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Generalized Xanthopoulos theorem in the low-energy limit of string theory
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It is proved that if (gmn ,Fmn ,f,h) is an exact solution of the Einstein-Maxwell-dilaton-axion equations,
then (gmn1 l ml n ,Fmn ,f,h) is also an exact solution of those equations if and only if (l ml n,0,0,0) satisfies the
Einstein-Maxwell-dilaton-axion equations linearized about (gmn ,Fmn ,f,h), provided that the null vector field
l m be simultaneously a principal null direction of the electromagnetic fieldFmn and orthogonal to the gradients
of the dilatonf and axionh fields. Furthermore, it is shown that the matter field equations with sources are
invariant under changes of the metricgmn by gmn1 l ml n if l m satisfies the above conditions. An application of
these results in the study of perturbations of the solution corresponding to colliding plane waves is given.
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I. INTRODUCTION

With the purpose of introducing a useful tool in the sea
for exact solutions of the Einstein vacuum equations a
their corresponding physical interpretations, Xanthopou
proposed and proved the now called Xanthopoulos theo
@1#, which establishes that if the metricgmn is an exact solu-
tion of the Einstein vacuum equations andl m a null vector
field, thengmn1 l ml n is also an exact solution of those equ
tions if and only if l ml n satisfies the Einstein equations lin
earized aroundgmn . Recently, Torres del Castillo@2# has
proved that analogous results hold in the presence of dif
ent matter fields provided that the null vectorl m be suitably
aligned to those matter fields, in addition to that has b
shown the invariance of the corresponding matter field eq
tions under changes of the metricgmn by gmn1 l ml n . More
specifically, it was proved that the Maxwell equations w
sources, are invariant under those changes of the metricl m
is a principal null direction of the electromagnetic fieldFmn ,
with an analogous result in the case when the matter fi
corresponds to a scalar fieldF, if l m is orthogonal to the
gradient of this field; a generalized Xanthopoulos theorem
established in each case. From these results, it is eas
prove that in the more general Einstein-Maxwell-scalar eq
tions ~where all matter fields appear minimally coupled
gravity!, if ( gmn ,Fmn ,F) is an exact solution of these equ
tions, then (gmn1 l ml n ,Fmn ,F) is also an exact solution o
these equations if and only if (l ml n,0,0) satisfies the
Einstein-Maxwell-scalar equations linearized arou
(gmn ,Fmn ,F), provided thatl m satisfies both conditions
i.e., it is a principal null direction ofFmn and simultaneously
orthogonal to the gradient of the scalar fieldF. Although the
presence of scalar fields may be an optional issue in ordin
gravity, the more recent unification theories predict the r
orous presence of scalar partners to the usual gravity ten
These scalar fields appear, unlike the scalar fields appea
in ordinary Einstein gravity, nonminimally coupled to gra
ity and other matter fields. This unusual property yields
fact that the effect of the gravity on the matter fields is n
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only given through the covariant derivative compatible w
the metric tensor in the matter field equations, but a
through the presence, in those equations, of additional te
involving the metric tensor itself and other matter fields; b
sides, the matter fields do not contribute in the same form
sources of curvature of the space-time in the Einstein eq
tions, as they do in ordinary gravity theory. These facts le
to a more close coupling between gravity and matter fie
Hence, the following natural step along these lines, is
answer under what conditions, in the presence of these sc
partners, we have analogous results to those presented a
for ordinary gravity theories. In this manner, the aim of t
present paper is to demonstrate that when the low-ene
degrees of freedom most characteristic of the string the
namely, dilaton and axion scalar fields are excited for int
acting with electromagnetic fields in the stringy way, ana
gous results hold just requiring the same conditions of ali
ment of the null vector fieldl m to the matter fields required in
ordinary gravity theories, which means thatl m be a principal
null direction ofFmn and also orthogonal to the gradients
the dilaton and axion fields. These results are not obvio
since the nonminimal coupling of gravity to the matter fiel
through the metric tensor in the stringy way, is radica
different from that of the usual Einstein gravity theory.

