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Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike
Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce
gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the
classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose
only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that
generates the time evolution of this model turns out to vanish, so that all relevant information is contained in
the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of
linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation
and creation like variables. We finally quantize the linearly polarized model by introducing a Fock represen-
tation for these variable$S0556-282(98)09020-1

PACS numbd(s): 04.60.Ds, 04.36-w

I. INTRODUCTION time is that of a three-torus was analyzed in Réi. Pre-

liminary studies of this quantization had been carried out by

The analysis of gravitational waves has received lately . L
great deal of attention, both from the theoretical and the exa_Berger[g] (assuming that the Killing vectors of the model

. . ! ; ; .~ “were hypersurface orthogonand by Husain and Smolin
perimental points of view1]. In particular, there is an in- 0 N .
N : L . [10]. On the other hand, the quantization of cylindrical gravi-
creasing interest in the study and quantization of spacetim

with tw mmuting Killing vectors that describe wav tional waves with linear polarization was achieved by Ash-
0 commuting g vectors that Gescribé wave SO~ oy ar and Pierr[3], completing previous works on the sub-

lutions in source_-free general reIatm&—_S]. One pf t_he ject by Kuchar 4] and Allen[11]. The effects produced by
reasons for this interest, apart from possible applications i, antum fluctuations in this cylindrically symmetric model
cosmology and astrophysics, is that these spacetimes providgsre studied in Ref{12]. Finally, the more general case of
a good arena to test quantization techniques and discuss Cofyjindrical waves with two polarizations was recently quan-
ceptual issues in gravity. The symmetry reduction of Einsteinjzed by Korotkin and Samtlebdis].
gravity in the presence of two commuting Killing vectors  |n addition to possessing two commuting spacelike Kill-
leads in general to models with an infinite number of degreesng vector fields, the above families of spacetimes satisfy
of freedom, i.e., to midisuperspace models. It is commonlyanother condition: the existence of two-surfaces that are ev-
accepted that the quantization of these models, which ierywhere orthogonal to the group orbits spanned by the Kill-
given by a true quantum field theory, may be significant foring vectors. For spacetimes of this class, an especially useful
discussing basic features of the outstanding theory of quarmetric function is the square root of the determinant of the
tum gravity. In contrast, minisuperspace truncations of gentwo-metric that corresponds to the group orpit8]. We will
eral relativity, such as, e.g., most of the gravitational systemsenote this positive function by. The spacelike, timelike,
guantized in the literaturgs], are too simple to capture the or null character of the gradient &Y is invariant under co-
field complexity that should be present in full quantum grav-ordinate transformations. In this paper, we will study the
ity. Another motivation for studying the reduction of general quantization of another example of gravitational waves that
relativity by two commuting spacelike Killing vectors is that belongs to this class of spacetimes, namely, the case of pure
it admits a similar formulation to that for coset spacegravitational plane waved3,14). Our analysis will exhaust
o-models coupled to two-dimensional gravity and a dilatonthe discussion of the different possibilities for the gradient of
[7]. The quantization of any of these two types of systemsaV, in the sense that this gradient is timelike for the Gowdy
should hence allow a better understanding of the quanturmodel with the topology of a three-tor(i8], spacelike for
physics of the other. cylindrical gravitational wavef3], and null for plane waves.
The spacetimes with two commuting Killing vectors that  Gravitational plane waves are a special type of pp-waves,
have been quantized so far are the family of cylindricallyi.e., plane-fronted gravitational waves with parallel rays
symmetric gravitational waves and the Gowdy model with[13,15. They were first studied by Baldwin and Jeffieh6],
the spatial topology of a three-torus. The Gowdy universesnd admit a five-dimensional group of isometries with a
are vacuum spacetimes with compact sections of constatitree-dimensional Abelian subgroup that acts on null hyper-
time [8]. They can be thought of as inhomogeneous spacesurfaceq17]. Gravitational plane waves can be interpreted
times filled with gravitational waves. The quantization of theas describing the gravitational field at great distances from
Gowdy model when the topology of the sections of constanfinite radiating bodie$13,16. Some of these waves are re-
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lated to certain limits of Bianchi cosmological models andthat metricq2.1) are a special class of pp-wayds3]. On the
inhomogeneous generalizations of such mofigés18. On  other hand, the only non-vanishing component of the Ricci
the other hand, the collision of two gravitational plane wavegensor for these metrics By, = —(H;+H,,). Solutions to
has received intensive study, and many solutions that repréhe vacuum Einstein equations are hence given by all sym-
sent this collision are knowfi4,19. metric matriceH,,, with a vanishing trace. In this case, the

In this work, we will restrict our consideration to the case plane wave is said to be purely gravitational.
of pure gravitational plane waves, namely, plane waves that Although the use of harmonic coordinates for plane waves
are solutions to the vacuum Einstein equations. Preliminarjas clear advantages, because they allow one to cover the
studies of the quantization of spacetimes with the symmetryotality of the spacetime with a single chart and express the
of these waves have been carried out by Ney®@,21] and  Ricci tensor in terms of a simple metric function, the space-
Borissov[22], mainly in the context of the Ashtekar formal- time symmetries become much more apparent in the so-
ism for gravity. Here, we will start with the geometrody- called group coordinates. In such coordinates, the metric
namic formulation for general relativity, and discuss thereads[13,14
guantization of pure gravitational plane waves as a particular -
case of spacetimes that possess two commuting spacelike ds?=—dUdV+ hgp(U)dx2dxP. (2.2
Killing vectors. _

