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Topology of event horizons

Masaru Siino*
Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan

~Received 31 July 1997; published 9 October 1998!

The topology of event horizons is investigated. Considering the existence of the end point of the event
horizon, the event horizon cannot be differentiable. Then there are new possibilities for the topology of the
event horizon, excluded in smooth event horizons. The relation between the spatial topology of the event
horizon and its end points is revealed. A toroidal event horizon is caused by two-dimensional end point sets.
One-dimensional end point sets provide the coalescence of spherical event horizons. Moreover, these aspects
can be removed by an appropriate time slicing. The result will be useful to discuss the stability and generality
of the topology of the event horizon.@S0556-2821~98!07620-6#

PACS number~s!: 04.20.Gz, 02.40.Ma
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I. INTRODUCTION

The existence of an event horizon is one of the most ch
acteristic concepts of general relativity. So many auth
have studied the properties of the event horizon. Mathem
cally, the event horizon is defined as the boundary of
causal past of future null infinity@1#. Since the natura
asymptotic structure of spacetimes is supposed to be asy
totically flat, where the topology of the future null infinity i
S23R, we naively think that the ‘‘spatial’’ topology of the
event horizon~TOEH1! will always beS2.

Simple situations arise in general stationary spacetim
for which it can be shown that any event horizon must ha
a spherical topology@2,3#. The first work dealing with the
topology of nonstationary black holes is due to Gannon@4#.
With the physically reasonable condition of asymptotic fl
ness, it was proved that the topology of a smooth event
rizon must be either a sphere or a torus~when the dominant
energy condition is satisfied!. Such an approach has recen
been extended and generalized to give stronger theor
with the assumptions of asymptotic flatness, global hyper
licity, and a suitable energy condition. Friedmann, Schlei
and Witt proved the ‘‘topological censorship’’ theorem th
any two causal curves extending from past to future n
infinity are homotopy equivalent to each other@5#. Jacobson
and Venkataramani@6# have established a theorem th
strengthens a recent result due to Browdy and Galloway
the TOEH with a time slicing is a sphere if no new nu
generators enter the horizon at later times@7#. The theorem
of Jacobson and Venkataramani limits the time for which
toroidal event horizon can persist.

Some of these works are based on the differentiability
the event horizon or the absence of an end point imply
nondifferentiability. Considering the whole structure of t
event horizon, however, the event horizon cannot always
differentiable. For example, even in the case of a spheric

*E-mail address: siino@yukawa.kyoto-u.ac.jp
1The TOEH means the topology of the spatial section of the

throughout the present article. Of course, it may depend on a
slicing.
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symmetric spacetime~for example, Oppenheimer-Snyde
spacetime! the event horizon is not differentiable where th
event horizon is formed. If the event horizon is not smoo
we cannot say that the event horizon should always b
sphere.

In fact, the existence of an event horizon whose spa
topology is not a singleS2 is reported in the numerical simu
lations of gravitational collapse. Shapiro and coworkers@8#
numerically observed a toroidal event horizon in the collap
of toroidal matter. Seidel and coworkers have numerica
shown the coalescence of two spherical event horizons@9#.
This is because, as shown in the present article, an e
horizon is not differentiable at the subset of the end points
the null geodesics generating the event horizon. In
present article, we are mainly concerned with such non
ferentiability at the end point. We are not concerned w
nondifferentiability not related to the end points.

In a physically realistic gravitational collapse, it is b
lieved that a spacetime is quasistationary far in the futu
So, it may be natural to assume that the TOEH should b
sphere for a single asymptotic region. Then the problem
the TOEH is regarded as a topology changing process fro
nonspherical surface to a sphere in a three-dimensional m
fold ~the event horizon!. Therefore we will put theorems o
topology change@11,12# into this problem.

In the next section, we prepare the theorems of the top
ogy change of a spacetime, which is applied to the ev
horizon in Sec. III. The final section is devoted to the su
mary and discussions.

II. THE TOPOLOGY CHANGE OF A SPACETIME

Many works have been concerned with the topolo
change of a spacetime. Some of these are useful to dis
the TOEH, which is a three-dimensional null surface imbe
ded into a four-dimensional spacetime. Now we brie
present several theorems concerning the topology chang
a spacetime.

A. The Poincaré-Hopf theorem

Our investigation is based on a well-known theorem
garding the relation between the topology of a manifold a
e
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MASARU SIINO PHYSICAL REVIEW D 58 104016
a vector field on it.2 The following Poincare´-Hopf theorem
~Milnor, 1965! is essential for our investigation.

Theorem II.1: Poincare´-Hopf. Let M be a compact n
dimensional(n>2) Cr (r>1) manifold. X is any Cr 21 vec-
tor field with at most a finite number of zeros, satisfying
following two conditions: (a) The zeros of X are contained
IntM. (b) X has outward directions at]M . Then the sum o
the indices of X at all its zeros is equal to the Euler numb
x of M:

x~M !5 ind~X!. ~1!

