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Role of fixed scalars in scattering off a 5D black hole
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We discuss the role of fixed scalars,) in scattering off a five-dimensional black hole. The issue is to
explain the disagreement of the greybody factorXdoetween the semiclassical and effective string calcula-
tions. In the effective string approach, this is related to the operators with dime{®iprand (1,3). In the
semiclassical calculation, this originates from a complicated mixing betwesrd other fields. Hence it may
depend on the decoupling procedure. It is shown xhdépends on gauge choices such as the harmonic, dilaton
gauges, and the Krasnitz-Klebanov settingtigr,. It turns out thatv plays a role of test field well, while the
role of \ is obscure[S0556-282(198)03920-4

PACS numbegps): 04.70.Bw, 11.25.Mj

[. INTRODUCTION for Q;=Qs. This disagreement is related to the presence of
the chiral operators witf8,1) and(1,3) in the effective string
Recently there has been great progress in a certain class @pproach. On the other hand, this originates from a compli-
five-dimensional(5D) black holes with three (1) charges. cated mixing between and other fields in the semiclassical
This progress was achieved in both the Bekenstein-Hawkingalculation. Thus it may depend on the decoupling proce-
entropy Sgn) and absorption cross sectionrgd. The  dure. Here we deal mainly with this problem.

semiclassical calculations of the cross sectigneybody fac- In this paper, we shall perform a complete, semiclassical
tor) in extremal and near extremal black holes are importan@nalysis for a 5D black hole with threg(1) charges. This is
to compare them with the result &f-branes. similar to the 4DN=4 black hole with two 1) chargeg8],

Apart from counting the microstatg4] of a black hole which provides us a simple model for getting thevave
through D-brane physics, a dynamical consideration be-cross section of the fixed scalf@]. Here we consider all
comes an important issi2—6]. This is so because the grey- perturbing equations around a 5D black hole to find the con-
body factor for the black hole arises as a consequence of ttgistent solution. In the-wave calculation two fixed scalars
gravitational potential barrier surrounding the horizon. Thatare physically propagating modes, whereas other fields be-
is, this is an effect of spacetime curvature. In the stringycome the redundant ones. Hence our main task is to decouple
description, their origin comes from the thermal distributionthe fixed scalars from all other fields. In order to achieve this,
for excitations of thedD1-D5 bound state. Together with the we first consider the general perturbation for the graviton
Bekenstein-Hawking entropy, this seems to be a strong hirti . We choose either the harmonic gaug@#fwvzo,
of a d_eep and mystenous connection petween curvature arfflvr—her—1/2g47h)  or the dilaton gauge W,ﬁ’”’
statistical mechanicg7]. The cross section calculation for a =h“"T . It turns out that folQ, = Qs, v is independent of

minimally coupled scalar is straightforward in both semiclas-, g ; - :
. : X . ““the gauge fixing, while. depends on the gauge choice. This
sical and effective string models. Thavave cross section is gaug d b gaug

" h duli and This d d may explain the agreement of greybody factor #oand the
not sensitive to the moduli an ene_rgy)(. IS depends on disagreement fox. For an explicit calculation we choose the
the area of horizof3]. However, this is true when the area

of the horizon is not zero, e.g., for a 5D black hole with threeKrasn|tz—KIebanov(K-K) setting forh,,, as in Ref[5]. This

charges. When a 5D black hole has only two charges, thIS not suitable for studying the higher angular momentum

absorption cross section depends on both moduli and ener%ogoenssi(;rlih[j (gé:]ne;)arfj S;:&fé;ggnh;gg |er: gg&ei,awe need

[71 The organization of our paper is as follows. In Sec. I, we

A petter test of the agreement petween sem.|cla53|cal ar}%view the revelant part of a 5D black hole briefly. We set up
effective string calculations is provided by the fixed scalarsthe perturbation for all fields around 5D black hole solutions

The effective string calculation is well performed in the di- in Sec. lll. Theswave absorption cross section is calculated

Igte gas approximation. HOWGV‘?“ the semiglassical calculalan Sec. IV. Finally, we discuss the role of fixed scalars as the
tions are difficult even for the dilute gas limit, because of Qast fields in Sec ’V

complicated mixing between fixed scalars and other fields
(metric and gauge fielglsOne of fixed scalarsi) is coupled

to an operator of dimensio2,2) in the effective string
model. When theD1-brane charge@,) is equal to the
D5-brane charge@s), the string calculation o#r 4, yields Here we consider a class of 5D black holes representing
precise agreement with the semiclassical greybody fadlor the bound state ofn;(=VQ;/g)D1 strings and ns

But the greybody factor for the othek is not in agreement (=Qs/g)D5-branes compactified of®(=T*xS!). This

