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Final fate of the spherically symmetric collapse of a perfect fluid
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The final fate of the spherically symmetric collapse of a perfect fluid which followsytlzav equation of
state and adiabatic condition is investigated. Full general relativistic hydrodynamics is solved numerically
using a retarded time coordinate, the so-called observer time coordinate. Thanks to this coordinate, the causal
structure of the resultant space-time is automatically constructed. Then, it is found that a globally naked,
shell-focusing singularity can occur at the center from relativistically high-density, isentropic, and time sym-
metric initial data if y=<1.01 within the numerical accuracy. The result is free from the assumption of self-
similarity. The upper limit ofy with which a naked singularity can occur from generic initial data is consistent
with the result of Ori and Piran based on the assumption of self-simil§8§556-282(198)02720-9

PACS numbd(s): 04.20.Dw, 04.25.Dm, 97.68s

[. INTRODUCTION neric initial data the singularity can be either locally or glo-
bally naked[4-7].

The singularity theoreml] predicts the existence of sin- The assumption of pressureless matter would not be ap-
gularity in the generic gravitational collapse of a massivepropriate for high-density matter. It is obvious that the effect
star. However, it does not state whether or not the singularitpf pressure on the formation of a naked singularity should be
is covered by a horizon. The naked singularity is considerediaken into account because the formation of a naked singu-
to be harmful because it spoils the predictability of physicslarity in the LTB solution results in the blow up of the den-
Hence, Penrosg2,3] presented a cosmic censorship hypoth-sity. Ori and Pirar{8] investigated the collapse of a perfect
esis. The weak version says that all singularities are hiddefluid numerically under the assumption of self-similarity. By
in black holes. The strong version says that no singularityhis assumption the equation of state of the matter is re-
can be seen by any observer. We call a singularity censoreiricted to the formp=kp. They showed that a naked sin-
by the weak version a globally naked singularity and a singularity forms ifk<0.0105. Analytic discussiori®] based
gularity allowed by the weak version but censored by thePn self-silmllarlty follqwgd .|t. An effort of getting rid of th"e
strong version a locally naked singularity. Cosmic censor@Ssumption of self-similarity was made by Onozawa, Siino,
ship has not yet been proved. In fact, we can easily find thg;nd Watana_beElO]. They solved .”‘_”_“e”ca”y the Misner-

harp equationfl1] from regular initial data and searched

some solutions of Einstein equation have a naked singulari . : : .
L : the formation of an apparent horizon until the density blows
Therefore it is important to find out whether or not those . :
up and the numerical scheme breaks down. In fact, their

regular and generic initial data. In order to have insight into,51eq singularity.
the physical reasonableness, it will be helpful to understand |, this paper those difficulties in detection of naked sin-
in what case a naked singularity appears. If a naked singuyy|arities are avoided by constructing the null coordinate.
larity is possible in the regime of classical gravity, we might Then, the causal structure of the space-time can be obtained
catch a glimpse of Planck-scale high-energy physics or quarzutomatically by solving the dynamics of the space-time and
tum gravity. matter. Furthermore, by using the “observer time coordi-
The spherically symmetric dust collapse is studied bynates,” the coordinates never cross an event horizon and
many authors because of the existence of an exact solutiotherefore the global nakedness is trivial.
The collapse of a spherically symmetric and homogeneous We should note recent progress on the naked singularity
dust ball is described by the Oppenheimer-Snyder solutiorformation in gravitational collapse. Shapiro and Teukolsky
In this solution, a singularity is neither locally nor globally [12] showed numerically that a sufficiently prolateven
naked. Therefore any observer cannot see the singularitglowly rotating spheroid of collisionless gas collapses with
With this solution, the usual picture of a black hole as a finalthe blow up of the curvature invariant without the apparent
fate of gravitational collapse has been generally acceptedhorizon formation. The spherical symmetry of the LTB so-
However, once inhomogeneities of the density and velocityution has been somewhat relaxed. It was shown that a cen-
distributions are allowed, the above picture does not hold. Inrral, shell-focusing singularity in nonspherical but quasi-
this case, the space-time is given by the Lé@reaTolman-  spherical dust collapsé.e., the Szekeres solutidd3]) can
Bondi (LTB) solution, and it was proved that from very ge- be either locally or globally nakeld4]. Recently the stabil-
ity of the formation of the naked singularity in the LTB
solution against nonspherical linear perturbations was inves-
*Electronic address: harada@tap.scphys.kyoto-u.ac.jp tigated numerically, and it was suggested that the Cauchy
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horizon in the LTB solution is stablel5]. The restriction to  also tested by the Riemann shock tube problem and intensive
matter has been relaxed to anisotropic presgi-1§. explosion described by the Sedov solution. The conservation
Harada, Iguchi, and Nakald9] showed that the effect of of the total mass is a good indicator of numerical errors. In
rotation may induce the naked singularity formation byall calculations presented in the next section, the total mass
studying the collapse of a spherical cloud of counter-rotatingvas conserved within the accuracy of 0 The artificial
particles. Choptuif20] investigated numerically the spheri- viscosity term may play a rather subtle role in the formation
cally symmetric collapse of a scalar field and showed that @f a central singularity. To avoid such additive difficulties,
zero-mass black hole forms as a critical case for the blackhis term was not included basically. Absence of this term
hole formation. did not spoil the results for most calculations because shock

