ,u,w),JJ21(r ,u,w)#. This inverse mapping is com
puted by searching for the zero of the function (l ,j)°r
2Rl(j,u,w). The values ofH at the collocation points of the
new mapping are given by

HJ~ l ,j i ,u j ,wk!

5HJ21@LJ21~r J,u j ,wk!,J
J21~r J,u j ,wk!,u j ,wk#,

~126!

wherer J:5Rl
J(j i ,u j ,wk). The value ofH on the right-hand

side is to be taken at a point whicha priori does not coincide
with a collocation point inj. It is computed by a direct
0-10



he
d
a
m
e
m
in

w

th
e
c
al
te

ta

the
the
u-
his

he
in-
ui-

ip-

e-
by

ric
ans

s
rror

e
u-

oint
the

io
e

he
ffi-

at

on al

nd
e

NUMERICAL APPROACH FOR HIGH PRECISION 3D . . . PHYSICAL REVIEW D 58 104020
summation, by means the spectral expansion ofH. Using the
notations of Sec. III A, it is writen as

H~ l ,j,u,w!

5 (
k50

Nw21 F (
j 50

Nu21 S (
i 50

Nr21

Ĥ lk j i Xk ji~j!D Qk j~u!GFk~w!,

~127!

whereĤ lk j i are the coefficients ofH in domainl . Note that
from the computational point of view, this summation is t
most expensive operation of the method: it scales indee
(NrNuNw)2. It may be possible to replace the whole summ
tion ~127! by a truncated one or by some interpolation fro
the values ofH at the collocation points, in order to reduc
the computational cost. The main advantage of the sum
tion ~127! is that it does not introduce any additional error
the method: the right-hand side of Eq.~127! is the value ofH
at the specified point within spectral accuracy.

OnceH is computed at the collocation points of the ne
mapping by means of Eq.~126!, the equation of state~124! is
used to find the values of the mass densityr at the colloca-
tion points. A new iteration may then begin.

In all the computations we have made, we have found
this procedure converges. For stationary rotating stars in g
eral relativity, a rigorous proof of the convergence of su
iterative method~except for the remapping of the physic
space at each step! has been given by Schaudt and Pfis
@29#.

B. MacLaurin ellipsoids

The multidomain spectral method can handle cons
density~incompressible matter! rotating bodies without any

FIG. 5. Logarithm of the relative error of the numerical soluti
with respect to the number of degrees of freedom inu for a Ma-
cLaurin spheroid at the Jacobi-Dedekind bifurcation point~the
number of degrees of freedom inr is Nr52Nu21). Also shown is
the error in the verification of the virial theorem.
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Gibbs phenomenon. With classical spectral methods,
Gibbs phenomenon would have been very severe since
density itself, and not some of its derivatives, is discontin
ous across the stellar surface for incompressible fluids. T
gives us the opportunity to quantify the accuracy of t
method since exact analytical solutions are known for
compressible bodies: the so-called ellipsoidal figures of eq
librium ~see, e.g., Ref.@30#!. Note that an ellipsoid is not a
particular case for the mapping~11!: all the coefficients of
the expansion ofF0(u,w) and G0(u,w) with the bases de-
scribed in Sec. III A are nonzero. In this respect, the ell
soidal figures constitute a strong test of the method.

For single rigidly rotating objects in the Newtonian r
gime, the more simple ellipsoidal solutions are constituted
the family of MacLaurin spheroids, which are axisymmet
about their rotation axis. We have computed them by me
of the procedure presented in Sec. V A, settingF tide50 and
the equation of state~124! to be simplyr5const. The axi-
symmetry allows us to employNw51. The code converge
towards ellipsoidal configurations and we measure the e
by comparing the eccentricitye:5A12(r p /r eq)

2 ~wherer p
andr eq are, respectively, the polar and equatorial radii! of the
numerical solution with that of the analytical solution. Th
result of this comparison is presented in Fig. 5 for a MacLa
rin spheroid located on the MacLaurin sequence at the p
where the Jacobi and Dedekind sequences branch off:
eccentricity ise50.8127, which corresponds to the rat
r p /r eq50.5827. Shown in Fig. 5 is the relative error on th
eccentricity as a function of the number of coefficients in t
u expansion. For these calculations, the number of coe
cients in thej expansion in each domain isNr52Nu21.
The straight line behavior of the left side of Fig. 5 shows th