Il. 5D BLACK HOLES
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black hole can also be obtained as a solution to the semiclas- ds?=—df 2Adt?+d 1 ¥3dr2+r2f13dQ3 9)
sical action of a type-1IB superstring compactified oA,

The effective action for a 5D black hole with three charges isand

given by[4,5]

— Tk — fy
1 4 1 e = . efr=— f=fffy, (10)
S= FJ d5x\/—g(R—§(V)\)Z—4(Vv)2— AR Viafs fs reK
Ks
1 1
ARt AvE2_ T 4 —4vp g2 — 2Qk  — 2Q; — 2Qs
7€ F 7€ H ] (1 ngzﬁz_, =z, = (12)
K 1 5

wh.ereF.W is the 1Kaluza-K'Iem(KK) f|e!d strength along the  are four harmonic functions are defined by
string direction &%), F,, is the electric components of the
Ramond-RamondRR) two-form, andH ,, is dual to the

magnetic components of the RR two-form. Here we omit the f—14 ﬁ fom14 E fo—14 i d=1— @
analysis of the 6D dilatorpg, since it is just a minimally ! r2 5 r2 K r2’ r2’
decoupled scalar. On the other hand, the scalarand (12
\ interact with the gauge fields and are examples of the

fixed scalar.v is related to the scale of the internal torus with ri=rgsintfo;, i=1,5K. Q;, Qs, andQy are related

(T4, while \ is related to the scale of the KK circl&Y). <2 to the characteristic radii;, rs, r¢, and the radius of
is the 5D gravitational coupling constanti=8=G3,, G  horizonr, as

=5D Newtonian constant This can be determined

by GR=GiIVs=87%g?%/(2m)°VR=mg?4VR with V 1

=RgsRsR;Rg (volume of T4, R=Ry (radius of S'), o’ Qi=§r(2)3inh20i- Qf=ri(rf+rf),

=1, andg(= 10D string coupling constaptWe wish to fol-

low the Misner-Thorne-WheeldMTW) conventiong 13].

The equations for actiofl) is given by ) ) rg ra
4 2
4 s L coek) L .
Ry~ §0M>\f7u7\—43ﬂf9yV—e 5Fup P The background metri) is just a 5D Schwarzschild one
with time and space components rescaled by different pow-

=rg. When all three charges are nonzero, the surface of
=0 becomes a smooth inner horizé@auchy horizoh If

B %ZF(K)ZQW)e‘4’3“4”(%FWFVP— %Fzgw) ers of f. The event horizor(outer horizon is clearly atr

44y EH Hor_ ing ~0 @ one of the charges is zero, the surface of0 beqomes sin-
2 HPV 1 Fmv ’ gular. The extremal case corresponds to the limit g0

with the boost parameteks,— = keepingQ; fixed. Here

8V2y— e ¥ +avE2 o= 4B-4v2_( 3) one hasQ;=r%, Qs=rZ, andQy=r%. In this work we

are very interested in the limit ofy,r<<r,,rs, which is

called the dilute gas approximation. This corresponds to the

8V 2\ — 28R F (K24 o= 4 +avp2 | o-4B—4vp2_ near-extremal black hole and its thermodynamic quantities
(4) are given by

2

83N (K) vy — 2@ 1
V. (e¥3Frn =0, (5) Mue=—7 ri+rs+ Srocoshar |, (14)
5
Vﬂ(e—4/3)\+4va,V):O, (6)
47T3r0
Snext=——2— 1l sCoOshoy, (19
V’u(e—4/3)\—4yH,uv):0. (7) Kg
In addition, we need the remaining Maxwell equations as 1 2
three Bianchi identitie$12,14] = —r4rscoshoy . (16)
TH,next lo
ﬁ[#F“)pgl = uF po1= 9 uH pe1 = 0. (80  The above energy and entropy are actually those of a gas of

massless 1D particles. In this case the effective temperatures
The black hole solution is given by the background metricof the left and right moving string modes are given by
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1o 1o A=N+ON(L,I,x,60,6), (22)
Mgl o™ TR gl a7
The Hawking temperature is given by their harmonic aver- v=v+ ov(t,r,x,0,d), (23
age
—=—+—. (18
Tw To Tr Hereh,, is given by
I1l. PERTURBATION ANALYSIS
Ty hy O 0 0 T
Here we start with the perturbation around the black hole 2
background 15] d*hs/f h; 00 0
h#, = 0 0 hY, hX, h¥,|. (25
FIO=FI+ 7O=FI[1+F®(t,r,x,0,8)], (19 0 0 h? h% h%
.0 0 h? h?% h?,]
Fy=Fq+ Fi[1+ F(t,r,x,0, 20 . .
ot Fu=Fu[ 1+ A1 X, 0.0)], 0 This seems to be general for teavave calculation.
. . One has to linearize Eq$2)—(7) in order to obtain the
Hy=Hy+H,=Hy[1+H(t,r,x,0,0)], (21)  equations governing the perturbations as