The rest of the paper is organized as follows. The geoHere,V, x, andx? run over the entire real line, and the
metrical properties of pure gravitational plane waves are recoordinatelU has in general a restricted range, as we will see
viewed in Sec. Il. With a suitable choice @dbcal) coordi- below. Obviouslyd,» andd,2 are two commuting spacelike
nates, we cast the metric of this family of solutions in aKilling vector fields for the above metrics, and the group
convenient(3+1) form. This metric can be written in terms orbits spanned by them are everywhere orthogonal to the
of two arbitrary functions, and corresponds to spacetimesuyrface with coordinatesl andV. It is convenient to write
with two commuting Killing vector fields that are subject to the two-metrich,;, of these group orbits as
certain conditions. In Sec. lll, we consider the Hamiltonian

formulation for spacetimes that admit two commuting space- hy=€*7Y2, hp=—ve* V2
like Killing vectors and perform a partial gauge fixing. The ) s
reduction of the system is completed in Sec. IV, where we hoo=(v+e¥)e” V= 2.3

impose gauge-fixing and symmetry conditions that remove . . o .
all non-physical degrees of freedom and guarantee that tHdence, the condition that,;, be positive definite is automati-

classical solutions are precisely pure gravitational plan&@lly satisfied provided that the functionsy, andz are real.
waves. We determine the reduced phase space of the mod¥pte that the determinant ok, is equal toe™*. Thus, from
obtained in this way and its symplectic form. It is also shownOUr discussion in the Introduction, we haié= e and, since
that, in an appropriate set of coordinates, the dynamical evdhis function depends only on the coordinateits gradient
lution of this reduced model is trivial, so that all relevant IS null with respect to the metri@.2), as we had anticipated.
information about the system is in fact contained in the symfinally, the functions) andy describe, respectively, the di-
plectic structure. In Sec. V, we particularize our study to the2gonal and non-diagonal degrees of freedom of the metric
family of linearly polarized plane waves in vacuum gravity. € “Nap, Which has unit determinant. .
We prove that the symplectic form on the reduced phase [N group coordinates, the only non-trivial vacuum Ein-
space of this model can be regarded as that corresponding $¢!n equation is

an infinite set of annihilation and creation like variables. We
then proceed to quantize the model by introducing a Fock
representation. Finally, we summarize our results and con-
clude in Sec. VI.

. _ 1 abdzhab_ldhabdhab:
v 2 4quz 4 du du

0, (2.9

with h2® being the inverse of the two-metrit,,. Substitut-

Il. PURE GRAVITATIONAL PLANE WAVES ing Eq.(2.3) in this expression, we get
Gravitational plane waves are solutions to Einstein field d?(e??) e??[ [ dy)\? dv\?2
equations that possess a five-parameter group of isometries W_ ~716!ldu +4 du e\ (2.9

[17]. For these spacetimes, the metric can always be written

in the form[13] Therefore, W2=e?2 must be a convex function of the co-

ordinateU. Since this function is non-negative, it must then
d=—dUdV+ H ,,(U)X3X"d U2+2 (dX®)?, generally vanish at some poinF. The metric pecomes degen-
a erate at that point and a coordinate singularity appears. As a
(2.1 consequence, the spacetime for pure gravitational plane
waves cannot be described by a unique chart in group coor-
where we have employed the index notateb=1,2. The dinates[14].
coordinates{U,V,X!,X?} are called harmonic coordinates,  Actually, the fact thawW? is a non-negative convex func-
and run over the whole real axis. It is easy to check that tion implies that it must vanish at either one or two points in
corresponds to a covariantly constant null vector field, sahe allowed(simply connectedinterval of variation for the
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coordinatelU. The only exception is pure Minkowski space- see that this family of vacuum solutions has only two de-
time, wherev, y, and z are constant. Wheiv*? has two  grees of freedom, which are given by the functienandy
zeros, it increases from the first of them until a maximum isof the coordinateu.

reached. This maximum can always be made equal to unity These are the spacetimes that we will study in the rest of
by means of a suitable rescaling of the real coordinafes this paper. As we have shown, the above metric describes the
On the other hand, whew?*? has a single zero, it can be most general pure gravitational plane wave solution, with the
chosen as a strictly increasing functionlbby performing a  only caveat that it does not correspond to the whole of the
reversal of the null coordinaté$ andV, if necessary. In this spacetime that can be covered with harmonic coordinates.
case W2 will either tend to infinity or to a finite value in the The coordinate system that we have adopted is in fact quite
limit of large positiveU’s. If the limit is finite, an appropriate similar to that employed in Refl17], the main difference
rescaling ofk® sets it equal to unity. Hence, we see that in allbeing that we have choseg=—e™" and allowedu to take
cases there exists a region of spacetime where the functicall real values, whilezy was made equal to 2| in Ref.
W¥2increases witlU and ranges in the intervéd,1). In this  [17]. In this latter caseu has a restricted rangge.g.,
region,zis strictly increasing from minus infinity to zero. In ue(0,1) forzye R7].

addition, although Minkowski spacetime has apparently been We can regard Eq(2.9) as providing the standard+3
excluded from our discussion, it turns out that the abovedecomposition of the metric for spacetimes with two or-
considerations apply as well to flat spacetime, because titogonal surfaces, but with the lapse agmbn-vanishing
solution to Eq.(2.5) in which v andy are constant an@/*>  component ofthe shift vector particularized to take the val-
is linear inU can be cast in Minkowskian form by (focal) ~ ues N=g"o~2/2*¥/4 gnd NU=—1. In addition, the space-

coordinate transformatiofl7]. times considered admit two commuting spacelike Killing
In the region where increases i(—«,0), we can intro- vector fields,d,1 and d,2, and satisfy another condition,
duce a change of coordinates namely, that the metric functions be independent not only of
X2, but also of the time coordinate In the Hamiltonian
du=e?V-2"¥2qy (2.6)  formalism for general relativity, there is a simple way of

. _ _ ~ imposing the time independence of the met(2$) on clas-
so that the functiorz gets fixed in terms of our new coordi- sical solutions, once the existence of the two spacelike Kill-

nateu. For instance, we can make ing vectors has been assumed. We first notezfat a fixed
u function ofu, and thatw, is determined by the vacuum Ein-
z(U[u])=—e "=zy(u). (2.7)  stein equations to be given by E@.8) in terms ofv andy.