The index of the vector fieldX at a zerop is defined as
follows. Let Xa(x) be the components ofX with respect to
local coordinates$xa% in a neighborhood aboutp. Set
va(x)5Xa(x)/uXu. If we evaluatev on a small sphere cen
tered at x(p), we can regardva(Sn21) as a continuous
mapping3 from Sn21 into Sn21. The mapping degree@13# of
this map is called the index ofX at the zerop. For example,
if the map is homeomorphic, the mapping degree of the
entation preserving~reversing! map is 11 ~21!. Figure 1
gives some examples of the zeros in two and three dim
sions.

In the present article, we treat a three-dimensional ma
fold imbedded into a four-dimensional spacetime manif
as an EH. The three-dimensional manifold has two tw
dimensional boundaries as an initial boundary and a fi
boundary~which is assumed to be a sphere in the next s
tion!. For such a manifold, we use the following modificatio
of the Poincare´-Hopf theorem. Now we consider an odd
dimensional manifold with two boundaries,S1 andS2 .

Theorem II.2: Sorkin 1986. Let M be a compact
dimensional (n.2 is an odd number) Cr (r>1) manifold
with S1øS25]M and S1ùS25f. X is any Cr 21 vector
field with at most a finite number of zeros, satisfying
following two conditions: (a) The zeros of X are contained
IntM. (b) X has inward directions atS1 and outward direc-
tions atS2 . Then the sum of the indices of X at all its zer
is related to the Euler numbers ofS1 and S2 :

x~S2!2x~S1!52ind~X!. ~2!

A proof of this theorem is given in Sorkin’s work@11#.

2It should be noted that we never take the affine parametriza
of a vector field so that the vector field is continuous even at the
point of the curve tangent to the vector field, since we deal with
end point as the zero of the vector field. If we chose affine par
eters, the vector field is not unique at the crease set~see next sec-
tion!.

3For the theorem in this statement, we only need a continu
vector field and the index of its zero defined by the continuous m
v: Sn21→Sn21. Nevertheless, if one wishes to relate the index a
the Hesse matrixH5¹avb , a C2 manifold and aC1 vector field
will be required.
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e B. Geroch’s theorem

Geroch proved that there is no topology change o
spacetime without a closed timelike curve4 @12#.

Theorem II.3: Geroch 1967. Let M be a Cr (r>2) n-
dimensional compact spacetime manifold whose boundar
the disjoint union of two compact spacelike(n21) mani-
folds, S1 and S2 . Suppose M is isochronous and has
closed timelike curve. ThenS1 and S2 are Cr 21 diffeomor-
phic, and M is topologicallyS13@0,1#.

This theorem is not directly applicable to a null surfaceH,
where a chronology is determined by null geodesics gen
ated by a null vector fieldK. In this case, ‘‘isochronous’’
means that there is no zero ofK in the interior ofH. On the
other hand, the closed timelike curve does not correspon
a closed null curve in a rigorous sense, since on a null s
face an imprisoned null geodesic cannot be distorted,
maining null, so as to become a closed curve as stipulate
theorem II.3@12#. Then we require a strongly causal cond
tion @10# on a spacetime rather than the condition of

n
d
e
-

s
p

d
4Originally he assumed aC`-differentiable spacetime. Neverthe

less, his theorem is easily generalized to aCr (r>2) spacetime.

FIG. 1. ~a! Two-dimensional zeros and a vector field arou
them. Five types of zeros are shown in this figure.~b! Three-
dimensional zeros and a vector field around them. Only the ze
with u indexu51 are shown. Other cases can easily be understoo
analogy to 1~a!.
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TOPOLOGY OF EVENT HORIZONS PHYSICAL REVIEW D58 104016
closed causal curve. The following modified version
Geroch’s theorem arises.

Theorem II.4. Let H be a Cr (r>2) n-dimensional com-
pact null surface whose boundary is the disjoint union of t
compact spacelike(n21) manifolds, S1 and S2 . Suppose
that there exists a Cr 21 null vector field K which is nowhere
zero in the interior of H and has inward and outward dire
tions atS1 and S2 , respectively, and H is imbedded into
strongly causal spacetime (M,g). ThenS1 and S2 are Cr 21

diffeomorphic, and H is topologicallyS13@0,1#.
Proof. Let g be a curve inH, beginning onS1 , and ev-

erywhere tangent toK. Suppose first thatg has no future end
point both in the interior ofH and its boundaryS2 . Param-
etrizing g by a continuous variablet with range zero to in-
finity, the infinite sequencePi5g( i ), i 51,2,3,..., on the
compact setH has a limit pointP. Then for any positive
numbers, there must be at.s with g(t) in a sufficiently
small open neighborhoodUP ~sinceP is a limit point of Pi),
and at8.s with g(t8) not in UP ~sinceg has no future end
point!. That is,g must pass into and then out of the neig
borhoodUP an infinite number of times. SinceUP can be
regarded as the open neighborhood ofg(t)PUP , this possi-
bility is excluded by the hypothesis thatH is imbedded into
a strongly causal spacetime~M,g!. Then such a curveg must
have a future end point onS2 , because there is no zero ofK
which is the future end point ofg in the interior ofH, from
the assumption of the theorem. Hence we can draw the c
g through each pointp of H from S1 to S2 . By defining the
appropriate parameter of eachg, a one parameter family o
surfaces fromS1 to S2 passing thorough every point ofH is
given @12#. Furthermore theCr 21 congruenceK provides a
one-to-one correspondence between any two surfaces o
family. Hence,S1 and S2 are Cr 21 diffeomorphic andH
;S13@0,1#.h

