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Black holes, brick walls, and the Boulware state

Shinji Mukohyama and Werner Israel*
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 5 June 1998; published 1 October 1998!

The brick-wall model seeks to explain the Bekenstein-Hawking entropy as a wall contribution to the thermal
entropy of ambient quantum fields raised to the Hawking temperature. Reservations have been expressed
concerning the self-consistency of this model. For example, it predicts large thermal energy densities near the
wall, producing a substantial mass correction and, presumably, a large gravitational back reaction. We re-
examine this model and conclude that these reservations are unfounded once the ground state—the Boulware
state—is correctly identified. We argue that the brick-wall model and the Gibbons-Hawking instanton~which
ascribes a topological origin to the Bekenstein-Hawking entropy! are mutually exclusive, alternative descrip-
tions ~complementary in the sense of Bohr! of the same physics.@S0556-2821~98!11520-5#

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

The prescription

SBH5
1

4
A/ l pl

2 ~1.1!

for assigning a ‘‘Bekenstein-Hawking entropy’’SBH to a
black hole of surface areaA was first inferred in the mid-
1970s from the formal similarities between black hole d
namics and thermodynamics@1#, combined with Hawking’s
discovery@2# that black holes radiate thermally with a cha
acteristic~Hawking! temperature

TH5\k0/2p, ~1.2!

wherek0 is the surface gravity. ThatSBH is a genuine ther-
modynamical entropy is given credence by the ‘‘generaliz
second law’’@3,4#, which states that the sum ofSBH and the
entropy of surrounding matter is non-decreasing in a
~quasi-static! interaction.

Much work and discussion have been devoted to the p
lem of deriving and understanding the enigmatic form
~1.1! in a more direct and fundamental way.

A statistical derivation of Eq.~1.1! for stationary black
holes, using analytic continuation to the Euclidean sector
imposing a Matsubara periodTH

21 on Euclidean time, was
developed by Gibbons and Hawking@5# in 1977. According
to their derivation,SBH emerges already at zero-loop orde
as a contribution to the partition function from the extrins
curvature boundary terms which accompany the Einst
Hilbert gravitational action.~Only the outer boundary at in
finity actually contributes. There is no inner bounda
because the horizon is represented by a regular point in
Euclidean sector of a non-extremal black hole with the ab
periodic identification, corresponding to the Hartle-Hawki
state for ambient quantum fields.!

*Permanent address: Canadian Institute for Advanced Rese
Cosmology Program, Department of Physics and Astronomy, U
versity of Victoria, Victoria BC, Canada V8W 3P6.
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Unfortunately, the Euclidean approach provides no
sight into the dynamical origin ofSBH . On the contrary, it
appears to suggest that one has to think ofSBH as having a
topological origin in some sense.

Interesting and suggestive, but still short of ideal from
physical point of view, are the interpretations which requ
an appeal to the past or future history of the black hole, o
ensembles of such histories; for instance, ‘‘exp(SBH) repre-
sents the number of quantum-mechanically distinct ways
which the black hole could have been made’’@3#, or those
which relateSBH to the entropy of the evaporation produc
@6,7#.

In thermodynamics, entropy is a state function with
definite value at each moment of time~at least for quasi-
stationary, near-equilibrium processes!. Correspondingly,
one would ideally like to have a direct physical understan
ing of SBH for a specific black hole at a given moment
terms of the dynamical degrees of freedom existing at t
moment, together with an explanation of how it comes
have the simple universal form~1.1!, independent of the na
ture and number of the fundamental fields and all details
the microphysics@8#.

An interpretation which holds promise of meeting the
requirements is thatSBH is entanglement entropy, associat
with modes and correlations hidden from external observ
by the presence of the horizon. If the black hole origina
from a pure state, there is perfect correlation between
internal and external modes, and the entanglement ent
can therefore equally well be found by counting extern
modes. A program of this type was first clearly formulat
by Bombelli, Koul, Lee and Sorkin@9# in a 1986 paper
which attracted little notice at the time. It was independen
re-initiated by Srednicki@10# and by Frolov and Novikov@8#
in 1993.

It turns out, remarkably, that the entanglement entropy
proportional to the area of the dividing wall. This is a robu
result which holds not only for black hole horizons@8,11#,
but also for cavities artificially cut out of Minkowski spac
@9,10,12#. However, the coefficient of proportionality is for
mally infinite, corresponding to the fact that modes of ar
trarily small wavelength can exist close to the horizon
partition. ~This, incidentally, yields the correct answer—
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SHINJI MUKOHYAMA AND WERNER ISRAEL PHYSICAL REVIEW D 58 104005
infinity—for the entropy of a classical black hole.! But an
infinitely sharp boundary violates quantum mechani
Quantum fluctuations will prevent events closer to the ho
zon than about a Planck lengthl pl from being seen on the
outside. Introducing an effective cutoff of this order repr
duces the Bekenstein-Hawking formula~1.1! with a coeffi-
cient of the right order of magnitude.

