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The topology of event horizons is investigated. Considering the existence of the end point of the event
horizon, the event horizon cannot be differentiable. Then there are new possibilities for the topology of the
event horizon, excluded in smooth event horizons. The relation between the spatial topology of the event
horizon and its end points is revealed. A toroidal event horizon is caused by two-dimensional end point sets.
One-dimensional end point sets provide the coalescence of spherical event horizons. Moreover, these aspects
can be removed by an appropriate time slicing. The result will be useful to discuss the stability and generality
of the topology of the event horizofiS0556-282(198)07620-9

PACS numbd(s): 04.20.Gz, 02.40.Ma

[. INTRODUCTION symmetric spacetimgfor example, Oppenheimer-Snyder
spacetimg the event horizon is not differentiable where the
The existence of an event horizon is one of the most charevent horizon is formed. If the event horizon is not smooth,
acteristic concepts of general relativity. So many authorgve cannot say that the event horizon should always be a
have studied the properties of the event horizon. Mathematisphere.
cally, the event horizon is defined as the boundary of the In fact, the existence of an event horizon whose spatial
causal past of future null infinitf1]. Since the natural topology is not a singl&? is reported in the numerical simu-
asymptotic structure of spacetimes is supposed to be asymf@tions of gravitational collapse. Shapiro and cowork@is

totically flat, where the topology of the future null infinity is humerically observed a toroidal event horizon in the collapse
S$2xR, we naively think that the “spatial” topology of the ©f toroidal matter. Seidel and coworkers have numerically

event horizon TOEHY) will always beS?. shown the coalescence of two spherical event hori8hs

Simple situations arise in general stationary spacetimeghis is because, as shown in the present article, an event
for which it can be shown that any event horizon must have'0rizon is not differentiable at the subset of the end points of
a spherical topology2,3]. The first work dealing with the the null geodesics generating the event horizon. In the
topology of nonstationary black holes is due to Ganptin ~ Present z_i_rt|cle, we are mal_nly concerned with such non<_j|f-
With the physically reasonable condition of asymptotic flat-ferentiability at the end point. We are not concerned with
ness, it was proved that the topology of a smooth event hodondifferentiability not related to the end points.
rizon must be either a sphere or a tofugen the dominant ~ In @ physically realistic gravitational collapse, it is be-
energy condition is satisfiedSuch an approach has recently Ileve_d that a spacetime is quasistationary far in the future.
been extended and generalized to give stronger theorem30. it may be natural to assume that the TOEH should be a
with the assumptions of asymptotic flatness, global hyperbosphere for a single asymptotic region. Then the problem of
licity, and a suitable energy condition. Friedmann, Schleichthe TOEH is regarded as a topology changing process from a
and Witt proved the “topological censorship” theorem that nonspherical surfac;e to a sphere in athr_ee-dlmensmnal mani-
any two causal curves extending from past to future nulfold (the event horizon Therefore we will put theorems of
infinity are homotopy equivalent to each otfist. Jacobson topology chang¢l11,12 into this problem.
and Venkataramanf6] have established a theorem that In the next section, we prepare the theorems of the topol-
strengthens a recent result due to Browdy and Galloway th&9y change of a spacetime, which is applied to the event
the TOEH with a time slicing is a sphere if no new null horizon in Sec. lll. The final section is devoted to the sum-
generators enter the horizon at later tiniés The theorem Mary and discussions.
of Jacobson and Venkataramani limits the time for which a
toroidal event horizon can persist. Il. THE TOPOLOGY CHANGE OF A SPACETIME

Some of these works are based on the differentiability of
the event horizon or the absence of an end point implying}:h
nondifferentiability. Considering the whole structure of the
event horizon, however, the event horizon cannot always b
differentiable. For example, even in the case of a sphericall

Many works have been concerned with the topology
ange of a spacetime. Some of these are useful to discuss
the TOEH, which is a three-dimensional null surface imbed-
fled into a four-dimensional spacetime. Now we briefly
¥)resent several theorems concerning the topology change of
a spacetime.

*E-mail address: siino@yukawa.kyoto-u.ac.jp

The TOEH means the topology of the spatial section of the EH
throughout the present article. Of course, it may depend on a time Our investigation is based on a well-known theorem re-
slicing. garding the relation between the topology of a manifold and

A. The Poincare-Hopf theorem
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a vector field on it The following PoincaréHopf theorem (a) Two dimensions

(Milnor, 1965 is essential for our investigation. N A MA
Theorem 11.1: PoincaréHopf. Let M be a compact n- A RN

dimensionaln=2) C' (r=1) manifold. X is any € ! vec- v S\ |vE

tor field with at most a finite number of zeros, satisfying the 174 N\ \ v

following two conditions: (a) The zeros of X are contained in e ] indeve |

IntM. (b) X has outward directions atM. Then the sum of

the indices of X at all its zeros is equal to the Euler number 7
x of M: \ ‘f 4 7
) =ind(X) (1) < 77 27
x(M)=ind(X). 1 7
A AN 7
index=+1 index=0 index=+2

