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Generalized Xanthopoulos theorem in the low-energy limit of string theory
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It is proved that if §,,.F,,.¢,7) is an exact solution of the Einstein-Maxwell-dilaton-axion equations,
then @,.,+1,.l,.F ... ¢,7) is also an exact solution of those equations if and only jf (,0,0,0) satisfies the
Einstein-Maxwell-dilaton-axion equations linearized abajt(,F ., . ¢,7), provided that the null vector field
|, be simultaneously a principal null direction of the electromagnetic figlgdand orthogonal to the gradients
of the dilaton¢ and axionz fields. Furthermore, it is shown that the matter field equations with sources are
invariant under changes of the metgg, by g,,+1,l, if |, satisfies the above conditions. An application of
these results in the study of perturbations of the solution corresponding to colliding plane waves is given.
[S0556-282(198)09120-9

PACS numbd(s): 04.20.Jb, 04.40.Nr

[. INTRODUCTION only given through the covariant derivative compatible with
the metric tensor in the matter field equations, but also
With the purpose of introducing a useful tool in the searchthrough the presence, in those equations, of additional terms
for exact solutions of the Einstein vacuum equations andnvolving the metric tensor itself and other matter fields; be-
their corresponding physical interpretations, Xanthopoulosides, the matter fields do not contribute in the same form as
proposed and proved the now called Xanthopoulos theoremsources of curvature of the space-time in the Einstein equa-
[1], which establishes that if the metigg,, is an exact solu- tions, as they do in ordinary gravity theory. These facts lead
tion of the Einstein vacuum equations ahda null vector to a more close coupling between gravity and matter fields.
field, theng,,+1,l, is also an exact solution of those equa- Hence, the following natural step along these lines, is to
tions if and only ifl |, satisfies the Einstein equations lin- answer under what conditions, in the presence of these scalar
earized aroundy,,. Recently, Torres del Castillfi2] has  partners, we have analogous results to those presented above
proved that analogous results hold in the presence of diffefor ordinary gravity theories. In this manner, the aim of the
ent matter fields provided that the null vectgrbe suitably ~ present paper is to demonstrate that when the low-energy
aligned to those matter fields, in addition to that has beeslegrees of freedom most characteristic of the string theory,
shown the invariance of the corresponding matter field equaramely, dilaton and axion scalar fields are excited for inter-
tions under changes of the metdg, by g,,+1,l,. More  acting with electromagnetic fields in the stringy way, analo-
specifically, it was proved that the Maxwell equations with gous results hold just requiring the same conditions of align-
sources, are invariant under those changes of the metrjc if ment of the null vector field,, to the matter fields required in
is a principal null direction of the electromagnetic figlg,,  ordinary gravity theories, which means thatbe a principal
with an analogous result in the case when the matter fiel@ull direction ofF ,, and also orthogonal to the gradients of
corresponds to a scalar fielld, if |, is orthogonal to the the dilaton and axion fields. These results are not obvious,
gradient of this field; a generalized Xanthopoulos theorem isince the nonminimal coupling of gravity to the matter fields
established in each case. From these results, it is easy torough the metric tensor in the stringy way, is radically
prove that in the more general Einstein-Maxwell-scalar equadifferent from that of the usual Einstein gravity theory.
tions (where all matter fields appear minimally coupled to ~We start introducing the four-dimensional effective ac-
gravity), if (g,,,,F,, @) is an exact solution of these equa- tion, Wthh appears as a bosonic part of a generic Iqw-energy
tions, then §,,+1,l,,F,,,®) is also an exact solution of I|m|t.of string theory and as a result of the dimensional re-
these equations if and only ifl(l,,00) satisfies the duction of the Kaluza-KleirKK) theory:
Einstein-Maxwell-scalar  equations linearized around
(Q,LV_,FMV,CI)), prowded _thatI_M satisfies bqth conditions; S:f d4x\/—_g{R—2(&M¢)0“¢—%§(¢)((9,m)c9“77
i.e., it is a principal null direction oF ,, and simultaneously
orthogonal to the gradient of the scalar fidid Although the ” ~ .
presence of scalar fields may be an optional issue in ordinary +E(PIF L, FHF o), FH V(S m)] @)
gravity, the more recent unification theories predlct' the M9~ here R is the scalar curvature,g=det@,), F.,
orous presence of scalar partners to the usual gravity tensor. . , Y R
These scalar fields appear, unlike the scalar fields appearing2" (»As 1S the  electromagnetic  field, F*
in ordinary Einstein gravity, nonminimally coupled to grav- =1/(2\/—_g)e“””PF)\p corresponds to the dual &f,,. On
ity and other matter fields. This unusual property yields thethe other hand¢ represents the dilatofscalay field and »
fact that the effect of the gravity on the matter fields is notthe axion(pseudoscalarfield; the arbitrary functiong(¢),
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&(#), andw(n) are collectively known as the coupling func- waves in the scheme of the EMDA theory. We then finish in
tions (chosen arbitrary for generalityThe presence of these Sec. V with some concluding remarks on our results.
functions makes that the dilaton and axion appear nonmini-