III. THE TOPOLOGY OF EVENT HORIZONS

Now, we apply the topology change theorems given in
previous section to EHs. Let~M,g! be a four-dimensionalC`

spacetime whose topology isR4. In the remainder of this
article, the spacetime~M,g! is assumed to be strongly causa
and also weak cosmic censorship is assumed. Furtherm
for simplicity, the TOEH is assumed to be a smoothS2 far in
the future and the EH is not an eternal one~in other words,
the EH begins somewhere in the spacetime, and it is ope
the infinity in the future direction with a smoothS2 section!.
We expect that those assumptions could be valid if we c
sider only one regular (;R3S2) asymptotic region, namely
the future null infinityJ1, to define the EH, and the forma
tion of a black hole. The following investigation, however,
easily extended to the case of different final TOEHs far
the future.

In our investigation, the most important concept is t
existence of the end points of null geodesicsl which lie
completely in the EH and generate it. We call these the
points of the EH. To generate the EH the null geodesicsl are
maximally extended to the future and past as long as t
belong to the EH. Then the end point is the point where s
null geodesics are about to come into the EH~or go out of
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the EH!, though the null geodesic can continue to the outs
or the inside of the EH through the end point in the sense
the whole spacetime. We consider a null vector fieldK on
the EH which is tangent to the null geodesicsl. K is not
affinely parametrized, but parametrized so as to be cont
ous even on the end point where the caustic ofl appears.
Then the end points ofl are the zeros ofK, which can
become only past end points, sincel must reach to infinity in
the future direction. Of course, using an affine parametri
tion, K becomes ill-defined at a subset of the set of the e
points. We call such a subset thecrease set. To be precise,
we define the crease set by the set of the end points conta
by two or more null generators of the EH. Thus the set of
end points consists of the crease set and end points conta
by one null generator. As stated in Ref.@14#, the crease se
contains the interior of the set of the end points and
closure of the crease set contains the set of the end poin5

Moreover, the fact that the EH defined byJ̇2(J1) ~the
boundary of the causal past of the future null infinity! is an
achronal boundary~the boundary of a future set! tells us that
the EH is an imbeddedC12 submanifold without a boundary
~see Ref.@1#!. Introducing normal coordinates (x1,x2,x3,x4)
in a neighborhoodUa aboutp on the EH, the EH is immersed
asx45F(x1,x2,x3), where]/]x4 is timelike. Since the EH
is an achronal boundary,F is a Lipschitz function and one
to-one mapca : Va→R3, ca(p)5xi(p) is a homeomor-
phism, whereVa is the intersection ofUa and the EH@1#.
Then the EH is an imbedded three-dimensionalC12 sub-
manifold.

First we study the relation between the crease set and
differentiability of the EH. We see that the EH is not diffe
entiable at the crease set.

Lemma III.1 Suppose that H is a three-dimensional n
surface imbedded into the spacetime (M,g) by a function F

H: x45F~xi ,i 51,2,3!, ~3!

in a coordinate neighborhood(Ua ,fa), fa : Ua→R4,
where]/]x4 is timelike. When H is generated by the set
null geodesics whose tangent vector field is K, we define
crease set by the set of the end points of the null geode
contained by two or more null generators of H. Then, H a
the imbedding function F are nondifferentiable at the crea
set.

Proof. If H is a Cr (r>1) null surface aroundp, we can
define the tangent spaceTp of H, which is spanned by one
null vector and two independent spacelike vectors. On
contrary, a point in the crease set is contained by two
more null generators ofH. Therefore, there exists two o
more null vectors tangent toH at p, and there is no unique
choice of a null vector definingTp . This implies thatH and
the imbedding functionF are not differentiable at the creas
set.

In the present article, we deal only with this nondiffere
tiability. Then, we assume that the EH isCr (r>2) differ-

5Though Ref.@14# deals with a Cauchy horizon, the same proof
available for an EH.
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MASARU SIINO PHYSICAL REVIEW D 58 104016
entiable~the inequalityr>2 is necessary for theorem II.4!,
except on the crease set of the EH and we assume that th
of the end points is compact. Thus we suppose that the E
nondifferentiable only on a compact subset. Incidentally,
the case where future null infinity possesses patholog
structure, the EH could be nowhere differentiable@15#. Nev-
ertheless we have no concrete example of a physically
sonable spacetime with such a noncompact nondifferentia
ity. Similarly there might be the case that the EH
nondifferentiable elsewhere than at the end point of the
In spite of this possibility, the reason we consider only t
nondifferentiability caused by the end points is that EHs p
sess at least one end point, as long as the EHs are not et
Most of the nondifferentiability which we can imagin
would be concerned with the end point.

Next, we prepare a basic proposition. Suppose there i
past end point of a null geodesic generator of an EH betw
S1 andS2 . Then, Geroch’s theorem stresses the topology
a smooth EH does not change.