The index of the vector fiel at a zerop is defined as
follows. Let X,(x) be the components of with respect to
local coordinates{x?} in a neighborhood aboup. Set Type |
va(X)=Xa(x)/|X]. If we evaluatev on a small sphere cen- N Type2 W
tered atx(p), we can regardv,(S""1) as a continuous
mapping from S"~* into S"~1. The mapping degreld 3] of
this map is called the index of at the zerg. For example,
if the map is homeomorphic, the mapping degree of the ori- index=+1 index=-1
entation preservindgreversing map is +1 (—1). Figure 1

gives some examples of the zeros in two and three dimen-
sions. Type3£ N Typeﬁ P
In the present article, we treat a three-dimensional mani-

fold imbedded into a four-dimensional spacetime manifold
as an EH. The three-dimensional manifold has two two-
dimensional boundaries as an initial boundary and a final
boundary(which is assumed to be a sphere in the next sec-
tion). For such a manifold, we use the following modification  FIG. 1. (a) Two-dimensional zeros and a vector field around
of the PoincareHopf theorem. Now we consider an odd- them. Five types of zeros are shown in this figufie. Three-
dimensional manifold with two boundaries,; and,,. dimensional zeros and a vector field around them. Only the zeros
Theorem 11.2: Sorkin 1986. Let M be a compact n-with|inde¥=1 are shown. Other cases can easily be understood by
dimensional (7>2 is an odd number) C(r=1) manifold analogy to 1a).
with 3,U3,=0M and3,;N3,=¢. X is any C~1 vector

(b) Three dimensions

Vi AN

index=+1 index=-1

field vyith at most a finite number of zeros, satisfyi.ng the B. Geroch’s theorem
following two conditions: (a) The zeros of X are contained in )
IntM. (b) X has inward directions &%, and outward direc- Geroch proved that there is no topology change of a

tions atS.,. Then the sum of the indices of X at all its zerosSPacetime without a closed timelike CUN&Z]}
is related to the Euler numbers &f; and3,,: _Theorem [1.3: Geroch 1967. Let M be a'¢r=2) n-
dimensional compact spacetime manifold whose boundary is
the disjoint union of two compact spacelike—1) mani-
_ — i folds 2, and X,. Suppose M is isochronous and has no
X(22) = x(21)=2ind(X). @ closed timelike curve. Thed, and3, are C' ! diffeomor-
phic, and M is topologically®,; X[ 0,1].

This theorem is not directly applicable to a null surf&te
where a chronology is determined by null geodesics gener-
ated by a null vector fielK. In this case, “isochronous”
means that there is no zero Kfin the interior ofH. On the

2lt should be noted that we never take the affine parametriza’[io@ther hand, the closed timelike curve does not Correspond to
of a vector field so that the vector field is continuous even at the eng closed null curve in a rigorous sense, since on a null sur-
point of the curve tangent to the vector field, since we deal with thgzce an imprisoned null geodesic cannot be distorted, re-
end point as the zero of the vector field. If we chose affine parammaining null, so as to become a closed curve as stipulated by
e.ter)s’ the vector field is not unique at the crease(s@® next SeC- o orem |11.3[12]. Then we require a strongly causal condi-
tion). : : e
3For the theorem in this statement, we only need a continuougIon [10] on a spacetime rather than the condition of no
vector field and the index of its zero defined by the continuous map
v: S"718""1 Nevertheless, if one wishes to relate the index and
the Hesse matrit =V v,, a C2 manifold and aC? vector field 4Originally he assumed &”-differentiable spacetime. Neverthe-
will be required. less, his theorem is easily generalized t6'a(r=2) spacetime.

A proof of this theorem is given in Sorkin’s woifld 1].
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closed causal curve. The following modified version ofthe EH), though the null geodesic can continue to the outside
Geroch’s theorem arises. or the inside of the EH through the end point in the sense of
Theorem I1.4. Let H be a C(r=2) n-dimensional com- the whole spacetime. We consider a null vector filen
pact null surface whose boundary is the disjoint union of twothe EH which is tangent to the null geodesicsK is not
compact spacelikén—1) manifolds 3; and3,. Suppose affinely parametrized, bufc parametrized so as to be continu-
that there exists a C* null vector field K which is nowhere ©OUS even on the end point where the caustio\ aippears.
zero in the interior of H and has inward and outward direc- Then the end points ok are the zeros oK, which can
tions at, and3,, respectively, and H is imbedded into a P&come only past end points, sincenust reach to infinity in
strongly causal spacetime (M,g). Th&p and3., are ¢t the future direction. Of course, using an affine parametriza-
diffeomorphic, and H is topologicall,; X [0,1]. tion, K becomes ill-defined at a subset of the set of the end
Proof. Let y be a curve irH, beginning on3,, and ey-  PoInts. We call such a subset theease setTo be precise,
erywhere tangent ts. Suppose first thag has no future end W€ define the crease set by the set of the end points contained
point both in the interior oH and its boundary,,. Param- by two or more null generators of the EH. Thus the set of the
etrizing v by a continuous variablewith range zero to in- €Nd Points consists of the crease set and end points contained
finity, the infinite sequence®;= (i), i=1,2,3,..., on the by one null generator. As stated in Rgt4], the crease set
compact seH has a limit pointP. Then for any positive contains the interior of the set of the end points and_the
numbers, there must be &>s with y(t) in a sufficiently closure of the crease set contains the set of the end points.
small open neighborhodd, (sinceP is a limit point of P;), Moreover, the fact that the EH defined By (J") (the
and at’>s with y(t’) not in U (sincey has no future end boundary of the causal past of the future null infijity an
point). That is, y must pass into and then out of the neigh- &chronal boundarithe boundary of a future setells us that
borhoodZ/p an infinite number of times. Sindd, can be the EHis an |mbedde§£1‘ submanifold without a boundary
regarded as the open neighborhoodyf)  4p, this possi-  (Se€ Ref[1]). Introducing normal coordlnatesx](.,x'z,xs,x“)
bility is excluded by the hypothesis theitis imbedded into N @ neighborhood, aboutp on the EH, the EH is immersed
a strongly causal spacetini®l,g). Then such a curvg must ~ asX"=F(x*,x*,x%), whered/9x" is timelike. Since the EH
have a future end point aB,, because there is no zerokf S an achronal boundary, is a Lipschitz function and one-
which is the future end point of in the interior ofH, from  t0-0ne mapy,: V,—R®, #,(p)=x'(p) is a homeomor-
the assumption of the theorem. Hence we can draw the curd@hism, whereV, is the intersection ot/, and the EH[1].
y through each poinp of H from 3 ; to 3,. By defining the Ther_1 the EH is an imbedded three-dimensio@al" sub-
appropriate parameter of eagha one parameter family of mManifold. _
surfaces fron®,,; to 3., passing thorough every point bf is _First we .s.tudy the relation between the crease set :?md the
given [12]. Furthermore thec' ! congruenceK provides a differentiability of the EH. We see that the EH is not differ-