The entanglement interpretation seems to be implicit
and is certainly closely related to a pioneering calculat
done by ’t Hooft@13# in 1985. He considered the statistic
thermodynamics of quantum fields in the Hartle-Hawki
state~i.e. having the Hawking temperatureTH at large radii!
propagating on a fixed Schwarzschild background of m
M . To control divergences, ’t Hooft introduced a ‘‘bric
wall’’—actually a static spherical mirror at which the field
are required to satisfy Dirichlet or Neumann bounda
conditions—with radius a little larger than the gravitation
radius 2M . He found, in addition to the expected volum
dependent thermodynamical quantities describing hot fie
in a nearly flat space, additional wall contributions prop
tional to the area. These contributions are, however, a
proportional toa22, wherea is the proper altitude of the
wall above the gravitational radius, and thus diverge in
limit a→0. For a specific choice ofa ~which depends on the
number of fields, etc., but is generally of orderl pl!, ’t Hooft
was able to recover the Bekenstein-Hawking formula~1.1!
with the correct coefficient.

However, this calculation raises a number of questio
which have caused many, including ’t Hooft himself, to ha
reservations about its validity and consistency.

~a! SBH is here obtained as a one-loop effect, originati
from thermal excitations of the quantum fields. Does t
material contribution toSBH have to beaddedto the zero-
loop Gibbons-Hawking contribution which arises from t
gravitational part of the action and already by itself accou
for the full value ofSBH? @14#

~b! The ambient quantum fields were assumed to be in
Hartle-Hawking state. Their stress-energy should there
be bounded~of orderM 24 in Planck units! near the gravita-
tional radius, and negligibly small for large masses. Ho
ever, ’t Hooft’s calculation assigns to them enormo
~Planck-level! energy densities near the wall.

~c! The integrated field energy gives a wall contribution
the mass

DM5
3

8
M ~1.3!

when a is adjusted to give the correct value ofSBH . This
suggests a substantial gravitational back reaction@13# and
that the assumption of a fixed geometrical background m
be inconsistent@14–16#.

Our main purpose in this paper is to point out that the
difficulties are only apparent and easy to resolve. The b
remark is that thebrick-wall model strictly interpreted doe
not represent a black hole. It represents the exterior of
starlike object with a reflecting surface, compressed to ne
~but not quite! its gravitational radius. The ground state f
quantum fields propagating around this star is not the Ha
10400
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Hawking state but the Boulware state@17#, corresponding to
zero temperature, which has a quite different behavior n
the gravitational radius.

The Boulware state in a static spherical geometry is
fined as being free of modes having positive frequency w
respect to the conventional Schwarzschild timet. At infinity
it approaches the Minkowski vacuum with zero stre
energy. At smaller radii, vacuum polarization induces a n
vanishing stress-energy, which diverges near a brick w
skirting the gravitational radius. The asymptotic behavior
that of a thermal stress-energy—the characteristic temp
ture is the local acceleration temperature for static observ
diverging near the gravitational radius—but with the oppo-
site sign. The Boulware state is energetically depressed
low the vacuum.~We shall reserve the word ‘‘vacuum’’ for a
condition of zero stress-energy; in general, it is not a qu
tum state.!

The quantum fields with temperatureTH at infinity which
’t Hooft introduced into his brick wall model have a loca
temperature and a thermal stress-energy which also div
near the gravitational radius. To obtain the total~gravitating!
stress-energy, one must add the contributions of the~Boul-
ware! ground state and the thermal excitations. The dive
ing parts of these contributions cancel. The sum is bound
of order M 24 near the gravitational radius~hence small for
large masses!, and in the limita→0 indistinguishable from
the Hartle-Hawking stress-energy.

Thus, it is perfectly legitimate to neglect back reaction
the brick wall model. With the proper identification of th
ground state, problems~b! and~c! above resolve themselves

The same basic observation resolves problem~a!. In the
Euclidean sector of the brick-wall spacetime~with Matsub-
ara periodTH

21!, it is not true that there is no inner boundar
The inner boundary is the brick wall itself, and its bounda
contribution to the Euclidean action cancels that of the ou
boundary at infinity. So the Gibbons-Hawking zero-loo
contribution is now zero. The ‘‘geometrical entropy’’ of th
Gibbons-Hawking ‘‘instanton’’ thus provides an alternativ
complementary description ofSBH , not a supplementary
contribution to the entropy of thermal excitations as calc
lated from the brick wall model.

