
PHYSICAL REVIEW D, VOLUME 58, 104015
Final fate of the spherically symmetric collapse of a perfect fluid

Tomohiro Harada*
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 12 June 1998; published 9 October 1998!

The final fate of the spherically symmetric collapse of a perfect fluid which follows theg-law equation of
state and adiabatic condition is investigated. Full general relativistic hydrodynamics is solved numerically
using a retarded time coordinate, the so-called observer time coordinate. Thanks to this coordinate, the causal
structure of the resultant space-time is automatically constructed. Then, it is found that a globally naked,
shell-focusing singularity can occur at the center from relativistically high-density, isentropic, and time sym-
metric initial data ifg&1.01 within the numerical accuracy. The result is free from the assumption of self-
similarity. The upper limit ofg with which a naked singularity can occur from generic initial data is consistent
with the result of Ori and Piran based on the assumption of self-similarity.@S0556-2821~98!02720-9#

PACS number~s!: 04.20.Dw, 04.25.Dm, 97.60.2s
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I. INTRODUCTION

The singularity theorem@1# predicts the existence of sin
gularity in the generic gravitational collapse of a mass
star. However, it does not state whether or not the singula
is covered by a horizon. The naked singularity is conside
to be harmful because it spoils the predictability of physi
Hence, Penrose@2,3# presented a cosmic censorship hypo
esis. The weak version says that all singularities are hid
in black holes. The strong version says that no singula
can be seen by any observer. We call a singularity cens
by the weak version a globally naked singularity and a s
gularity allowed by the weak version but censored by
strong version a locally naked singularity. Cosmic cens
ship has not yet been proved. In fact, we can easily find
some solutions of Einstein equation have a naked singula
Therefore it is important to find out whether or not tho
solutions with a naked singularity arephysically realizable.
For example, we may consider that some energy condi
should be imposed on physical matters. We should also
regular and generic initial data. In order to have insight in
the physical reasonableness, it will be helpful to underst
in what case a naked singularity appears. If a naked sin
larity is possible in the regime of classical gravity, we mig
catch a glimpse of Planck-scale high-energy physics or qu
tum gravity.

The spherically symmetric dust collapse is studied
many authors because of the existence of an exact solu
The collapse of a spherically symmetric and homogene
dust ball is described by the Oppenheimer-Snyder solut
In this solution, a singularity is neither locally nor global
naked. Therefore any observer cannot see the singula
With this solution, the usual picture of a black hole as a fi
fate of gravitational collapse has been generally accep
However, once inhomogeneities of the density and velo
distributions are allowed, the above picture does not hold
this case, the space-time is given by the Lemaıˆtre-Tolman-
Bondi ~LTB! solution, and it was proved that from very g
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neric initial data the singularity can be either locally or gl
bally naked@4–7#.

The assumption of pressureless matter would not be
propriate for high-density matter. It is obvious that the effe
of pressure on the formation of a naked singularity should
taken into account because the formation of a naked sin
larity in the LTB solution results in the blow up of the den
sity. Ori and Piran@8# investigated the collapse of a perfe
fluid numerically under the assumption of self-similarity. B
this assumption the equation of state of the matter is
stricted to the formp5kr. They showed that a naked sin
gularity forms if k&0.0105. Analytic discussions@9# based
on self-similarity followed it. An effort of getting rid of the
assumption of self-similarity was made by Onozawa, Sii
and Watanabe@10#. They solved numerically the Misner
Sharp equations@11# from regular initial data and searche
the formation of an apparent horizon until the density blo
up and the numerical scheme breaks down. In fact, th
method is not sufficient to detect naked singularities beca
the combination of the blow up of the density and the a
sence of an apparent horizon does not necessarily mean
naked singularity.

In this paper those difficulties in detection of naked s
gularities are avoided by constructing the null coordina
Then, the causal structure of the space-time can be obta
automatically by solving the dynamics of the space-time a
matter. Furthermore, by using the ‘‘observer time coor
nates,’’ the coordinates never cross an event horizon
therefore the global nakedness is trivial.