one-to-one correspondence between any two surfaces of tHigitiable at the crease set.

family. Hence,S, and S, are C'~! diffeomorphic andH Lemma Ill.1 Suppose that H is a three-dimensional null
~3,%[0,1].0 surface imbedded into the spacetime (M,g) by a function F as
H: x*=F(x,i=1,2,3), ©)

Ill. THE TOPOLOGY OF EVENT HORIZONS

. . : . 4

Now, we apply the topology change theorems given in thd" & coorglnatt_a neighborhoodily, ¢4), ba: Us—R",
previous section to EHs. LéM,g) be a four-dimensional” where 9/ dx is timelike. When H is geperqted by the set of
spacetime whose topology B*. In the remainder of this null geodesics whose tangent vector field is K, we define the

article, the spacetiméM,g) is assumed to be strongly causal, €réase set by the set of the end points of the null geodesics

and also weak cosmic censorship is assumed. Furthermorgontained by two or more null generators of H. Then, H and

for simplicity, the TOEH is assumed to be a smo8frfar in the imbedding function F are nondifferentiable at the crease

the future and the EH is not an eternal dineother words, set. . ;

the EH begins somewhere in the spacetime, and it is open to Proof- If His aC’ (r=1) null surface aroung, we can

the infinity in the future direction with a smoo section. ~ define the tangent spadg, of H, which is spanned by one

We expect that those assumptions could be valid if we confull vector and two independent spacelike vectors. On the

sider only one regular-{ Rx S?) asymptotic region, namely contrary, a point in the crease set is contamgd by two or

the future null infinity 7", to define the EH, and the forma- More null generators of. Therefore, there exists two or

tion of a black hole. The following investigation, however, is more null vectors tangent_ﬂd atp, a’?d .ther-e IS No unique

easily extended to the case of different final TOEHs far inchoice of a null vector defining, . This implies thatH and

the future. the imbedding functiorr are not differentiable at the crease
In our investigation, the most important concept is theSet: . . . )

existence of the end points of null geodesicavhich lie . Irj.the present article, we deal only with this nonqn‘feren-

completely in the EH and generate it. We call these the en§aPility. Then, we assume that the EH@ (r=2) differ-

points of the EH. To generate the EH the null geodesiase

maximally extended to the future and past as long as they

belong to the EH. Then the end point is the point where such *Though Ref[14] deals with a Cauchy horizon, the same proof is

null geodesics are about to come into the Ei go out of  available for an EH.
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entiable(the inequalityr=2 is necessary for theorem I[),4 Ip
except on the crease set of the EH and we assume that the set Ip

of the end points is compact. Thus we suppose that the EH is Se
nondifferentiable only on a compact subset. Incidentally, in >
the case where future null infinity possesses pathological T' a NN Sv
structure, the EH could be nowhere differentialilg]. Nev- SH
ertheless we have no concrete example of a physically rea-

sonable spacetime with such a noncompact nondifferentiabil-
ity. Similarly there might be the case that the EH is
nondifferentiable elsewhere than at the end point of the EH.