In Sec. II we summarize essential properties of the Bo
ware and Hartle-Hawking states that play a role in this pap
In Sec. III we sketch the physical essence of the brick-w
model by using a particle description of quantum fields.
systematic treatment of the model is deferred to Sec. IV
which the results in Sec. III are rigorously derived from t
quantum field theory in curved spacetimes. Section V is
voted to summarize this paper. In Appendix A, for comple
ness, we apply the so-called on-shell method to the b
wall model and show that in the on-shell method we mig
miss some physical degrees of freedom. Hence, we do
adopt the on-shell method in the main body of this pape

II. THE BOULWARE AND HARTLE-HAWKING STATES

It is useful to begin by summarizing briefly the essent
properties of the quantum states that will play a role in o
discussion.
5-2
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BLACK HOLES, BRICK WALLS, AND THE BOULWARE STATE PHYSICAL REVIEW D58 104005
In a curved spacetime there is no unique choice of ti
coordinate. Different choices lead to different definitions
positive-frequency modes and different ground states.

In any static spacetime with static~Killing ! time param-
eter t, the Boulware stateuB& is the one annulled by the
annihilation operatorsaKill associated with ‘‘Killing modes’’
~positive-frequency int!. In an asymptotically flat space,uB&
approaches the Minkowski vacuum at infinity.

In the spacetime of a stationary eternal black hole,
Hartle-Hawking stateuHH& is the one annuler byaKrus , the
annihilation operators associated with ‘‘Kruskal mode
~positive-frequency in the Kruskal lightlike coordinatesU,
V!. This state appears empty of ‘‘particles’’ to free fallin
observers at the horizon, and its stress-energy is boun
there~not quite zero, because of irremovable vacuum po
ization effects!.

If, just for illustrative purposes, we consider
(111)-dimensional spacetime, it is easy to give concr
form to these remarks. We consider a spacetime with me

ds252 f ~r !dt21
dr2

f ~r !
, ~2.1!

and denote byk(r ) the redshifted gravitational force, i.e., th
upward accelerationa(r ) of a stationary test-particle reduce
by the redshift factorf 1/2(r ), so thatk(r )5 1

2 f 8(r ). A hori-
zon is characterized byr 5r 0 , f (r 0)50, and its surface
gravity defined byk05 1

2 f 8(r 0).
Quantum effects induce an effective quantum stre

energyTab (a,b,¯5r ,t) in the background geometry~2.1!.
If we assume no net energy flux (Tt

r50)—thus excluding
the Unruh state—Tab is completely specified by a quantu
energy densityr52Tt

t and pressureP5Tr
r . These are com-

pletely determined~up to a boundary condition! by the con-
servation lawTa;b

b 50 and the trace anomaly, which is

Ta
a5

\

24p
R ~2.2!

for a massless scalar field, withR52 f 9(r ) for the metric
~2.1!. Integration gives

f ~r !P~r !52
\

24p
~k2~r !1const!. ~2.3!

Different choices of the constant of integration correspond
different boundary conditions, i.e., to different quantu
states.

For the Hartle-Hawking state, we requireP and r to be
bounded at the horizonr 5r 0 , giving

PHH5
\

24p

k0
22k2~r !

f ~r !
,

rHH5PHH1
\

24p
f 9~r !. ~2.4!

When r→` this reduces to@setting f (r )→1#
10400
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rHH.PHH5
p

6\
TH

2 ,

TH5\k0/2p, ~2.5!

which is appropriate for one-dimensional scalar radiation
the Hawking temperatureTH .

For the Boulware state, the boundary condition isP5r
50 whenr 5`. The integration constant in Eq.~2.3! must
vanish, and we find

PB52
\

24p

k2~r !

f ~r !
,

rB5PB1
\

24p
f 9~r !. ~2.6!

If a horizon were present,rB andPB would diverge there to
2`.

For the difference of these two stress tensors,

DTa
b5~Ta

b!HH2~Ta
b!B , ~2.7!

Eqs.~2.4! and ~2.6! give the exactly thermal form

DP5Dr5
p

6\
T2~r !, ~2.8!

where T(r )5TH /Af (r ) is the local temperature in th
Hartle-Hawking state. We recall that thermal equilibrium
any static gravitational field requires the local temperaturT
to rise with depth in accordance with Tolman’s law@18#

TA2g005const. ~2.9!

We have found, for this (111)-dimensional example
that the Hartle-Hawking state is thermally excited above
zero-temperature~Boulware! ground state to a local tempera
tureT(r ) which grows without bound near the horizon. Ne
ertheless, it is the Hartle-Hawking state which best appro
mates what a gravitational theorist would call a ‘‘vacuum
at the horizon.

These remarks remain at least qualitatively valid in
11)-dimensions, with obvious changes arising from the
mensionality. In particular, the (311)-dimensional analogue
of Eq. ~2.8! for a massless scalar field,

3DP.Dr.
p2

30\3 T4~r !, ~2.10!

holds to a very good approximation, both far from the bla
hole and near the horizon. In the intermediate zone there
deviations, but they always remain bounded@19#, and will
not affect our considerations.