We start introducing the four-dimensional effective a
tion, which appears as a bosonic part of a generic low-ene
limit of string theory and as a result of the dimensional
duction of the Kaluza-Klein~KK ! theory:

S5E d4xA2g$R22~]mf!]mf2 1
2 z~f!~]mh!]mh

1j~f!FmnFmn1v~h!FmnF̃mn1V~f,h!%, ~1!

where R is the scalar curvature,g5det(gmn), Fmn

52¹ [mAn] is the electromagnetic field, F̃mn

51/(2A2g)emnlrFlr corresponds to the dual ofFmn . On
the other hand,f represents the dilaton~scalar! field andh
the axion~pseudoscalar! field; the arbitrary functionsz~f!,
©1998 The American Physical Society19-1
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j~f!, andv~h! are collectively known as the coupling func
tions ~chosen arbitrary for generality!. The presence of thes
functions makes that the dilaton and axion appear nonm
mally coupled to the gravity and matter fields.V(f,h) rep-
resents the dilaton-axion potential, which is a~well-behaved!
function of the dilaton and the axion alone, and contains
derivatives of these fields. A specific choice of the coupl
functions and the dilaton-axion potential corresponds t
particular gravity theory. For example, for the special cho
z5e4f, j5e22f, andv5h, the action~1! reduces to the
usual low-energy effective action for the heterotic stri
theory. V may be a Liouville-type dilaton potential,Lebf,
i.e., a cosmological constant term with dilaton coupling;V
also may contain the possible mass terms for dilaton
axion fields, i.e., it can contain terms of the formmDf2

1mAh2, wheremD andmA are the masses of the dilaton an
axion fields respectively, etc. The factors22 and21

2 appear-
ing in the action~1! are introduced for future convenienc
As we can see,S covers a large family of nontrivial action
for four-dimensional gravity appearing in the modern lite
ture.

Variations of the actionS with respect to the axion field
dilaton field, gauge fieldAm , and metric tensorgmn give
respectively the following Einstein-Maxwell-dilaton-axio
~EMDA! equations:

gmn¹m~z]nh!1
dv

dh
FmnF̃mn1

]V

]h
5hs ~axion!, ~2!

gmn¹m¹nf1
1

4 F dj

df
FmnFmn

2
1

2

dz

df
~]mh!]mh1

]V

]f G5fs ~dilaton!, ~3!

¹m~vF̃mn1jFmn!5Jn ~Maxwell modified!, ~4!

¹mF̃mn50 ~Bianchi identities!, ~5!

Rmn52~]mf!]nf1
1

2
z~]mh!]nh

22jS FmlFn
l2

1

4
gmnFrlFrlD2

1

2
gmnV ~Einstein!,

~6!

where for generality, in Eqs.~2!–~4! we have included the
scalar sourceshs and fs for the axion and dilaton fields
respectively, and a current densityJn for the electromagnetic
field.

The outline of this paper is as follows. In Sec. II w
introduce the basic framework and it is shown the invaria
of the matter field equations~2!–~5! under changes of the
metric. In Sec. III we consider the generalization of the Xa
thopoulos theorem for the EMDA theory. In Sec. IV we a
ply the results of the previous sections to the study of
perturbations of the solution which represents colliding pla
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waves in the scheme of the EMDA theory. We then finish
Sec. V with some concluding remarks on our results.

II. INVARIANCE OF THE MATTER FIELD EQUATIONS

In this section we set up briefly the basic framework a
notation that will be used in this paper. For more details
refer readers to@2#.

If l m is a null vector field and we consider two geometri
whose metrics are related by

gmn8 5gmn1 l ml n , ~7!

then it is easy to find that

g8mn5gmn2 l ml n, ~8!

Gnl8
m5Gnl

m 1Cnl
m , ~9!

Cnl
m 5

1

2
@¹n~ l ml l!1¹l~ l ml n!2¹m~ l nl l!

