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Quantization of pure gravitational plane waves
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Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike
Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce
gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the
classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose
only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that
generates the time evolution of this model turns out to vanish, so that all relevant information is contained in
the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of
linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation
and creation like variables. We finally quantize the linearly polarized model by introducing a Fock represen-
tation for these variables.@S0556-2821~98!09020-1#

PACS number~s!: 04.60.Ds, 04.30.2w
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I. INTRODUCTION

The analysis of gravitational waves has received late
great deal of attention, both from the theoretical and the
perimental points of view@1#. In particular, there is an in
creasing interest in the study and quantization of spaceti
with two commuting Killing vectors that describe wave s
lutions in source-free general relativity@2–5#. One of the
reasons for this interest, apart from possible application
cosmology and astrophysics, is that these spacetimes pro
a good arena to test quantization techniques and discuss
ceptual issues in gravity. The symmetry reduction of Einst
gravity in the presence of two commuting Killing vecto
leads in general to models with an infinite number of degr
of freedom, i.e., to midisuperspace models. It is commo
accepted that the quantization of these models, which
given by a true quantum field theory, may be significant
discussing basic features of the outstanding theory of qu
tum gravity. In contrast, minisuperspace truncations of g
eral relativity, such as, e.g., most of the gravitational syste
quantized in the literature@6#, are too simple to capture th
field complexity that should be present in full quantum gra
ity. Another motivation for studying the reduction of gener
relativity by two commuting spacelike Killing vectors is th
it admits a similar formulation to that for coset spa
s-models coupled to two-dimensional gravity and a dilat
@7#. The quantization of any of these two types of syste
should hence allow a better understanding of the quan
physics of the other.

The spacetimes with two commuting Killing vectors th
have been quantized so far are the family of cylindrica
symmetric gravitational waves and the Gowdy model w
the spatial topology of a three-torus. The Gowdy univer
are vacuum spacetimes with compact sections of cons
time @8#. They can be thought of as inhomogeneous spa
times filled with gravitational waves. The quantization of t
Gowdy model when the topology of the sections of const
0556-2821/98/58~10!/104017~11!/$15.00 58 1040
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time is that of a three-torus was analyzed in Ref.@2#. Pre-
liminary studies of this quantization had been carried out
Berger @9# ~assuming that the Killing vectors of the mod
were hypersurface orthogonal! and by Husain and Smolin
@10#. On the other hand, the quantization of cylindrical gra
tational waves with linear polarization was achieved by As
tekar and Pierri@3#, completing previous works on the sub
ject by Kucharˇ @4# and Allen @11#. The effects produced by
quantum fluctuations in this cylindrically symmetric mod
were studied in Ref.@12#. Finally, the more general case o
cylindrical waves with two polarizations was recently qua
tized by Korotkin and Samtleben@5#.

In addition to possessing two commuting spacelike K
ing vector fields, the above families of spacetimes sati
another condition: the existence of two-surfaces that are
erywhere orthogonal to the group orbits spanned by the K
ing vectors. For spacetimes of this class, an especially us
metric function is the square root of the determinant of
two-metric that corresponds to the group orbits@13#. We will
denote this positive function byW. The spacelike, timelike,
or null character of the gradient ofW is invariant under co-
ordinate transformations. In this paper, we will study t
quantization of another example of gravitational waves t
belongs to this class of spacetimes, namely, the case of
gravitational plane waves@13,14#. Our analysis will exhaust
the discussion of the different possibilities for the gradient
W, in the sense that this gradient is timelike for the Gow
model with the topology of a three-torus@8#, spacelike for
cylindrical gravitational waves@3#, and null for plane waves

Gravitational plane waves are a special type of pp-wav
i.e., plane-fronted gravitational waves with parallel ra
@13,15#. They were first studied by Baldwin and Jeffrey@16#,
and admit a five-dimensional group of isometries with
three-dimensional Abelian subgroup that acts on null hyp
surfaces@17#. Gravitational plane waves can be interpret
as describing the gravitational field at great distances fr
finite radiating bodies@13,16#. Some of these waves are re
©1998 The American Physical Society17-1
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GUILLERMO A. MENA MARUGÁN AND MANUEL MONTEJO PHYSICAL REVIEW D 58 104017
lated to certain limits of Bianchi cosmological models a
inhomogeneous generalizations of such models@14,18#. On
the other hand, the collision of two gravitational plane wav
has received intensive study, and many solutions that re
sent this collision are known@14,19#.

In this work, we will restrict our consideration to the ca
of pure gravitational plane waves, namely, plane waves
are solutions to the vacuum Einstein equations. Prelimin
studies of the quantization of spacetimes with the symm
of these waves have been carried out by Neville@20,21# and
Borissov@22#, mainly in the context of the Ashtekar forma
ism for gravity. Here, we will start with the geometrod
namic formulation for general relativity, and discuss t
quantization of pure gravitational plane waves as a partic
case of spacetimes that possess two commuting spac
Killing vectors.

The rest of the paper is organized as follows. The g
metrical properties of pure gravitational plane waves are
viewed in Sec. II. With a suitable choice of~local! coordi-
nates, we cast the metric of this family of solutions in
convenient~311! form. This metric can be written in term
of two arbitrary functions, and corresponds to spacetim
with two commuting Killing vector fields that are subject
certain conditions. In Sec. III, we consider the Hamiltoni
formulation for spacetimes that admit two commuting spa
like Killing vectors and perform a partial gauge fixing. Th
reduction of the system is completed in Sec. IV, where
impose gauge-fixing and symmetry conditions that rem
all non-physical degrees of freedom and guarantee that
classical solutions are precisely pure gravitational pla
waves. We determine the reduced phase space of the m
obtained in this way and its symplectic form. It is also sho
that, in an appropriate set of coordinates, the dynamical e
lution of this reduced model is trivial, so that all releva
information about the system is in fact contained in the sy
plectic structure. In Sec. V, we particularize our study to
family of linearly polarized plane waves in vacuum gravit
We prove that the symplectic form on the reduced ph
space of this model can be regarded as that correspondi
an infinite set of annihilation and creation like variables. W
then proceed to quantize the model by introducing a F
representation. Finally, we summarize our results and c
clude in Sec. VI.