This paper is organized as follows. In Sec. Il, the coordi-wave did not occur for most cases. Only for the cases in
nate systems are presented. In Sec. lll, we discuss an equahich the central region expanded, a shock wave occurred,
tion of state and initial data. In Sec. IV, the numerical resultsand thereby the calculation suffered from serious numerical
are shown. In Sec. V, we conclude the paper. We use geoninstabilities, was the artificial viscosity switched on. For
etrized units withc=G=1 throughout the paper. We follow those cases, the fluid did not collapse, and hence the center
Misner, Thorne, and Wheeler{21] sign conventions of the was regular. 2048 grid zones were prepared in most calcula-
metric tensor and Riemann tensor. tions.

For notational convenience, we give the expression for
the line element in the coordinate systems used here. In the
usual comoving coordinates, the line element is written as

Here we concentrate on validity of the weak cosmic cen- L 2BtAIA2 1 ANEAIA A2t B2 )
sorship hypothesis, i.e., whether or not a singularity can be ds?=—e2/tAdiZ+ MM VAATH RA(1,A)dO?, (2.1)
globally naked. The singularity is troublesome for numerical . . . .
relativity because a numerical scheme breaks down at th‘é{h'le' in the observer time coordinates,
smgularlty. If we choose the spacelike hypgrsurfag:e asa t|med32: _ e2UUA 2 2 AMUA Gy AT R3(U,A)dO?,
slice, we cannot know whether or not the singularity is naked
because it depends on the further evolution of the space- 2.2
time. To suggest the nakedness of the singularity, many re-
searchers have displayed the absence of an apparent horizgfhere
However the absence of an apparent horizon does not neces-
sarily mean that the singularity is naked. In fact, the condi- dQ?=d#?+sirfed¢?, (2.3
tion which should be imposed on time slicing in order to
guarantee the singularity avoidance is not well knoffor ~ andA is chosen to be the rest-mass included within the ra-
example, seg4)). dius R in this article. In the observer time coordinates, the

To avoid such difficulties, we adopt the time slicing more lapse functiore? goes to zero when approaching to an event
suited to determine the causal properties of the space-tim@orizon. The stress-energy tensor for a perfect fluid is given
For this purpose, we use the outgoing null coordinate as as
time coordinate. We determine the scaling of this null coor-