Proposition III.2. Let H be a compact subset of the EH
(M,g) whose boundaries are an initial spatial sectionS1 and
a final spatial sectionS2 , S1ùS250. S2 is assumed to be
a smooth sphere far in the future. Suppose that H is Cr (r
>2) differentiable. Then the topology ofS1 is S2.

Proof. As proved in Ref.@14#, if there is any end point of
the null geodesic generator of the EH in the interior ofH, H
cannot beC1 differentiable there. Using theorem II.4, it i
concluded thatS1 is topologicallyS2, sinceH is imbedded
into a strongly causal spacetime~M,g!. h

Now we discuss the possibilities of nonspherical topo
gies. From Sorkin’s theorem there should be at least one
of K in the interior ofH provided that the Euler number o
S1 is different from that ofS2;S2. Such a zero can only b
the past end point of the EH, since the null geodesic gen
tor of the EH cannot have a future end point. With regard
this past end point and the crease set of the EH we state
following two propositions.

Proposition III.3. The crease set (consisting of the p
end points) of the EH is an acausal set.

Proof. The crease set is obviously an achronal set, as
EH is a null surface~an achronal boundary!. Suppose that the
crease set includes a null segmentl p through an eventp. By
lemma III.1, the null segmentl p consists of the points a
which the EH is not differentiable. The EH, however, is d
ferentiable in the null direction tangent tol p at p, sincel p is
smoothly imbedded into the smooth spacetime~M,g!. Then
the sectionSH of the EH on a spatial hypersurface throughp
is nondifferentiable atp, as shown in Fig. 2. Considering
sufficiently small neighborhoodUp aboutp, the local causal
structure ofUp is similar to that of Minkowski spacetime
since~M,g! is smooth there. Therefore, whenSH is convex at
p, the EH will be C1 differentiable atqv , which is on a
adjacent future of the null segmentl p ~see Fig. 2!, because
the EH is the outer side of the enveloping surface of the li
cones standing alongSH in the neighborhoodUp about p.
Nevertheless, from lemma III.1, alsoqvP l p cannot be
smooth in this section. Also, ifSH is concave,qc which is on
a nearby future ofl p , will invade the inside of the EH and
fails to be on the EH~see Fig. 2!. Thus the crease set cann
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contain either convex and concave null segments. Moreo
if two disconnected segments could be connected by a
geodesic, a future end point of the null geodesic gener
would exist. Hence the crease set is an acausal set.h

Proposition III.4. The crease set (consisting of past e
points) of the EH of (M,g) is arcwise connected. Moreov
the tubular neighborhood [17] of the crease set is topolo
cally a 3-disk D3.

Proof. Consider all the null geodesicslpe
(t) emanating

from the crease set$pe% tangent to the null vector fieldK.
Since the crease set is the set of zeros ofK, pe corresponds to
lpe

(2`). From proposition III.3, the spacelike sectionS of

the EH very close to the crease set$pe% is determined by a
map fK, with a large negative parameterDt of the null
geodesiclpe

:

fK: $qPS%→$pe%, ~4!

s.t. lpe
~2`!5pe , lpe

~Dt!5q. ~5!

With a sufficiently large negativeDt(→2`), K has inward
directions to H at S, where H is the subset of the EH
bounded byS and the final spatial sectionS2 which is far in
the future and is a smooth sphere from the assumption.
this construction, the entire crease set is wrapped byS, andS
is compact because of the assumption that the set of
points is compact.H and the crease set are on the oppos
side ofS. Therefore there is no end point in the interior ofH.
SinceH is Cr(r>2) differentiable except on the crease s
and compact from the assumption, proposition III.2 impl
that S is homeomorphic toS2;S2 and H is topologically
S23@0,1#. If there were two or more connected compone
of the crease set, one would need the same numbe
spheres to wrap it withS being sufficiently close to the
crease set. However, sinceS is homeomorphic to a singleS2,
the crease set should be arcwise connected. In other wo
the tubular neighborhood of the crease set is topological
3-disk D3, because the EH and the crease set are imbed
into ~M,g!. h

FIG. 2. The neighborhood ofp is sliced by two spatial hyper-
surfacesT and T8. SH is on the lower hypersurfaceT. l p passes
throughp. In the convex~concave! case, the EH is given by the
enveloping surfaceSv (Sc). qv (qc) is a point onl p at the future of
p. Sv is C1 differentiable atqv . qc is insideSc .
6-4
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TOPOLOGY OF EVENT HORIZONS PHYSICAL REVIEW D58 104016
The set of past end points is also arcwise connected, s
the crease set is contained by it, and the closure of the cr
set contains it@14#.

Now we give theorems and corollaries regarding the
pology of the spatial section of the EH on a time slicin
First we consider the case where the EH has a simple s
ture.

Theorem III.5. Let SH be the section of an EH determine
by a spacelike hypersurface. If the EH is Cr (r>1) differ-
entiable on SH , it is topologicallyB or S2.