II. PURE GRAVITATIONAL PLANE WAVES

Gravitational plane waves are solutions to Einstein fi
equations that possess a five-parameter group of isome
@17#. For these spacetimes, the metric can always be wri
in the form @13#

ds252dUdV1Hab~U !XaXbdU21(
a

~dXa!2,

~2.1!

where we have employed the index notationa,b51,2. The
coordinates$U,V,X1,X2% are called harmonic coordinate
and run over the whole real axis. It is easy to check that]V
corresponds to a covariantly constant null vector field,
10401
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that metrics~2.1! are a special class of pp-waves@13#. On the
other hand, the only non-vanishing component of the Ri
tensor for these metrics isRUU52(H111H22). Solutions to
the vacuum Einstein equations are hence given by all s
metric matricesHab with a vanishing trace. In this case, th
plane wave is said to be purely gravitational.

Although the use of harmonic coordinates for plane wa
has clear advantages, because they allow one to cove
totality of the spacetime with a single chart and express
Ricci tensor in terms of a simple metric function, the spa
time symmetries become much more apparent in the
called group coordinates. In such coordinates, the me
reads@13,14#

ds252dUdV̄1hab~U !dxadxb. ~2.2!

Here, V̄, x1, and x2 run over the entire real line, and th
coordinateU has in general a restricted range, as we will s
below. Obviously,]x1 and]x2 are two commuting spacelike
Killing vector fields for the above metrics, and the grou
orbits spanned by them are everywhere orthogonal to
surface with coordinatesU and V̄. It is convenient to write
the two-metrichab of these group orbits as

h115ez2y/2, h1252vez2y/2,

h225~v21ey!ez2y/2. ~2.3!

Hence, the condition thathab be positive definite is automati
cally satisfied provided that the functionsv, y, andz are real.
Note that the determinant ofhab is equal toe2z. Thus, from
our discussion in the Introduction, we haveW5ez and, since
this function depends only on the coordinateU, its gradient
is null with respect to the metric~2.2!, as we had anticipated
Finally, the functionsv andy describe, respectively, the d
agonal and non-diagonal degrees of freedom of the me
e2zhab , which has unit determinant.

In group coordinates, the only non-trivial vacuum Ei
stein equation is

RUU52
1

2
hab

d2hab

dU2
2

1

4

dhab

dU

dhab

dU
50, ~2.4!

with hab being the inverse of the two-metrichab . Substitut-
ing Eq. ~2.3! in this expression, we get

d2~ez/2!

dU2
52

ez/2

16 F S dy

dUD 2

14S dv
dUD 2

e2yG . ~2.5!

Therefore,W1/25ez/2 must be a convex function of the co
ordinateU. Since this function is non-negative, it must the
generally vanish at some point. The metric becomes deg
erate at that point and a coordinate singularity appears. A
consequence, the spacetime for pure gravitational pl
waves cannot be described by a unique chart in group c
dinates@14#.

Actually, the fact thatW1/2 is a non-negative convex func
tion implies that it must vanish at either one or two points
the allowed~simply connected! interval of variation for the
7-2
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QUANTIZATION OF PURE GRAVITATIONAL PLANE WAVES PHYSICAL REVIEW D58 104017
coordinateU. The only exception is pure Minkowski spac
time, wherev, y, and z are constant. WhenW1/2 has two
zeros, it increases from the first of them until a maximum
reached. This maximum can always be made equal to u
by means of a suitable rescaling of the real coordinatesxa.
On the other hand, whenW1/2 has a single zero, it can b
chosen as a strictly increasing function ofU by performing a
reversal of the null coordinatesU andV, if necessary. In this
case,W1/2 will either tend to infinity or to a finite value in the
limit of large positiveU’s. If the limit is finite, an appropriate
rescaling ofxa sets it equal to unity. Hence, we see that in
cases there exists a region of spacetime where the func
W1/2 increases withU and ranges in the interval~0,1!. In this
region,z is strictly increasing from minus infinity to zero. I
addition, although Minkowski spacetime has apparently b
excluded from our discussion, it turns out that the abo
considerations apply as well to flat spacetime, because
solution to Eq.~2.5! in which v andy are constant andW1/2

is linear inU can be cast in Minkowskian form by a~local!
coordinate transformation@17#.

In the region wherez increases in~2`,0!, we can intro-
duce a change of coordinates

dU5e2w2z1y/2du ~2.6!

so that the functionz gets fixed in terms of our new coord
nateu. For instance, we can make

z~U@u# !52e2u[z0~u!. ~2.7!

In Eq. ~2.6!, w is an unknown function ofu. This coordinate
is assumed to run over the entire real axis. Our chang
coordinates is then well-defined and invertible, becausez0 is
strictly increasing foruPR and has the rangeR2. With this
change, the coordinate singularity atez50 has been driven
to minus infinity. Notice also that our ignorance about t
original function z(U) is encoded inw. However, the
vacuum Einstein equation~2.5! becomes now a first-orde
differential equation inw that can be solved explicitly. The
solution is

w5
ln~z08!

2
1

3z0

4
2

y

4
1E

u0

u 1

16z08
@~y8!214~v8!2e2y#

[w0 , ~2.8!

whereu0 is any fixed real constant and the prime stands
the derivative with respect tou. The constant of integration
that should appear in this formula has been absorbed
scale transformation in the coordinateV̄.