FIG. 6. Logarithm of the relative global error of the numeric
solution with respect to the number of degrees of freedom inu for
a Roche ellipsoid for an equal mass binary system a
V2/(pGr)50.1147 ~the numbers of degrees of freedom in th
other directions areNr52Nu21 andNw5Nu21). Also shown is
the error in the verification of the virial theorem.
0-11
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FIG. 7. Orthogonal plane sections in the numerical solution obtained for the Roche ellipsoid represented by the second set
starting from the left on Fig. 6~i.e., corresponding toNr513, Nu57, andNw56). Shown are the isoenthalpy lines, as well as the numer
grid. This computation took a few seconds on a R4400/150 MHz processor.
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the error is evanescent, i.e., that it decreases as exp(2Nu).
For Nu*20, the error saturates at the level of 10212– 10211.
This is due to the round-off errors in the computation, wh
is performed with a 15-digit accuracy. It is instructive
compare this result with that obtained with a classical sp
tral method, i.e., with fixed spherical domains, as expose
Ref. @9#. For instance, Fig. 5 can be directly compared w
Fig. 7 of Ref.@9#: this latter shows a power-law error deca
only ~of type Nu

24.5), due to the Gibbs phenomenon at t
star’s surface. Moreover, the error saturates at the leve
1025. Note that this result was obtained with a polytrop
equation of state~adiabatic indexg52), for which the den-
sity is continuous across the surface of star; the fix
spherical-domain spectral method presented in Ref.@9# was
not able to treat incompressible fluid.

Also shown in Fig. 5 is the relative accuracy with whic
the 3D virial theorem is satisfied. The 3D Newtonian vir
theorem2 states that for a stationary configuration 2T13P
1W50, whereT is the total kinetic energy~with respect to
the inertial frame!, P is the integral of the pressure throug
out the star andW is the gravitational potential energy. W
have computed each of these three integrals for the num
cal solution and evaluated the quantity

2As opposed to the 2D virial identity, see Refs.@31# and @32# for
a discussion.
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«:5U12
2T13P

uWu U. ~128!

For an exact solution,«50. The triangles plotted in Fig. 5
depict the value of log10« for the numerical models. Figure
shows that the virial error is very well correlated with th
error evaluated by a direct comparison with the analyti
solution. This gives us a great deal of confidence when us
the virial error to evaluate the numerical error in more ge
eral cases, when no analytical solution is available.

C. Roche ellipsoids

Roche ellipsoids are equilibrium solutions for incom
pressible fluid bodies in a synchronized binary syste
within the approximation of taking only the second ord
term in the expansion~around the center of mass of one sta!
of the gravitational potential of the companion. They a
obtained by setting

F tide52
GMcomp

uau S 11
x

a
1

2x22y22z2

a2 D ~129!

in Eq. ~123!, wherea is the abscissa of the center of mass
the companion in the Cartesian frame (x,y,z) centered at the
center of mass of the star under consideration. Note tha
Eq. ~123!, r must now be the distance to the center of ma
of the binary system andu the angle with respect to th
0-12
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rotation axis of the system. Moreover,V must be chosen so
that V25G(M1M comp)/a

3, in order that the linear term in
x which appears in Eq.~123! vanishes and one is left with a
ellipsoidal solution.

The analytical solutions for Roche ellipsoid are given
the classic book by Chandrasekhar@30#. However, they are
given with an accuracy of five digits only~Table XVI in Ref.
@30#!, which is not sufficient for our comparison project: th
accuracy achieved by the numerical code is far better t
1025 as we shall see below. Therefore, we have writte
small MATHEMATICA @33# program to compute Chan
drasekhar’s ‘‘index symbols’’A1 , A2 , and A3 and obtain
Roche solutions with an arbitrary number of digits.