Proof. From lemma III.1, there is no intersection betwe
SH and the crease set. Since the EH is assumed not t
eternal, there exists at least one end point of the EH in
past of SH as long asSHÞB. Therefore proposition III.4
implies there is no end point of the EH in the future ofSH .
By the assumption that the EH isCr (r>2) differentiable
except on the crease set and proposition III.2, it is conclu
that SH is topologicallyS2. h

On the other hand, we obtain the following theorem ab
the change of the TOEH with the aid of Sorkin’s theore
Now, we introduce the dimension of the crease set. Con
ering an open subset of the crease set, if the subset
n-dimensional topological submanifold, we state that
crease set isn dimensional, or the dimension of the crease
is n, in the open subset. Since an EH is an imbeddedC12

submanifold of a spacetime, the crease set where the E
nondifferentiable has three-dimensional measure zero@14#.
The crease set is zero, one, or two dimensional.

Theorem III.6. Consider a smooth time slicingT5T(T)
defined by a smooth function T(p):

T~T!5$pPM uT~p!5T5const.,

TP@T1 ,T2#%, g~]T ,]T!,0. ~6!
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Let H be the subset of the EH cut byT(T1) andT(T2) whose
boundaries are the initial spatial sectionS1,T(T1) and the
final spatial sectionS2,T(T2), and let K be the null vector
field generating the EH. Suppose thatS2 is a sphere. If, in
the time slicingT, the TOEH changes(→S1 is not homeo-
morphic toS2) then there must be a crease set (which is
zeros of K) in H and H is not smooth onS1 . When the time
slice touches the one-dimensional segment of the crease
two disconnected components of the EH coalesce, and
two-dimensional segment of the crease set, the genus o
EH decreases. Moreover the one-dimensional boundary
the crease set can work as a one-dimensional segment o
crease set in an appropriate time slicing. All the changes
the TOEH can be expressed by a combination of these
cesses taking account of a small deformation of the t
slicing.

Proof. From proposition III.2 and theorem III.5, there is
crease set inH and H is not smooth atS1 . To treat the
topology change of the spatial section of the EH by the ti
slicing, we take account of the crease set and apply theo
II.2 to the EH andK. Nevertheless, as discussed above,
zeros of the vector fieldK are not isolated and the EH is no
differentiable, as demanded in theorem II.2. First of all,
must regularizeH andK so that theorem II.2 can be applie
to this case. To makeH smooth, we define a smoothing ma
p in an atlas $Ua ,fa%. Introducing normal coordinate
(x1,x2,x3,x4) in a neighborhoodUa aboutqPH, since the
EH is an achronal boundary,H is imbedded by a function
x45F(xi ,i 51,2,3) which is Lipschitz continuous, wher
]/]x4 is timelike ~see Ref.@1#!. Here, we setx4(p)5T(p)
2T(q) in Ua aboutq. SinceM is a metric space, there is
partition of unit f a for the atlas$Ua ,fa%, fa :Ua→R4 @16#.
Then a smoothed function of the Lipschitz functionT(p
PH) ~which is restricted on the nondifferentiable subma
fold H for the smooth functionT(p) to become nondifferen-
tiable! with a smoothing scalee is given by
T̃~pPH !5SaE
Ua

f aT„r 5fa
21~x1,x2,x3,x4!…W~p,r !d„x42F~x1,x2,x3!…dx1dx2dx3dx4

5SaE
Ua

f a„F~x1,x2,x3!1T~q!…W~p,r !d„x42F~x1,x2,x3!…dx1dx2dx3dx4,

W~p,r !50, p¹Ua ,

W~p,r !5w~ up2r u!, pPUa ,

up2r u5A~xp
12xr

1!21~xp
22xr

2!21~xp
32xr

3!21~xp
42xr

4!2 in Ua about q,

w~x!<`, w~x@e!!1, E w~x!51,
6-5
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wherew is an appropriate window function with a smoothin
scalee. The support ofW is a sphere with radii;e and
w(uxu,e→0)5d4(x). Of course,e50 gives the original
function T(pPH)5T̃(pPH). Taking a sufficiently small
nonvanishinge, a new imbedded submanifoldH̃, with a

smooth functionx4̃(pPH̃)5T̃(p)2T̃(q)5:F̃(x1,x2,x3) in
Ua aboutq, can become homeomorphic toH sinceH̃ can be
homeomorphic toH in eachUa . ThenH̃ is a smooth modi-
fication of H. From this smoothing procedure, we define
smoothing mapp ~homeomorphism! by

p:H→H̃, ~7!

fa
21~x1,x2,x3,x45F !→fa

21~x1,x2,x3,x4̃5F̃ !.
~8!

Of course, this map depends on the atlas$Ua ,fa% intro-
duced. This smoothing map induces the correspondence

l→l̃, S1,2→S1,2̃, ~9!

T→T̃, p* :K→K̃, ~10!

whereK̃ is the tangent vector field of curvesl̃ generatingH̃.
Now K̃ is not always null. Hereafter we call also the ima
of the crease set by the smoothing mapp a crease set forl̃,
though the generatorsl̃ are not null.