If we finally define a time viaV̄52t2u, we arrive at the
following line element for pure gravitational plane waves

ds25e2w02z01y/2@2dt21~du2dt!2#1habdxadxb,
~2.9!

with hab the metric obtained from Eq.~2.3! by setting z
5z0 . All coordinates in this expression are real and ha
unrestricted ranges. Recalling relations~2.7! and ~2.8!, we
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see that this family of vacuum solutions has only two d
grees of freedom, which are given by the functionsv andy
of the coordinateu.

These are the spacetimes that we will study in the res
this paper. As we have shown, the above metric describes
most general pure gravitational plane wave solution, with
only caveat that it does not correspond to the whole of
spacetime that can be covered with harmonic coordina
The coordinate system that we have adopted is in fact q
similar to that employed in Ref.@17#, the main difference
being that we have chosenz052e2u and allowedu to take
all real values, whilez0 was made equal to 2 lnuuu in Ref.
@17#. In this latter case,u has a restricted range@e.g.,
uP(0,1) for z0PR2].

We can regard Eq.~2.9! as providing the standard 311
decomposition of the metric for spacetimes with two o
thogonal surfaces, but with the lapse and~non-vanishing
component of! the shift vector particularized to take the va
ues N5ew02z0/21y/4 and Nu521. In addition, the space
times considered admit two commuting spacelike Killin
vector fields,]x1 and ]x2, and satisfy another condition
namely, that the metric functions be independent not only
xa, but also of the time coordinatet. In the Hamiltonian
formalism for general relativity, there is a simple way
imposing the time independence of the metrics~2.9! on clas-
sical solutions, once the existence of the two spacelike K
ing vectors has been assumed. We first note thatz0 is a fixed
function ofu, and thatw0 is determined by the vacuum Ein
stein equations to be given by Eq.~2.8! in terms ofv andy.
It hence suffices to ensure that the time derivativesv̇ and ẏ
vanish on classical solutions. Employing then the definit
of the extrinsic curvatureKi j @23#, with xi[$x1,x2,u%, it is
not difficult to check that, for the metrics under discussio
the requirementsv̇5 ẏ50 on classical solutions are equiva
lent to the relations

4h1/2e22z01y/2K1152z082y8,

4h1/2e22z01y/2K125vy822vz0822v8, ~2.10!

whereh5e2w01z01y/2 is the determinant of the induced me
ric hi j . Moreover, these relations turn out to imply the va
ishing of v̇ and ẏ even when the values ofw0 , the lapse
function, and the shift componentNu are changed in the
metrics~2.9!, provided thatNu does not depend on the coo
dinatesxa and the quotientN/Nu52h1/2e2z0 is not modi-
fied.

III. SPACETIMES WITH TWO KILLING VECTOR
FIELDS

In this section, we will discuss the Hamiltonian formul
tion for spacetimes that possess two commuting space
Killing vectors, paying special attention to the case of pu
gravitational plane waves.

We will only consider spacetimes that admit a global f
liation, so that the metric can be written in the~311! form

ds252N2dt21hi j ~dxi1Nidt!~dxj1Njdt!. ~3.1!
7-3
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GUILLERMO A. MENA MARUGÁN AND MANUEL MONTEJO PHYSICAL REVIEW D 58 104017
For the coordinates of the sections of constant time, we
employ the notation$xi%[$x1,x2,u%. In addition, we will
assume that the coordinatest andu run over the real line, and
impose that]xa (a51,2) are the two spacelike Killing vecto
fields. As a consequence, the metric must be independe
the coordinatesxa. This implies that the areaS5*dx1dx2

appears as a constant global factor in the gravitatio
Hilbert-Einstein action and in the symplectic form fo
geometrodynamics. We can always absorb this area in N
ton’s constant. In order to do this, renormalization is requi
when the areaS is infinite @20# ~this case can be considere
as the limitS→` of the compact case!. For convenience, we
further set the effective Newton’s constant obtained in t
way equal to 1/8p.

The fundamental Poisson brackets and momenta can
cally conjugate tohi j are then given by

$hi j ~u!,Pkl~ ū!%5d i
(kd j

l )d~u2ū!, ~3.2!

P i j 5
1

2
h1/2~hikhjl 2hi j hkl!Kkl , ~3.3!

whered j
i is the Kronecker delta,d(u) is the Dirac delta on

the real line, the indices in parentheses are symmetrized,
hi j is the inverse of the induced metric. Thus, the symple
form on phase space is

V5E du dP i j `dhi j , ~3.4!

with the symbolsd and ` denoting the exterior derivative
and product, respectively.

The gravitational system has two kinds of constraints:
Hamiltonian constraintH and the momentum constrain
Hi , which generate spatial diffeomorphisms. Instead of de
ing with H, we will consider its densitized version,H̃
[h1/2H. In terms of phase-space variables, these constra
take the expressions

H̃[2
h

2
~3!R1~hikhjl 1hil hjk2hi j hkl!P

i j Pkl50,

Hi[22hi j DkP
k j50. ~3.5!

Here,Di is the covariant derivative compatible with the i
duced metric and(3)R its curvature scalar. The time deriva
tive of any function on phase space is then

ḟ 5] t f 1 H f ,E du~N> H̃1NiHi !J , ~3.6!

where] t is the partial derivative with respect to the explic
time dependence and N>[h21/2N is the densitized lapse func
tion.

Using the fact that the metric does not depend on
coordinatesxa, it is not difficult to check that the momentum
constraintsHa can be rewritten as

Ha522~haiP
iu!8. ~3.7!
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For the globally hyperbolic spacetimes with two commuti
spacelike Killing vectors that we are studying, it is then po
sible to fix the gauge freedom associated with these c
straints by demanding that, on the sections of constant ti
the u-line be orthogonal to the group orbits spanned by]xa.
This requirement can be rephrased in the form

hau50, a51,2. ~3.8!