We should note recent progress on the naked singula
formation in gravitational collapse. Shapiro and Teukols
@12# showed numerically that a sufficiently prolate~even
slowly rotating! spheroid of collisionless gas collapses wi
the blow up of the curvature invariant without the appare
horizon formation. The spherical symmetry of the LTB s
lution has been somewhat relaxed. It was shown that a c
tral, shell-focusing singularity in nonspherical but qua
spherical dust collapse~i.e., the Szekeres solution@13#! can
be either locally or globally naked@14#. Recently the stabil-
ity of the formation of the naked singularity in the LTB
solution against nonspherical linear perturbations was inv
tigated numerically, and it was suggested that the Cau
©1998 The American Physical Society15-1
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TOMOHIRO HARADA PHYSICAL REVIEW D 58 104015
horizon in the LTB solution is stable@15#. The restriction to
matter has been relaxed to anisotropic pressure@16–18#.
Harada, Iguchi, and Nakao@19# showed that the effect o
rotation may induce the naked singularity formation
studying the collapse of a spherical cloud of counter-rotat
particles. Choptuik@20# investigated numerically the spher
cally symmetric collapse of a scalar field and showed tha
zero-mass black hole forms as a critical case for the bl
hole formation.

This paper is organized as follows. In Sec. II, the coor
nate systems are presented. In Sec. III, we discuss an e
tion of state and initial data. In Sec. IV, the numerical resu
are shown. In Sec. V, we conclude the paper. We use ge
etrized units withc5G51 throughout the paper. We follow
Misner, Thorne, and Wheeler’s@21# sign conventions of the
metric tensor and Riemann tensor.

II. METHOD

Here we concentrate on validity of the weak cosmic c
sorship hypothesis, i.e., whether or not a singularity can
globally naked. The singularity is troublesome for numeri
relativity because a numerical scheme breaks down at
singularity. If we choose the spacelike hypersurface as a t
slice, we cannot know whether or not the singularity is nak
because it depends on the further evolution of the spa
time. To suggest the nakedness of the singularity, many
searchers have displayed the absence of an apparent ho
However the absence of an apparent horizon does not ne
sarily mean that the singularity is naked. In fact, the con
tion which should be imposed on time slicing in order
guarantee the singularity avoidance is not well known~for
example, see@4#!.

To avoid such difficulties, we adopt the time slicing mo
suited to determine the causal properties of the space-t
For this purpose, we use the outgoing null coordinate a
time coordinate. We determine the scaling of this null co
dinate in accordance with the proper time of a distant s
tionary observer. This outgoing null coordinateu is called
the ‘‘observer time coordinate’’@22#. This coordinate value
corresponds to the time at which a distant observer wo
see the event. Hence, the observer time coordinates n
cross an event horizon. The limit curve of the time slicesu
5const in the limitu→` is, if it exists, an event horizon
Therefore, if the observer time coordinates hit a singular
it turns out to be globally naked. The procedure to obtai
numerical solution for the space-time is as follows. First,
prepare initial data on a spacelike hypersurfacet50. Then,
we solve the Misner-Sharp equations@11# from the initial
datat50 and store data on the first null ray which emana
from the center att50. When this ray reaches the stell
surface, we begin to solve the Hernandez-Misner equat
@22# using the stored data on the first null ray as initial d
u50. See Refs.@11,22–24# for basic equations, numerica
schemes, and difference equations.

The code was tested by the collapse of a homogene
dust ball and an inhomogeneous dust ball. A supercrit
neutron star collapsed while a subcritical neutron star did
collapse within many dynamical time scales. The code w
10401
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also tested by the Riemann shock tube problem and inten
explosion described by the Sedov solution. The conserva
of the total mass is a good indicator of numerical errors.
all calculations presented in the next section, the total m
was conserved within the accuracy of 1024. The artificial
viscosity term may play a rather subtle role in the formati
of a central singularity. To avoid such additive difficultie
this term was not included basically. Absence of this te
did not spoil the results for most calculations because sh
wave did not occur for most cases. Only for the cases
which the central region expanded, a shock wave occur
and thereby the calculation suffered from serious numer
instabilities, was the artificial viscosity switched on. F
those cases, the fluid did not collapse, and hence the ce
was regular. 2048 grid zones were prepared in most calc
tions.