III. BRICK-WALL MODEL

We shall briefly sketch the physical essence of the bri
wall model.~A systematic treatment is deferred to Sec. IV!

We wish to study the thermodynamics of hot quantu
5-3
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SHINJI MUKOHYAMA AND WERNER ISRAEL PHYSICAL REVIEW D 58 104005
fields confined to the outside of a spherical star with a p
fectly reflecting surface whose radiusr 1 is a little larger than
its gravitational radiusr 0 . To keep the total field energ
bounded, we suppose the system enclosed in a spherical
tainer of radiusL@r 1 .

It will be sufficiently general to assume for the geome
outside the star a spherical background metric of the for

ds252 f ~r !dt21
dr2

f ~r !
1r 2dV2. ~3.1!

This includes as special cases the Schwarzschild, Reiss
Nordström and de Sitter geometries, or any combination
these.

Into this space we introduce a collection of quantu
fields, raised to some temperatureT` at large distances, an
in thermal equilibrium. The local temperatureT(r ) is then
given by Tolman’s law~2.9!,

T~r !5T` f 21/2 ~3.2!

and becomes very large whenr→r 15r 01Dr . We shall
presently identifyT` with the Hawking temperatureTH of
the horizonr 5r 0 of the exterior metric~3.1!, continued~il-
legitimately! into the internal domainr ,r 1 .

Characteristic wavelengthsl of this radiation are smal
compared to other relevant length scales~curvature, size of
container! in the regions of interest to us. Near the sta
surface,

l;\/T5 f 1/2\/T`!r 0 . ~3.3!

Elsewhere in the large container, at large distances from
star,

f .1, l.\/T`;r 0!L. ~3.4!

Therefore, a particle description should be a good appr
mation to the statistical thermodynamics of the fie
~Equivalently, one can arrive at this conclusion by consid
ing the WKB solution to the wave equation, cf. ’t Hooft@13#
and Sec. IV.!

For particles of rest-massm, energyE, 3-momentump
and 3-velocityv as viewed by a local stationary observer, t
energy densityr, pressureP and entropy densitys are given
by the standard expressions

r5NE
0

` E

ebE2e

4pp2dp

h3 ,

P5
N
3 E

0

` vp

ebE2e

4pp2dp

h3 ,

s5b~r1P!. ~3.5!

Here, as usual,

E22p25m2, v5p/E, b5T21; ~3.6!
10400
r-

on-

er-
f
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r-

e is 11 for bosons and21 for fermions and the factorN
takes care of helicities and the number of particle spec
The total entropy is given by the integral

S5E
r 1

L

s~r !4pr 2dr/Af , ~3.7!

where we have taken account of the proper volume elem
as given by the metric~3.1!. The factorf 21/2 does not, how-
ever, appear in the integral for the gravitational mass of
thermal excitations@20# ~it is canceled, roughly speaking, b
negative gravitational potential energy!:

DMtherm5E
r 1

L

r~r !4pr 2dr. ~3.8!

The integrals~3.7! and ~3.8! are dominated by two con
tributions for large container radiusL and for smallDr 5r 1
2r 0 :

~a! A volume term, proportional to4
3 pL3, representing

the entropy and mass-energy of a homogeneous quantum
in a flat space~since f .1 almost everywhere in the con
tainer if L/r 0→`! at a uniform temperatureT` . This is the
result that would have been expected, and we do not nee
consider it in detail.

~b! Of more interest is the contribution of gas near t
inner wall r 5r 1 , which we now proceed to study furthe
We shall find that it is proportional to the wall area, an
diverging like (Dr )21 whenDr→0.

Because of the high local temperaturesT near the wall for
small Dr , we may insert the ultrarelativistic approximation

E@m, p.E, v.1

into the integrals~3.5!. This gives

P.
1

3
r.

N
6p2 T4E

0

` x3dx

ex2e
~3.9!

in Planck units (h52p\52p). The purely numerical inte-
gral has the value 3! multiplied by 1,p4/90 and7

8 p4/90 for
e50,1 and21 respectively, and we shall adopt 3!, absor
ing any small discrepancy intoN. Then, from Eq.~3.5!,

r5
3N
p2 T4, s5

4N
p2 T3 ~3.10!

in terms of the local temperatureT given by Eq.~3.2!.
Substituting Eq.~3.10! into Eq. ~3.7! gives for the wall

contribution to the total entropy

Swall5
4N
p2 4pr 1

2T`
3 E

r 1

r 11d dr

f 2~r !
, ~3.11!

whered is an arbitrary small length subject toDr !d!r 1 . It
is useful to express this result in terms of the proper altitu
a of the inner wall above the horizonr 5r 0 of the exterior
geometry~3.1!. @Since Eq.~3.1! only applies forr .r 1 , the
5-4
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BLACK HOLES, BRICK WALLS, AND THE BOULWARE STATE PHYSICAL REVIEW D58 104005
physical space does not, of course, contain any horizon.# We
assume thatf (r ) has a~simple! zero for r 5r 0 , so we can
write

f ~r !.2k0~r 2r 0!,k05
1

2
f 8~r 0!Þ0 ~r→r 0!,

~3.12!

wherek0 is the surface gravity. Then

a5E
r 0

r 1
f 21/2dr⇒Dr 5

1

2
k0a2, ~3.13!

and Eq.~3.11! can be written

Swall5
N

90pa2 S T`

k0/2p D 3 1

4
A ~3.14!

in Planck units, whereA54pr 1
2 is the wall area.