To see that the above conditions lead to a well-po
gauge fixing, we must prove that, in general, the gauge or
generated by the constraintsHa intersect transversely th
surface that is defined on phase space by conditions~3.8! and
the constraints of the system. This is equivalent to prov
that the gauge-fixing conditions have non-vanishing Pois
brackets withHa . A straightforward calculation shows

Hhau ,E du NbHbJ 5hab~Nb!8. ~3.9!

Taking into account thathab is positive definite, we conclude
that these brackets are generally different from zero@it suf-
fices to take (Na)8Þ0].

We must also check that our gauge fixing is compati
with dynamics, in the sense that there exists a choice for
componentsNa of the shift vector~which are the Lagrange
multipliers of Ha) so that, on the constraint surface, th
gauge conditions~3.8! are preserved by the dynamical ev
lution. In other words, modulo constraints and gauge-fix
conditions,ḣau must vanish for a particular choice ofNa.
Recalling the independence of the metric onxa, one can see
that

ḣau5hab~Nb!814N> habhuuP
bu, ~3.10!

where use of the gauge conditions has been made after
culating Poisson brackets. On the other hand, the solutio
Ha50 is given by

Pau5habf b~ t !, ~3.11!

with f a being two arbitrary functions oft that must be real,
becausePauPR. Thus, our gauge fixing is in fact preserve
by the evolution provided that

~Na!8524N> huuh
abf b~ t !. ~3.12!

Let us now integrate both terms in the above equality o
u, and contract the result withf a(t). If we assume that the
componentsNa of the shift vanish in the limit of largeu’s,
we get

E
R
du N> huuh

abf af b50. ~3.13!

It is worth commenting that, together with the conditio
hau50, the requirement lim

u→6`
Na50 can be viewed as

ensuring that the group orbits spanned by]xa are asymptoti-
cally orthogonal to the surfaces with coordinatest and u.
This requirement should hence be satisfied at least in sp
7-4
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QUANTIZATION OF PURE GRAVITATIONAL PLANE WAVES PHYSICAL REVIEW D58 104017
times where those surfaces are everywhere orthogonal.
turning to Eq.~3.13!, we note that, since the integrand in th
expression is real, it has to vanish at least at one point if
integral is equal to zero. Taking into account that the tw
metric N> huuhab is positive definite, it follows thatf a50 at
that point. The functionsf a must then be identically zero
because they are independent ofu. Therefore, one obtain
that, whenNa vanishes for large absolute values ofu, the
solutions to the constraintsHa50 and consistency condi
tions ḣau50 are

Pau50, Na50. ~3.14!

The vanishing ofhau andNa implies that the spacetime me
ric is block-diagonal, so that the assumption lim

u→6`
Na

50 employed in our gauge fixing turns out to guarantee t
the surface with coordinatesxa is actually orthogonal to tha
described byt andu.

After this partial gauge fixing, the canonically conjuga
pairs (hau ,Pau) and the momentum constraintsHa are
eliminated from the system. The remaining geometro
namic momenta and components of the induced metric
vide a canonical set of variables on the phase space o
gauge-fixed model. The line element of this reduced mo
has the form

ds252N2dt21huu~du1Nudt!21habdxadxb,
~3.15!

where the metric functions depend only on the coordinatt
andu.

At this stage, it is convenient to carry out a change
metric variables fromhuu and hab to a set of functions
$qa%[$v,w,y,z% that is analogous to that employed to d
scribe the family of metrics~2.9!. In this way, our discussion
will be straightforwardly applicable to the analysis of pu
gravitational plane waves. The change is such that the
element adopts the expression

ds25e2w2z1y/2@2e2zN> 2dt21~du1Nudt!2#

1ez2y/2@~dx1!222vdx1dx21~v21ey!~dx2!2#.

~3.16!

Here, all metric functions are allowed to depend on the
ordinatesu andt, and we have densitized the lapse using t

h5e2w1z1y/2. ~3.17!

Similarly to the situation found for plane waves, the con
tion that the induced metric be positive definite is now eas
imposed: it suffices to demand that the functionsqa be real.
On the other hand, since the change of variables performe
just a point transformation, it is possible to find a set
momenta$pa% that are canonically conjugate to our ne
metric variables. These momenta are

pa5Puu
]huu

]qa
1Pab

]hab

]qa
, ~3.18!
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wherehuu and hab are regarded as functions ofqa. Using
relation ~3.3!, we then obtain that, in terms of the extrins
curvature and our metric variables,

pv52h1/2e2z2y/2~vK111K12!,

pw52h1/2e2z2y/2@~v21ey!K1112vK121K22#,

py52
1

2
h1/2e2z1y/2K11,

pz52h1/2e22w1z2y/2Kuu . ~3.19!

Finally, the gravitational model considered is still subje
to two constraints, which are given by the restriction ofHu

andH̃ to the case in which the metric is independent of t
coordinatesxa andhau5Pau50. After some trivial calcula-
tions, one can show that the momentum constraintHu takes
the form

Hu52pw8 1pww81pvv81pyy81pzz8, ~3.20!

and that the densitized Hamiltonian constraint has the
pression

H̃5
e2z

16
@~y8!214~v8!2e2y24z8~4w81y825z8!116z9#

1pv
2ey22pwpy2pwpz14py

2 . ~3.21!

IV. GAUGE FIXING AND SYMMETRY REDUCTION

We will now apply the analysis of the previous section
the study of pure gravitational plane waves. We will com
plete the gauge fixing of the system and introduce symm
conditions that ensure that all classical solutions are pl
waves in vacuum, so that the reduced model that is obta
really describes the family of metrics~2.9!.