For notational convenience, we give the expression
the line element in the coordinate systems used here. In
usual comoving coordinates, the line element is written a

ds252e2f~ t,A!dt21el~ t,A!dA21R2~ t,A!dV2, ~2.1!

while, in the observer time coordinates,

ds252e2c~u,A!du222ec~u,A!el~u,A!dudA1R2~u,A!dV2,

~2.2!

where

dV25du21sin2udf2, ~2.3!

andA is chosen to be the rest-mass included within the
dius R in this article. In the observer time coordinates, t
lapse functionec goes to zero when approaching to an eve
horizon. The stress-energy tensor for a perfect fluid is giv
as

Tmn5~r1p!umun1pgmn. ~2.4!

III. INITIAL DATA AND EQUATION OF STATE

Initial data are prepared on the spacelike hypersurfac
order to obtain a clear relation with physical situations. T
initial data are given by the following three arbitrary fun
tions:

r05 r̃0~R!, e5ẽ~R!, U5Ũ~R!, ~3.1!

wherer0 , e are the rest-mass density and specific inter
energy, respectively.U is the coordinate velocity defined a

U[e2f
]R

]t
5e2c

]R

]u
. ~3.2!

The total energy density is given by

r5r0~11e!. ~3.3!

We choose the density distribution as
5-2
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FINAL FATE OF THE SPHERICALLY SYMMETRIC . . . PHYSICAL REVIEW D 58 104015
r̃0~R!5H r̃0cF12S R

Rs
D 2 G ~0<R<Rs!,

0 ~Rs,R!.

~3.4!

The distribution of the specific internal energy and veloc
is set as

ẽ~R!5ẽcS r̃0

r̃0c
D g21

, ~3.5!

Ũ~R!50, ~3.6!

FIG. 1. Naked-singular model in whichg2151024, ẽc5102,
andRs5100M . The slicing is by the Misner-Sharp and Hernande
Misner codes. The ordinate is the proper time of a comoving
server and the abscissa is the circumferential radius. The Mis
Sharp slicing ist/M50,100,200,300,400,500,600,700,707 and
Hernandez-Misner slicing is u/M
50,100,200,300,400,500,600,700,728. The Hernandez-Misner
ing is a set of outgoing null geodesics. We stopped the calcula
in both codes when we detected a central singularity. Location
some fluid elements are marked.

FIG. 2. Evolution of the rest-mass densityr0 in the Misner-
Sharp code. The density distribution in the central region at
5707M becomes so steep that we call it a singularity.
10401
wherer̃0c[r̃0(R50). We use the followingg-law equation
of state:

p5~g21!er0 . ~3.7!

The combination of the initial data~3.5!, equation of state
~3.7!, and adiabatic condition guarantees that pressure i
proportional tor0

g , i.e.,

p5Kr0
g , ~3.8!

whereK is constant all over the star. In this case, the init
distribution of the specific internal energy is parametriz
only by the central specific internal energyẽc . If we take the
extremely relativistic limit (e@1), the above equation o
state becomes

p5~g21!r, ~3.9!

which is the equation of state used by Ref.@8#.
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-
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FIG. 3. Evolution ofm/R, the ratio of the Misner-Sharp mass t
the circumferential radius, in the Misner-Sharp code.