4 — — R —
OR,.,(N) = 3(3,M9,0N+3,0M9,N) = 4(9,9,8v+9,6v9,v) + Ees’&aﬂ’;)Fg?hP“— B EIFI0 p
4 8 EKE(K) pa)\_l_l 8E(K) £(K)pog 1 8INEKIE(K) kppng +E BINE(K)Z 5}\+i 8IE(K)2h
3e mp v 6e po g,uV 66 pK n g;u; ge g/.LV 128 )%

1 — —
i e—4/3)\+4VF F hePe— —4/3)\+4VFMPpr —4/3)\+4VF F p

up' va

2 1
- §5>\+25V) + Ge‘4’3“4”F o F 70,

1 1
——Oo\Nt+ 5OV

1 — = — — -
_ _e74/3)\+4vFPKF77th7]g’uV+ e*4/3>\+41/|:29l“} 5 3

6

1 i Lwmag i
+ 38 YRR, S e YRTH H e

— 43— 4VH Hpag/“} l — 43— 41/H H Kh ng ,

M“p po

2
—e 4 4”H JH e a3 -avpy H, <35x+25v

1 e
+5e ¥ 7H%h,,=0, (26)

— - (1 1
PV N My il il
e H gﬂy(gé)\-i-sﬁv 1

— 1 — = 1 - = — 1 — =
v2 v v —4/3\+4v v —4/3\+4v v —4/3N+4vpE2
V50—V, ¥ b= ghaT, (h)a,i— g YRR Frry 2 e MR B iy e U U (—3

4
—5)\+45V)

— 1 wer— — ey
+ 7€ Y TH - 2 IR H e — §e4’3"4”H2(§5)\+46v) =0, (27)

]

— —_— — 1 _— 1 . — 2 1 — =
20y _ MY Wy _ T A8IAEK) m(K)ur . = A8INE (K E(K) Y _ Z 8I\E(K)2 T A4+ 4y v
VZON—h*'V VN =g ol (h) g\ —5 €% L F IOk 4 S eBREIIR O — 2@ EIO26) 4 2o 4R TR i

1T 11 1 1T
_ a4+ 4y Vi 4P —43\+4vE2|( _ T —4/3)\ any pv_ A= 43\—4v VR MP
Ze FF,'h# e F ( oM+ Sov|+ e HuH = e H,,H,h
— — (1 1
—e—4/3*—4VH2(55>\+ 551/):0, (28)
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— 8 — — — 8
V#+§¢~7#)\)(}"(K)”V—F(K)th““—F(K)B“hBV)+F(K)/”’(61“" (h)+ — 5>\) 0, (29
4 _ _ _
(V —§aﬂ>\+4a v)(]-‘“”—Fth”‘”—F“Bhﬁ”)+F"” oIy, (h)— (9 SN+40 51/):0 (30
4 — — 4
(V —5(9”)\ 40 v)(H“”—Ha”h““—H"Bhﬁ”) H“V( ore (h)— d,0N—49 51/)—0 (31
|
where Now we attempt to disentangle the mixing betweém,(S\)

and other fields by using both the harmonic gauge afij U

1— field equations in Eqs(29)—(31). After some calculations,
SR, (h)=— §V2h - EV,LVVh + V v, o1 one finds the relations
+2VPV h,,, (32 16
2 27" =hy+h,—h%, — o\, (37)
1 — _ _
5FZv(h): Egpg(vvhp,a_*—v,uhva'_vahp,v)- (33)

8
272h1+h2_h0'6|+ 55)\_867/, (38)

Since we start with full degrees of freedd@b), we choose
a gauge to study the propagation of fields. For this purpose
6R,, can be transformed into the Lichnerowicz operator

8
[16] 2H2h1+h2_h0'ﬁl+ §5)\+86V, (39)

SR =——V2h R

" h h? -‘rV V|p|h

a(v o'y,pv
(34 whereh”y =h¥, +h’+h?,. Using Eqs(37)—~(39), one ob-

We have to examine whether there exists any choice ofdins the linearized equation f@ and ox,
gauge which can simplify Eq$27) and(28). Convenﬂonally

we choose the harmonigtransversg gauge ¥ #ﬁ“” . 2
=g~¥él',,=0) if one concentrates on the propagation of V2sv— 6711/351:0, (40
gravitons. rofif