Similarly, we find from Eqs.~3.8! and~3.10! that thermal
excitations near the wall contribute

DMtherm,wall5
N

480pa2 S T`

k0/2p D 3

AT` ~3.15!

to the gravitational mass of the system.
The wall contribution to the free energy

F5DM2T`S ~3.16!

is

Fwall52
N

1440pa2 S T`

k0/2p D 3

AT` . ~3.17!

The entropy is recoverable from the free energy by the s
dard prescription

Swall52]Fwall /]T` . ~3.18!

@Observe that this is an ‘‘off-shell’’ prescription@21#: the
geometrical quantitiesA, a and, in particular, the surfac
gravity k0 are kept fixed when the temperature is varied
Eq. ~3.17!.#

Following ’t Hooft @13#, we now introduce a crude cutof
to allow for quantum-gravity fluctuations by fixing the wa
altitudea so that

Swall5SBH , when T`5TH , ~3.19!

where the Bekenstein-Hawking entropySBH and Hawking
temperatureTH are defined to be thepurely geometrical
quantities defined by Eqs.~1.1! and ~1.2! in terms of
the wall’s area A and redshifted acceleratio
(5surface gravity)k0 . From Eqs.~3.19! and ~3.14!, restor-
ing conventional units for a moment, we find

a5 l plAN/90p, ~3.20!
10400
n-

so thata is very near the Planck length if the effective num
berN of basic quantum fields in nature is on the order
300.

It is significant and crucial that the normalization~3.20! is
universal, depending only on fundamental physics, and ind
pendent of the mechanical and geometrical characteristic
the system.

With a fixed by Eq.~3.20!, the wall’s free energy~3.16!
becomes

Fwall52
1

16 S T`

TH
D 3

AT` . ~3.21!

This ‘‘off-shell’’ formula expressesFwall in terms of three
independent variables: the temperatureT` and the geometri-
cal characteristicsA andTH . From Eq.~3.21! we can obtain
the wall entropy either from the thermodynamical Gibbs
lation ~3.18! ~with T` set equal toTH after differentiation!,
or from the Gibbs-Duhem formula~3.16! which is equivalent
to the statistical-mechanical definitionS52Tr (r ln r).
Thus the distinction@21# between ‘‘thermodynamical’’ and
‘‘statistical’’ entropies disappears in this formulation, b
cause the geometrical and thermal variables are kept in
pendent.

The wall’s thermal mass-energy is given ‘‘on shel
(T`5TH) by

DMtherm,wall5
3

16
ATH ~3.22!

according to Eqs.~3.15! and ~3.20!. For a wall skirting a
Schwarzschild horizon, so thatTH5(8pM )21, this reduces
to ’t Hooft’s result ~1.3!.

As already noted, thermal energy is not the only source
the wall’s mass. Quantum fields outside the wall have
their ground state the Boulware state, which has a nega
energy density growing to Planck levels near the wall.
shell, this very nearly cancels the thermal energy den
~3.10!; their sum is, in fact, the Hartle-Hawking value@cf.
Eqs.~2.7! and ~2.10!#:

~Tm
n ! therm,T`5TH

1~Tm
n !B5~Tm

n !HH , ~3.23!

which remains bounded near horizons, and integrates v
ally to zero for a very thin layer near the wall. The tot
gravitational mass of the wall is thus, from Eqs.~3.15! and
~3.20!,

~DM !wall5~DM ! therm,wall1~DM !B,wall

5
3

16
ATH„~T` /TH!421…, ~3.24!

which vanishes on shell. For a central mass which is larg
Planck units, there is no appreciable back reaction of m
rial near the wall on the background geometry~3.1!.

We may conclude that many earlier concerns@13–15#
were unnecessary: ’t Hooft’s brick wall model does provi
a perfectly self-consistent description of a configurati
which is indistinguishable from a black hole to outside o
5-5
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SHINJI MUKOHYAMA AND WERNER ISRAEL PHYSICAL REVIEW D 58 104005
servers, and which accounts for the Bekenstein-Hawking
tropy purely as thermal entropy of quantum fields at
Hawking temperature~i.e. in the Hartle-Hawking state!, pro-
viding one accepts thead hocbut plausible ansatz~3.20! for
a Planck-length cutoff near the horizon.