FIG. 4. Evolution of (dR/dt)ONG, dR/dt along outgoing null
geodesics, in the Misner-Sharp code.
5-3
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TOMOHIRO HARADA PHYSICAL REVIEW D 58 104015
IV. RESULTS

In determining the final fate of collapse, here we adopt
following criteria. If the ratio of the rest-mass density of th
innermost grid zone to that of the next grid zone excesse
we call it a central ‘‘singularity’’ and stop the code. If th
lapse functionec in the Hernandez-Misner code decreases
less than 1023, we call it an ‘‘event horizon.’’ If a singular-
ity occurs before an ‘event horizon’ is detected, we call i
‘‘naked singularity.’’ The result is not so sensitive to th
choice of the thresholds. Note that the blow up of the re
mass density inevitably results in the blow up of the sca
Rb

aRa
b564p2(r213p2). The scalar curvatureR58p(r

23p) also blows up ifpÞ(1/3)r.
Here, models for three values ofẽc , 102, 1, and 1022,

were calculated. Ife*1, then the fluid is relativistic, while, if
e!1, then the fluid is not relativistic. The results are su
marized in Figs. 1–21 and Tables I–IV.

A. Naked singularity

First we pay attention to the naked-singular case,
model in which g2151024, ẽc5102, and Rs5100M ,

FIG. 5. Evolution of r0 in the Hernandez-Misner code. Th
density distribution in the central region atu5728M becomes so
steep that we call it a singularity.

FIG. 6. Evolution ofm/R in the Hernandez-Misner code.
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where M is the total gravitational mass. Since the fluid
highly relativistic, the equation of state is approximate
equivalent with the equation of state~3.9!. Hence, it is ex-
pected that the feature of collapse is not sensitive to the v
of ẽc if ẽc@1. In this calculation, the artificial viscosity wa
switched off. Figure 1 shows time slicing by the Misne
Sharp and Hernandez-Misner codes. The ordinate is
proper timet of a comoving observer, and the abscissa is
circumferential radius. The Misner-Sharp slicing presen
in Fig. 1 is a family of spacelike hypersurfacest/M
50,100,200,300,400,500,600,700,707, where the resca
freedom of t is fixed so that t agrees with the prope
time at the stellar surface. On the last slicet5707M ,
the Misner-Sharp code detected a central singula
based on the criteria described above. The Hernand
Misner slicing is a family of null hypersurfacesu/M
50,100,200,300,400,500,600,700,728. Also on the last s
u5728M , a central singularity was detected. In this figur
locations of some fluid elements are also marked. Figu
2–4 shows the Misner-Sharp time evolution of the rest-m
densityr0 , the ratiom/R, and dR/dt along outgoing null
geodesics@which is hereafter denoted as (dR/dt)ONG#, where

FIG. 7. Evolution of the lapse functionec in the Hernandez-
Misner code.

FIG. 8. Blow up of the central rest-mass densityr0c . The simu-
lation was repeated with various radial grid resolutions. Each cu
is labeled by the number of spatial zones used.
5-4
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FINAL FATE OF THE SPHERICALLY SYMMETRIC . . . PHYSICAL REVIEW D 58 104015
m is the Misner-Sharp mass@11#. As seen in Fig. 2, the time
evolution of the density profile in this model looks similar
the Penston’s dust collapse solution in Newtonian grav
@25# and also the LTB solution in Einstein gravity. It is re
markable that the density distribution in the central reg
approaches a power-law profile and therefore loses any c
acteristic scale. From Fig. 2, the divergent behavior of
density at the center with respect toR changes at the occur
rence of the singularity as

r0}const⇒r0}R2a, ~4.1!

where a.1.7. Penston@25# showed thata512/7 for the
dust collapse in Newtonian gravity. In the Appendix, we w
show thata512/7 is also valid for the LTB solution on th
spacelike hypersurfacet5const of the occurrence of the ce
tral singularity. As seen in Fig. 3, the ratiom/R is much less
than unity. This suggests that this collapse is well appro

FIG. 9. Black-hole model in whichg2151024, ẽc5102, and
Rs510M . The Misner-Sharp slicing ist/M50,10.0,20.0,22.3. On
the last slice, a singularity was detected. The Hernandez-Mi
slicing is u/M50,10.0,20.0,30.0,40.0,50.0,60.0,70.0,72.3. On
last slice, an event horizon was detected. The limit curve is
event horizon.