A. Harmonic gauge

2 2
Considering the harmonic gauge a@d= Qs case, Egs. V25\ — ihrrazyJr d h,uvrr o N — | Q1 Qk hoi
(27) and (28) lead to fra TN i rof3 12 fz ] °
2 8 [Qf Q&
= —— —+2 SN=0. 41
V25u+ wrr 1/3(2]-'—2H+85v) 0, (35) 3r5f1/3[ 2742 @D
q q 202 We wish to point out that thév equation is decoupled com-
V25N — — W o2nd — heTT gh— <K letely but thes\ equation still remains a coupled form.
V26N fmh”arwrfmh“ 7,0\ TERTE pletely a p
© 8 2Q§ B. Dilaton gauge
X| hy+hy—27 = 55)‘ + [ 6§2§1/3 We recognize that it is not enough to decouple equa-
! tion from the harmonic gauge condition. But if one intro-
4 ) duces the dilaton gaugeggﬁ“f&h“”r” ) [17], the &
X | hothy= P §5)\) =0 (36 equation can be reduced to a better sierane form. Under this
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gauge, one finds the same relations as those in B3%- 8
(39) and the same equation fow as in Eq.(40). One finds 2H=hy+hy+ 3 A +86. (49
the S\ equation

These are consistent with Eq87)—(39) whenh? (,i=0. The

V2o d h”& — 2 [Qf % ho 8 ten off-diagonal elements of Einstein equati@8) are given
fU (6§13 2 f2 0 3r6§1/3 by
Q1 Qk
+2 oN=0. (42 1 f’ 6 1/ f; f' f
4 fl f5 fx

In order to decouple the second terti"( in Eq. (42), one

use the Einstein equation. However, it seems to be a non-

trivial task. This is because the,() component of Eq(26) fi 1§
gives rise to the second order differential equation Hgr \f, fs dov=0, (50
Instead, one may choo$g=h"i0i=0, which is compatible

with the dilaton gauge. Then, in the dilute gas limit, we find

a new equation fop\, (tx): ddh,=0, (51)
— 8Q3% (t,0):  8;9,n,=0, (52)
25 —
CEDY or o0 43)
which is similar to Eq.(40). The situation may be getting (tg): ddghy=0, (53)

better when one introduces the simplest choice such as the
K-K setting[5].

1d 1
(r,x): ——(a —3I¥)dh— (ZF+F d,(hy—hy)
C. Krasnitz-Klebanov setting
In this case, the metric perturbatitry, takes the form 1 f_i+ fs fx 5 on fi s 5 00,
3\, s fe f, fs) XV
h*,=diad h,,h,,0,0,0]. (44 (54)
Under this setting, the harmonic gauge condition leads to
1 ) 1d 1
1 1d’ 3 1f 1d’ 1f' (r,0): _E((? 3Fr9)[?6’hl ZF+F (76’(h1_h2)
AL :(§E+F+€T> (zra)“v C o
(45) 1/(f; f5  fx f1 fg
tol —+ 2 =2 0,00 — | = — =] 3,6v=0,
3 1:l f5 1:K 1 f5
where the prime means the differentiation with respeat.to (55)

On the other hand, the dilaton gauge condition gives us the

relation
1 & 1d 1
1 d 3 (r,¢): _§(3r_3rr¢)3¢h1_ 237 dg(h1—hy)
5(hi—hy)'= g+;)h2. (46)
I L SR PN PO . S| P
From now on our calculation will be performed without 3\, fs “fe Ig f, fs dyov=0,
any gauge choice fdr,, and restriction on charges. Solving
Egs.(29)—(31), one can express the thre¢llfields in terms (56)
of 6\,d6v,hy,h, as
miT (x.0): (9T ypdy(hi+hy)=0, (57
16 $): (9,—T?,)d,(hy+hy)=0, 58
2.7:(K):h1+h2_§5)\, (47) (X ¢) ( X X¢) ¢( 1 2) ( )
. (6,¢):  (9g=T9,)d4(h1+hy)=0. (59)
2F=hythyt 50N =80, @8 The five diagonal elements of E(R6) take the form
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LO: - 2ot S iy 4o Sy s
(L0 —g@hhtgiihita it g

242 P t09,+ L5 h+1f1+fé+f',<
(9)( COD((?X SW; (90 CO (90 mﬂq} 1 gf—l E K

, f1 fL fy 112 £L2 £.2 1d 4 Q% 1
X(hZ 1)+3 d(fl+f +K)(h2_h1)_§(f_%+_+¥ (h2 1) 4 d (hz 3h1)+

f2 612 d
wlh—2rm- 3542 Qi 1 h— 2+ & on—as 4 Q5 1 h —2H+f5x+45 =0 (60)
2 3 3r5¢2d| 2 <773 )T 3veza| "2 3 i e
N L T T T il S 12 {21 cotga,+—e—i2 | [n,— R f5+fl
(nn: =5 q@dthet 50 =5 That 5 4 2 Gyt 2CoNa, + G| dut ooyt G 0 | (he = 3l 7T T 7,