Let us first remove the gauge freedom associated with
constraintHu , which generates diffeomorphisms in the c
ordinateu. A way to fix this gauge is to provide a one-to-on
correspondence between the coordinateu and a metric vari-
able. This can be done in the case of the plane wave me
that we are considering, because the variablez can then be
chosen as a strictly increasing function ofuPR, namely, the
function z0 defined in Eq.~2.7!. In order to fix the gauge
freedom, we then introduce the condition

xu[z2z05z1e2u50. ~4.1!

Since z08Þ0, the constraintHu50 can be easily solved to
find the momentum canonically conjugate toz:

pz5pz
0[

1

z08
~pw8 2pww82pvv82pyy8!. ~4.2!

Therefore, if our gauge fixing is admissible, we can elimin
the canonical pair (z,pz) from the system.

Actually, condition~4.1! leads to a well-posed gauge fix
ing, because~modulo that condition!
7-5
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Hxu ,E du NuHuJ 5z08N
u. ~4.3!

Obviously, these Poisson brackets differ from zero wh
NuÞ0, becausez08 does not vanish at any point. On the oth
hand, if our gauge condition is compatible with the dynam
cal evolution, there must exist a choice forNu ~i.e., the
Lagrange multiplier ofHu) such that

ẋu5 Hxu ,E du~N> H̃1NuHu!J
52pwN> 1z08N

u50. ~4.4!

In the second line of this equation, we have substitu
z5z0 . The conditionxu50 is thus preserved by the evolu
tion if

Nu5
pwN>

z08
. ~4.5!

Note that the componentNu of the shift given by this for-
mula is always well-defined, becausez0 never vanishes. We
hence conclude that the gauge fixing introduced is acc
able. It is worth remarking that, to arrive at this result, t
only property of the functionz0 that has been used is that i
derivative with respect tou is everywhere finite and differen
from zero. In this sense, the explicit form of this function,
well as its range, is irrelevant.

After this gauge fixing, we obtain a reduced model who
phase space is described by the canonical set of varia
$v,w,y,pv ,pw ,py%. The symplectic form is

V5E du~dpv`dv1dpw`dw1dpy`dy!, ~4.6!

and the system is subject to the densitized Hamiltonian c
straint

H̃r[H̃~z5z0 ,pz5pz
0!50. ~4.7!

In order to complete the reduction and attain a midisup
space model for pure gravitational plane waves, we still n
to introduce two types of conditions. First, we have to i
pose that all classical solutions of the system be indepen
of the time coordinate, so that these solutions correspon
the family of plane wave metrics~2.9!. Second, we have to
find a condition that results in removing the gauge freed
associated with the densitized Hamiltonian constraint. B
tasks can be achieved in the following way.

We have shown at the end of Sec. II that, for metrics
the form ~3.16! with z5z0 andNu52ez0N> , the time inde-
pendence of the metric functionsv andy on classical solu-
tions is ensured by relations~2.10!. Using Eqs.~3.19!, those
relations can be expressed as the conditions

x1[py2
ez0

8
~y822z08!50,

x2[2ey2z0pv2v850. ~4.8!
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Taking into account identity~4.5!, we see that these cond
tions guarantee thatv and y do not depend classically o
time provided that

x0[pw1z08e
z050. ~4.9!

When this is the case, it is clear that conditions~4.8! will
also imply the time independence of the momentapv and
py . In addition, the momentumpw will not depend on time if
the requirementx050 is satisfied. The only phase-spa
variable that might then be time dependent on classical
lutions isw. This possible time dependence can neverthe
be eliminated by demanding that

x3[w2w050, ~4.10!

wherew0 is the function defined in Eq.~2.8!. In this way, the
functionw is fixed to take the same expression in terms ov
andy as it adopts in pure gravitational plane waves. On
other hand, the constraint of the model can be rewritten a
some manipulations as

H̃r5~2y8x11ez02yv8x212w8x022x08!
x0

2z08
14x1

2

1
e2z02y

4
x2

222~x11ez0x38!x01ez0x08 . ~4.11!

So, once the symmetry conditionsx15x250 are imposed,
the requirementx050 is just a solution toH̃r50. Therefore,
the surface defined on phase space byx I50 (I 50, . . . ,3) is
simply a section of the constraint surface. In the followin
we will show that the reduction to this section is consiste
and that, in the reduction process, the conditionx350 al-
lows us to fix the gauge freedom associated withH̃r . We
will employ the symbol' for weak identities, namely, iden
tities that are satisfied modulox I50. In addition, we will
denote the set$H̃r ,x1 ,x2 ,x3% by $xA%, with A50, . . . ,3.

To prove that the reduction is admissible, we first have
show that the conditions and constraintxA50 constitute a
second-class system on the section of the constraint sur
that we are analyzing. Let us define

x~g!5E du(
A

gAxA , ~4.12!

where$gA% is any set ofC0
` functions of the coordinateu,

i.e., functions ofu that are infinitely differentiable and hav
compact support. Clearly, imposingxA50 is equivalent to
demanding thatx(g) vanish for all choices of the function
gA . The set$xA% is then second-class provided that no co
bination of the formx(g) ~other than the zero constant! com-
mutes weakly under Poisson brackets with all of thexA’s.
Using expression~4.11! for the constraint, and taking into
account that all terms in that expression are quadratic inx I
except the last one, we obtain

$H̃r ,x~g!%'2ez0g38 . ~4.13!
7-6
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Sinceez0Þ0 and the functiong3 is C0
` , it follows thatx(g)

commutes weakly withH̃r if and only if g3 vanishes. Let
now x̄(g) be x(g) for g350. After some calculations, on
gets

(
A51

2

gA$xA ,x̄~g!%'2
1

8
~ez0g1

2116ey2z0g2
2!8. ~4.14!