In spite of this possibility, the reason we consider only the

nondifferentiability caused by the end points is that EHs pos- FIG. 2. The neighborhood df is sliced by two spatial hyper-

sess at least one end point, as long as the EHs are not etern@lifaces7 and 7'. Sy is on the lower hypersurfacg |, passes

Most of the nondifferentiability which we can imagine throughp. In the convex(concave case, the EH is given by the

would be concerned with the end point. enveloping surfac§, (S,). g, (d.) is a point onl, at the future of
Next, we prepare a basic proposition. Suppose there is np S, is C* differentiable atg, . q. is insideS; .

past end point of a null geodesic generator of an EH between

%; andX,. Then, Geroch’s theorem stresses the topology otontain either convex and concave null segments. Moreover

a smooth EH does not change. if two disconnected segments could be connected by a null
Proposition 11.2. Let H be a compact subset of the EH ofgeodesic, a future end point of the null geodesic generator

(M,g) whose boundaries are an initial spatial sectbpand  would exist. Hence the crease set is an acausal&et.

a final spatial sectior®,, ,;M%,=0.3, is assumed to be  Proposition I11.4. The crease set (consisting of past end

a smooth sphere far in the future. Suppose that H'iIC  points) of the EH of (M,qg) is arcwise connected. Moreover,

=2) differentiable. Then the topology &f; is S™. the tubular neighborhood [17] of the crease set is topologi-
Proof. As proved in Ref[14], if there is any end point of cally a 3-disk .
the null geodesic generator of the EH in the interioHofH Proof. Consider all the null geodesids, () emanating

cannot beC?! differentiable there. Using theorem 11.4, it is
concluded thak, is topologicallyS?, sinceH is imbedded  gjnce the crease set is the set of zerok,qf, corresponds to
Into a strongl_y causal spacet_m(_m_,g). Ll . Np (—). From proposition 111.3, the spacelike sectiSrof

Now we discuss the possibilities of nonspherical topolo-  "e . .
gies. From Sorkin’s theorem there should be at least one zefg€ EH very close to the crease ¢t} is determined by a
of K in the interior ofH provided that the Euler number of map ¢ N with a large negative parametéyr of the null
>, is different from that o5 ,~ 2. Such a zero can only be 9€0desiAp :
the past end point of the EH, since the null geodesic genera-
tor of the EH cannot have a future end point. With regard to K.
this past end point and the crease set of the EH we state the ¢7: {aeSi—{peh @
following two propositions.

Proposition 111.3. The crease set (consisting of the past St Ap (—®)=pe, A, (AT)=q. (5)
end points) of the EH is an acausal set. € ¢

Proof. The crease set is obviously an achronal set, as the
EH is a null surfacgéan achronal boundayySuppose that the With a sufficiently large negativa 7(— — ), K has inward
crease set includes a null segmgnthrough an evenp. By directions toH at S, where H is the subset of the EH
lemma III.1, the null segmerit, consists of the points at bounded byS and the final spatial sectidh, which is far in
which the EH is not differentiable. The EH, however, is dif- the future and is a smooth sphere from the assumption. By
ferentiable in the null direction tangent kg at p, sincel, is  this construction, the entire crease set is wrapped,@andS
smoothly imbedded into the smooth spacetifiveg). Then is compact because of the assumption that the set of end
the sectiorSy of the EH on a spatial hypersurface throygh points is compactH and the crease set are on the opposite
is nondifferentiable ap, as shown in Fig. 2. Considering a side ofS. Therefore there is no end point in the interior+of
sufficiently small neighborhootf,, aboutp, the local causal SinceH is C'(r=2) differentiable except on the crease set
structure ofi4, is similar to that of Minkowski spacetime, and compact from the assumption, proposition IIl.2 implies
since(M,g) is smooth there. Therefore, wh&p is convex at  that S is homeomorphic te®,~S? and H is topologically
p, the EH will be C! differentiable atg,, which is on a  S$?x[0,1]. If there were two or more connected components
adjacent future of the null segmeht (see Fig. 2, because of the crease set, one would need the same number of
the EH is the outer side of the enveloping surface of the lighspheres to wrap it withS being sufficiently close to the
cones standing alon§, in the neighborhood/, aboutp. crease set. However, sinSds homeomorphic to a single?,
Nevertheless, from lemma IIl.1, alsg,el, cannot be the crease set should be arcwise connected. In other words,
smooth in this section. Also, B, is concaveq. whichis on  the tubular neighborhood of the crease set is topologically a
a nearby future of,,, will invade the inside of the EH and 3-disk D3, because the EH and the crease set are imbedded
fails to be on the EHsee Fig. 2 Thus the crease set cannot into (M,g). O

from the crease se€fp,} tangent to the null vector fiel&.
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The set of past end points is also arcwise connected, sindeet H be the subset of the EH cut B¢T,) and7(T,) whose
the crease set is contained by it, and the closure of the creabeundaries are the initial spatial sectidh; C 7{T,) and the
set contains if14]. final spatial sectior,C7(T,), and let K be the null vector
Now we give theorems and corollaries regarding the tofield generating the EH. Suppose tf24 is a sphere. If, in
pology of the spatial section of the EH on a time slicing. the time slicingZ, the TOEH change$é— X is not homeo-
First we consider the case where the EH has a simple strugrorphic toX.,) then there must be a crease set (which is the
ture. zeros of K) in H and H is not smooth &y . When the time
Theorem I11.5. Let § be the section of an EH determined Slice touches the one-dimensional segment of the crease set,
by a spacelike hypersurface. If the EH i$ @¢=1) differ-  two disconnected components of the EH coalesce, and the
entiable on § , it is topologically & or S?. two-dimensional segment of the crease set, the genus of the
Proof. From lemma Ill.1, there is no intersection betweenEH decreases. Moreover the one-_dlmen_5|onal boundary of
S, and the crease set. Since the EH is assumed not to B&S creaset set can work gstat(.)ne—d;m.ensgﬂatlhsegr?"nent of t?e
: : : fease set in an appropriate time slicing. e changes o
eternal, there exists at least one end point of th(_a EH in th e TOEH can be expressed by a combination of these pro-
!oast. of Sy as long asS, 7&.@' Thereforg proposition 111.4 cesses taking account of a small deformation of the time
implies there is no end point of the EH in the futureSyf.