2(f] fL  fp f1 fL 14’ QK 8 4 Q31
“(Bh!+h)— =l 245 o Klsvraol L5 _ox)_ 2 - -
(5h]+hj) 3<f1+f5 2fK SN/ +2 T ov' = 7 (h;=3h)+ 312 d hy—2F K= 2 n +3Wd
X| hy—2F 45>\ 45 4051 hy—2 45>\ 45v|=0 61
1 +§ v +§@a 1 H+§ + v|=0, ( )
11 h 2(2 d 1d’f’h 1/f’ sh, o 152 fL2 f'KZh 4 Q7 1
Oz g htha) = Tt g fhem 5 5 Fha =G| T4 7| (Neh) w3l o+ g e 3 ez
hy+h ar_ a2 01 1(h Fhy— 2t S on—dsy|— Q5 h,+h Cont L ontas =0,
2 3 3r6f2d| 12 3 Y7 3r%2d 2 3 YT
(62)
_ 1 12h A 1 . 2(2 d 1d’f’h 1/f" 6 o
(6,0): maéa( 1+hg)+ gcotyd,(hy+hy) = | -+ 1 1he— 5 7 T ha= gl 7+ | (hz—hy)
1[ 2 2 2 4 Qf 1( 8 4 Q31 4
e 2 " = _ (K)y_ — == _ _ _
4 Q31 4
—§Wa h;+h,—2H+ 55)\4‘451/ =0, (63
5
1 1 1 1 2(2 d 1d' f'
(P, 0): Wd¢9¢(hl+h2)+ deOtXﬁX(hl‘f’hz)-l- 24 s r12 COtﬂﬂg(h1+hz)—— F+E hz—ggT 2
1/ f' 112 L2 f2 4 QK « 8
I T ! 2 ) —
sl 77| (he—hp+3 f§+f§+73<_ 23752 gl ha+hy— 2 R
4 Ql 4 Q5 4
512 d hy+hy—2F+ 2N —46v| - 32 d hy+hy—2H+ 3 6N +45v| =0. (64)

The fixed scalar equatior(27) and(28) lead to
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!

f 2ov+| 2+ o2
—azﬁt 14 (9r F F(?

s Lt
Tar

1t L) 12 12
“alf, s (fz‘a "

Qi 1

+ 6f2d

3

i

11
o 5)\+ar—2

f
— A ONF| I+

2
d +2CO';\/(9 + T

4
hy+hy—2H+ = O\ +46v

1
2
+ + =
d,+2cotyd, Si?

a +cot6(99+?—(92>

Qi 1
2”12 g

4

) =0, (65)

1d(f fL fL
5)\+ZE(f_1+E_2K h2

9%+ cothd +L<92
x\ ¢ 07 sinfg” ¢

1(f; fe g 1/ 12 f2 2 Q% 1 8
22 o X hiepy =2 Ly 2o K —o (K _
8(f1+f5 2fK (h3—h1) 22 + 2 Zfﬁ -2 512 i h,+h,—2F 357\
Ql 4 Q2 4
|
IV. sWAVE PROPAGATIONS Equations(60) and (61) lead to another relation
From the Bianchi identitie$8) one has
f' 6 8(f; fi fy
0, F 10 =0,FK=g4,FK=0, —+—|(hj+hy)=—o| =+ 2>—2L| s\
foor 3\, fs Tfy
BX}—=¢90.7:=(9¢.7-—=0, fl f/
+8| —— 2|80, (70)
9 H=d,H=d4H=0. (67) fi fs

This implies either F&=7®(t,r), F=A(t,r), H  From Egs.(69 and(70), one can obtain
=H(t,r) or F®)=F=H=0. The latter together with Egs.

(47)—(49) means that all higher modes ot 1 are forbidden

in this scheme. We wish to study tleewave propagation (£+§) ,:_f(fl fs —2 Xl sn'+4 f__ f_S) Sv'
with the first case. This case dominates in the absorption of f = r/) 2 3\ f,  fs “fy fp fs
low energies. The important one can be derived frdm)(
component of the Einstein equation. By integrating &) d’ f’ 6<2 d') 12 fs2 fi2
; ) . —|==+d-+= —+ =+ =
over time, we can obtain the relation df rir d f% fg fﬁ
f’ 6 4 f’ f’ f' fi fé 16 1 Qi i é
Sl E(a ool E)‘”- X“z—gm( ﬁ—f—;—f—z)&
(68) , °
From three angular equatiori62)—(64), one finds the rela- —16—d(Ql f—;) ov. (71
tion 5
fro6ey , | df 12/2 d However, this equation is redundant because it can be ob-
Ty (h1=h3)= ZET+ ratair) tained by differentiating Eq(68) with respect tor. All in-
formation for h; andh, are thus encoded in E¢68) and
f12 f’2 fr2 32 1 (69), which say thah,; andh, are not the independent modes
—2( - f h,+ 3 1% and thus only two fixed scalars are propagating in the 5D
fl fs K black hole background. This can be confirmed from the fact