In Eq. (2.6), w is an unknown function of. This coordinate It hence suffices to ensure that the time derivativeandy

) : . anish on classical solutions. Employing then the definition
is assumed to run over the entire real axis. Our change o . A PN o

; A i X ) : of the extrinsic curvaturd;; [23], with x'={x",x,u}, it is
coordinates is then well-defined and invertible, becagse

strictly increasing fou < R and has the rang . With this not difficult to checl_< that, for the metrics under discussion,
change, the coordinate singularity &=0 has been driven the requiremenfcs=y=0 on classical solutions are equiva-

to minus infinity. Notice also that our ignorance about the!€nt to the relations

original function z(U) is encoded inw. However, the

vacuum Einstein equatiof2.5 becomes now a first-order
differential equation inv that can be solved explicitly. The

4h1/2efzzo+y/2Kll: 22(’)_ yf ,

1/2,—2z5+yl2 — r_ ’r_ ’
solution is 4hte™ ™YK ,=vy' —2vZ),—2v’, (2.10
, whereh=e?%o*20*Y2 s the determinant of the induced met-
_In(zg) | 320 Yo" 1 [(y')2+4(v")2%e Y] ric h;; . Moreover, these relations turn out to imply the van-
2 4 4 Julez ishing of v andy even when the values of,, the lapse
—w 2.8 function, and the shift componemMN" are changed in the
=wp, _

metrics(2.9), provided thalN' does not depend on the coor-

i a H Uu_ _ Wli2a—1zp i
whereug is any fixed real constant and the prime stands for(jmdatesx and the quotienN/N h™*e* is not modi

the derivative with respect to. The constant of integration
that should appear in this formula has been absorbed by a

. . v I1l. SPACETIMES WITH TWO KILLING VECTOR
scale transformation in the coordinate

i FIELDS
If we finally define a time via/ =2t—u, we arrive at the
following line element for pure gravitational plane waves: In this section, we will discuss the Hamiltonian formula-
tion for spacetimes that possess two commuting spacelike
ds?=e?Vo~ 20Vl — dt?+ (du—dt)?]+ h,,dx2dx°, Killing vectors, paying special attention to the case of pure

(2.9  gravitational plane waves.

We will only consider spacetimes that admit a global fo-
with h,y, the metric obtained from Eq2.3) by settingz liation, so that the metric can be written in tf@+1) form
=2,. All coordinates in this expression are real and have S S
unrestricted ranges. Recalling relatiof&s7) and (2.8), we ds?=—N2dt?+h;;(dx' +N'dt)(dx +Nidt).  (3.1)
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For the coordinates of the sections of constant time, we wilFor the globally hyperbolic spacetimes with two commuting
employ the notatior{x'}={x*x2,u}. In addition, we will  spacelike Killing vectors that we are studying, it is then pos-
assume that the coordinatesndu run over the real line, and sible to fix the gauge freedom associated with these con-
impose that,a (a=1,2) are the two spacelike Killing vector straints by demanding that, on the sections of constant time,
fields. As a consequence, the metric must be independent dfe u-line be orthogonal to the group orbits spanneddky

the coordinatex®. This implies that the ared= [dx'dx?  This requirement can be rephrased in the form

appears as a constant global factor in the gravitational

Hilbert-Einstein action and in the symplectic form for hay=0, a=12. (3.8
geometrodynamics. We can always absorb this area in New-

ton’s constant. In order to do this, renormalization is required To see that the above condlt_lons lead to a well-posgd
when the ared is infinite [20] (this case can be considered gauge fixing, we must prove that, in general, the gauge orbits

as the limitS— o of the compact caeFor convenience, we generated by the constraintg, intersect transversely the

further set the effective Newton’s constant obtained in thissurface that_ is defined on phase Space by qond(@.ﬁ)sand .
way equal to 1/& the constraints of the system. This is equivalent to proving

hat the gauge-fixing conditions have non-vanishing Poisson

The fundamental Poisson brackets and momenta canoqtl3 Kets withH. . A straightf d calculati h
cally conjugate tch; are then given by rackets with, . A straightforward calculation shows

{hy(w),IT¥(u)}= 685 s(u—u), (3.2) [hau f du Nbe] =has(NP)". (3.9

3.3 Taking into account that,, is positive definite, we conclude
' that these brackets are generally different from Zérsuf-

_ fices to take N?)’ #0].

where & is the Kronecker deltag(u) is the Dirac delta on We must also check that our gauge fixing is compatible

the real line, the indices in parentheses are symmetrized, andth dynamics, in the sense that there exists a choice for the

h'! is the inverse of the induced metric. Thus, the symplecticomponentdN? of the shift vector(which are the Lagrange

form on phase space is multipliers of H,) so that, on the constraint surface, the
gauge condition$3.8) are preserved by the dynamical evo-

(3.4) lution. In otlher words, modulo constraints and gauge-fixing
conditions, h,, must vanish for a particular choice of.

Recalling the independence of the metric)dn one can see
that

1 I .
1 :§h1/2(hlkhjl _hl]hkl)Kkl ,

Q=f dudIIiAdhy;
with the symbolsd and/\ denoting the exterior derivative
and product, respectively.