FIG. 10. Evolution ofr0 in the Misner-Sharp code. The densi
distribution in the central region att522.3M becomes so steep tha
we call it a singularity.
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mated by that in Newton gravity. The behavior of the ra
changes at the occurrence of the singularity

m

R
}R2⇒ m

R
}Rb, ~4.2!

where b.0.3. It should be also noted thatb52/7 in the
Penston’s dust collapse solution. In the Appendix, we w
show thatb52/7 for the LTB solution. Figure 4 shows tha
the expansion of outgoing null geodesics are always posi
until the central singularity is detected. In other words, t
Misner-Sharp code does not find the apparent horizon be
the occurrence of the singularity. Figures 5–7 sho
Hernandez-Misner time evolution ofr0 , m/R and the lapse
functionec. From Figs. 2 and 5, it is found that there is litt
difference in the divergence property of the density profile
the central region in both codes. In the Appendix, we w
show thata512/7 andb52/7 for the LTB solution also on
the earliest null ray which emanates from the central na
singularity. Figure 6 shows that the ratiom/R is much less
than unity also on that null ray. In Fig. 7, it is found thatec

does not vanish but remains of the order of unity until t
central singularity is detected. Sinceec remains of the order
of unity, an event horizon has not yet formed. Figure
shows the growth of the central rest-mass densityr0c in this
model. The simulation was repeated with various radial g

er
e
e

FIG. 11. Evolution ofm/R in the Misner-Sharp code.

FIG. 12. Evolution of (dR/dt)ONG in the Misner-Sharp code.
5-5
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TOMOHIRO HARADA PHYSICAL REVIEW D 58 104015
resolutions. Each curve is labeled by the number of spa
grid zones used. The value of the central rest-mass den
grows unboundedly. The blow up of the central rest-m
density becomes more rapid and the maximum value o
that can be attained becomes larger as the resolution
comes higher. Then, in summary, the collapse is well
proximated by dust collapse both in Newton gravity and
Einstein gravity, and a central naked singularity forms in t
model based on the present criteria.

B. Black hole

Next we take the model in whichg2151024, ẽc5102,
and Rs510M as an example of black hole formation. Als
in this calculation, the artificial viscosity was switche
off. Figure 9 shows time slicing by the Misne
Sharp and the Hernandez-Misner codes. The form
slicing is t/M50,10,20,22.3 and the latter isu/M
50,10,20,30,40,50,60,70,72.3. The former code was stop
because of the steepness of the density profile around
center, while the latter code was stopped becauseec became
less than 1023 all over the star. The sequence of the outgo
null geodesicsu5const converges, and its limit curve is a

FIG. 13. Evolution ofr0 in the Hernandez-Misner code. Th
density distribution in the central region remains not so steep e
at the event horizon.

FIG. 14. Evolution ofm/R in the Hernandez-Misner code.
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event horizon. Figures 10–12 shows the Misner-Sharp t
evolution ofr0 , m/R, and (dR/dt)ONG. The behavior ofr0
andm/R in the central region seen in Figs. 10 and 11 is qu
similar to that seen in the naked-singular case. From Fig.
the ratiom/R is not so small although it remains less th
1/2 which corresponds to the apparent horizon in the sph
cally symmetric space-time. Figure 12 shows that
Misner-Sharp code does not detect the apparent horizon
the occurrence of the central singularity although the sin
larity is covered by the event horizon. Figures 13–15 sho
the Hernandez-Misner time evolution ofr0 , m/R, andec. It
is seen in Fig. 13 that the density profile around the cente
not so steep even at the event horizon. The ratiom/R is
increased and reaches 1/2 at the surface. Therefore the N
tonian approximation is not valid. In Fig. 15, it is shown th
ec approaches zero asu increases, which indicates approa
to the event horizon. Figure 16 shows growth of the re
mass density at the center for this case. The simulation
repeated with various radial grid resolutions. From this figu
it would be sure that the resolution is sufficient for the fo
lowing conclusion. Since the Hernandez-Misner code dete
an event horizon before the occurrence of a central singu

n

FIG. 15. Evolution ofec in the Hernandez-Misner code. Theec

converges to zero asu increases.