mally coupled to the gravity and matter field& ¢,7) rep- || INVARIANCE OF THE MATTER FIELD EQUATIONS
resents the dilaton-axion potential, which isngell-behaved

function of the dilaton and the axion alone, and contains no In this section we set up briefly the basic framework and
derivatives of these fields. A specific choice of the couplingnotation that will be used in this paper. For more details we
functions and the dilaton-axion potential corresponds to defer readers t¢2].

particular gravity theory. For example, for the special choice If |, is a null vector field and we consider two geometries
[=e* £=e ?? andw= 7, the action(1) reduces to the Whose metrics are related by

usual low-energy effective action for the heterotic string

theory.V may be a Liouville-type dilaton potential\e®, 9=l )
i.e., a cosmological constant term with dilaton coupliig;

also may contain the possible mass terms for dilaton anéhen itis easy to find that

axion fields, i.e., it can contain terms of the fonmy¢?

+man?, WheremD andm, are the masses of the dilaton and ~ 9'*"=9*"—1#1", ®)
axion fields respectively, etc. The factor® and—3 appear- ,
ing in the action(1) are introduced for future convenience. LA=Th+Chy, €)

As we can seeS covers a large family of nontrivial actions

for four-dimensional gravity appearing in the modern litera- u 1
ture. Cin= 35 [VL.UH) V(L) = VE(LLL)
Variations of the actiors with respect to the axion field,
dilaton field, gauge fieldA,, and metric tensog,, give PV (1)1, (10

respectively the following Einstein-Maxwell-dilaton-axion

(EMDA) equations: s 1 u " , 1
I CPV=§(I X,+1,X#), 1,CP = E(IMXV+XMI,,),

ppr

do N
vy (4, F. F“”+ —= axion 2
9"V u(gdym) d an 7s ( ), @ Ch =0, I"INCH =0, g"™"CH =V (IM7)=X + g1+,

(11

v,V + 11a¢ F L Fe
9 W7l de R.,=R,,+2V[,C’,+2C C),, (12)
1 d¢ where §=V#| ,, andX,=1°V | , satisfies|*X ,=0; V , is

oV
(d,md*n+ —|=¢s (dilaton), (3)  the covariant derivative with respect to the background met-

2 dd’ I ric g,,, which raises and lowers the indices. Furthermore, it
~ is not difficult to show that
V, (wF#*"+ EFEY)=J" (Maxwell modified, (4)
9'=g. (13
V. Frr=0 (Bianchi identitie$, (5)

We now consider the necessary and sufficient conditions of
1 alignment of the vectok, with the matter fields, in order to
R.,=2(d,¢)d,¢+ > $(d,md,m e_stab!ish our results. First, we tal_gg along a principal null
direction of the electromagnetic fiekd,, ,

1 1 ) .
—2&| F\F )~ i U P FPY | — 5 9.,V (Einstein, I“F =\, (14

(6) where X is some scalar function and simultaneously, or-
thogonal to the gradients of the dilation and axion fields, that
where for generality, in Eq92)—(4) we have included the is
scalar sourcegys and ¢4 for the axion and dilaton fields,

respectively, and a current density for the electromagnetic 1“V ,¢=0, (15
field.

The outline of this paper is as follows. In Sec. Il we 1#V ,7=0. (16
introduce the basic framework and it is shown the invariance
of the matter field equation€)—(5) under changes of the In this manner, we can show, using E¢3). and(14) and

metric. In Sec. Ill we consider the generalization of the Xan-the nullness of , that

thopoulos theorem for the EMDA theory. In Sec. IV we ap-

ply the results of the previous sections to the study of the(FWF’”)’Eg’““g’”BFWFaﬁzg““g”ﬁFWFaﬁzFWF“”,
perturbations of the solution which represents colliding plane 17)
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which means that the quantify, ,F*" appearing in the di- and then
lation equation(3) is invariant under changes of the metric

considered. Similarly, from Eq13) we have that (FuF#) =F B4 (18)
1 1 In order to show the invariance of E(), we write the
(,EW),E el vaBE e eMVaBE B:E’MV’ relevant terms of the left-hand side of this equation for the
2V—g' w2 -g “ metric g;’w and using Egs(8), (9), and(18) we have that

dow ~ do ~
Q’WV,’L(MM)JFE (F L F#) =gV ,(£d,m)—g*"C), (Lo ) —1H1"Y ,(£d,m) +1#1 VCZV(@?M?)JFE FuFe

do ~
=9VLEa )t g PR V(L0 ), 19

where the last expression has been obtained using &dp. The last term of Eq(19) vanishes according to Eq16);

therefore, the scalar sourag for the axion field is the same in both geometries. The té¥fhv»n appearing in Eq(2) may

be added to both sides of E{.9) (or it may be absorbed in the definition g@f) and the conclusion remains valid.
Similarly, the relevant terms of the left-hand side of EB). satisfy