1 l ml r¹r~ l nl l!#, ~10!

l rCrn
m 5

1

2
~ l mXn1 l nXm!, l rCmn

r 52
1

2
~ l mXn1Xml n!,

Cml
m 50, l nl lCnl

m 50, gnlCnl
m 5¹n~ l ml n!5Xm1u l m,

~11!

Rmn8 5Rmn12¹ [rCm]n
r 12Cm[n

r Cl]r
l , ~12!

whereu5¹ml m , andXm5 l r¹rl m satisfiesl mXm50; ¹m is
the covariant derivative with respect to the background m
ric gmn , which raises and lowers the indices. Furthermore
is not difficult to show that

g85g. ~13!

We now consider the necessary and sufficient condition
alignment of the vectorl m with the matter fields, in order to
establish our results. First, we takel m along a principal null
direction of the electromagnetic fieldFmn ,

l mFmn5l l n , ~14!

where l is some scalar function and simultaneously, o
thogonal to the gradients of the dilation and axion fields, t
is

l m¹mf50, ~15!

l m¹mh50. ~16!

In this manner, we can show, using Eqs.~8! and~14! and
the nullness ofl m that

~FmnFmn!8[g8mag8nbFmnFab5gmagnbFmnFab5FmnFmn,
~17!
9-2
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which means that the quantityFmnFmn appearing in the di-
lation equation~3! is invariant under changes of the metr
considered. Similarly, from Eq.~13! we have that

~ F̃mn!8[
1

2A2g8
emnabFab5

1

2A2g
emnabFab5F̃mn,
d
t

10401
and then

~FmnF̃mn!85FmnF̃mn. ~18!

In order to show the invariance of Eq.~2!, we write the
relevant terms of the left-hand side of this equation for
metric gmn8 and using Eqs.~8!, ~9!, and~18! we have that
g8mn¹m8 ~z]nh!1
dv

dh
~FmnF̃mn!85gmn¹m~z]nh!2gmnCmn

l ~z]lh!2 l ml n¹m~z]nh!1 l ml nCmn
l ~z]lh!1

dv

dh
FmnF̃mn

5gmn¹m~z]nh!1
dv

dh
FmnF̃mn2¹m~ l ml nz]nh!, ~19!

where the last expression has been obtained using Eqs.~11!. The last term of Eq.~19! vanishes according to Eq.~16!;
therefore, the scalar sourcehs for the axion field is the same in both geometries. The term]V/]h appearing in Eq.~2! may
be added to both sides of Eq.~19! ~or it may be absorbed in the definition ofhs! and the conclusion remains valid.

Similarly, the relevant terms of the left-hand side of Eq.~3! satisfy

g8mn¹m8 ~]nf!1
1

4

dj

df
~FmnFmn!82

1

8

dz

df
g8mn~]mh!]nh5gmn¹m~]nf!1

1

4

dj

df
FmnFmn2

1

8

dz

df
gmn~]mh!]nh

2¹m~ l ml n]nf!1
1

8

dz

df
~ l m]mh!2, ~20!
-
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where Eq.~17! has been used; the two last terms of Eq.~20!
vanish in accordance with Eqs.~15! and ~16!, respectively.
In this manner, the scalar sourcefs for the dilaton field is the
same in both geometries.

As is well known, the Bianchi identities~5! can be ex-
pressed in the form

¹mF̃mn505emnab]mFab ,

which means that these equations actually do not depen
the background metric. These equations are equivalen
those in Eqs.~11b! of Ref. @2#.

In the case of the Maxwell modified equations~4! we
have

g8abg8mn¹a8 ~jFbm!1~ F̃mn!8]mv

5g8mn@jg8ab¹a8Fbm1Fbmg8ab]aj#1F̃mn]mv,

~21!

but from Ref.@2#

g8ab¹a8Fbm5~gab¹aFbr!grlglm8 , ~22!

and using Eqs.~8! and ~14! it is not difficult to show that

Fbmg8ab]aj5gabFbr~]aj!grlglm8 , ~23!

and then from Eqs.~21!–~23! we have
on
to

g8abg8mn¹a8 ~jFbm!1~ F̃mn!8]mv

5gabgmn¹a~jFbm!1¹m~vF̃mn!, ~24!

it means that the current densityJn is the same in both ge
ometries. Note that, although the Maxwell modified equ
tions involve the dilaton and axion fields, only the alignme
condition ~14! has been required in order to obtain the re
tion ~24!. The results~19!, ~20!, and~24! show that, in par-
ticular, the fieldsFmn , f, andh satisfy the source-free field
equations with the metricgmn8 if and only if they do with the
metric gmn .