FIG. 16. Evolution ofr0c . The simulation was repeated wit
various radial grid resolutions. Each curve is labeled by the num
of spatial zones used.
5-6
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FINAL FATE OF THE SPHERICALLY SYMMETRIC . . . PHYSICAL REVIEW D 58 104015
ity, the singularity is covered by the event horizon. Mor
over, it can be expected that this collapse would result in
locally naked singularity because the Misner-Sharp time e
lution in the central region is very similar to that of th
globally naked singular case.

C. Stable star

The final fate of collapse forg55/3, ẽc51022, andRs
5100M is a stable star. In this calculation, the artificial vi
cosity was switched on in order to suppress numerical in
bilities around the shock front. Figure 17 shows time slici
by both codes. The Misner-Sharp slicing ist/M50, 2.00
3104, 4.003104, 6.003104, 8.003104, 1.003105, 1.20
3105, 1.223105. The Hernandez-Misner slicing isu/M50,
2.003104, 4.003104, 6.003104, 8.003104, 1.003105,
1.183105. In this figure, it is seen that the motion of th
fluid is much slower than the speed of light. Hence, the ti
evolutions both in the Misner-Sharp and Hernandez-Mis
time slicings are basically the same. From this reason,

FIG. 17. Stable-star model in whichg2152/3, ẽc51022, and
Rs5100M . The Misner-Sharp slicing ist/M50, 2.003104, 4.00
3104, 6.003104, 8.003104, 1.003105, 1.203105, 1.223105.
The Hernandez-Misner slicing isu/M50, 2.003104, 4.003104,
6.003104, 8.003104, 1.003105, 1.183105.

FIG. 18. Evolution ofr0 in the Misner-Sharp code. The densi
distribution of the core settles down aftert.6.003104.
10401
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present here only the Misner-Sharp time evolution. Figu
18–20 show the time evolution ofr0 , m/R, and (dR/dt)ONG
respectively. In Fig. 18, it is found that the stable star has
core-envelope structure. The surface of the envelope ke
expanding, while the core is accreting the envelope. The c
does not collapse but settles its density profile after m
dynamical time scales. As seen in Figs. 18 and 19, the
sultant core radius is about 200M , consistent with initial
total internal energy. Figure 19 shows that the Newton
approximation is valid because the ratiom/R is much less
than unity. The fact thatm/R is proportional toR21 in the
envelope indicates that the mass contained in the envelo
negligibly small compared to the core mass. Of course,
expansion of the outgoing null geodesics is always posit
as seen in Fig. 20. Figure 21 shows that the central reg
settles down after several oscillations. The simulation w
repeated with various radial grid resolutions.

D. Parameter search

Tables I–IV summarize the final fate of collapse forẽc
5102,1,1022. Table II is the detailed search of the critic
parameter region of Table I. B, N, E, BE, and SE, mea
black hole, a naked singularity, an expansion, a black h
with an envelope, and a star with an envelope, respectiv

FIG. 19. Evolution ofm/R in the Misner-Sharp code.

FIG. 20. Evolution of (dR/dt)ONG in the Misner-Sharp code.
5-7
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TOMOHIRO HARADA PHYSICAL REVIEW D 58 104015
X and Y indicate some technical difficulties. X means th
the present method does not work since a central singula
occurs before the first ray from the center reaches the st
surface in the Misner-Sharp code. Y means that the ste
surface goes outward so rapidly that some numerical d
culty occurs.