The model does, however, present us with a feature wh
is theoretically possible but appears strange and counteri
tive from a gravitational theorist’s point of view. Althoug
the wall is insubstantial~just like a horizon!—i.e., space
there is practically a vacuum and the local curvature low—
is nevertheless the repository of all of the Bekenste
Hawking entropy in the model.

It has been argued@8# that this is just what might be
expected of black hole entropy in the entanglement pictu
Entanglement will arise from virtual pair-creation in whic
one partner is ‘‘invisible’’ and the other ‘‘visible’’~although
only temporarily—nearly all get reflected back off the pote
tial barrier!. Such virtual pairs are all created very near t
horizon. Thus, on this picture, the entanglement entropy~and
its divergence! arises almost entirely from the strong corr
lation between nearby field variables on the two sides of
partition, an effect already present in flat space@22#.

An alternative~but not necessarily incompatible! possibil-
ity is that the concentration of entropy at the wall is an a
fact of the model or of the choice of Fock representat
~based on a static observer’s definition of positive f
quency!. The boundary condition of perfect reflectivity at th
wall has no black hole counterpart. Moreover, one may w
suspect that localization of entanglement entropy is not
entirely well-defined concept@23# or invariant under change
of the Fock representation.

IV. THE BRICK WALL MODEL REEXAMINED

In the previous section, we have investigated the stat
cal mechanics of quantum fields in the regionr 1,r ,L of
the spherical background~3.1! with the Dirichlet boundary
condition at the boundaries. By using the particle descript
with the local temperature given by the Tolman’s law, w
have obtained the inner-wall contributions of the fields
entropy and thermal energy. When the former is set to
equal to the black hole entropy by fixing the cutoffa as Eq.
~3.20!, the later becomes comparable with the mass of
background geometry. After that, it has been shown tha
the Hawking temperature the wall contribution to the therm
energy is exactly canceled by the negative energy of
Boulware state, assuming implicitly that the ground state
the model is the Boulware state and that the gravitatio
energy appearing in the Einstein equation is a sum of
renormalized energy of the Boulware state and the ther
energy of the fields.

In this section we shall show that these implicit assum
tions do hold. In the following arguments it will also becom
clear how the local description used in the previous sectio
derived from the quantum field theory in curved spacetim
which is globally defined.

For simplicity, we consider a real scalar field described
the action
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I 52
1

2 E d4xA2g@gmn]mf]nf1mf
2 f2#. ~4.1!

On the background given by Eq.~3.1!, the action is reduced
to

I 5E dtL, ~4.2!

with the LagrangianL given by

L52
1

2 E d3xr2AVF2
1

f
~] tf!21 f ~] rf!2

1
1

r 2 V i j ] if] jf1mf
2 f2G . ~4.3!

Herexi ( i 51,2) are coordinates on the 2-sphere. In order
make our system finite let us suppose that two mirror-l
boundaries are placed atr 5r 1 and r 5L (r 1,L), respec-
tively, and investigate the scalar field in the region betwe
the two boundaries. In the following arguments we quant
the scalar field with respect to the Killing timet. Hence, the
ground state obtained below is the Boulware state. After
quantization, we investigate the statistical mechanics of
scalar field in the Boulware state. It will be shown that t
resulting statistical mechanics is equivalent to the brick w
model.

Now let us proceed to the quantization procedure. Fi
the momentum conjugate tof(r ,xi) is

p~r ,xi !5
r 2AV

f
] tf, ~4.4!

and the Hamiltonian is given by

H5
1

2 E d3xF f

r 2AV
p21r 2AV f ~] rf!2

1AVV i j ] if] jf1r 2AVmf
2 f2G . ~4.5!

Next, promote the fieldf to an operator and expand it as

f~r ,xi !5(
nlm

1

A2vnl

@anlmwnl~r !Ylm~xi !e2 ivnlt

1anlm
† wnl~r !Ylm~xi !eivnlt#, ~4.6!

whereYlm(xi) are real spherical harmonics defined by

1

AV
] i~AVV i j ] jYlm!1 l ~ l 11!Ylm50,

E Ylm~xi !Yl 8m8~xi !AV~xi !d2x5d l l 8dmm8 ,

and $wnl(r )% (n51,2,...) is a set ofreal functions defined
below, which is complete with respect to the space ofL2
5-6
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functions on the intervalr 1<r<L for eachl . The positive
constantvnl is defined as the corresponding eigenvalue:

1

r 2 ] r~r 2f ] rwnl!2F l ~ l 11!

r 2 1mf
2 Gwnl1

vnl
2

f
wnl50, ~4.7!

wnl~r 1!5wnl~L !50,

E
r 1

L

wnl~r !wn8 l~r !
r 2

f ~r !
dr5dnn8 .