The gravitational system has two kinds of constraints: the h =h.(NPY’ -+ 4Nh..h. TT°Y 31
Hamiltonian constraint® and the momentum constraints au=Nap(N") = abluutt o (310

H; , which generate spatial diffeomorphisms. Instead of dealwhere use of the gauge conditions has been made after cal-
ing with H, we will consider its densitized versiorf{  culating Poisson brackets. On the other hand, the solution to
=hY?H. In terms of phase-space variables, these constraint®,=0 is given by

take the expressions
[13Y=habf (1), (3.1

~ h .

H=- E(g)R"_(hikhjl +hyhy—hih) ITTTK =0, with f, being two arbitrary functions of that must be real,
becausdI?'e R. Thus, our gauge fixing is in fact preserved

M= —2hijDkaj=0. (3.5) by the evolution provided that

ay/— _ ab
Here,D; is the covariant derivative compatible with the in- (N%) ANRy (). (312
. 3 . . .
duced metric and®R its curvature scalar. The time deriva- | gt ys now integrate both terms in the above equality over
tive of any function on phase space is then u, and contract the result with,(t). If we assume that the
componentdN? of the shift vanish in the limit of largel’'s,

f=of+ f,Jdu(l)lT—HNiHi)], (3.6) we get

whered, is the partial derivative with respect to the explicit f du Nh, h3°f,f,=0. (3.13
time dependence andph~ YN is the densitized lapse func- R
tion.

Using the fact that the metric does not depend on th
coordinatex?, it is not difficult to check that the momentum

It is worth commenting that, together with the conditions
?’lau=0, the requirement IirJL _N?=0 can be viewed as

*

constraintsH, can be rewritten as ensuring that the group orbits spanneddyy are asymptoti-
_ cally orthogonal to the surfaces with coordinateand u.
Ha=—2(hy 11", (3.7 This requirement should hence be satisfied at least in space-
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times where those surfaces are everywhere orthogonal. Resereh,, and h,, are regarded as functions gf. Using
turning to Eq.(3.13), we note that, since the integrand in that relation (3.3), we then obtain that, in terms of the extrinsic
expression is real, it has to vanish at least at one point if theurvature and our metric variables,

integral is equal to zero. Taking into account that the two-

metric Nh,,h,y, is positive definite, it follows thaf,=0 at p,=—h"%e " YA uKy+Kyp),
that point. The functiong, must then be identically zero, a2y 2y
because they are independentwfTherefore, one obtains pw=—h""e (074 &) Kyt 20K 5+ K],
that, whenN? vanishes for large absolute values wfthe 1
solutions to the constraints{,=0 and consistency condi- p,=— =hY%e 2+¥2K
y 2 11

tions h,,=0 are
HaUZO, N2=0. (314) P= _hl/2e—2W+Z—y/2Kuu_ (319)

Finally, the gravitational model considered is still subject
to two constraints, which are given by the restrictionHqf
) . andH to the case in which the metric is independent of the
=0 employed in our gauge fixing turns out to guarantee tha{:oordinateya andh,,=I12=0. After some trivial calcula-

the sqrface with coordinates is actually orthogonal to that tions, one can show that the momentum constraiptakes
described byt andu.

After this partial gauge fixing, the canonically conjugate
pairs (,,,I1?%) and the momentum constraintq, are Hy=— Pl PaW' +po’ +py +p2',  (3.20
eliminated from the system. The remaining geometrody-
namic momenta and components of the induced metric proand that the densitized Hamiltonian constraint has the ex-
vide a canonical set of variables on the phase space of theression
gauge-fixed model. The line element of this reduced model
has the form

The vanishing oh,, andN? implies that the spacetime met-
ric is block-diagonal, so that the assumption LJIE]]_POCN‘?1

the form

_ eZZ

H= E[(y’)2+4(v')Ze’y—4z’(4w' +y’'—52')+162"]
ds?= —N2dt?+ hy(du+NUdt)?+ h,,dx3dx°, , ,

(3.19 + ;€ —2pyPy— PuP, 4Py . (3.2)

where the metric functions depend only on the coordinates
andu.

At this stage, it is convenient to carry out a change of \We will now apply the analysis of the previous section to
metric variables fromh,, and h,, to a set of functions the study of pure gravitational plane waves. We will com-
{g“}={v,w,y,z} that is analogous to that employed to de-plete the gauge fixing of the system and introduce symmetry
scribe the family of metric€2.9). In this way, our discussion  conditions that ensure that all classical solutions are plane

will be straightforwardly applicable to the analysis of pure waves in vacuum, so that the reduced model that is obtained
gravitational plane waves. The change is such that the lingeally describes the family of metridg.9).

IV. GAUGE FIXING AND SYMMETRY REDUCTION

element adopts the expression Let us first remove the gauge freedom associated with the
 w—zivi2 rn12 442 U2 constraintH,,, which generates diffeomorphisms in the co-
ds’=e Y[~ e”N"dt*+ (du+N"dt)“] ordinateu. A way to fix this gauge is to provide a one-to-one
+e7 Y[ (dxb)2— 20dxtdx® + (v2+€Y) (dX?)2]. correspondence between the coordinatnd a metric vari-

able. This can be done in the case of the plane wave metrics
(3.16  that we are considering, because the variabtan then be

, . chosen as a strictly increasing functionwof R, namely, the
Here, all metric functions are allowed to depend on the coy,nction z, defined in EqQ.(2.7). In order to fix the gauge

ordinatesu andt, and we have densitized the lapse using tha.cedom. we then introduce the condition
h=e?VrzHy2 3.17 Xu=Z—Zy=z+e '=0. 4.2
Slmllarly to the situation found for plane waves, the Condi'Since Z(’);&O, the Constrainﬂ-(uzo can be eas"y solved to

tion that the induced metric be positive definite is now easilyfing the momentum canonically conjugatezo
imposed: it suffices to demand that the functigffsbe real.