TRYY (0 ¢)+EE(F F“V)’—}g W9 ,m)ad,m=g"*"V ,(d qS)JrEE F F’“’—E% »r(9,m)o
g ul\Cv 4d(]5 2% 8d¢g ,u.77 »7=9 ASE 4d¢ y3% 8d¢g ,u.77 v
1d¢g )
—VM(I”I”&V¢)+§%(I“(9M7;) , (20
|

where Eq(17) has been used; the two last terms of E2f) g’ g HV L(EF g,) + (F*)' 3,0

vanish in accordance with Eq€L5) and (16), respectively. ~

In this manner, the scalar sourgg for the dilaton field is the = gwﬁnga(gpm) +V  (wF* ), (24)

same in both geometries.
As is well known, the Bianchi identitie€5) can be ex-

pressed in the form it means that the current densily is the same in both ge-
- ometries. Note that, although the Maxwell modified equa-
V, Fr'=0=€"""F3,F .4, tions involve the dilaton and axion fields, only the alignment

condition (14) has been required in order to obtain the rela-
which means that these equations actually do not depend dion (24). The resultg19), (20), and(24) show that, in par-

the background metric. These equations are equivalent ticular, the fieldsF,,, ¢, and 5 satisfy the source-free field

those in Eqs(11b) of Ref.[2]. equations with the metrig,,, if and only if they do with the
In the case of the Maxwell modified equatiot® we  metric Uy -

have
g’ P IV L (EF g,) + (F*) 0,0 Ill. GENERALIZATION OF THE XANTHOPOULOS

, ' ~ THEOREM
=0 * Q" PV F 5, +F 3,0 "3 ,E]1+F*0 0,

As it has been suggested previously, the Xanthopoulos

(1) theorem for the EMDA theory reads the following.
Let (9,,.F...#,7) be an exact solution of the source-
but from Ref.[2] free EMDA equationdli.e., Egs.(2)—(6) with J"=0= 7
aBO I aB N =¢], and |, a null vector field satisfying the alignment
9" PV F = (9°V oF 5,) 9705 . (22) conditions(14)—(16), then @,.,+1,1,.F ., 7) is also an

_ o o exact solution of those equations if and only lif,,,0,0,0)
and using Eqgs(8) and(14) it is not difficult to show that  gatisfies the EMDA equations linearized  about

(94vF v, &, 7m), which will be proved now.

F .9 “P0,E=9"PF ,(0,6)9°9; . (23 Linearized EMDA equations are obtained from E(—
(6) taking first-order perturbations of the metrig,(,) with-
and then from Eqs(21)—(23) we have out perturbing the matter fields:
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VoV 0, = 2VOV (N, 0+ Y,V (97PN .6)

1
R.,=2(9,0)d,¢+ 5 {(d,1)d,7
7 " v M v
= _4§haI8F,u,aFVB_ ghﬂvFaﬁprgapgﬂy 2

aﬁ P o 1 ! ’ ra
+2§g,u.1/h FayFﬁpg +Vh;,w1 (25) —2§ g pFMPFVa_Z g,uvg P>\g ﬁFpaF)\B
V,E(F o, h#+FrPh = 3F#,g%h,) =0,  (26) 1
~5 9V (34)
N 1 d¢
V,u(h’uava(ﬁ)_ E(V ¢)V)\(gﬂah#a) + E @ F,upFaph#a
Equation(34) shows then that the metrigl’w satisfies the
dg s Einstein equatiori6) and, as it has been shown in the previ-
“8d¢g h#%(9,m)(dam) =0, (27 ous section, the electromagnetic, dilaton and axion fields sat-

isfy the corresponding matter field equations in the metric
g /’” [see paragraph after E@4)]. With this, we demonstrate

ma _ 1 A na
Va9V o) =2 L(VEm) V(G,ah ™) a part of the generalized Xanthopoulos theorem. Conversely,