Given that the term in parentheses is a sum of non-nega
functions and thatg1 ,g2PC0

` , the vanishing of the Poisso

brackets ofx̄(g) with x1 andx2 turns out to imply thatg1
andg2 must be the zero function. On the other hand, it is
difficult to check that

$x3 ,x̂~g!%'2~ez0g0!8, ~4.15!

where x̂(g) denotes the restriction ofx(g) to the case in
which g0 is the only function in$gA% that differs from zero.
Recalling thatg0PC0

` , we see that the above Poisson brac
ets vanish weakly provided thatg050. Therefore,x(g) must
be exactly equal to zero in order to commute weakly with
set$xA%, as we wanted to prove.

Let us now show that the section of the constraint surf
determined byx I50 (I 50, . . . ,3) ispreserved by the dy
namical evolution for a suitable choice of the densitiz
lapse. From expression~4.11! and the fact that the variable
$ra%[$v,y,pv ,pw ,py% commute withx0 , we get

ṙa5 H ra,E du N> H̃r J '0. ~4.16!

As a consequence, the variablesra turn out to be time inde-
pendent on classical solutions. To deduce this result,
actually need not demand thatx3 vanish. Moreover, one ca
then straightforwardly see that the symmetry conditionsx1
5x250 are preserved in time, and that, when these co
tions are imposed, the solution to the constraint given
x050 is invariant under the evolution, regardless of t
value taken by the densitized lapse. On the other hand,
ploying again the expression for the constraint and t
$x3 ,x0%5$w,x0%, we obtain

ẋ3'2~ez0N> !8'ẇ. ~4.17!

So, compatibility of the conditionx350 with the dynamical
evolution ensures that the variablew does not depend clas
sically on time, and implies

N> 5F~ t !e2z0. ~4.18!

The arbitrary functionF that appears in this expression c
in fact be absorbed by means of the time redefinitiont

5* tF( t̄ )d t̄. In this way, we arrive atN> 5e2z0. From Eqs.
~4.5! and ~4.9!, the only non-vanishing component of th
shift vector is then given byNu521. We hence see that th
reduction proposed for the system is acceptable and tha
conditionx350 allows us to fix the value of the densitize
lapse function. Therefore, this condition removes the ga
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freedom associated with the constraintH̃r . In addition, we
note that, in agreement with our previous discussion,
phase-space variables are indeed independent of the tim
ordinate on classical solutions after reducing the system
the section of the constraint surface defined byx I50.

In this reduction, the pair (w,pw) is eliminated via the
gauge-fixing conditionx350 and the solution to the con
straintx050, while the symmetry conditionsx15x250 de-
termine the momentapv and py in terms of the variablesv
and y. The reduced model that is attained is free of co
straints and possesses only two degrees of freedom, w
are described by the metric variablesv andy. The line ele-
ment for this reduced model can be obtained from Eq.~3.16!
by substitutingz5z0 , w5w0 , and the values obtained wit
our gauge fixing forNu and the densitized lapse function
This line element coincides formally with that given in E
~2.9! for pure gravitational plane waves. The only differen
is that the functionsv and y of the coordinateu may now
depend also on time. However, this time dependence is r
out on classical solutions, as we have shown above.
metric may depend on time only when non-classical traj
tories are allowed, e.g., in a quantum theory. Besides,
clear that the set of classical solutions for our reduced mo
is precisely the family of plane waves in vacuum grav
considered in Sec. II. As a consequence, our model descr
in fact that family of plane waves.

Obviously, the dynamics of this reduced model is trivi
because the variablesv andy remain constant in time unde
the classical evolution. The reduced Hamiltonian, which g
erates the time evolution via Poisson brackets, must he
vanish. Of course, the same conclusion is reached by con
ering the reduced action for the system. This action can
obtained from the Hilbert-Einstein action in the followin
manner. We adopt the~311! decomposition of the metric
explained in Sec. III, impose that the metric be independ
of xa (a51,2), and absorb the area that corresponds to th
coordinates in Newton’s constant, setting the resulting eff
tive constant equal to 1/8p. Since all gravitational constraint
are eliminated in the reduction process, we can make th
equal to zero in the Hamiltonian form of the action. Th
reduced actionSr that we are seeking can then be compu
from the Lagrangian densityP i j ḣi j . SubstitutingPau50,
relations~3.18!, and the values taken in our model by th
variables (w,z,pv ,pw ,py ,pz), we get

Sr5E dtdu
ez0

8
~y8ẏ14v8e2yv̇ !. ~4.19!

In arriving at this result, we have disregarded surface te
that are evaluated on sections of constant time, for they
not modify the reduced Hamiltonian~nor affect the symplec-
tic structure!. We see that the reduced action is linear in tim
derivatives. This implies that the reduced model has indee
vanishing Hamiltonian in the set of coordinates adopted.

Given that the dynamics is trivial, all relevant informatio
for quantizing the system is encoded in its symplectic str
ture. The symplectic formV r on the phase space of the r
duced model is provided by the pull-back of the form~4.6! to
7-7
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the surface determined by the conditionsx I50 (with I
50, . . .,3). Taking into account thatx050 ensures thatpw
is a fixed function of the coordinateu ~because so isz0), we
obtain

V r5E du
ez0

8
@dy8`dy14d~v8e2y!`dv#. ~4.20!

Actually, this form could have also been deduced from
reduced action~4.19!. The quantization of the system ca
then be attained by quantizing the algebra of Poisson br
ets that follows from this symplectic form. In principle, th
algebra seems rather complicated. This situation contr
with that found in other midisuperspace models which
scribe spacetimes with two commuting spacelike Killi
vectors, like, e.g., the Gowdy model@2#, where the Poisson
algebra obtained after~an almost complete! gauge fixing is
simple, although the complexity of the system shows up
the expression for the reduced Hamiltonian. Nonetheles
turns out that there exists at least a class of pure gravitati
plane waves for which this Poisson algebra becomes m
ageable, namely, the case of linearly polarized plane wa
From now on, we will restrict our discussion to this type
waves.