On the other hand, since the change of variables performed is 1
just a point transformation, it is possible to find a set of P,=Py=—(Py— PuW — P, v’ —Pyy’). (4.2
momenta{p,} that are canonically conjugate to our new 20

metric variables. These momenta are . L o -
Therefore, if our gauge fixing is admissible, we can eliminate

oh oh the canonical pairg,p,) from the system.
p, =TT 4 [yab ab (3.18 Actually, condition(4.1) leads to a well-posed gauge fix-
“ aq“ aq“ ing, becausémodulo that condition
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:Xu,j du N“Hu}=z(’)N”. 4.3

PHYSICAL REVIEW D 58 104017

Taking into account identity4.5), we see that these condi-
tions guarantee that andy do not depend classically on
time provided that

Obviously, these Poisson brackets differ from zero when

NY#0, because; does not vanish at any point. On the other
hand, if our gauge condition is compatible with the dynami-
cal evolution, there must exist a choice fW" (i.e., the
Lagrange multiplier ofH{,) such that

xu=[xu,f du(Nﬂ+N“Hu>]

=—puN+2z{N"=0. 4.9

In the second line of this equation, we have substituted

z=2q. The conditiony,=0 is thus preserved by the evolu-
tion if

(4.5

Note that the componemi" of the shift given by this for-
mula is always well-defined, becauggnever vanishes. We
hence conclude that the gauge fixing introduced is accep
able. It is worth remarking that, to arrive at this result, the
only property of the functiorz, that has been used is that its
derivative with respect ta is everywhere finite and different
from zero. In this sense, the explicit form of this function, as
well as its range, is irrelevant.

After this gauge fixing, we obtain a reduced model whosgy,o requirement,

phase space is described by the canonical set of variabl
{v,W,y,p, ,pw.Py}. The symplectic form is

Q=f du(dp,/\dv +dp,/\dw+dp,/\dy), (4.6)

Xo=Pw+2z,e%°=0. 4.9
When this is the case, it is clear that conditiq@ds8) will

also imply the time independence of the momeptaand

py - In addition, the momentum,, will not depend on time if

the requirementy,=0 is satisfied. The only phase-space
variable that might then be time dependent on classical so-
lutions isw. This possible time dependence can nevertheless
be eliminated by demanding that

(4.10

wherewy is the function defined in Eq2.8). In this way, the
functionw is fixed to take the same expression in terms of
andy as it adopts in pure gravitational plane waves. On the
other hand, the constraint of the model can be rewritten after
some manipulations as

X3=W—Wg=0,

~ _ Xo
t- H,=(2y'x1+€9 Vv x,+ 2W’)(0—2)(6)§ +4)(i
0
e2%20~Y

T

X5~ 2(x1+€%9x5) xo+e%xy. (41D

So, once the symmetry conditiong = x,=0 are imposed,
=0 is just a solution td+, = 0. Therefore,

%e surface defined on phase spacegpy0 (1=0, ...,3)is

simply a section of the constraint surface. In the following,
we will show that the reduction to this section is consistent
and that, in the reduction process, the conditjps=0 al-

lows us to fix the gauge freedom associated with. We

and the system is subject to the densitized Hamiltonian corwill employ the symbok= for weak identities, namely, iden-

straint

H,=H(z=2,p,=p7)=0. 4.7

In order to complete the reduction and attain a midisuper
space model for pure gravitational plane waves, we still nee
to introduce two types of conditions. First, we have to im-
pose that all classical solutions of the system be independe

of the time coordinate, so that these solutions correspond to

the family of plane wave metric.9). Second, we have to

find a condition that results in removing the gauge freedom : o . :
g gaug there{gA} is any set ofC, functions of the coordinate,

associated with the densitized Hamiltonian constraint. Botl
tasks can be achieved in the following way.

We have shown at the end of Sec. Il that, for metrics o
the form (3.16 with z=z; and N"= —e*N, the time inde-
pendence of the metric functionsandy on classical solu-
tions is ensured by relatior®.10. Using Egs.(3.19, those
relations can be expressed as the conditions

Z

0
X1=Py— 5 (¥’ =229 =0,

x2=2€Y"%p,—v’'=0. (4.9

tities that are satisfied modulg,=0. In addition, we will
denote the setH, ,x1,x2.x3a by {x., with A=0, ... ,3.

To prove that the reduction is admissible, we first have to
show that the conditions and constraj=0 constitute a
second-class system on the section of the constraint surface

at we are analyzing. Let us define

nt

(@)= f a3 g, 412

i.e., functions ofu that are infinitely differentiable and have

fcompact support. Clearly, imposing,=0 is equivalent to

demanding thaj/(g) vanish for all choices of the functions
g4 . The sef x4} is then second-class provided that no com-
bination of the formy(g) (other than the zero constabm-
mutes weakly under Poisson brackets with all of ghes.
Using expression4.11) for the constraint, and taking into
account that all terms in that expression are quadratig, in
except the last one, we obtain

{H, ,x(9)}~—e%g}. (4.13
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Sincee®0#0 and the functiom; is Cy , it follows thatx(9)  freedom associated with the constrafigg. In addition, we
commutes weakly with+, if and only if g; vanishes. Let note that, in agreement with our previous discussion, all
now ;(g) be x(g) for g;=0. After some calculations, one Phase-space variables are indeed independent of the time co-
gets ordinate on classical solutions after reducing the system to
the section of the constraint surface definedyhy: 0.