III. GENERALIZATION OF THE XANTHOPOULOS
THEOREM

As it has been suggested previously, the Xanthopou
theorem for the EMDA theory reads the following.

Let (gmn ,Fmn ,f,h) be an exact solution of the source
free EMDA equations@i.e., Eqs. ~2!–~6! with Jn505hs
5fs#, and l m a null vector field satisfying the alignmen
conditions~14!–~16!, then (gmn1 l ml n ,Fmn ,f,h) is also an
exact solution of those equations if and only if (l ml n,0,0,0)
satisfies the EMDA equations linearized abo
(gmn ,Fmn ,f,h), which will be proved now.

Linearized EMDA equations are obtained from Eqs.~2!–
~6! taking first-order perturbations of the metric (hmn) with-
out perturbing the matter fields:
9-3
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¹a¹ahmn22¹a¹ (mhn)a1¹m¹n~gabhab!

524jhabFmaFnb2jhmnFabFrggargbg

12jgmnhabFagFbrggr1Vhmn , ~25!

¹mj~Fanhma1Fmrhrn2 1
2 Fm

ngabhab!50, ~26!

¹m~hma¹af!2 1
2 ~¹lf!¹l~gmahma!1

1

2

dj

df
FmrFa

rhma

2
1

8

dz

df
hma~]mh!~]ah!50, ~27!

¹m~hmaz¹ah!2 1
2 z~¹lh!¹l~gmahma!

1
1

2

dv

dh
FmnF̃mn~glrhlr!50, ~28!

wherehmn5 l ml n . We first assume thathmn satisfies the lin-
earized equations~25!–~28! with l m satisfying the conditions
~14!–~16!; using these conditions and the nullness ofl m it is
straightforward to show that Eqs.~26!–~28! are satisfied
identically. However, sincehmn5 l ml n and l m satisfies the
condition ~14!, from Eq. ~25! we have that

¹a¹a~ l ml n!22¹a¹ (m~ l n)l a!

52~4jl21jFabFab2V!l ml n , ~29!

if we contract Eq.~29! with l nl n, then it is easy to find tha

XmXm50, ~30!

if the contraction is withl m and we taking into account tha
Xm5c l m for some scalar functionc @2#, then the result is

~¹ml n!~¹ml n!52c~u1c!2 u̇2ċ, ~31!

where the overdot denotes the directional derivative al
l m. On the other hand, using the fact thatl ml nRmn50, which
is a consequence of Eq.~6!, and Eqs.~14!–~16!, we can find
that

~¹ml n!~¹nl m!5uc2 u̇1ċ. ~32!

From expressions~30!–~32! we can find that@see Eq.~12!#

2¹ [rCm]n
r 12Cm[n

r Cl]r
l

52
1

2
@¹a¹a~ l ml n!22¹a¹ (m~ l n)l a!#, ~33!

where the relationXm5c l m has been used once more; t
right-hand side of Eq.~33! is essentially the left-hand side o
Eq. ~29!. Hence, we can finally find from Eqs.~6!–~8!, ~12!,
~29!, and~33! that
10401
g

Rmn8 52~]mf!]nf1
1

2
z~]mh!]nh

22jFg8arFmrFna2
1

4
gmn8 g8rlg8abFraFlbG

2
1

2
gmn8 V. ~34!