: ; : slicing.
By the assumption that the EH &' (r=2) differentiable Proof. From proposition 111.2 and theorem 1I1.5, there is a

except on the crease set and proposition I11.2, it is concludegrease set irH and H is not smooth afS,. To treat the
that Sy is topologicallyS®. [J topology change of the spatial section of the EH by the time
On the other hand, we obtain the following theorem abousjicing, we take account of the crease set and apply theorem
the change of the TOEH with the aid of Sorkin’s theorem.||.2 to the EH andK. Nevertheless, as discussed above, the
Now, we introduce the dimension of the crease set. Considzeros of the vector fiel& are not isolated and the EH is not
ering an open subset of the crease set, if the subset is differentiable, as demanded in theorem I11.2. First of all, we
n-dimensional topological submanifold, we state that themust regularizéd andK so that theorem 11.2 can be applied
crease set in dimensional, or the dimension of the crease seto this case. To makll smooth, we define a smoothing map
is n, in the open subset. Since an EH is an imbed@éd 7 in an atlas{U,,®,}. Introducing normal coordinates
submanifold of a spacetime, the crease set where the EH (&*,x?,x%,x?) in a neighborhood/, aboutqeH, since the
nondifferentiable has three-dimensional measure f&4p  EH is an achronal boundary] is imbedded by a function

The crease set is zero, one, or two dimensional. X4=|:(Xi,[= 1,2,3) which is Lipschitz continuous, where
Theorem I11.6. Consider a smooth time slicifig=7(T) ~ 9/9x" is timelike (see Ref[1]). Here, we sek"(p)=T(p)
defined by a smooth function(f): —T(q) in U, aboutg. SinceM is a metric space, there is a

partition of unitf , for the atlas{i/, , ¢,}, ¢, :U,—R* [16].
Then a smoothed function of the Lipschitz functidifp

e H) (which is restricted on the nondifferentiable submani-
fold H for the smooth functio(p) to become nondifferen-
Te[T.,To1}, 9(d1,d7)<0. (6) tiable) with a smoothing scale is given by

T(T)={peM|T(p)=T=const.,

T(peH) =Eaj f.T(r=¢,  (x,x%x3 xH)W(p,r) 8(x*— F(x*,x2,x%))dx dx2dx3dx*
Uy

=Eaf f (F(x1,x2x3)+ T(q))W(p,r) 8(x*—F(x*,x2,x3))dx dx?d x3d x4,
U,

W(p,r)=0, pel,,

W(p,r)=w(|p—r|), pel,,

[p=r|= VO —x)2+ (x5— X2 %+ (x5 — X)) 2+ (xg—x;)? in U, aboutq,

wW(X)so, w(x>e)<l1, fw(x)zl,
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wherew is an appropriate window function with a smoothing pranch and joint of the crease set fois determined by the
scalee. The support ofW is a sphere with radi~e and projection of_VaT onto this direction. By this determination,

w(|x|,e—0)=6%x). Of course,e=0 gives the original ) .
function T( H)—'~I'( H). Taking a sufficiently small the zeros oK remain only at points where the crease set or
per)=1pen). 9 <nty the boundary of it is tangent to the time slicifig

nonvaalsfhlng.e, a~4new~|m_l:)§dded~subrfz.a£1|follbl ’ZW;th_a Now we should notice the discontinuity &f kletween the
smooth functionx’(p H)—T(p)—T(q)— 'F,(X X5X7) N branch, joint or boundary of the crease set foand their
U, aboutq, can become homeomorphic tbsinceH can be . L= )

~ environs on the crease set. Sin€esatisfies the following

homeomorphic td in eachi/,,. ThenH is a smooth modi- two conditions, however, we can get continuddson the
fication of H. From this smoothing procedure, we define a ' . n ge
crease set by the following modification.

smoothing mapr (homeomorphisiby Let K be a vector field on a subsétof H (which is the
crease setand CC S be a center ofS which is the branch,
joint or boundary of the crease set.
Condition_I11.7. The vector field is not past directed in
¢;1(x1,x2,x3,x4=F)—>¢;1(x1,x2,x3,;‘=‘lz). the sense of. IC is _contin_uous except on C, and_ also con-
(8) tinuous on C. It is discontinuous between C and its environs.
The reason is sketched as follows. The Tubular neighbor-
Of course, this map depends on the af{as,,¢,} intro-  hood theorentsee Munkre$17]) guarantees the existence of
duced. This smoothing map induces the correspondences a sufficiently small finite envelop€ of the center on the
- —_ subsetS and a continuous retraction&—C, £ can be re-
A=N, Z1o3, ) garded as the set of curves from egglon o€ to r(pg) onC
not intersecting each other except 6r{17]. It can be cov-
ered by a finite number of local coordinate neighborhoods

W:Hﬂﬁ, (7)