V. LINEARLY POLARIZED PLANE WAVES

Pure gravitational plane waves for which the metric fun
tion v vanishes are called linearly polarized@13#. One can
actually impose the vanishing ofv as an additional symme
try on the midisuperspace model for plane waves in sou
free gravity that we have studied. This can be done, for
stance, by including the conditionx4[v50 in the process
of gauge fixing and symmetry reduction explained in t
previous section. Similar arguments to those presented
general plane waves in vacuum gravity show that the
formed byx4 andxA ~with A50, . . . ,3) issecond-class on
the section of the constraint surface defined by the requ
ments x I5x450 (I 50, . . .,3). Here, we have employed
the notation introduced in Sec. IV. On the other hand,
have already seen that the metric variablev is invariant un-
der the dynamical evolution when the conditionsx I50 are
satisfied, so that the symmetry conditionx450 is compatible
with dynamics. Therefore, the reduction obtained by
manding thatx I andx4 vanish is fully consistent.

The reduced model that one obtains in this manner is s
that its phase space can be described by a single metric
able: the fieldy. As happens for plane waves with two p
larizations, this variable depends on the coordinateu and,
although it might in principle evolve in time, its time depe
dence is forbidden on classical solutions. It is easy to ch
that the actionS̄r and the symplectic formV̄ r for this re-
duced model coincide in fact with those given in Eqs.~4.19!
and ~4.20! when particularized to the casev50. Defining

Y5
ez0/2y

2A2
, ~5.1!

we can then write
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S̄r5E dtduY8Ẏ, V̄ r5E dudY8`dY, ~5.2!

where we have used the fact thatz0 is a fixed function ofu
and neglected surface contributions to the action that co
from sections of constant time. Note that the reduced ac
S̄r corresponds indeed to a system with zero Hamiltonian

symplectic structure given byV̄ r .
As in the case of waves with two polarizations, the d

namics of the reduced model for linearly polarized waves
trivial in the set of coordinates adopted. The functionY is
constant in time and the reduced Hamiltonian vanish
Hence, in order to quantize the system, we only need
quantize the algebra of Poisson brackets that follows fr

the symplectic formV̄ r .
On the other hand, taking into account that the coordin

u runs over the whole real axis, we can express the func
Y as the Fourier transform

Y5
1

A2p
E

0

` dk

A2k
~ake

2 iku1ak
!eiku!. ~5.3!

The complex functionsak andak
! , with kPR1, provide then

a complete set of variables on the phase space of the red
model. These functions ofk might depend as well on time
however, sinceY is time independent on classical solution
they turn out to be classical constants of motion. Substitut
the above expression forY in the symplectic form, we obtain

V̄ r5 i E
0

`

dk dak
!`dak . ~5.4!

As a consequence, the only non-vanishing Poisson brac
between the phase-space variablesak andak

! are

$ak̄ ,ak
!%52 id~ k̄2k!. ~5.5!

In addition, the fact that the functionY is real implies thatak
!

must be the complex conjugate ofak . Therefore, we can
interpret the algebra of Poisson brackets for our mode
corresponding to an infinite set of harmonic oscillators, d
scribed by the annihilation and creation like variablesak and
ak

! , respectively.
The quantization of this algebra can be performed

standard methods. For instance, one can simply introdu
Fock representation@25#. In that case, our phase-space va
ables are represented as annihilation and creation opera
âk and âk

! , and the Hilbert space of physical states can
constructed by the repeated action of the creation opera
on a vacuum, which is destroyed by all the operatorsâk . The
algebra of commutators is given by the quantum analogu
Eq. ~5.5!,

@ âk̄ ,âk
!#5d~ k̄2k!, ~5.6!

where we have set\51, and k̄,kPR1. Assuming that the
vacuum has unit norm, the inner product is totally det
mined by requiring that the relations under complex con
7-8
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gation between the variablesak and ak
! be realized in the

quantum theory as adjointness relations between opera
In particular, it is then possible to find normalized sta
which are formally similar to the states withn particles or to
the coherent states of ordinary quantum field theory in
spacetime.

In this way, one attains a consistent and well-defin
mathematical framework for analyzing the quantum phys
of spacetimes with two commuting Killing vectors that d
scribe pure gravitational plane waves with linear polari
tion.

VI. CONCLUSIONS AND FURTHER COMMENTS

Pure gravitational plane waves have been considered
special class of spacetimes with two commuting space
Killing vector fields. We have discussed the structure of
reduced phase space and the quantization of this famil
solutions to vacuum general relativity.

We have first seen that, with a suitable choice of coor
nates, the metric for these plane waves can be cast in a11
form in which the values of the lapse and shift are fixed a
all metric functions depend just on a coordinate of the s
tions of constant time, namely, the coordinateuPR. The
other two coordinates of these sections~which run over the
real axis! correspond to Killing vectors, with group orbit
that are orthogonal to the surface described byu and the time
coordinate. We have shown that the determinant of the m
ric for these group orbits can be chosen as a strictly incre
ing function of the coordinateu, with a range given by the
interval ~0,1!. In addition, we have solved explicitly Einstei
equations in the absence of matter fields, and introdu
metric variables whose reality ensures that the induced m
ric is positive definite. The family of metrics that we hav
obtained in this manner represents the most general p
wave solution in source-free gravity, with the only cave
that such metrics do not describe the whole spacetime w
can in principle be covered with harmonic coordinat
These metrics are determined by two arbitrary functions
the coordinateu, i.e., the functionsv andy.