_ 1, L In this reduction, the pairw,p,,) is eliminated via the

AE:l galxax(9)}=— g(egi+16e""%g;)". (414  gauge-fixing conditiony;=0 and the solution to the con-
straint y,= 0, while the symmetry conditiong; = y,=0 de-

Given that the term in parentheses is a sum of non-negatiirmine the momenta, andp, in terms of the variables

functions and thag; g, < C%, the vanishing of the Poisson and_y. The reduced model that is attained is free of con-
— . . straints and possesses only two degrees of freedom, which
brackets ofy(g) with x; and y, turns out to imply thag;

. .: are described by the metric variablesandy. The line ele-
andg, must be the zero function. On the other hand, it is NOY ant for this reduced model can be obtained from BaL6)
difficult to check that

by substitutingz=z,, w=w,, and the values obtained with
- g our gauge fixing forNY and the densitized lapse function.
{x3.x(9)}~—(€go)", (4.19 This line element coincides formally with that given in Eq.

- o ) (2.9 for pure gravitational plane waves. The only difference
where x(g) denotes the restriction of(g) to the case in g that the functions andy of the coordinates may now
which g is the only function infg 4} that differs from zero. gepend also on time. However, this time dependence is ruled
Recalling thagy e Co , we see that the above Poisson brack-out on classical solutions, as we have shown above. The
ets vanish weakly provided thgg=0. Thereforex(g) must  metric may depend on time only when non-classical trajec-
be exactly equal to zero in order to commute weakly with theries are allowed, e.g., in a quantum theory. Besides, it is

2

set{x 4}, as we wanted to prove. _ clear that the set of classical solutions for our reduced model
Let us now show that the section of the constraint Surfac% precise|y the fam”y of p|ane waves in vacuum gravity
determined byy,=0 (1=0,...,3) ispreserved by the dy- considered in Sec. Il. As a consequence, our model describes

namical evolution for a suitable choice of the densitizedin fact that family of plane waves.
lapse. From expressidd.11) and the fact that the variables  Opviously, the dynamics of this reduced model is trivial,

{p*}={v.y.p, .pw.Py} commute withy,, we get because the variablesandy remain constant in time under
the classical evolution. The reduced Hamiltonian, which gen-
ba:[pa,j du Nﬂr} ~0. (4.16 erat_es the time evolution via Poissqn b_rackets, must hen_ce
- vanish. Of course, the same conclusion is reached by consid-

) o ering the reduced action for the system. This action can be
As a consequence, the variablgsturn out to be time inde-  gptained from the Hilbert-Einstein action in the following
pendent on classical solutions. To deduce this result, ong,anner. We adopt thé3+1) decomposition of the metric
actually need not demand thej vanish. Moreover, one can explained in Sec. Ill, impose that the metric be independent
then straightforwardly see that the symmetry conditigns  of x2 (a=1,2), and absorb the area that corresponds to these
=x2=0 are preserved in time, and that, when these condicoordinates in Newton’s constant, setting the resulting effec-
tions are imposed, the solution to the constraint given byjve constant equal to 148 Since all gravitational constraints
Xo=0 is invariant under the evolution, regardless of theare eliminated in the reduction process, we can make them
value taken by the densitized lapse. On the other hand, engqyual to zero in the Hamiltonian form of the action. The
ploying again the expression for the constraint and thafeduced actior$, that we are seeking can then be computed
{X3. X0} ={W.xo}, we obtain from the Lagrangian density1"h;;. SubstitutingI1*!=0,
relations(3.18, and the values taken in our model by the

X3~ —(e"N)"~w. 417 Jariables ,z,p, .Pw.PyP,), we get

So, compatibility of the conditiory;=0 with the dynamical 2
evolution ensures that the variabdedoes not depend clas- Sr:j dtdue—(y’y+ 4p'e V). (4.19
sically on time, and implies 8

N=F(t)e . (4.18  In arriving at this result, we have disregarded surface terms
that are evaluated on sections of constant time, for they do
The arbitrary functiorf that appears in this expression can pot modify the reduced Hamiltonigmor affect the symplec-
in fact be absorbed by means of the time redefinition tic structurg. We see that the reduced action is linear in time
= ['F(t)dt. In this way, we arrive aN=e %. From Egs. derivatives. This implies that the reduced model has indeed a
(4.5 and (4.9), the only non-vanishing component of the vanishing Hamiltonian in the set of coordinates adopted.
shift vector is then given b= —1. We hence see that the  Given that the dynamics is trivial, all relevant information
reduction proposed for the system is acceptable and that tHer quantizing the system is encoded in its symplectic struc-
condition y3=0 allows us to fix the value of the densitized ture. The symplectic fornf), on the phase space of the re-
lapse function. Therefore, this condition removes the gaugduced model is provided by the pull-back of the fo6) to
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the surface determined by the conditions=0 (with I _ ) —

=0, ...,3). Taking into account that,=0 ensures thap,, Sr:f dtduY'y, Qr:f dudYy'/AdY, (5.2
is a fixed function of the coordinate(because so igj), we

obtain where we have used the fact timtis a fixed function ofu

, and neglected surface contributions to the action that come
e 0 . . .
Qr:j du . [dy' Ady+4d(v'e ) Adv]. (4.20 from sections of constant time. Note that the reduced action

§r corresponds indeed to a system with zero Hamiltonian and

Actually, this form could have also been deduced from theSYMPIlectic structure given b, . o

reduced actior(4.19. The quantization of the system can AS In the case of waves with two polarizations, the dy-
then be attained by quantizing the algebra of Poisson brack@mics of the reduced model for linearly polarized waves is
ets that follows from this symplectic form. In principle, the tivial in the set of coordinates adopted. The functirns
algebra seems rather complicated. This situation contrasfPnstant in time and the reduced Hamiltonian vanishes.
with that found in other midisuperspace models which deH1€nce, in order to quantize the system, we only need to
scribe spacetimes with two commuting spacelike Killing quantize the algebr& of Poisson brackets that follows from
vectors, like, e.g., the Gowdy modgl], where the Poisson the symplectic formt(}, .