Furthermore, we need to modifyK̃ by the transformed
time slicing T̃ so that the crease set forl̃ becomes a zero
dimensional set, that is, the set of isolated zeros~where this
set will no longer always be arcwise connected!, keeping its
time-direction in terms ofT̃ except on the end points. T
make the zeros isolated, it is sufficient for a modified vec
field K̄ to be given on the crease set forl̃ so as to generate
this set. Therefore, the direction ofK̄ is determined on the
crease set forl̃ so thatK̄ is tangent to it. On the crease s
for l̃, K̄ should be directed to the future in the sense of
time slicing T̃ so that the direction ofK̄ at S 1̃ and S 2̃ is
appropriate. At the branch, joint and boundary of the cre
set ~whether the crease set is open or closed!, however, we
should be careful.K̄ will fail to be tangent to the crease set
the branch and the joint. There,K̄ is determined to be zero
Also at the boundary points of a one-dimensional crease
K̄ is set to be zero. When the crease set is two-dimensio
the direction of K̄ is still not fixed. In particular, at the
boundary of the crease set forl̃, we should be careful thatK̄
is tangent also to the non-zero-dimensional boundary of
crease set forl̃ @see Fig. 3~b!#, otherwise this non-zero
dimensional boundary becomes nonisolated zeros ofK̄. On
the other hand, in the interior of the crease set forl̃, we can
determine the remaining arbitrariness of the direction ofK̄
by the projection of the time vector¹aT̃ onto this crease set
so thatK̄ is continuous and future directed in the sense oT̃
in there. The magnitude ofK̄ on the crease set except for th
10401
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branch and joint of the crease set forl̃ is determined by the
projection of¹aT̃ onto this direction. By this determination
the zeros ofK̄ remain only at points where the crease set
the boundary of it is tangent to the time slicingT̃.

Now we should notice the discontinuity ofK̄ between the
branch, joint or boundary of the crease set forl̃ and their
environs on the crease set. SinceK̄ satisfies the following
two conditions, however, we can get continuousK̄ on the
crease set by the following modification.

Let K be a vector field on a subsetS of H ~which is the
crease set! and C,S be a center ofS which is the branch,
joint or boundary of the crease set.

Condition III.7. The vector fieldK is not past directed in
the sense ofT̃. K is continuous except on C, and also co
tinuous on C. It is discontinuous between C and its enviro

The reason is sketched as follows. The Tubular neighb
hood theorem~see Munkres@17#! guarantees the existence
a sufficiently small finite envelopeE of the center on the
subsetS and a continuous retractionr :E°C, E can be re-
garded as the set of curves from eachpe on ]E to r (pe) on C
not intersecting each other except onC @17#. It can be cov-
ered by a finite number of local coordinate neighborhoo
$Ua ,fa% and in each coordinate neighborhood a posit
definite distance along a curve can be defined as (p,q)
5*p

qAdxadxbdab in terms of the normal coordinat
$x1,x2,x3,x4%. Since each pointp in the envelopeE deter-
mines a unique curve passingp, which starts frompe on ]E
and ends atps on C, along this curveKnewup5Kupe

1(Kpc

2Kpe
)(pe ,p)/(pe ,pc) gives a continuation ofK betweenE

and C, in the coordinate neighborhood. The averaginge
Knew over each coordinate neighborhood with the partiti
of unit f a gives a continuousK in the envelope. By this
continuation, the location and index ofK̄ ’s zeros do not
change.

Here it is noted that the case in which a finite part of t
crease set or the boundary of it lies on the time slicingT̃ is
possible and we cannot determine the direction ofK̄ there.
Since such a situation is unstable under the small defor
tion of the time slicing, however, we omit this possibility, a
mentioned in the remark appearing after this proof. HencK̄
is determined on the crease set forl̃ ~see, for example, Fig
3! and it is with the set of some isolated zeros. Of course
this step,K̄ on the crease set forl̃, and K̃ except on the
crease set forl̃ is discontinuous. Then, we modifyK̃ around
the crease set forl̃ along K̄, and make the modifiedK̃ into
K̄, except on the crease set forl̃, without changing the char
acters of theK̄ ’s zeros, so thatK̄ becomes a continuou
vector field onH̃. One may be afraid that an extra zero ofK̄
appears as a result of this continuation. Nevertheless
guaranteed by the existence of the foliation by the time s
T or T̃ that there exists a desirable modification ofK̃ around
the crease set forl̃, sinceK̄ andK̃ satisfy the condition III.7.
Thus we getK̄ and its integral curvesl̃ on the whole ofH̃.
From this construction ofK̄, there are some isolated zeros
K̄ only on the crease set forl̃, and K̄ is everywhere future
6-6
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TOPOLOGY OF EVENT HORIZONS PHYSICAL REVIEW D58 104016
directed in the sense of the time slicingT̃ ~though they will
be spacelike somewhere!. Of course,l̃ will have both future
and past end points.

Now we apply theorem II.2 toH̃ with the modified vector
field K̄, whose boundaries areS̃1 andS̃2;S2. SinceS̃1 and
S̃2 are onT(T1) andT(T2), respectively,K̄ has inward di-
rections atS̃1 and outward directions atS̃2 .