II. METHOD

dinate in accordance with the proper time of a distant sta- THY=(p+p)utu”+pg"”. (2.4
tionary observer. This outgoing null coordinaiteis called
the “observer time coordinate[22]. This coordinate value lll. INITIAL DATA AND EQUATION OF STATE

corresponds to the time at which a distant observer would

see the event. Hence, the observer time coordinates never Initial data are prepared on the spacelike hypersurface in
cross an event horizon. The limit curve of the time slioses order to obtain a clear relation with physical situations. The
=const in the limitu—o is, if it exists, an event horizon. initial data are given by the following three arbitrary func-
Therefore, if the observer time coordinates hit a singularitytions:

it turns out to be globally naked. The procedure to obtain a

numerical solution for the space-time is as follows. First, we po=po(R), e=¢e(R), U=U(R), (3.
prepare initial data on a spacelike hypersurfeed®. Then,

we solve the Misner-Sharp equatiofkl] from the initial ~ wherep,, e are the rest-mass density and specific internal
datat=0 and store data on the first null ray which emanatesnergy, respectivelyJ is the coordinate velocity defined as
from the center at=0. When this ray reaches the stellar

surface, we begin to solve the Hernandez-Misner equations _ 4R R
[22] using the stored data on the first null ray as initial data U=e E‘e 9u” (3.2
u=0. See Refs[11,22—-24 for basic equations, numerical
schemes, and difference equations. The total energy density is given by
The code was tested by the collapse of a homogeneous
dust ball and an inhomogeneous dust ball. A supercritical p=po(lte). (3.3

neutron star collapsed while a subcritical neutron star did not
collapse within many dynamical time scales. The code wa¥Ve choose the density distribution as
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FIG. 1. Naked-singular model in which—1=10"*, ‘e,= 10, FIG. 3. Evolution ofm/R, the ratio of the Misner-Sharp mass to

andR,=100M. The slicing is by the Misner-Sharp and Hernandez-the circumferential radius, in the Misner-Sharp code.
Misner codes. The ordinate is the proper time of a comoving ob-

server and the abscissa is the circumferential radius. The Misne{yherep,.=p,(R=0). We use the following-law equation
Sharp slicing ist/M = 0,100,200,300,400,500,600,700,707 and thegf ctate:

Hernandez-Misner slicing is u/M

=0,100,200,300,400,500,600,700,728. The Hernandez-Misner slic-

ing is a set of outgoing null geodesics. We stopped the calculation p=(y—1)epg. (3.7
in both codes when we detected a central singularity. Locations of

some fluid elements are marked. The combination of the initial daté3.5), equation of state

(3.7, and adiabatic condition guarantees that pressure is in
proportional topd, i.e.,

(&) ]
. Pod 1-=| | (0=<R=Ry),
po(R)=1 " (R (3.4

0 (R<R). p=Kpg, (3.9
The distribution of the specific internal energy and velocitywhereK is constant all over the star. In this case, the initial
is set as distribution of the specific internal energy is parametrized
only by the central specific internal enerey. If we take the
~ -1 extremely relativistic limit €>1), the above equation of
e(R) =Ec< ~p—0> , (3.5  state becomes
Poc
5 p=(y—1p, (3.9
U(R)=0, (3.6
which is the equation of state used by Réf].
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FIG. 2. Evolution of the rest-mass densijty in the Misner-

Sharp code. The density distribution in the central regiort at FIG. 4. Evolution of @R/dt)ong, dR/dt along outgoing null
=707M becomes so steep that we call it a singularity. geodesics, in the Misner-Sharp code.
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FIG. 7. Evolution of the lapse functioa” in the Hernandez-

FIG. 5. Evolution of py in the Hernandez-Misner code. The .
Misner code.

density distribution in the central region at=728V becomes so
steep that we call it a singularity.
where M is the total gravitational mass. Since the fluid is
IV. RESULTS highly relativistic, the equation of state is approximately
equivalent with the equation of staf8.9). Hence, it is ex-

In o_Ietermini_ng the final fate of collapse, here we _adopt thE’pected that the feature of collapse is not sensitive to the value
following criteria. If the ratio of the rest-mass density of the o if 3>1. In this calculation. the artificial viscosit
c c : ) y was

innermost grid zone to that of the next grid zone excesses <witched off. Figure 1 shows time slicing by the Misner-

we call it a central “singularity” and stop the code. If the ) . .
lapse functiore” in the Hernandez-Misner code decreases tgonarP and Hemandez-Misner codes. The ordinate is the

less than 103, we call it an “event horizon.” If a singular- proper timer of a comoving observer, and the abscissa is the

ity occurs before an ‘event horizon’ is detected, we call it a_(:lrcumferentlal radius. The Misner-Sharp slicing presented