1dw ~ N it is not difficult to prove that if ¢, +1,1,.,F,,,#,7) is an
34y F L F(gy,h*")=0, (28)  exact solution of the EMDA equations thér, =1 I, satis-
fies the linearized equatiori25)—(28), which completes the
whereh =11, . We first assume thdt,, satisfies the lin- proof.
earized equation&@5)—(28) with | , satisfying the conditions
(14)—(16), USing these conditions and the nU”neSﬁ;pft is IV. PURELY INCOMING PERTURBATIONS AS AN
straightforward to show that Eq$26)—(28) are satisfied EXACT SOLUTION
identically. However, sincéh,, =11, and |, satisfies the _ . . . _ .
condition(14), from Eq. (25) we have that As we will see in this section, our previous results will
allow us to answer a question which remained open at the
VOV (1,0, =29V (1 yl ) end of Ref.[3]. In that reference it was demonstrated the
oo pome existence of purely incoming perturbations in the study of
= — (4EN>+ §FQBF“B—V)I#IV, (29)  the perturbations of the space-time which represents plane

waves bound to collision in the scheme of EMDA theory.
if we contract Eq(29) with 1”17, then it is easy to find that Although such purely incoming perturbations correspond to
a solution of the linearized EMDA equations, we demon-
XEX, =0, (30) strate that the corresponding purely gravitational perturba-
tions correspond also to aexact solution of the EMDA
equations.
The purely gravitational perturbations can be obtained
from Egs.(63) in Ref. [3] when the electromagnetic field
, — perturbations vanish settingtF =0, since the dilaton and
(V) (VEY) == 46+ ) — 60— o, 3D axion perturbations were to be vanishing. On the other hand,
the corresponding first-order metric perturbations can be ob-

where the overdot denotes the directional derivative alongained from Eqs(56) of Ref. [3], remembering that in this
I#. On the other hand, using the fact thét"R,,, =0, which  caseD y;=0,

is a consequence of E(), and Eqs(14)—(16), we can find

if the contraction is witH# and we taking into account that
X, =yl for some scalar functiog [2], then the result is

that NP NP
o h,=hi 15, (35
(VL) (VI#) = 0y— 0+ . (32
) ) whereh is a real scalar function whose explicit form is not
From expressiont30)—(32) we can find thaisee Eq(12)]  important;I"*” is the usualrea) null vector of the null tetrad
of the Newman-PenrosédNP) formalism used in that refer-
2V,Chyt ZCZ[VCQ]‘, ence, which is not necessarily our null vectgrused in the
1 present approach. If we choosg=hl)\", then from Eq.
=-3 [V (10, —=2VV (1)l )], (33 (39 h,,=I,,, then the metric perturbations take the form

required by our present approach. Moreover, from @8)
of Ref.[3] and from the expression for the electromagnetic
where the relatiorX ,= 1, has been used once more; thefield F,, in the NP formalism we find that
right-hand side of Eq(33) is essentially the left-hand side of
Eqg. (29). Hence, we can finally find from Eq&)—(8), (12),
(29), and (33) that 1“F 0 =1#[26,l 1 m,; +c.c]=0, (36)
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which corresponds to the alignment conditigi¥) with A V. CONCLUDING REMARKS

=0. Furthermore, from Ref.3] it is easy to show that the oy present results represent, like those originally pre-

gradients of the dilaton and axion fields are given respecsented by Xanthopoulos in RefL], a tool for studying the

tively by structure of solutions in the framework of the EMDA theory.
However, the requirement of simultaneous alignment,db

s, L the matter fields, i.e., conditiond4)—(16), seems to limit
Vudp=lAd= ﬁ A, (37) the possible solutions of the EMDA theory which will satisfy
those necessary conditions. For example, unlike the case of
1 the colliding plane waves solution described in Sec. 1V, in
vV, p=1"PAp=—21 A7, (3g)  the case of the solutions which represent black holes with
pooe Jh ¥ dilaton and axion field§5,6], if one takes , along the prin-

cipal null direction of the electromagnetic field, i.e., satisfy-
since in the regions prior to the collisiong andAn are the  ing condition(14), thenl, does not satisfy necessarily the
only nonvanishing derivatives of these fields. Clearly, theremainder condition§15) and (16). In this manner, the rig-
expression$37) and(38) satisfy the condition§l5) and(16) orous presence of the dilaton and axion fields establishes a
because of the nullness lgf. Hence, the purely gravitational significant difference between the EMDA solutions and their
perturbations(35) also correspond, in accordance with our analogues in the ordinary Einstein theory where, for ex-
previous results, to an exact solution of the EMDA equa-ample, just the alignment ¢f, to the electromagnetic field is
tions. In this manner, the existence of such field perturbarequired (see[2] and references cited therginHowever,
tions is not only at level of linearized EMDA equations, but Some possible applications of our results will be the subject
at level of the complete EMDA equations themselves. of future investigations.
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