algebra obtained aftgan almost complejegauge fixing is On the other hand, taking into account that the coordinate
simple, although the complexity of the system shows up iru runs over the whole real axis, we can express the function
the expression for the reduced Hamiltonian. Nonetheless, I as the Fourier transform

turns out that there exists at least a class of pure gravitational

plane waves for which this Poisson algebra becomes man- 1 (=dk ZikU s % ik
; ; Y=—| —(ae "Y+ae"™"). (5.3
ageable, namely, the case of linearly polarized plane waves. P2lo 2k
From now on, we will restrict our discussion to this type of
waves. The complex functions, anday , with ke R*, provide then
a complete set of variables on the phase space of the reduced
V. LINEARLY POLARIZED PLANE WAVES model. These functions & might depend as well on time;

however, since is time independent on classical solutions,
they turn out to be classical constants of motion. Substituting
the above expression fafin the symplectic form, we obtain

Pure gravitational plane waves for which the metric func-
tion v vanishes are called linearly polariz¢ti3]. One can
actually impose the vanishing of as an additional symme-
try on the midisuperspace model for plane waves in source- _ o
free gravity that we have studied. This can be done, for in- Qr=iJ’ dkdag/\day. (5.4
stance, by including the conditiop,=v=0 in the process 0
of gauge fixing and symmetry reduction explained in theas 5 consequence, the only non-vanishing Poisson brackets
previous section. Similar arguments to those presented fo[;etween the phase-space varial#esanda’ are
general plane waves in vacuum gravity show that the set k

formed byy, andx 4 (with A=0, . ..,3) issecond-class on {ag,al)=—i S(k—K). (5.5
the section of the constraint surface defined by the require- K
ments x;=x4=0(1=0,...,3). Here, we have employed |n addition, the fact that the functionis real implies thagy

the notation introduced in Sec. IV. On the other hand, Wénust be the Comp|ex Conjugate af. Therefore, we can

have already seen that the metric variables invariant un- interpret the algebra of Poisson brackets for our model as

der the dynamical evolution when the conditions=0 are  corresponding to an infinite set of harmonic oscillators, de-

satisfied, so that the symmetry conditipp=0 is compatible  scribed by the annihilation and creation like variatdgsand

with dynamics. Therefore, the reduction obtained by de-a;, respectively.

manding thaty, and x, vanish is fully consistent. . The quantization of this algebra can be performed by
The reduced model that one obtains in this manner is suc&andard methods. For instance, one can simply introduce a

that its phase space can be described by a single metric vafinck representatiof25). In that case, our phase-space vari-

able: the fieldy. As happens for plane waves with two po- aples are represented as annihilation and creation operators,

|ai:;12atI0;]1$t, th|shtv§1r|aple_d|ependls on :_he caor?mau;nd, a, anda;, and the Hilbert space of physical states can be
althougn it might In principie volve in ime, 1S time depen- ﬁonstructed by the repeated action of the creation operators

dence is forbidden on classical solutions. It is easy to chec . A
on a vacuum, which is destroyed by all the operaiqrsThe

that the actionS, and the symplectic fornf, for this re- -
duced model coincide in fact with those given in EGs19 algebra of commutators is given by the quantum analogue of