With the aim at studying this family of metrics, we hav
considered the Hamiltonian formalism for spacetimes t
admit two commuting spacelike Killing vectors. Assumin
the spatial topology to be that ofR3, it has been proved tha
the condition that there exist a surface orthogonal to
group orbits removes the gauge freedom related to diff
morphims of the coordinates which correspond to the Killi
vectors. We have then particularized our analysis to the c
of pure gravitational plane waves. Using the fact that
determinant of the metric for the group orbits is an incre
ing function of the coordinateu, we have been able to elimi
nate the degrees of freedom associated with diffeomorphi
of theu-line. In order to complete the gauge fixing and gu
antee that the classical solutions of the system are p
waves, we have next introduced two types of requireme
On the one hand, we have imposed the symmetry condit
~4.8!, which can be interpreted as relations between the m
ric and the extrinsic curvature that are satisfied for pla
waves. Once these conditions are included, the densit
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Hamiltonian constraint, which is the only constraint that s
remains on the system, is easily solved. Moreover, all me
variables are then classically time independent, except p
sibly the variablew, defined by means of Eq.~3.16!. On the
other hand, we have demanded thatw adopt the same expres
sion in terms ofv andy as it does in pure gravitational plan
waves. We have shown that, in this way, the gauge freed
associated with the densitized Hamiltonian constraint is
tally removed and the time dependence ofw is ruled out on
classical solutions.

After this process of gauge fixing and symmetry redu
tion, we have arrived at a midisuperspace model which
free of constraints and whose line element coincides
mally with that for plane waves in vacuum general relativi
although the two functionsv andy that determine the metric
may depend not just on the coordinateu, but also on time if
non-classical trajectories are allowed. The phase spac
this reduced model has only two degrees of freedom, wh
are described by the variablesv and y. These variables re
main constant in time on all classical solutions, so that
dynamical evolution on phase space is given by the iden
map. This implies that the reduced Hamiltonian vanishes
the set of coordinates employed. The same conclusion
been reached by computing the reduced Hilbert-Einstein
tion. Up to surface contributions on sections of const
time, this action is linear in time derivatives, so that it inde
corresponds to a system with a vanishing Hamiltonian. Si
the dynamics is trivial, all the information needed for qua
tizing the reduced model is provided by its symplectic stru
ture. Starting with the symplectic form for spacetimes w
two spacelike Killing vectors, and calculating the pull-ba
to the section of the constraint surface determined by
gauge-fixing and symmetry conditions imposed on o
model, we have then obtained the symplectic form on
reduced phase space.

There exists at least a case in which the algebra of P
son brackets that follows from this symplectic form is simp
enough as to allow a straightforward quantization, name
the case of linearly polarized plane waves. The restriction
this subfamily of plane waves in source-free gravity has b
achieved by demanding that the functionv vanish. This re-
quirement can be viewed as an additional symmetry con
tion on the system. The phase space of the resulting redu
model is described by the metric variabley or, equivalently,
by the set of variables$ak ,ak

! ; kPR1%. These variables are
classical constants of motion obtained from the Four
transform of the product ofy and a fixed function of the
coordinateu. We have finally proved that the algebra
Poisson brackets for the reduced model of linearly polari
plane waves can actually be understood as correspondin
an infinite set of harmonic oscillators whose annihilation a
creation like variables areak and ak

! , respectively. The
quantization of the model can then be readily performed
introducing a Fock representation for these variables.

The mathematical framework constructed in this man
can be used to study the quantum physics of pure grav
tional plane waves with linear polarization. In particular, o
can try to define operators for the metric components
analyze the quantum fluctuations of the geometry. Anot
7-9
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appealing possibility is to discuss the role played in
quantum theory by coherent states and see whether thes
peaked around classical solutions, comparing the results
those obtained for linearly polarized waves with cylindric
symmetry@3,12#. The consideration of these issues will b
the subject of future research.

Another direction for further investigation consists in i
troducing a scalar field in the model and studying its int
action with gravitational plane waves that are linearly pol
ized. This interaction has already been discussed in
general case of waves with two polarizations using a se
classical approximation, i.e., considering only the quanti
tion of the scalar field@24#. It would be interesting to inves
tigate whether the conclusions reached with t
semiclassical analysis are valid to some extent in a pu
quantum theory.

Let us conclude with a couple of remarks about our
duced model for linearly polarized plane waves. The fi
comment refers to the algebra of Poisson brackets that
have found. It is not difficult to see that, at a given instant
time, the values of the metric variabley at two different
points do not generally commute under Poisson brack
This implies that, in the quantum theory, there cannot e
states in which the variabley takes a well-defined value a
every point on a section of constant time, even though
points on this section are spacelike separated. In fact,
result is not so surprising. We have seen that the redu
Hamiltonian of the system vanishes in the set of coordina
adopted, so that the quantum evolution is dictated by
identity operator. Therefore, if it were possible to determ
.

-
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completely the value ofy on a section of constant time, th
same would happen for the entire spacetime, including po
with timelike separation. The second of our remarks co
cerns the vanishing of the reduced Hamiltonian. This conc
sion is valid in the set of coordinates that we have emplo
to describe the spacetime. In another coordinate sys
however, the Hamiltonian of our reduced model can gen
ally differ from zero. Suppose, for instance, that we chan
coordinates fromu to x5u2t. Using the expression for the
reduced action given by Eq.~5.2! in the linearly polarized
case, one can prove that the reduced Hamiltonian of the
tem becomes then

E dx~]xY!25E
0

`

dk kakak
! , ~6.1!

where Y is the variable defined in Eq.~5.1!, and we have
substituted relation~5.3! after replacing the coordinateu with
x. In the new coordinate system, the interpretation of o
reduced model as a collection of harmonic oscillators app
hence not only to the Poisson algebra, but also to the Ha
tonian that generates the time evolution.
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