The corresponding expansion of the operatorp(r ,xi) is then

p~r ,xi !52 i
r 2AV~xi !

f ~r !

3(
nlm

Avnl

2
@anlmwnl~r !Ylm~xi !e2 ivnt

2anlm
† wnl~r !Ylm~xi !eivnlt#. ~4.8!

Hence, the usual equal-time commutation relation

@f~r ,xi !,p~r 8,x8 i !#5 id~r 2r 8!d2~xi2x8 i !,

@f~r ,xi !,f~r 8,x8 i !#5@p~r ,xi !,p~r 8,x8 i !#50
~4.9!

becomes

@anlm ,an8 l 8m8
†

#5dnn8d l l 8dmm8 ,

@anlm ,an8 l 8m8#50,

@anlm
† ,an8 l 8m8

†
#50. ~4.10!

The normal-ordered Hamiltonian is given by

:Hª(
nlm

vnlanlm
† anlm . ~4.11!

Thus, the Boulware stateuB&, which is defined by

anlmuB&50 ~4.12!

for ;(n,l ,m), is an eigenstate of the normal-ordered Ham
tonian with the eigenvalue zero. The Hilbert space of
quantum states of the scalar field is constructed as a sym
ric Fock space on the Boulware state, and the complete b
$u$Nnlm%&% (Nnlm50,1,2,...) is defined by

u$Nnlm%&5)
nlm

1

ANnlm!
~anlm

† !NnlmuB&, ~4.13!

and each member of the basis is an eigenstate of the nor
ordered Hamiltonian:

:H:u$Nnlm%&5S (
nlm

vnlNnlmD u$Nnlm%&. ~4.14!
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Now we shall investigate the statistical mechanics of
quantized scalar field. The free energyF is given by

e2b`F[Tr @e2b` :H:#5)
nlm

1

12e2b`vnl
, ~4.15!

whereb`5T`
21 is inverse temperature. For explicit calcul

tion of the free energy we adopt the WKB approximatio
First, we rewrite the mode functionwnl(r ) as

wnl~r !5cnl~r !e2 ikr , ~4.16!

and suppose that the prefactorcnl(r ) varies very slowly:

U] rcnl

cnl
U!uku, U] r

2cnl

cnl
U!uku2. ~4.17!

Thence, assuming that

U] r~r 2f !

r 2f U!uku, ~4.18!

the field equation~4.7! of the mode function is reduced to

k25k2~ l ,vnl![
1

f Fvnl
2

f
2

l ~ l 11!

r 2 2mf
2 G . ~4.19!

Here we mention that the slowly varying condition~4.17!
can be derived from the condition~4.18! and vice versa. The
number of modes with frequency less thanv is given ap-
proximately by

g̃~v!5E n~ l ,v!~2l 11!dl, ~4.20!

where n( l ,v) is the number of nodes in the mode wi
( l ,v):

n~ l ,v!5
1

p E
r 1

L
Ak2~ l ,v!dr. ~4.21!

Here it is understood that the integration with respect tor
and l is taken over those values which satisfyr 1<r<L and
k2( l ,v)>0. Thus, when

U] r~r 2f !

r 2f U! 1

f b`

is satisfied, the free energy is given approximately by

F.
1

b`
E

0

`

ln~12e2b`v!
dg̃~v!

dv
dv5E

r 1

L

F̃~r !4pr 2dr,

~4.22!

where the ‘‘free energy density’’F̃(r ) is defined by

F̃~r ![
1

b~r !
E

0

`

ln~12e2b~r !E!
4pp2dp

~2p!3 . ~4.23!
5-7
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Here the ‘‘local inverse temperature’’b(r ) is defined by the
Tolman’s law

b~r !5 f 1/2~r !b` , ~4.24!

andE is defined byE5Ap21mf
2 . Hence the total energyU

@equal toDMtherm given by Eq.~3.8!# and entropyS are
calculated as

U[Tr @eb`~F2:H: !:H:#5
]

]b`
~b`F !5E

r 1

L

r~r !4pr 2dr,

~4.25!

S[2Tr @eb`~F2:H: ! ln eb`~F2:H: !#5b`
2 ]

]b`
F

5E
r 1

L

s~r !4pr 2dr/Af ~r !, ~4.26!

where the ‘‘density’’r(r ) and the ‘‘entropy density’’s(r )
are defined by

r~r ![
]

]b~r !
„b~r !F̃~r !…5E

0

` E

eb~r !E21

4pp2dp

~2p!3 ,

s~r ![b2~r !
]

]b~r !
F̃~r !5b~r !„r~r !1P~r !…,

~4.27!

where the ‘‘pressure’’P(r ) is defined by1

P~r ![2F̃~r !5
1

3 E0

` p2/E

eb~r !E21

4pp2dp

~2p!3 . ~4.28!

These expressions are exactly the same as expressions~3.5!
for the local quantities in the statistical mechanics of gas
particles.