From the construction above, we see that the type of
zero of K̄ depends on the dimension of the crease set
particular, for the zero most in the future, the on
dimensional crease set provides the zero of the second
in Fig. 1~b! corresponding to index521 and the two-
dimensional crease set gives that of the third type in Fig. 1~b!
with index511 ~see Fig. 3!. Following theorem II.2, the
Euler number changes at the zero by an amount 23 index.
Therefore if there is a one-~two!-dimensional crease set, th
time slicingT gives the topology change of the EH from tw
spheres~a torus! to a sphere. WhenH contains the whole of
the crease set, it will, according to theorem II.2, present
changes of the TOEH from the formation of the EH to
sphere far in the future, as shown in Fig. 3. To complete
discussion, we also consider uninteresting cases provide
a certain timeslicing. When the edge of the crease set is
by the time slicing from the future, according to the co

FIG. 3. ~a! and~b! are the one-dimensional and two-dimension
crease set, respectively. In~b!, we draw the entire EH separatel
~c! is the case in which the edge of the crease set is hit from
future. By these vector fieldsK̄, the crease sets are generated. T
zeros ofK̄ and their indices are indicated.
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struction above, it gives a zero with its index being zero@Fig.
3~c!#, and there is no topological change of the EH. Also
a zero simply caused by the joint of the crease set, the in
of this zero vanishes and it does not relate to the TOEHh

This result is partially suggested in Shapiro, Teukols
and Winicour.@8# The following remark shows that we ca
also treat special situations where above discussion fails
small deformation of the time slicing.

Remark.One may face special situations. The possibil
of branching end points should be noted. If the crease
possesses a branching point, a special time slicing can m
the branching point into an isolated zero, though such a t
slicing loses this aspect under a small deformation of
time slicing. The index of this branching end point is hard
determine in a direct consideration. The situation, howev
is regarded as the degeneration of the two distinguished
ros of K̄ in H̃. Some examples are displayed in Fig. 4. Ima
ine a slightly slanted time slicing, and it will decompose t
branching point into two distinguished zeros~of course, there
are the possibilities of the degeneration of three or m
zeros!. The first case is the branch of the one-dimensio
crease set6 @Fig. 4~a!#, where the branching point is the de
generation of two zeros ofK̄ with their index being21,
since they are the results of the one-dimensional crease
Then the index of the branching point is22 and, for ex-
ample, three spheres coalesce there. The next case is a
dimensional branch from the two-dimensional crease
@Fig. 4~b!#. This branching point is the degeneration of t

6We can also treat the branching points of the two-dimensio
crease set in the same manner.

l

e
e

FIG. 4. ~a! and ~b! are examples of the branching crease se
an accidental time slicing. They are understood by a small de
mation of the time slicing. On the other hand,~c! is the case in
which the time slicing is partially tangent to the crease set. T
two-dimensional crease set behaves as a one-dimensional c
set.
6-7
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MASARU SIINO PHYSICAL REVIEW D 58 104016
zeros of K̄ from the one-dimensional crease set (ind
521) and the two-dimensional crease set (index511).
This decomposition reveals that, though the index of t
point vanishes, the TOEH changes at this point, for exam
from a sphere and a torus to a sphere. Of course, the E
number does not change in this process. Furthermore, t
topology changing processes are stable under a small d
mation of the time slicing. Finally, there is the case in whi
a time slicing is partially tangent to the crease set or
boundary. For instance, an accidental time slicing can
not a single point in the crease set, but a curve in the cre
set from the future, as shown in Fig. 4~c!. For such a time
slicing, the contribution of the two-dimensional crease se
the index is not21 but 1. This situation, however, is un
stable under a small deformation of the timeslicing, and
omit such a case in the following.

A certain time slicing gives further changes of the Eu
number.

Corollary III.8. An appropriate deformation of a tim
slicing turns a process in which the TOEH changes from
(n51,2,3,...)spheres to a sphere into a process in which
TOEH changes from m(mÞn) spheres to a sphere. Also a
appropriate deformation of a time slicing turns a process
which the TOEH changes from a surface withgenus5n (n
51,2,3,...) to a sphere into a process in which the TOE
changes from a surface withgenus5m (mÞn) to a sphere.

Proof.From theorem III.6, when the TOEH changes fro
n3S2 to a singleS2 in a time slicing, there should be
one-dimensional crease set~in which there may be som
branches!. Since the crease set is an acausal set~proposition
III.3!, there is another appropriate time slicing hitting t
crease set atm different points simultaneously@Fig. 5~b!#.
On this time slicing, the Euler number changes by223m,
andm11 spheres coalesce. Using the same logic, the EH
a surface with genus5n can be regarded as the EH of
surface with genus5m by an appropriate change of its tim
slicing @see Fig. 5~c!#.

As shown in corollary III.8, the TOEH depends strong
on the time slicing. Nevertheless, theorem III.6 tells us t
there is a difference between the coalescence ofn spheres,
where the Euler number decreases by the one-dimens
crease set, and the EH of a surface with genus5n, where the
Euler number increases by the two-dimensional crease s

Finally we see that, in a sense, the TOEH is a trans
term.

Corollary III.9. All the changes of the TOEH are reduce
to the trivial creation of an EH which is topologically S2.