and (4.20 when particularized to the case=0. Defining Ea. (5.9,
ey [a,ag]= 8(k—k), (5.6
Y= , 5.1 — .
22 6D where we have set=1, andk,ke R*. Assuming that the
vacuum has unit norm, the inner product is totally deter-
we can then write mined by requiring that the relations under complex conju-
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gation between the variableg, and a; be realized in the Hamiltonian constraint, which is the only constraint that still
guantum theory as adjointness relations between operatoremains on the system, is easily solved. Moreover, all metric
In particular, it is then possible to find normalized statesvariables are then classically time independent, except pos-
which are formally similar to the states withparticles or to  sibly the variablew, defined by means of E¢3.16). On the
the coherent states of ordinary quantum field theory in flabther hand, we have demanded tiadopt the same expres-
spacetime. sion in terms ofy andy as it does in pure gravitational plane
In this way, one attains a consistent and well-definedvaves. We have shown that, in this way, the gauge freedom
mathematical framework for analyzing the quantum physicsassociated with the densitized Hamiltonian constraint is to-
of spacetimes with two commuting Killing vectors that de- tally removed and the time dependencenois ruled out on
scribe pure gravitational plane waves with linear polarizaclassical solutions.
tion. After this process of gauge fixing and symmetry reduc-
tion, we have arrived at a midisuperspace model which is
free of constraints and whose line element coincides for-
mally with that for plane waves in vacuum general relativity,
Pure gravitational plane waves have been considered as@though the two functions andy that determine the metric
special class of spacetimes with two commuting spacelikénay depend not just on the coordinatebut also on time if
Killing vector fields. We have discussed the structure of thenon-classical trajectories are allowed. The phase space of
reduced phase space and the quantization of this family dhis reduced model has only two degrees of freedom, which
solutions to vacuum general relativity. are described by the variablesandy. These variables re-
We have first seen that, with a suitable choice of coordifmain constant in time on all classical solutions, so that the
nates, the metric for these plane waves can be cast inla 3 dynamical evolution on phase space is given by the identity
form in which the values of the lapse and shift are fixed andnap. This implies that the reduced Hamiltonian vanishes in
all metric functions depend just on a coordinate of the secthe set of coordinates employed. The same conclusion has
tions of constant time, namely, the coordinate R. The been reached by computing the reduced Hilbert-Einstein ac-
other two coordinates of these sectidmich run over the tion. Up to surface contributions on sections of constant
real axig correspond to Killing vectors, with group orbits time, this action is linear in time derivatives, so that it indeed
that are orthogonal to the surface describedilayd the time ~ corresponds to a system with a vanishing Hamiltonian. Since
coordinate. We have shown that the determinant of the methe dynamics is trivial, all the information needed for quan-
ric for these group orbits can be chosen as a strictly increadizing the reduced model is provided by its symplectic struc-
ing function of the coordinate;, with a range given by the ture. Starting with the symplectic form for spacetimes with
interval (0,1). In addition, we have solved explicitly Einstein two spacelike Killing vectors, and calculating the pull-back
equations in the absence of matter fields, and introducet the section of the constraint surface determined by the
metric variables whose reality ensures that the induced megauge-fixing and symmetry conditions imposed on our
ric is positive definite. The family of metrics that we have model, we have then obtained the symplectic form on the
obtained in this manner represents the most general plarieéduced phase space.
wave solution in source-free gravity, with the only caveat There exists at least a case in which the algebra of Pois-
that such metrics do not describe the whole spacetime whichon brackets that follows from this symplectic form is simple
can in principle be covered with harmonic coordinates.€nough as to allow a straightforward quantization, namely,
These metrics are determined by two arbitrary functions ofhe case of linearly polarized plane waves. The restriction to
the coordinatey, i.e., the functions andy. this subfamily of plane waves in source-free gravity has been
With the aim at studying this family of metrics, we have achieved by demanding that the functiorvanish. This re-
considered the Hamiltonian formalism for spacetimes thafluirement can be viewed as an additional symmetry condi-
admit two commuting spacelike Killing vectors. Assuming tion on the system. The phase space of the resulting reduced
the spatial topology to be that &, it has been proved that model is described by the metric varialyler, equivalently,
the condition that there exist a surface orthogonal to théy the set of variablefa, ,a;; ke R*}. These variables are
group orbits removes the gauge freedom related to diffeoclassical constants of motion obtained from the Fourier
morphims of the coordinates which correspond to the Killingtransform of the product of and a fixed function of the
vectors. We have then particularized our analysis to the caggoordinateu. We have finally proved that the algebra of
of pure gravitational plane waves. Using the fact that thePoisson brackets for the reduced model of linearly polarized
determinant of the metric for the group orbits is an increasplane waves can actually be understood as corresponding to
ing function of the coordinata, we have been able to elimi- an infinite set of harmonic oscillators whose annihilation and
nate the degrees of freedom associated with diffeomorphisnereation like variables arey and a;, respectively. The
of theu-line. In order to complete the gauge fixing and guar-quantization of the model can then be readily performed by
antee that the classical solutions of the system are planatroducing a Fock representation for these variables.
waves, we have next introduced two types of requirements. The mathematical framework constructed in this manner
On the one hand, we have imposed the symmetry conditionsan be used to study the quantum physics of pure gravita-
(4.8), which can be interpreted as relations between the metional plane waves with linear polarization. In particular, one
ric and the extrinsic curvature that are satisfied for planean try to define operators for the metric components and
waves. Once these conditions are included, the densitizeahalyze the quantum fluctuations of the geometry. Another

VI. CONCLUSIONS AND FURTHER COMMENTS
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appealing possibility is to discuss the role played in thecompletely the value of on a section of constant time, the
guantum theory by coherent states and see whether these @@me would happen for the entire spacetime, including points
peaked around classical solutions, comparing the results witwith timelike separation. The second of our remarks con-
those obtained for linearly polarized waves with cylindrical cerns the vanishing of the reduced Hamiltonian. This conclu-
symmetry[3,12]. The consideration of these issues will be sion is valid in the set of coordinates that we have employed
the subject of future research. to describe the spacetime. In another coordinate system,
Another direction for further investigation consists in in- however, the Hamiltonian of our reduced model can gener-
troducing a scalar field in the model and studying its inter-ally differ from zero. Suppose, for instance, that we change
action with gravitational plane waves that are linearly polar-coordinates fronu to x=u—t. Using the expression for the
ized. This interaction has already been discussed in theeduced action given by Ed5.2) in the linearly polarized
general case of waves with two polarizations using a semiease, one can prove that the reduced Hamiltonian of the sys-
classical approximation, i.e., considering only the quantizatem becomes then
tion of the scalar field24]. It would be interesting to inves- .
tigat_e whether th_e conclu_sions reached yvith this J dx(axY)2=J dk kaa, 6.1)
semiclassical analysis are valid to some extent in a purely 0

quantum theory. whereY is the variable defined in Ed5.1), and we have

Let us conclude with a couple of remarks about our re- : ; : . .
duced model for linearly polarized plane waves. The firstS“bSt'tUted relat|o(5.3) after replacing thg coordlna_tewnh
. In the new coordinate system, the interpretation of our

comment refers to the algebra of Poisson brackets that we ) . ; :
have found. It is not difficult to see that, at a given instant c)freduced model as a collection of harmonic oscillators applies

time, the values of the metric variabjeat two different hence not only to the Poisson algebra, but also to the Hamil-

points do not generally commute under Poisson bracketdONian that generates the time evolution.
This implies that, in the quantum theory, there cannot exist
states in which the variablg takes a well-defined value at
every point on a section of constant time, even though the The authors are grateful to L. J. Garay and C. Anastopou-
points on this section are spacelike separated. In fact, thi®s for valuable discussions. They wish to thank also E. Ver-
result is not so surprising. We have seen that the reducedaguer, who initially proposed the subject. G.A.M.M. ac-
Hamiltonian of the system vanishes in the set of coordinateknowledges DGICYT for financial support under Research
adopted, so that the quantum evolution is dictated by théroject No. PB94-0107. M.M. was supported by funds pro-
identity operator. Therefore, if it were possible to determinevided by a Basque Government FPI grant.
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