“naked singularity.” The result is not so sensitive to the ToFllgo 210(')330% l%rgléyooo(fsogp?gg |'7k§7 hgv%(eerrse:uzfﬁgefe“gcalin
choice of the thresholds. Note that the blow up of the rest; ’d ’ f{ X ’f' d ’ th 'tt o ith th 9
mass density inevitably results in the blow up of the scaIaJ.ree om oft 1s lixed so thatt agrees with the proper
apfB_ 27 2 2 . time at the stellar surface. On the last slice 707,
RgR,=647(p=+3p“). The scalar curvatureR=8m(p h . h de d d | sinaulari
—'3p) also blows up ifp# (1/3)p the Misner-Sharp code detected a central singularity
P o~ ) based on the criteria described above. The Hernandez-
Here, models for three values ef, 1%, 1,and 10%  \jisner slicing is a family of null hypersurfaces/M
were calculated. 1= 1, then the fluid is relativistic, while, if - 100,200,300,400,500,600,700,728. Also on the last slice
e<1, then the fluid is not relativistic. The results are sum-;,— 728\, a central singularity was detected. In this figure,
marized in Figs. 1-21 and Tables |-IV. locations of some fluid elements are also marked. Figures
2—4 shows the Misner-Sharp time evolution of the rest-mass
A. Naked singularity density pg, the ratiom/R, anddR/dt along outgoing null

First we pay attention to the naked-singular case, thgeodesmiwhmh is hereafter denoted a8i/dt) ongl, where

model in which y—1=10"% e,=10?, and R;=100M,

1e+06
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01 . . . s s . .
0 100 200 300 400 500 600 700 800
ulM
1e_05 1 1 1 1 ] )
01 1 . ° 100 FIG. 8. Blow up of the central rest-mass dengity . The simu-
lation was repeated with various radial grid resolutions. Each curve
FIG. 6. Evolution ofm/R in the Hernandez-Misner code. is labeled by the number of spatial zones used.
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FIG. 9. Black-hole model in whichy—1=10"%, ‘e.=1(, and FIG. 11. Evolution ofm/R in the Misner-Sharp code.

R;=10M. The Misner-Sharp slicing i M =0,10.0,20.0,22.3. On

the last slice, a singularity was detected. The Hernandez-Misnemated by that in Newton gravity. The behavior of the ratio
slicing is u/M=0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,72.3. On thechanges at the occurrence of the singularity

last slice, an event horizon was detected. The limit curve is the

event horizon. m
(4.2

m is the Misner-Sharp ma$41]. As seen in Fig. 2, the time .

evolution of the density profile in this model looks similar to Where 8=0.3. It should be also noted th@=2/7 in the
the Penston’s dust collapse solution in Newtonian gravity>enston’s dust collapse solution. In the Appendix, we will
[25] and also the LTB solution in Einstein gravity. It is re- Show thatg=2/7 for the LTB solution. Figure 4 shows that
markable that the density distribution in the central regionthe €xpansion of outgoing null geodesics are always positive
approaches a power_'aw prof"e and therefore loses any Chalfl'ntll the Centl’a| Slngulal’lty IS .detected. In Other WOde, the
acteristic scale. From Fig. 2, the divergent behavior of théVlisner-Sharp code does not find the apparent horizon before
density at the center with respectRochanges at the occur- the occurrence of the singularity. Figures 5-7 shows

rence of the singularity as Hernandez-Misner time evolution of, m/R and the lapse
functione’. From Figs. 2 and 5, it is found that there is little
poxconste poxR™ ¢, 4.1 difference in the divergence property of the density profile in