From Tables I and II, we find that the final fate of collap
from less compact (Rs /M*20) density distribution is, in
general, not a black hole but a naked singularity if the fluid
highly relativistic andg&1.01. The final fate of collapse
from compact (Rs /M&10) density distribution is a black
hole even if the fluid is highly relativistic andg&1.01. If the
fluid is highly relativistic andg*1.01, the fluid begins to
expand from less compact density distribution. It was c
firmed that the above statements do not depend on detai
initial density profile. From Table IV, we find that, if th
fluid is not relativistic and its profile is less compact, t
usual picture of collapse in Newton gravity is true. Ifg
,4/3, the pressure gradient cannot sustain the gravitati
collapse. Ifg.4/3, the final fate of collapse is a black hol
a naked singularity or a stable star depending on energe
i.e., the total internal energy and the gravitational energy
should be understood that, in Table IV, an N, i.e., a na
singularity means note@1 but only the steep density profil

FIG. 21. Evolution ofr0c . The simulation was repeated wit
various radial grid resolutions. Each curve is labeled by the num
of spatial zones used.
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at the center. In fact, in the present calculation,e did not
become much larger than the initial value until the cent
singularity breaks down our numerical code because of
finite resolution. This suggests that the dynamical range
the code used here is not sufficient to recognize an N
Table IV as a genuine naked singularity. From Tables I–
based on the criteria described above, a naked singularity
occur from generic initial data for a relativistic perfect flu
with g&1.01.

V. SUMMARY AND DISCUSSIONS

The final fate of the spherically symmetric gravitation
collapse of a perfect fluid from time-symmetric initial da
has been investigated numerically. Theg-law equation of
state with an adiabatic energy condition was considered
g21 is small and the initial density distribution is not s
compact, the collapse of a relativistic fluid results in a ce
tral, shell-focusing naked singularity. The initial data fro
which a naked singularity occurs is not zero-measure
therefore sufficiently generic as long as only time-symme
and spherically symmetric initial data are considered. T
final fate of a relativistic fluid is not a stable star but eithe
black hole or a naked singularity. This is because the to
internal energy of a highly relativistic fluid dominates th
gravitational energy and therefore the fluid can not be bou
We define the critical adiabatic indexgc as an upper limit of
g such that the collapse of highly relativistic fluid withg can
result in the naked singularity formation from generic, tim
symmetric, and spherically symmetric initial data. T
present numerical study showsgc.1.01.

If we consider the collapse of an unrelativistic fluid, th
usual picture of the Newtonian gravity is valid. The collap
of an unrelativistic fluid withg,4/3 does not end up with a

er

TABLE I. ẽc5102.

g2150 1025 1024 1023 1022 1021 1

Rs /M510 B B B B X Y Y
50 N N N N E Y Y
100 N N N N E Y Y
1000 N N N E E Y Y
TABLE II. ẽc5102.

g215231023 431023 631023 831023 1022 231022

Rs /M510 B B BE X X X
20 N N N N N BE
30 N N N N N E
40 N N N N E E
50 N N N E E E
60 N N N E E E
70 N N E E E E
80 N N E E E E
90 N N E E E E
100 N E E E E E
5-8
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stable star, while, forg.4/3, a stable star is possible. Th
final fate of an unrelativistic fluid withg.4/3 is basically
determined by energetics. The numerical code used here
not say whether the final fate of the collapse of an unrela
istic fluid is a black hole or a naked singularity because
needs an extremely large dynamical range.

Here we compare the results obtained here on the hig
relativistic fluid with the results under the assumption of se
similarity by Ori and Piran@8#. The equations of state of bot
analyses are approximately common, and hence the only
ference will be the genericity of initial data. The valuegc
.1.01 which we have obtained here agrees with the va
gc.1.0105 by Ori and Piran@8# within a numerical accu-
racy. Note that the initial data prepared here are time s
metric while those of Ori and Piran are imploding due to t
assumption of self-similarity. We should emphasize th
even withg,gc , the collapse can result in either a nak
singularity or a black hole and that it depends on the cho
of initial data.