QK Q1 Qs
|2z ) o
1

+325- Gd(?zl ?55)51/

that the relevant value dfshould be determined by=|S|,
S=spin. Since the gravitons have spin 2, it is not surprising
that they are redundant with the=0 (s-wave case. Simi-
larly, three U1) modes with =0 are also redundant because
(69  the photon has spin 1. This was clearly shown in E4%)—
(49). Inserting Eqs(68), (69) into Eqgs.(65), (66), we obtain
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the following equations: [r=30,drig,—d =92+ f,,(r) 16N+ T, ,(r) 6v=0,

[r=30,dr3g,—d =92+ 1,,(r)]6v+1,,(r)6A=0,
(720 wheref,(r),f,\(r),f,,(r),f,,(r) are given by

(73

8 [ 3
fo(r)=— 3r e rd 4224 —r2(r2 402 +3rrdr2 4 rdr2 4 rdr2
wl1) r23r4+2r2(r2+r2+r3)+rari+rar2+rir3]? LHIHrarst orori+rs) {rsrk Frark s
FrRra 4 2(rrgr )2+ 2r2(r2ra+rdr2rdrd) b Hryratrarg et +2r3e 22 (ri4r2+r3) +rai 3rirar
1 4,.2 2 1 4,.2 2 4,.2 2
+Erl(r5+rK)+Ers(r1+rK)+2rK(r1+r5) , (74
f(N)= 227 52,7 ? PRy ey L r‘ll—ré—rérﬁ+r§rﬁ+§r§(rf—r§)
r23r4+2r2(r2+r2+r2)+rari+rar+riri]? 2
1
21,.4,.2 2 2.4 4.2 2(,2,2,,.2 2 2..4 4
+r {rl(r5+rK)_rlr5_r5rK}+Ero{rlrS(rS_r1)+rK(r5_r1)} , (75
fAv(r):va)\i (76)
fa(r=— %727 2 2. .7 ? 77 2.2, 2.2 2[r4 r‘1‘+ré—r%l’§+4rﬁ+2rﬁ(r}+r§)+Erg(ri+rg+4rﬁ)
r23r4+2r2(r2+ri+r3)+rarz+riri+riri]? 2

PR AT r A rardH Ar g (ra+r2)+6(rorsre)?+6ra(rrz+rir2+rira)l+rird+rirg+riry

. (77)

3 3
+2r2r2r2(r24r2+r2)+r3i 3rirara + Er‘l‘(rfﬁ— r2)+ Erg‘(r§+ rz)

Note that forr;=rs=R, one findsf,,=f,,=0. Then Egs. (r;#rs#rg) case. Equation&72) and(73) can be modified

(72) and(73) reduce to with 3f ,,(r)=f,,(r) and Sx=8\//3 to
R4 (2 [r=30,dr3g,—d = 32+f,,(r)]Sv+ 3f 5 (r) 6N =0,
_ _ 0
[I’ 33rdr3(9r—d lf&f—w 1+R7 ov=0, (80)
(78) -

[r=30,dr39,—d =52+ f,,(r) 16N + V3f (1) Sv=0.

(81)
2 2\2
r=35.dr39. —d - Lfg2— 8(R"+2r) The above can be decoupled by a rotation of the fields,
e Cor3r+ (R2+2rp) P

3r2 SN=(cosa)d, +(sina)d_, (82)
Sv=—(sina)¢,+(cosa)d_, (83

We note that Eq(78) is exactly the same form as E@0).  where the rotation anglea{ satisfies the relation
This is so because far;=rz, there is no mixing between
graviton and fixed scalardp). However, a mixing between B 2,.2 5.2
graviton ands\ is still present and thus we obtain the de-  5nq— P _1hw-h0) 2 r1+2r5 22rK
coupled equation79) by using Egs.(68) and (69). We tana 3 foa(r) J3  ri—rg
would like to find the fixed scalar equations for the general (84

104006-8
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From Eq.(84) one obtains

2,,2 2
ri+re—2r
4 1 5 K

cofa=

. (89

N| -
A

4 4 4 2.2 2.2 2.2
\/r1+r5+rK—r1r5—r1rK—r5rK

Then Egs(80) and(81) lead to the decoupled equations for

¢i!