Equation ~34! shows then that the metricgmn8 satisfies the
Einstein equation~6! and, as it has been shown in the prev
ous section, the electromagnetic, dilaton and axion fields
isfy the corresponding matter field equations in the me
gmn8 @see paragraph after Eq.~24!#. With this, we demonstrate
a part of the generalized Xanthopoulos theorem. Convers
it is not difficult to prove that if (gmn1 l ml n ,Fmn ,f,h) is an
exact solution of the EMDA equations thenhmn5 l ml n satis-
fies the linearized equations~25!–~28!, which completes the
proof.

IV. PURELY INCOMING PERTURBATIONS AS AN
EXACT SOLUTION

As we will see in this section, our previous results w
allow us to answer a question which remained open at
end of Ref.@3#. In that reference it was demonstrated t
existence of purely incoming perturbations in the study
the perturbations of the space-time which represents p
waves bound to collision in the scheme of EMDA theor
Although such purely incoming perturbations correspond
a solution of the linearized EMDA equations, we demo
strate that the corresponding purely gravitational pertur
tions correspond also to anexact solution of the EMDA
equations.

The purely gravitational perturbations can be obtain
from Eqs. ~63! in Ref. @3# when the electromagnetic fiel
perturbations vanish setting]z

3F50, since the dilaton and
axion perturbations were to be vanishing. On the other ha
the corresponding first-order metric perturbations can be
tained from Eqs.~56! of Ref. @3#, remembering that in this
caseDcG50,

hmn5hlm
NPl n

NP, ~35!

whereh is a real scalar function whose explicit form is n
important;l m

NP is the usual~real! null vector of the null tetrad
of the Newman-Penrose~NP! formalism used in that refer
ence, which is not necessarily our null vectorl m used in the
present approach. If we choosel m5Ahlm

NP, then from Eq.
~35! hmn5 l ml n , then the metric perturbations take the for
required by our present approach. Moreover, from Eq.~28!
of Ref. @3# and from the expression for the electromagne
field Fmn in the NP formalism we find that

l mFmn5 l m@2f2l [m
NPmn]1c.c.#50, ~36!
9-4
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which corresponds to the alignment condition~14! with l
50. Furthermore, from Ref.@3# it is easy to show that the
gradients of the dilaton and axion fields are given resp
tively by

¹mf5 l m
NPDf5

1

Ah
l mDf, ~37!

¹mh5 l m
NPDh5

1

Ah
l mDh, ~38!

since in the regions prior to the collision,Df andDh are the
only nonvanishing derivatives of these fields. Clearly,
expressions~37! and~38! satisfy the conditions~15! and~16!
because of the nullness ofl m . Hence, the purely gravitationa
perturbations~35! also correspond, in accordance with o
previous results, to an exact solution of the EMDA equ
tions. In this manner, the existence of such field pertur
tions is not only at level of linearized EMDA equations, b
at level of the complete EMDA equations themselves.

These results for the EMDA theory contain as a particu
case, analogous results for the Einstein-Maxwell-Dila
theory~absence of the axion field!, where only the conditions
~14! and ~15! are involved. In this manner, our present r
sults also answer the question which remained open at
end of Ref.@4#.
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V. CONCLUDING REMARKS

Our present results represent, like those originally p
sented by Xanthopoulos in Ref.@1#, a tool for studying the
structure of solutions in the framework of the EMDA theor
However, the requirement of simultaneous alignment ofl m to
the matter fields, i.e., conditions~14!–~16!, seems to limit
the possible solutions of the EMDA theory which will satis
those necessary conditions. For example, unlike the cas
the colliding plane waves solution described in Sec. IV,
the case of the solutions which represent black holes w
dilaton and axion fields@5,6#, if one takesl m along the prin-
cipal null direction of the electromagnetic field, i.e., satisf
ing condition ~14!, then l m does not satisfy necessarily th
remainder conditions~15! and ~16!. In this manner, the rig-
orous presence of the dilaton and axion fields establish
significant difference between the EMDA solutions and th
analogues in the ordinary Einstein theory where, for e
ample, just the alignment ofl m to the electromagnetic field is
required ~see @2# and references cited therein!. However,
some possible applications of our results will be the sub
of future investigations.
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