-7, 7" K=K, (10) {U,,$,} and in each coordinate neighborhood a positive
hereK is th field of ~ .~ definite distance along a curve can be defined p%)(
whereK is the tangent vector field of curvasgeneratingH. =f3m in terms of the normal coordinate

Now K is not always null. Hereafter we call also the [naQE{Xl,XZ,XB'XA}. Since each poinp in the envelopet deter-

of the crease set by the smoothing maj crease set fot,  mines a unique curve passipgwhich starts fromp, on J€

though the generatos are not null. _ and ends aps on C, along this curvekyeu p=Klp_+ (Kp_
Furthermore, we need to modifig by the transformed ~Kp,)(Pe,P)/(Pe.Pc) gives a continuation ok betweent

time slicing 7' so that the crease set farbecomes a zero- anq C, in the coordinate neighborhood. The averaginge of

dimensional set, that is, the set of isolated zdwmisere this (- over each coordinate neighborhood with the partition

set will no longer always be arcwise connegiéeping its  of ypit f, gives a continuousC in the envelope. By this

time-direction in terms of/ except on the end points. To continuation, the location and index #f's zeros do not

make the zeros isolated, it is sufficient for a modified VeCtorchange.

field K to be given on the crease set fo1so as to generate  gre jt js noted that the case in which a finite part of the
this set. Therefore, the direction &f is determined on the crease set or the boundary of it lies on the time slicinig
crease set fok so thatK is tangent to it. On the crease set possible and we cannot determine the directiorKathere.

for A, K should be directed to the future inNtbe sense of theSince such a situation is unstable under the small deforma-
time slicing 7 so that the direction oK at 3, and >, is  tion of the time slicing, however, we omit this possibility, as
appropriate. At the branch, joint and boundary of the creasenentioned in the remark appearing after this proof. Heice
set(whether the crease set is open or closéwever, we s determined on the crease set fotsee, for example, Fig.
should be carefuK will fail to be tangent to the crease set at 3) and it is with the set of some isolated zeros. Of course, at
the branch and the joint. Therk, is determined to be zero. this step,K on the crease set for, andK except on the
Also at the boundary points of a one-dimensional crease setrease set fox is discontinuous. Then, we modif around

K is set to be zero. When the crease set is two-dimensionafhe crease set for alongK and make the modifiel into

the direction ofK is still not fixed. In particular, at the E except on the crease set ?qrw_ithout changing the char-
boundary of the crease set for we should be careful th#¢  acters of theK’s zeros, so thaK becomes a continuous
is tangent also to the non-zero-dimensional boundary of thgector field onH. One may be afraid that an extra zerokof
crease set fon [see Fig. &)], otherwise this non-zero- appears as a result of this continuation. Nevertheless it is
dimensional boundary becomes nonisolated zerds.obn  guaranteed by the existence of the foliation by the time slice
the other hand, in the interior of the crease set;\f,owe can 7 or 7Tthat there exists a desirable modificationkofaround
determine the remaining arbitrariness of the directiorKof the crease set fox, sinceK andK satisfy the condition I11.7.

by the projection of the time vectd#®T onto this crease set, Thus we geK and its integral curves on the whole oH.

so thatK is continuous and future directed in the sens@of From this construction ok, there are some isolated zeros of
in there. The magnitude ¢ on the crease set except for the K only on the crease set for, andK is everywhere future
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index=1 FIG. 4. (a) and(b) are examples of the branching crease set in
an accidental time slicing. They are understood by a small defor-
mation of the time slicing. On the other han@) is the case in
which the time slicing is partially tangent to the crease set. The
\ two-dimensional crease set behaves as a one-dimensional crease
SOEP

©)

set.

struction above, it gives a zero with its index being Zé¥iy.

FIG. 3. (a) and(b) are the one-dimensional and two-dimensional 3(c)], an_d there is no tOpOIOQ!C‘?‘I change of the EH. AISO_ for
crease set, respectively. (b), we draw the entire EH separately. & Z€ro simply caused by the joint of the crease set, the index
(c) is the case in which the edge of the crease set is hit from th@f this zero vanishes and it does not relate to the TOEH.
future. By these vector fields, the crease sets are generated. The 1hiS result is partially suggested in Shapiro, Teukolsky,
seros ofK and their indices are indicated. and Winicour.[8] The following remark shows that we can

also treat special situations where above discussion fails by a
small deformation of the time slicing.

directed in the sense of the time slicidgthough they will Remark.One may face special situations. The possibility
be spacelike somewhgreOf course\ will have both future  of branching end points should be noted. If the crease set
and past end points. possesses a branching point, a special time slicing can make

Now we apply theorem 11.2 tél with the modified vector the branching point into an isolated zero, though such a time
field K, whose boundaries a%l and§2~82. Sinceil and slicing loses this aspect under a small deformation of the

S, are on7(T,) and 7(T,), respectivelyK has inward di- time slicing. The index of this branching end point is hard to
rections at>, and outward, directions é' determine in a direct consideration. The situation, however,
1 2"