[r=34,dr3g,—d 92+ sirfaf,,+ coaf,,

—2\/3cosa sinaf,,]¢, =0, (86)
[r=34,dr3s,—d 92+ codaf,,+sirfaf,,
+243cosa sinaf, ]¢_=0. (87)

Here we considet. (r,t)=¢. (r)e ' as a mode with en-
ergy w. Inserting Eqs(85), (74)—(77) into Eqgs.(86),(87), we
obtain the equations

(dr39,)%+ w?rof drr 1 o) | 0, (89
r T f————F—| 1+ — | |¢~-=0,
ST e T

where the effective radii.. are defined as

1
rizg[r§+r§+rﬁi Vritretrg—rirz—rirz—rir?].
(89

Equation(88) takes the same form as in EI.8). Since it is
difficult to find an analytic solution tq88), we patch to-
gether a solution between the near regigegion |, r

<ry,rs), the intermediate regiofregion Il, ro<r<w™ 1),

and the far regioriregion Ill, r>rq,r5). Region Il overlaps
each of the other two because f<r;, rs<w . In the
dilute gas regimer(,rx<<rq,rs), we write down the domi-

PHYSICAL REVIEW [58 104006
W [(r30,)%+r®w?]$ =0,

Ni(wr)

Jl(wl’)
+B
wrl

~ 1
d) wl

+ — O+

(92

whereC. ,D. ,a.,B- are the unknown constants. The full
solution in region | can be expressed in terms of the hyper-
geometric functiond4], and we present here the limiting
form for r>ry. E is obtained by the requirement that the
solution be purely ingoing at the horizon as

_ 2I(1-ia-ib)
T'(2—ia)l'(2—ib)"

(93

Herea andb are related to the left and right moving tem-
peratures as

w w

A= 4T P Iy

(94

The quantityG may be similarly fixed, but its value is not
relevant to us. A matching procedure leads to the relation

(99

The absorption probability is given by the ratio of the incom-
ing fluxes at the horizonrEry) and at spatial infinity
(r=) [2]. The flux per unit solid angle for a fields given

by

1
F= z(f*dr%rf—c.c.).

nant terms and their approximate solutions in the three re-

gions as

1:[(dr3a,)?+riré(r2+rg) w®—8réd] ¢l =0,

¢.=E—+G, (90)
o
4
rs -
I:] (r39,)2-8 — =0,
{( " (1+r2+/r2)2] B
2\2
p RS g P (91)
(1+r2/r2) re)

(96)
The absorption probability of.. is given by
b+ Fro [2..2 3 o
Pab’S:F—wZZ’ITI'lI'S r0+er m (97)
Then the absorption cross section is given by
4 w3rbr8
b _ br_ 15 2 212
O'abs_FPabs_ 64J‘i o(0+167°T))
/Ty _
X (w?+1672T3) €’ (98)
R (ew/TL_ 1)(ew/TR_ 1) ’

which is the same form as in Ref5]. Whenr;=rgz=r,
=R, one finds the absorption cross section forFor r,
=rs;=R, r2=R?/3, one gets the cross section for

V. DISCUSSIONS

Let us first discuss the role of a fixed scalarAlthough »
is related to the scale @, it turns out to be the 10D dilaton
(100 When ¢g= p1g—2v=0. For the Q,;=Qs case, one
finds the same linearized equation for the harmonic, dilaton
gauge, and K-K setting. This means that the fixed scalar (

104006-9
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gives us a gauge-invariant result. In the low energy limitThey have dimension@,1) and(1,3). The presence of these
(w—0), thes-wave absorption cross section takes the formgives rise to some disagreement between the semiclassical
and effective string cross sections even @or=Qs.

On the semiclassical calculation, this discrepancy origi-
nates from a complicated mixing betwekrand other fields.
Hence it may depend on the decoupling procedure. In this
work we find thath depends on the gauge choice. For ex-
ample, one obtains E¢41) for the harmonic gauge, E¢#3)
for the dilaton gauge together Wi1hz=h“’i,,i=0, and Eq.
(79) for K-K setting. Furthermore, substituting E@8) into
Eqg. (69) leads to

4
: (99

v Mo
Oabs— CAH ﬁ

whereC= 1/4 for the semiclassical approach from E@8),
1/4 for the effective string metho@], 1/12 for the three-
dimensional anti—de Sitter space (AgScalculation[18],
and 1/4 for the boundary conformal field thed@FT) cal-
culation[19]. This means that all calculation methods lead to
the same result, upto the numerical factors. In the dilute gas
limit (R<ro), one findso <0, whereasoop= Ay for a E(h hy) = a.
minimally decoupled scalab. 2Vt 2 d
On the other hand\ (= v5— ¢¢/2) is entirely determined
by the scale #5) of the KK circle (S) when ¢ is turned
off. The semiclassical resul®8) with r2 =R?%/3 takes the
form

12/r2— (2" 2/f2+ £'2/2)
f'/f+6/r

4 Qi/fi—QaIf?

rSd £/ —f/fy 2.