the central region in both codes. In the Appendix, we will
show thate=12/7 andB=2/7 for the LTB solution also on
the earliest null ray which emanates from the central naked
singularity. Figure 6 shows that the rati/R is much less
than unity also on that null ray. In Fig. 7, it is found theit

where a=1.7. Penstor[25] showed thate=12/7 for the
dust collapse in Newtonian gravity. In the Appendix, we will
show thata=12/7 is also valid for the LTB solution on the

spacelike hypersurfade= const of the occurrence of the cen- does not vanish but remains of the order of unity until the

tral singularity. As seen in Fig. 3, the ratio/R is much less . o . .
. . . . .central singularity is detected. Sineé remains of the order
than unity. This suggests that this collapse is well approxi- . : )
of unity, an event horizon has not yet formed. Figure 8

; shows the growth of the central rest-mass densityin this

model. The simulation was repeated with various radial grid
041t
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o 1605 ] 08y
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0 . s . . .
FIG. 10. Evolution ofpg in the Misner-Sharp code. The density Y 2 et 8 10
distribution in the central region &t 22.3V becomes so steep that
we call it a singularity. FIG. 12. Evolution of R/dt)ong in the Misner-Sharp code.
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FIG. 13. Evolution ofp, in the Hernandez-Misner code. The  FIG. 15. Evolution ofe” in the Hernandez-Misner code. The
density distribution in the central region remains not so steep eveRONVErges to zero asincreases.
at the event horizon.

event horizon. Figures 10—12 shows the Misner-Sharp time
resolutions. Each curve is labeled by the number of spatiakvolution ofpy, m/R, and @R/dt)ong. The behavior opg
grid zones used. The value of the central rest-mass densigndm/R in the central region seen in Figs. 10 and 11 is quite
grows unboundedly. The blow up of the central rest-massimilar to that seen in the naked-singular case. From Fig. 11,
density becomes more rapid and the maximum value of ithe ratiom/R is not so small although it remains less than
that can be attained becomes larger as the resolution b&/2 which corresponds to the apparent horizon in the spheri-
comes higher. Then, in summary, the collapse is well apeally symmetric space-time. Figure 12 shows that the
proximated by dust collapse both in Newton gravity and inMisner-Sharp code does not detect the apparent horizon until
Einstein gravity, and a central naked singularity forms in thisthe occurrence of the central singularity although the singu-

model based on the present criteria. larity is covered by the event horizon. Figures 13—15 shows
the Hernandez-Misner time evolution pf, m/R, ande?. It
B. Black hole is seen in Fig. 13 that the density profile around the center is
not so steep even at the event horizon. The raii® is
Next we take the model in whick—1=10"%, ‘e,=1C, increased and reaches 1/2 at the surface. Therefore the New-

andR,=10M as an example of black hole formation. Also tonian approximation is not valid. In Fig. 15, it is shown that
in this calculation, the artificial viscosity was switched €” approaches zero asincreases, which indicates approach
off. Figure 9 shows time slicing by the Misner- to the event horizon. Figure 16 shows growth of the rest-
Sharp and the Hernandez-Misner codes. The formemass density at the center for this case. The simulation was
slicing is t/M=0,10,20,22.3 and the latter isi/M repeated with various radial grid resolutions. From this figure
=0,10,20,30,40,50,60,70,72.3. The former code was stoppdtiwould be sure that the resolution is sufficient for the fol-
because of the steepness of the density profile around tHewing conclusion. Since the Hernandez-Misner code detects
center, while the latter code was stopped becatidsecame an event horizon before the occurrence of a central singular-
less than 102 all over the star. The sequence of the outgoing

null geodesicai=const converges, and its limit curve is an 100
1
8
01 % 10 b
Q
=
N
001 |
0 10 20 30 40 5 60 70 80
ulM
0.001
0.1 Vo 10 FIG. 16. Evolution ofpy.. The simulation was repeated with
various radial grid resolutions. Each curve is labeled by the number
FIG. 14. Evolution ofm/R in the Hernandez-Misner code. of spatial zones used.
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FIG. 17. Stable-star model in which—1=2/3,'e,=10"2, and FIG. 19. Evolution ofm/R in the Misner-Sharp code.