Proof. We choose a pointpc on the boundary of the
crease set. Since the Tubular neighborhood of the creas
is topologically a 3-diskD3 from proposition III.4, by an
appropriate distance functionl (p)5(p,pc) along the crease
set, we can slice the crease set byl (p)5const, and sections
by this slicing do not intersect each other. Moreover, beca
the crease set is an acausal set, such a slicing of the crea
can be extended into the spacetime concerned as a time
ing, so thatpc becomes most in the past of the crease set
this time slicing, since the crease set is sliced without
degeneration of the section, the zeros ofK̄ appear only on
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the boundary of the crease set. Then,H̃ has only one signifi-
cant zeropc of K̄ @type 1 in Fig. 1~b!#, which corresponds to
the point where the EH is formed, and meaningless zer
@with the index 0, for example, see Fig. 3~c!# on the edge of
the crease set. The index ofpc is 11, and a spherical EH is
formed there.h

Thus we see that the change of the TOEH is determin
by the topology of the crease set and its time slicing. F
example, we can imagine the graph of the crease set as
6. To determine the TOEH we must only give the order
each vertex of the graph by a time slicing. The graph in Fi

FIG. 5. EHs with zero-, one-, and two-dimensional crease s
are shown. We see that the one-dimensional crease set becom
coalescence of an arbitrary number of spherical EHs. For the tw
dimensional crease set, only sections of the EH and the crease
are drawn. It can become an EH with an arbitrary number
handles. It is also possible to change the EH into a trivial creation
a spherical EH.

FIG. 6. An example of the graph of the crease set is draw
Determining the order of the vertices, we see the TOEH from t
index of each zero.
6-8
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6 may be rather complex. Nevertheless, considering a s
scale inhomogeneity, for example the scale of a single p
ticle, the EH may admit such a complex crease set. It will
smoothed out in macroscopic physics.

IV. SUMMARY AND DISCUSSION

We have studied the spatial topology of the EH~TOEH!,
partially considering the nondifferentiability of the EH. W
have found that the coalescence of EHs is related to a
dimensional crease set and a toroidal EH is related to a t
dimensional crease set. In a sense, this is a generalizatio
the result of Shapiro, Teukolsky, and Winicour@8#. Further-
more these changes of the TOEH can be removed by
appropriate time slicing, since the crease set of an EH
connected acausal set. We see that the TOEH dep
strongly on the time slicing. The dimension of the crease
however, plays an important role for the TOEH and,
course, is invariant under the change of the time slicing.

Based on these results, a question arises, what control
dimension of the crease set. One may expect that somet
like an energy condition restricts the variety of the crease
Nevertheless it is hopeless since, in fact, cases with e
nontrivial TOEH—the coalescence of EHs~the one-
dimensional crease set! and a toroidal EH ~the two-
dimensional crease set!—are reported in numerical simula
tions with energy conditions satisfied@8,9#. Are these generic
in real gravitational collapses? It is probable that the gra
tational collapse in which the EH is a single sphere in a
time slicing is not generic, since the zero-dimensional cre
set reflects the higher symmetry of a system than that of
one- or two-dimensional crease set. On balance, the sym
try of a system will control it. For example, it is possible
discuss the stability and generality of such a symmetry.
will show the stability of a spherical EH under linear pertu
bation and the structural stability of the crease set@18#.
These discussions would tell something about how the st
ture of the crease set is determined dynamically.

In the present article, we have assumed some condit
about the structure of spacetime. Can other weaker co
tions take the place of them? First, the strongly causal c
dition may be too strong. That is because this condition
needed only on the EH. For example, global hyperbolic
implies strong causality on the EH, because global hyper
licity excludes a closed causal curve and a past impriso
causal curve, and there should be no future imprisoned
curve on the EH. Next, we required that the TOEH is smo
S2 far in the future. This, however, is not crucial. Since t
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present investigation is based on the topology change the
the same discussion is possible for other final TOEHs. N
the Cr(r>2) differentiability of the EH is supposed exce
on the compact crease set while it might be able to be v
lated in realistic situations. It is not clear whether this diffe
entiability can be implied by other physically reasonab
conditions. The nondifferentiability, however, is overwhelm
ingly easier to occur on the end point than not on the e
point. Every noneternal EH possesses a point where the
is not differentiable as a past end point and we do not h
any simple example where the EH is nondifferentiable
cept at the end point. On the other hand, the case in wh
the EH is differentiable only on compact subsets~i.e., the
crease set is not compact! might be excluded by a realisti
requirement about the asymptotic structure of spacetime,
nowhere differentiable spacetime@15# is excluded by
asymptotic flatness. It would be worth to clarify such pro
erties about the differentiability of the EH.

Incidentally, some of the statements in this article may
equivalent to results of previous works@2–7#. Nevertheless
the condition required here is quite different from that a
pearing in their works~for example, energy conditions hav
never been assumed here!. The present results may be co
sidered as the extension of those in the previous works.

Finally we are reminded of an essential question. H
can we see the spatial topology of the EH? Some of
previous works, for example ‘‘topological censorship’’@5#,
stress that it is impossible. On the contrary, we expect p
nomena depending strongly on the existence of the EH as
boundary condition of fields, for instance the quasi-norm
mode of gravitational waves@19# or Hawking radiation@20#,
reflects the TOEH. For example, with regard to Hawki
radiation, we would like to construct a toy model for th
change of the TOEH, something like the Rindler spaceti
for the Schwarzschild spacetime. This is our future proble
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