(102

This is a result purely from the Einstein’s equation. How-
ever, it is shown that Eq102) is not compatible with either
the harmonic gauge condition E@L5) or the dilaton gauge
condition Eq.(46). Although the K-K setting is a convenient
choice for obtaining the decoupled equations, it does not
always guarantee a consistent solution.

In conclusion, the fixed scalar is clearly understood to
be a good test field. However, the roleofas a test field is
obscure because it is a gauge-dependent field and gives rise
to some disagreement for the cross section.

L9 [ro\?
Uabs:ZAH E . (100)

On the effective string side, the coupling is[5]

Tesr
=g MaXa-X{(0,5)7+(2-X)%+ (0. X)%(3-X)?]
(101
plus the fermionic terms. HerB.u( = 1/2r°R?) is the effec- ACKNOWLEDGMENTS
tive string tension. The last term is an operator of dimension This work was supported in part by the Basic Science
(2,2 which also couples to-fixed scalar. This givesrh,, Research Institute Program, Ministry of Education, Project

=(Ay/16)(ro/R)*. Also there are additional contributions No. BSRI-97-2413 and by Korea Science and Engineering
to the cross section which arise from the first two terms.Foundation(Grant No. 94-1400-04-02)3

[1] A. Strominger and C. Vafa, Phys. Lett. &9, 99 (1996; C.
Callan and J. Maldacena, Nucl. Phy@472 591 (1996; G.
Horowitz and A. Strominger, Phys. Rev. L€et, 2368(1996.

[2] J. Maldacena and A. Strominger, Phys. Re\6%)861(1997);
A. Dhar, G. Mandal, and S. Wadia, Phys. Lett.388 51
(1996; J. M. Maldacena, Nucl. Phys. BProc. Supp). 61A,

Nucl. Phys.B503 157(1997).

[7] R. Emparan, Phys. Rev. B6, 3591(1997); Nucl. PhysB516,
297 (1998.

[8] R. Kallosh, A. Linde, T. Ortin, A. Peet, and A. van Proeyen,
Phys. Rev. D46, 5278(1992.

[9] B. Kol and A. Rajaraman, Phys. Rev.38, 983(1997); H. W.
Lee, Y. S. Myung, and Jin Young Kim, Phys. Lett. 20, 6

111 (1998. (1997.
(3] (81.9133)51 G. Gibbons, and S. Mathur, Phys. Rev. L&8{.417 [10] J. Maldacena and A. Strominger, Phys. Rev.5B, 4975

(1997; S. S. Gubser, I. Klebanov, and A. A. Tseytlin, Nucl.
Phys.B499, 217(1997); S. D. Mathur,ibid. B514, 204(1998;
S. S. Gubser, Phys. Rev. &5, 4984(1997).

[11] C. Holzhey and F. Wilczek, Nucl. PhyB380, 447 (1992.

[4] C. Callan, S. Gubser, I. Klebanov, and A. Tseytlin, Nucl. Phys.
B489, 65(1997; I. R. Klebanov and M. Krasnitz, Phys. Rev.
D 55, R3250(1997).

[5] M. Krasnitz and |. Klebanov, Phys. Rev. BB, 2173(1997);
M. Taylor-Robinson, hep-th/9704172.

[6] S. Das, A. Dasgupta, and T. Sarkar, Phys. Re\63) 7693
(1997; F. Dowker, D. Kastor, and J.

Traschen,

[12] S. Chandrasekhailhe Mathematical Theory of Black Holes
(Oxford University Press, New York, 1983

[13] C. Misner, K. Thorne, and J. Wheeldsravitation (Freeman,
San Francisco, 1973

hep-th/9702109; I. Klebanov, A. Rajaraman, and A. Tseytlin,[14] S. S. Gubser, Phys. Rev. 55, 7854(1997).

104006-10



ROLE OF FIXED SCALARS IN SCATTERING OFF A ... PHYSICAL REVIEW 58 104006

[15] H. W. Lee, Y. S. Myung, and J. Y. Kim, Class. Quantum Grav. [17] H. W. Lee, N. J. Kim, Y. S. Myung, and J. Y. Kim, Phys. Rev.
14, 759(1997; H. W. Lee, Y. S. Myung, J. Y. Kim, and D. K. D 57, 7361(1998.
Park,ibid. 14, L53 (1997). [18] H. W. Lee, N. J. Kim, and Y. S. Myung, hep-th/9805050.
[16] R. Gregory and R. Laflamme, Nucl. Phy&428 399 (1994). [19] E. Teo, hep-th/9805014.

104006-11