From the construction above, we see that the type of th& reg]]caK_rQe%asSthe degenerlatlon og-thel tWOd(:“S::lI:]gU‘;-STed z€-
zero of K depends on the dimension of the crease set. Iri[ir?: g slilr;]tl .slsrzrt]:det)i(r?]ggl?gr?rearzzpi?\yvﬁl c;gcolgﬁ ds;n?r]g(a_
particular, for the zero most in the future, the one- gntly 9. P

dimensional crease set provides the zero of the second tyé)éanchmg p0|_nt_ |_n_to two distinguished z_er(ani course, there
in Fig. 1(b) corresponding to index—1 and the two- are the possibilities of the degeneration of three or more

dimensional crease set gives that of the third type in Rig). 1 zeros. The fi.rst case is the branch of _the on_e—d_imensional
with indexe+ 1 (see Fi%. 3 Following theorgr% II.ZR?&e crease sét{Fig. 4@)], where the branching point is the de-

Euler number changes at the zero by an amouxitn2ex. g_eneration of two zeros ok with their. inde>§ being—1,
Therefore if there is a onétwo)-dimensional crease set, the since they are the results of the one-dimensional crease set.
time slicing T gives the topology change of the EH from two 11€n the index of the branching point is2 and, for ex-
spherega torus to a sphere. Whehi contains the whole of a_mple, 'three spheres coalesce there.. The next case is a one-
the crease set, it will, according to theorem 11.2, present a|F|r_nenS|onal branch from the two-dimensional crease set
changes of the TOEH from the formation of the EH to a Fig. 4(b)]. This branching point is the degeneration of the
sphere far in the future, as shown in Fig. 3. To complete the

discussion, we also consider uninteresting cases provided by

a certain timeslicing. When the edge of the crease set is hitWe can also treat the branching points of the two-dimensional
by the time slicing from the future, according to the con-crease set in the same manner.
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zeros of K from the one-dimensional crease set (index @

=—1) and the two-dimensional crease set (index1). the ero-dimensional SOEF
This decomposition reveals that, though the index of this
point vanishes, the TOEH changes at this point, for example
from a sphere and a torus to a sphere. Of course, the Eul
number does not change in this process. Furthermore, the
topology changing processes are stable under a small defc
mation of the time slicing. Finally, there is the case in which

a time slicing is partially tangent to the crease set or its

boundary. For instance, an accidental time slicing can hit

not a single point in the crease set, but a curve in the creas v
set from the future, as shown in Fig(ch For such a time

slicing, the contribution of the two-dimensional crease set tc
the index is not—1 but 1. This situation, however, is un- © o
stable under a small deformation of the timeslicing, and we e o-dimensional SOEP

omit such a case in the following.

A certain time slicing gives further changes of the Euler ©
number.

Corollary 111.8. An appropriate deformation of a time
slicing turns a process in which the TOEH changes from r
(n=1,2,3,...)spheres to a sphere into a process in which the @

TOEH changes from rfim#n) spheres to a sphere. Also an 7 s
appropriate deformation of a time slicing turns a process in
which the TOEH changes from a surface wibnus=n (n _ _ _

—1,2,3,...)to a sphere into a process in which the TOEH FIG. 5. EHs with zero-, one-, and twq-dlmensmnal crease sets
changes from a surface withenus=m (m#n) to a sphere. are shown. We see that the one-dlmen5|onql crease set becomes a
Proof. From theorem I11.6, when the TOEH changes from C(_)alesc_ence of an arbitrary numb_er of spherical EHs. For the two-
nx<? to a singleSz in a time slicing, there should be a dimensional crease set, only sections _of the EH _and the crease set

. ; . . ! are drawn. It can become an EH with an arbitrary number of
gpaer;g;]rg; nSSiIr?cngltf?(;ec?rZZszege;Nizl(z:arl]’l g]ctzjs;n(mc?si?igwe handles. It is also possible to change the EH into a trivial creation of
[11.3), there is another appropriate time slicing hitting thea spherical EH.
crease set am different points simultaneouslyFig. 5b)].
On this time slicing, the Euler number changes-bgxm,
andm+ 1 spheres coalesce. Using the same logic, the EH
a surface with genusn can be regarded as the EH of a
surface with genusm by an appropriate change of its time
slicing [see Fig. &)].

As shown in corollary I11.8, the TOEH depends strongly
on the time slicing. Nevertheless, theorem II1.6 tells us thal
there is a difference between the coalescence spheres,

&)
the one-dimensional SOEP

the boundary of the crease set. ThEnhas only one signifi-
ggant zerop of K [type 1 in Fig. 1b)], which corresponds to
the point where the EH is formed, and meaningless zeros
[with the index 0, for example, see Fig.cB| on the edge of
the crease set. The index pf is +1, and a spherical EH is
formed thered

Thus we see that the change of the TOEH is determined
y the topology of the crease set and its time slicing. For
ample, we can imagine the graph of the crease set as Fig.

where the Euler nhumber decreases by the one-dimensiong?(_ro determine the TOEH we must only give the order to

crease set, and the EH of a surface with genuswhere the i . S
Euler number increases by the two-dimensional crease set.eaCh vertex of the graph by a time slicing. The graph in Fig.

Finally we see that, in a sense, the TOEH is a transient
term.