Figure 6 presents the results of the comparison betw
the numerical solution obtained by means of the method
scribed in Sec. V A and the analytical solution. Let us rec
that ellipsoidal shapes are not privileged in our formalism,
that this type of comparison constitute a strong test of
method. The comparison is conducted at fixed values ofV/r
and the mass ratioM comp/M . Two global errors can then b
defined:~i! the error on the axis ratioa2 /a1 and~ii ! the error
on the axis ratioa3 /a1 , a1 being the major axis of the tri
axial ellipsoid~directed along the line of the two centers
mass!, a2 being the orthogonal axis in the orbital plane, a
a3 being the axis perpendicular to the orbital plane. Th
two errors are shown in Fig. 6 for a Roche ellipsoid w
V2/(pGr)50.1147 andM comp/M51. The corresponding
axis ratios area2 /a150.7506 anda3 /a150.6853. The nu-
merical solution is depicted in Fig. 7 by three plane sectio
obtained with the following~small! numbers of coefficients
Nr513, Nu57, andNw56. Also show in this figure is the
numerical grid~collocation points! used in the problem~only
the domainD0 and a part ofD1 are represented in the figure!.
Even with such a small number of points, the relative erro
of order 131024 ~cf. Fig. 6!. This explains why despite th
fact that the numerical grid is quite coarse, the isoentha
surfaces shown in Fig. 7 are so smooth.

Figure 6 gives the two global errors as a function of t
number of coefficients in theu expansionsNu . The number
of coefficients employed in the other directions areNr
52Nu21 and Nw5Nu21. As in Fig. 5, the exponentia
decay of the error forNu&13 means that the error is evane
cent. ForNu*19, the error saturates at the level of a fe
10210 due to the round-off errors in the computation, th

TABLE I. CPU time cost on a R4400/150MHz processor a
function of the number of degrees of freedom for the calculation
the Roche ellipsoid configuration corresponding to Fig. 6. The
eration is halted when the relative discrepancy between two suc
sive steps reaches 10213.

Nr Nu Nw No. of steps CPU time per step~s!

25 13 12 116 6.92
33 17 16 107 24.2
49 25 24 115 189.16
65 33 32 106 861.6
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latter being performed with a 15-digit accuracy. The cost
CPU time for different numbers of degrees of freedom
shown in Table I.

Also shown in Fig. 6 is the relative accuracy with whic
the 3D virial theorem is satisfied. This error estimator
defined in the same way as in Sec. V B. As in the axisy
metric case~MacLaurin ellipsoids!, we find a high correla-
tion between the virial error and the errors obtained by dir
comparison with the analytical solution.

VI. CONCLUSION AND PERSPECTIVES

We have presented a new numerical approach capab
handling the surface discontinuities of stellar configuratio
provided these discontinuities are starlike, which cover
wide range of astrophysically relevant situations. When u
along with spectral methods this adaptive-domain techni
ensures that no Gibbs phenomenon can appear. This re
in a very high precision~evanescent error!, as demonstrated
in Sec. V by a comparison with exact analytical solution
The relative error for 3D configurations can reach 10210 with
a relatively small number of degrees of freedom (Nr3Nu
3Nw537319318 in each domain!. Let us recall that very
high accuracy is required for a lot of astrophysical proble
such as numerical stability analysis. Among these proble
let us mention the study of symmetry breaking of rapid
rotating stars and the determination of the orbital freque
of the last stable orbit of a neutron stars binary system.

The multidomain spectral method is particularly we
adapted to the computation of relativistic binary neutron s
system. Three sets of domains can be used in this prob
~see Fig. 8!: two sets of~three or more! domains centered on
each star and a third set of~two or more! domains centered a
the intersection between the rotation axis and the orb
plane. This latter set of domains which reaches spatial in
ity is required to compute the gravitational field of relativi
tic configurations. When needed, the quantities computed
one of the three domain sets are evaluated at the colloca
points of another set by means of the method presente
Sec. V A. We are currently applying this numerical meth
to the computation of steady-state configurations of rela
istic counter-rotating~i.e., irrotational with respect to an in

f
-
s-

FIG. 8. Representation of the numerical domains that we us
compute relativistic steady-state configurations of binary neut
stars systems. The external domain extends to spatial infinit
order to compute the exact gravitational potentials. Due to the s
metry of the problem, only thez.0 part of space is taken into
account.
0-13
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ertial frame! neutron star binaries, following the formulatio
developed in Ref.@1#. We will report on the astrophysica
results in a forthcoming paper.

An interesting by-product of the present technical pape
as follows. In a previous work@9#, we were able to demon
strate that the virial error is representative of the true e
. D
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~measured by direct comparison with analytical solutio!
only in the spherically symmetric case. We had inferred t
this remains valid in the axisymmetric and 3D cases. In
present work, we have confirmed this conjecture, thanks
the ability of the present method to treat incompressible
ids, for which 3D analytical solutions are available.
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