Rs=100M. The Misner-Sharp slicing i¥M=0, 2.00< 10%, 4.00
X10%, 6.00<10%, 8.00<10, 1.00<1C°, 1.20x10°, 1.22x10>.  present here only the Misner-Sharp time evolution. Figures
The Hernandez-Misner slicing isyM =0, 2.00< 10%, 4.00x 10%, 18-20 show the time evolution pf,, M/R, and @R/dt)one
6.0010, 8.00<10*, 1.00<10%, 1.18<10". respectively. In Fig. 18, it is found that the stable star has the
core-envelope structure. The surface of the envelope keeps
ity, the singularity is covered by the event horizon. More-expanding, while the core is accreting the envelope. The core
over, it can be expected that this collapse would result in theloes not collapse but settles its density profile after many
locally naked singularity because the Misner-Sharp time evoedynamical time scales. As seen in Figs. 18 and 19, the re-
lution in the central region is very similar to that of the sultant core radius is about 200 consistent with initial

globally naked singular case. total internal energy. Figure 19 shows that the Newtonian
approximation is valid because the ratiwR is much less
C. Stable star than unity. The fact that/R is proportional toR™! in the

} ~ _, envelope indicates that the mass contained in the envelope is

The final fate of collapse foy=5/3, e,=10"%, andRs  negligibly small compared to the core mass. Of course, the
=100M is a stable star. In this calculation, the artificial vis- exyansion of the outgoing null geodesics is always positive,
cosity was switched on in order to suppress numerical instass seen in Fig. 20. Figure 21 shows that the central region

bilities around the shock front. Figure 17 shows time slicinggetties down after several oscillations. The simulation was
by both codes. The Misner-Sharp slicingti1=0, 2.00  (gpeated with various radial grid resolutions.
x10%, 4.00<10%, 6.00<10%, 8.00x10%, 1.00x1C°, 1.20

X10°, 1.22x 10°. The Hernandez-Misner slicing isM =0,
2.00<10%, 4.00<10%, 6.00x10%, 8.00x10% 1.00x1C",
1.18<10°. In this figure, it is seen that the motion of the  Tables I-IV summarize the final fate of collapse &y
fluid is much slower than the speed of light. Hence, the time=10?,1,10 2. Table Il is the detailed search of the critical
evolutions both in the Misner-Sharp and Hernandez-Misneparameter region of Table I. B, N, E, BE, and SE, mean a
time slicings are basically the same. From this reason, welack hole, a naked singularity, an expansion, a black hole
with an envelope, and a star with an envelope, respectively.

D. Parameter search

10-06
1607 | . :
1008 | ] 1 b
1e-09 -
1e-10 | . 0.8t
% 1e-11 b .
T qe12 £ oer
1e-13 | Sl
1e-14 + . 04
1e-15 ¢
1e-16 | . 0z2r
1e-17 . . :
1 10 ;23 1000 10000 0 , , , , ) , ) ,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
FIG. 18. Evolution ofp, in the Misner-Sharp code. The density .
distribution of the core settles down aftes6.00x 10°, FIG. 20. Evolution of (IR/dt)oyng in the Misner-Sharp code.
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10

- TABLE I. ‘e,=10%.
256 —
512 —-—
Iy y—1=0 10° 10* 10% 102 10! 1
1 4
Rs/M=10 B B B B X Y Y
50 N N N N E Y Y
& oql ] 100 N N N N E Y Y
& 1000 N N N E E Y Y
0.01 ¢ at the center. In fact, in the present calculatiendid not
become much larger than the initial value until the central
singularity breaks down our numerical code because of the
0.001 20000 40000 60000 80000 100000 120000 finite resolution. This suggests Fh_at the dynam|<_:al range pf
ulM the code used here is not sufficient to recognize an N in

FIG. 21. Evolution ofpy.. The simulation was repeated with Tabl% IV af] a g_e-nglns nak.%d jlngularlty. Ffmd T.ablels I._IV’
various radial grid resolutions. Each curve is labeled by the numbepase on the C”te.”‘"? .?SC” ed above, a na (.3 singu amy. can
of spatial zones used. occur from generic initial data for a relativistic perfect fluid

with y=1.01.