There is a question about whether the results obtai
here support the violation of cosmic censorship. Is it poss
that the adiabatic indexg ~if the adiabatic condition is a goo
approximation! for high-density matter is as small asg
&1.01? We do not know the reason why the equation
state becomes so soft for relativistically compressed ma
although we know the adiabatic indexg may become very
small and even less than unity in some unrelativistic den
range@26#. For example, the radiation fluid, which is gene
ally considered as a good approximation for relativistic m
ter e@1, is given bye5` andg54/3. This might be strong
evidence for the validity of cosmic censorship. However,
are currently not sure of the equation of state for hig
condensed matter and hence it remains an open questio

Since a space-time singularity breaks down the smo
ness of physical quantities, numerical simulations can
give a rigorous answer about the validity of cosmic cens
ship. Nevertheless numerical simulations give physically
portant possibilities about the maximum density which
can observe in principle in gravitational collapse, i.e., outs
an event horizon. From this point of view, our results sh

TABLE III. ẽc51.

g2150 1025 1024 1023 1022 1021 1

Rs /M510 B B B B BE E E
50 N N N N N E E
100 N N N N E E E
1000 N N N E E E E

TABLE IV. ẽc51022.

g2150 1023 1022 1021 1/3 2/3 1

Rs /M510 B B B B B B B
50 N N N N B SE SE
100 N N N N E SE SE
1000 N N N E E E E
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that we can observe high-energy physics in gravitational c
lapse if the equation of state of the high-density matter
rather soft. If it is, the gravitational collapse might be a go
laboratory to obtain clues about high-energy physics.
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APPENDIX: DIVERGENT BEHAVIOR AT THE CENTER
IN THE LTB SOLUTION

Here we derive the divergent behavior of a central nak
singularity in the marginally bound dust collapse, which
described by the LTB solution, both on the synchronous
moving slice on which the naked singularity occurs and
the earliest null ray which emanates from the central na
singularity. For dust, the total energy density coincides w
the rest-mass density identically, i.e.,r5r0 . In synchronous
comoving coordinates, the LTB solution of marginal
bound collapse is given as

ds252dt21B2dr21R2dV2, ~A1!

R~ t,r !5S 9F

4 D 1/3

@ t0~r !2t#2/3, ~A2!

B~ t,r !5R8, ~A3!

r5
1

8p

F8

R2R8
, ~A4!

t0~r !5
2

3AF
r 3/2, ~A5!

where the prime denotes the derivative with respect tor and
we setr 5R at t50 using the rescaling freedom ofr in the
last equation, in deriving the last equation.F(r ) is an arbi-
trary function, a half of which is the conserved Misner-Sha
massm(r ). At t5t0(r ), a singularity occurs at a mass she
labeled byr . Here we sett5t0(0) and assume analytic an
generic initial data att50, i.e.,

r~ t50,r !5r01r2r 21¯ , ~A6!

where we assume that the density is a decreasing functio
r and thereforer2,0. Then, from Eq.~A4!,

F~r !5F3r 31F5r 51¯ , ~A7!

whereF3.0 andF5,0. Then, from Eqs.~A2!, ~A3!, and
~A5! the following behavior is easily derived att5t0(0) for
sufficiently smallr :

R}r 7/3, ~A8!
5-9



gi
i

ing
re-
ull

y is

TOMOHIRO HARADA PHYSICAL REVIEW D 58 104015
R8}r 4/3, ~A9!

F8}r 2. ~A10!

From Eq.~A4!, we find that

r}r 24. ~A11!

From Eqs.~A7!, ~A8!, and ~A11!, we conclude that, att
5t0(0),

r}R212/7, ~A12!

m

R
}R2/7 ~A13!

on the synchronous comoving slicet5t0(0). This behavior
around the naked singularity is the same for the nonmar
ally bound collapse. The blow up of the central density
given from Eqs.~A2!, ~A4!, and~A5! as

r~ t,r 50!}@ t0~0!2t#22, ~A14!
r-

o

10401
n-
s

while

r~ t,r .0!}@ t0~r !2t#21. ~A15!

Then we determine the exponents on the earliest outgo
null geodesic from the central naked singularity which
sults from the marginally bound dust collapse. On this n
geodesic,R andR8 are ~see, e.g., Ref.@6#!

R}r 7/3, ~A16!

R8}r 4/3, ~A17!

for r(t50,r ) as seen in Eq.~A6!. Therefore, we conclude
that

r}R212/7, ~A18!

m

R
}R2/7. ~A19!

This behavior seen around the central naked singularit
also the same for nonmarginally bound collapse.
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