Corollary I11.9. All the changes of the TOEH are reduced
to the trivial creation of an EH which is topologically>S

Proof. We choose a poinp. on the boundary of the
crease set. Since the Tubular neighborhood of the crease s
is topologically a 3-diskD® from proposition 11l.4, by an
appropriate distance functidip) =(p,p.) along the crease
set, we can slice the crease setlfp) =const, and sections
by this slicing do not intersect each other. Moreover, becaus
the crease set is an acausal set, such a slicing of the crease
can be extended into the spacetime concerned as a time slic-
ing, so thatp; becomes most in the past of the crease set. In |G, 6. An example of the graph of the crease set is drawn.

this time slicing, since the crease set is sliced without theetermining the order of the vertices, we see the TOEH from the
degeneration of the section, the zeroskofappear only on index of each zero.
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6 may be rather complex. Nevertheless, considering a smatiresent investigation is based on the topology change theory,
scale inhomogeneity, for example the scale of a single parthe same discussion is possible for other final TOEHs. Next,
ticle, the EH may admit such a complex crease set. It will behe C'(r=2) differentiability of the EH is supposed except
smoothed out in macroscopic physics. on the compact crease set while it might be able to be vio-
lated in realistic situations. It is not clear whether this differ-
entiability can be implied by other physically reasonable
IV. SUMMARY AND DISCUSSION conditions. The nondifferentiability, however, is overwhelm-
ingly easier to occur on the end point than not on the end

We have S.tUdi.e'd the spatiql topolqu. Qf the EFOEH), point. Every noneternal EH possesses a point where the EH
partially considering the nondifferentiability of the EH. We is not differentiable as a past end point and we do not have

have found that the coalescence of EHs is related to a ON&ihy simple example where the EH is nondifferentiable ex-

d!mens!onal crease set and a toroidal EH is related to a twos pt at the end point. On the other hand, the case in which
dimensional crease set. In a sense, this is a generalization

: S e EH is differentiable only on compact subséts., the
the resrt:It of Srr]]aplro, Teful;ols_lr_;gétnd Wmlbcc[l&]. Furthdert—) crease set is not compachight be excluded by a realistic
more these changes of the can be removed by quirement about the asymptotic structure of spacetime, as a
appropriate time slicing, since the crease set of an EH is

owhere differentiable spacetimgl5] is excluded by
connected acausal set. We see that the TOEH depen §ymptotic flatness. It would be worth to clarify such prop-

strongly on the time slicing. The dimension of the crease Selfies about the differentiability of the EH
however, plays an important role for the TOEH and, of Incidentally, some of the statements in this article may be

course, is invariant under the Chaﬁ‘ge O.f the time slicing. equivalent to results of previous work®—7]. Nevertheless
Based on these results, a question arises, what controls tla;.?

. i . tlte condition required here is quite different from that ap-
dimension of the crease set. One may expect that somethi d g P

lik it tricts th oty of th aring in their workgfor example, energy conditions have
Ik an energy conaition restricts the variely ol the Crease Sehqaor heen assumed her&he present results may be con-

Nevertheless it is hopeless since, in fact, cases with eacgldered as the extension of those in the previous works
nontrivial TOEH—the coalescence of EHgthe one- Finally we are reminded of an essential question. How

g!mens!ona: crease ;)ftand a :an'.dal EH (_thel t.WO'I can we see the spatial topology of the EH? Some of the
imensional crease getare reported in numerical simula- previous works, for example “topological censorshif],

tions with energy conditions satisfi¢8,9]. Are these generic stress that it is impossible. On the contrary, we expect phe-

i itati ? i - . .
In _real grawtatlon_al col_lapses. It s prob_able that the_graw nomena depending strongly on the existence of the EH as the
tational collapse in which the EH is a single sphere in an

Yooundary condition of fields, for instance the quasi-normal

time slicing is not generic, since the zero-dimensional Creasg o de of gravitational wavei€ 9] or Hawking radiatior20]
set reflects the higher symmetry of a system than that of thFeercts the TOEH. For example, with regard to Havx;king

one- or two-dimensional crease set. On balance, the SYMME3diation, we would like to construct a toy model for the

try of a system will control it. For example, it is possible to change of the TOEH, something like the Rindler spacetime

discuss the stabili_ty and genera_lity of such a symmetry. We, - 1he Schwarzschild spacetime. This is our future problem.
will show the stability of a spherical EH under linear pertur-

bation and the structural stability of the crease [SH].
These discussions would tell something about how the struc-
ture of the crease set is determined dynamically.

In the present article, we have assumed some conditions We would like to thank Professor H. Kodama, Dr. K.
about the structure of spacetime. Can other weaker condNakao, Dr. T. Chiba, Dr. A. Ishibashi, and Dr. D. Ida for
tions take the place of them? First, the strongly causal corhelpful discussions. We are grateful to Professor H. Sato and
dition may be too strong. That is because this condition ifProfessor N. Sugiyama for their continuous encouragement.
needed only on the EH. For example, global hyperbolicityWWe are much obliged to Dr. Hayward for his careful reading
implies strong causality on the EH, because global hyperbosf the manuscript. The author thanks the Japan Society for
licity excludes a closed causal curve and a past imprisonethe Promotion of Science for financial support. This work
causal curve, and there should be no future imprisoned nulvas supported in part by the Japanese Grant-in-Aid for Sci-
curve on the EH. Next, we required that the TOEH is smoothentific Research Fund of the Ministry of Education, Science,
S? far in the future. This, however, is not crucial. Since theCulture and Sports.
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