X and Y indicate some technical difficulties. X means that

the present method does not work since a central singularity V. SUMMARY AND DISCUSSIONS

occurs before the first ray from the center reaches the stellar The final fate of the spherically symmetric gravitational
surface in the Misner-Sharp code. Y means that the stellagollapse of a perfect fluid from time-symmetric initial data
surface goes outward so rapidly that some numerical diffihas been investigated numerically. Thdaw equation of

culty occurs. _ . state with an adiabatic energy condition was considered. If
From Tables I and I, we find that the final fate of collapse ,— 1 is small and the initial density distribution is not so

from less compactRs/M=20) density distribution is, in compact, the collapse of a relativistic fluid results in a cen-
general, not a black hole but a naked singularity if the fluid istral, shell-focusing naked singularity. The initial data from
highly relativistic andy=1.01. The final fate of collapse which a naked singularity occurs is not zero-measure and
from compact Rs/M=10) density distribution is a black therefore sufficiently generic as long as only time-symmetric
hole even if the fluid is highly relativistic ang<1.01. If the  and spherically symmetric initial data are considered. The
fluid is highly relativistic andy=1.01, the fluid begins to final fate of a relativistic fluid is not a stable star but either a
expand from less compact density distribution. It was conblack hole or a naked singularity. This is because the total
firmed that the above statements do not depend on details dfternal energy of a highly relativistic fluid dominates the
initial density profile. From Table IV, we find that, if the gravitational energy and therefore the fluid can not be bound.
fluid is not relativistic and its profile is less compact, the We define the critical adiabatic index as an upper limit of
usual picture of collapse in Newton gravity is true. ¥f  y such that the collapse of highly relativistic fluid wighcan
<4/3, the pressure gradient cannot sustain the gravitationagsult in the naked singularity formation from generic, time-
collapse. Ify>4/3, the final fate of collapse is a black hole, symmetric, and spherically symmetric initial data. The
a naked singularity or a stable star depending on energeticpresent numerical study shows=1.01.

i.e., the total internal energy and the gravitational energy. It If we consider the collapse of an unrelativistic fluid, the
should be understood that, in Table 1V, an N, i.e., a nakedisual picture of the Newtonian gravity is valid. The collapse
singularity means nat>1 but only the steep density profile of an unrelativistic fluid withy<<4/3 does not end up with a

TABLE II. ‘e,=10%.

y—1=2x10"3 4x10°3 6x10°3 8x10°3 1072 2x10°?

Rs/M=10 B B BE X X X

20 N N N N N BE
30 N N N N N E

40 N N N N E E

50 N N N E E E
60 N N N E E E
70 N N E E E E
80 N N E E E E
90 N N E E E E
100 N E E E E E
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TABLE IIl. ‘e;=1. that we can observe high-energy physics in gravitational col-
lapse if the equation of state of the high-density matter is
y—1=0 10° 10% 10 1072 10! 1 rather soft. If it is, the gravitational collapse might be a good
laboratory to obtain clues about high-energy physics.

R/M=10 B B B B BE E E

50 N N N N N E E

100 N N N N E E E ACKNOWLEDGMENTS
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not say whether the final fate of the collapse of an unrelativ-
istic fluid is a black hole or a naked singularity because it APPENDIX: DIVERGENT BEHAVIOR AT THE CENTER
needs an extremely large dynamical range. IN THE LTB SOLUTION

Here we compare the results obtained here on the highly
relativistic fluid with the results under the assumption of self- Here we derive the divergent behavior of a central naked
similarity by Ori and Pirai8]. The equations of state of both Singularity in the marginally bound dust collapse, which is
analyses are approximately common, and hence the only diflescribed by the LTB solution, both on the synchronous co-
ference will be the genericity of initial data. The valye  moving slice on which the naked singularity occurs and on
=1.01 which we have obtained here agrees with the valughe earliest null ray which emanates from the central naked
7.=1.0105 by Ori and Pirafi8] within a numerical accu- Singularity. For dust, the total energy density coincides with
racy. Note that the initial data prepared here are time symthe rest-mass density identically, i.p5 po. In synchronous
metric while those of Ori and Piran are imploding due to thecomoving coordinates, the LTB solution of marginally
assumption of self-similarity. We should emphasize thatbound collapse is given as
even with y<w., the collapse can result in either a naked
singularity or a black hole and that it depends on the choice
of initial data. 13

There is a que;tion about wh.ether the r_esults_ obtai.ned R(t,r)=(—) [to(r)—t]%3, (A2)
here support the violation of cosmic censorship. Is it possible 4
that the adiabatic index (if the adiabatic condition is a good

ds?= —dt?+B2dr?+ R2dQ?, (A1)

approximation for high-density matter is as small ag B(t,r)=R’, (A3)
=<1.01? We do not know the reason why the equation of ,

state becomes so soft for relativistically compressed matter _ i F (Ad)
although we know the adiabatic indexmay become very P~ 87 RR""

small and even less than unity in some unrelativistic density

range[26]. For example, the radiation fluid, which is gener- 2 .
ally considered as a good approximation for relativistic mat- to(r)= —\/Er3 2 (A5)
tere>1, is given bye=o andy=4/3. This might be strong 3

evidence for the validity of cosmic censorship. However, We, here the prime denotes the derivative with respect and

are currently not sure of the equation of state for highlyWe setr=R att=0 using the rescaling freedom ofin the

condensed matter and hence it remains an open question. last equation, in deriving the last equatidf(r) is an arbi-

Since a space-time s_lngularlty br_eaks glown _the smoot rary function, a half of which is the conserved Misner-Sharp
ness of physical quantities, numerical simulations canno

give a rigorous answer about the validity of cosmic censor assm(r). At t=1o(r), Tngularlty oceurs at a mass shell
. ; ) . . X .~ labeled byr. Here we set=t,(0) and assume analytic and

ship. Nevertheless numerical simulations give physically im- eneric initial data at=0. i.e

portant possibilities about the maximum density which we? T

can observe in principle in gravitational collapse, i.e., outside p(t=0r)=po+ por2+- - (AB)

an event horizon. From this point of view, our results show

where we assume that the density is a decreasing function of

TABLE IV. e,=10"2. r and thereforgp,<<0. Then, from Eq(A4),
y-1=0 10°% 102 10! 13 23 1 F(r)=Far3+Fgro+---, (A7)
Rs/M=10 B B B B B B B  whereF;>0 andF5;<0. Then, from Eqgs(A2), (A3), and
50 N N N N B SE SE (Ab) the following behavior is easily derived &att,(0) for
100 N N N N E SE SE sufficiently smallr:
1000 N N N E E E E

Roer 73, (A8)
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R ocr 3, (A9)

Frocr?. (A10)
From Eq.(A4), we find that

pxr 4, (A11)

From Eqgs.(A7), (A8), and (A1l), we conclude that, at

PHYSICAL REVIEW D 58 104015

while

p(t,r>0)x[ty(r)—t] L. (A15)

Then we determine the exponents on the earliest outgoing
null geodesic from the central naked singularity which re-
sults from the marginally bound dust collapse. On this null
geodesicR andR’ are(see, e.g., Ref.6])

=10(0) Rocr 73, (A16)
pOCR_]'Zﬂ, (AlZ) R,UCI'4/3, (Al?)
m for p(t=0,r) as seen in Eq(A6). Therefore, we conclude
i R?7 (A13)  that
pocRilZIY, (A18)
on the synchronous comoving slitety(0). This behavior
around the naked singularity is the same for the nonmargin- TocRZW A19
ally bound collapse. The blow up of the central density is R : (A19)

given from Eqs(A2), (A4), and(A5) as

p(t,r=0)x[to(0)—t] 2, (A14)

This behavior seen around the central naked singularity is
also the same for nonmarginally bound collapse.
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