Thus, we have shown that the local description of
statistical mechanics used in Sec. III is equivalent to tha
the quantized field in the curved background, which is
fined globally, and whose ground state is the Boulware st

The stress energy tensor of the minimally coupled sc
field is given by

Tmn52
2

A2g

dI

dgmn

5]mf]nf2
1

2
gmn~grs]rf]sf1mf

2 f2!. ~4.29!

In particular, the (tt) component is

Tt
t52

1

2 F1

f
~] tf!21 f ~] rf!21

1

r 2 V i j ] if] jf1mf
2 f2G .

~4.30!

1To obtain the last expression ofP(r ) we performed an integra
tion by parts.
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Hence, the contributionDM of the scalar field to the mass o
the background geometry is equal to the Hamiltonian of
field:

DM[2E
r 1

L

Tt
t4pr 2dr5H, ~4.31!

whereH is given by Eq.~4.5!. When we consider the statis
tical mechanics of the hot quantized system, contributions
both vacuum polarization and thermal excitations must
taken into account. Thus, the contribution to the mass
given by

^DM &5Tr @eb`~F2:H: !DM ~ren!#, ~4.32!

where DM (ren) is an operator defined by the expressi
~4.31! with Tt

t replaced by the renormalized stress ene
tensorT(ren)t

t . From Eq.~4.31!, it is easy to show that

DM ~ren!5:H:1DMB , ~4.33!

where :H: is the normal-ordered Hamiltonian given by E
~4.11! and DMB is the zero-point energy of the Boulwar
state defined by

DMB52E
r 1

L

^BuT~ren!t
tuB&4pr 2dr. ~4.34!

Hence,^DM & can be decomposed into the contribution
the thermal excitations and the contribution from the ze
point energy:

^DM &5U1DMB , ~4.35!

whereU is given by Eq.~4.25! and equal toDMtherm de-
fined in Eq.~3.8!.

Finally, we have shown that the gravitational mass a
pearing in the Einstein equation is the sum of the energy
the thermal excitation and the mass-energy of the Boulw
state. Therefore, as shown in Sec. III, the wall contribution
the total gravitational mass is zero on shell (T`5TH) and the
backreaction can be neglected. Here, we mention that
corresponding thermal state on shell is called a topped
Boulware state@24#, and can be considered as a generali
tion to spacetimes not necessarily containing a black hole
the Hartle-Hawking state@25#.

V. SUMMARY AND DISCUSSION

Attempts to provide a microscopic explanation of t
Bekenstein-Hawking entropySBH initially stemmed from
two quite different directions.~See @26# for an up-to-date
review with full references.!

Gibbons and Hawking@5# took the view thatSBH is of
topological origin, depending crucially on the presence o
horizon. They showed thatSBH emerges as a boundary co
tribution to the geometrical part of the Euclidean action.~A
non-extremal horizon is represented by a regular point in
Euclidean sector, so the presence of a horizon correspon
the absenceof an inner boundary in this sector.!
5-8
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’t Hooft @13# sought the origin ofSBH in the thermal en-
tropy of ambient quantum fields raised to the Hawking te
perature. He derived an expression which is indeed pro
tional to the area, but with a diverging coefficient which h
to be regulated by interposing a ‘‘brick wall’’ just above th
gravitational radius and adjusting its altitude by hand to
produceSBH with the correct coefficient.

In addition, the brick wall model appears to have seve
problematical features—large thermal energy densities n
the wall, producing a substantial mass correction from th
mal excitations—which have raised questions about its s
consistency as a model in which gravitational back reac
is neglected.

We have shown that such caveats are seen to be
founded once the ground state of the model is identified c
rectly. Since there are no horizons above the brick wall,
ground state is the Boulware state, whose negative en
almost exactly neutralizes the positive energy of the ther
excitations. ’t Hooft’s model is thus a perfectly sel
consistent description of a configuration which to outs
observers appears as a black hole but does not actually
tain horizons.

It is a fairly widely held opinion~e.g. @22,27#! that the
entropy contributed by thermal excitations or entanglem
is a one-loop correction to the zero-loop~or ‘‘classical’’!
Gibbons-Hawking contribution. The viewpoint advocated
this paper appears~at least superficially! quite different. We
view these two entropy sources—~a! brick wall, no horizon,
strong thermal excitations near the wall, Boulware grou
state; and~b! black hole, horizon, weak~Hartle-Hawking!
stress-energy near the horizon, Hartle-Hawking grou
state—as ultimately equivalent but mutually exclusi
~complementary in the sense of Bohr! descriptions of what is
externally virtually the same physical situation. The ne
vacuum experienced by free-falling observers near the h
zon is eccentrically but defensibly explainable, in terms
the description~a!, as a delicate cancellation between a lar
thermal energy and an equally large and negative grou
state energy—just as the Minkowski vacuum is explaina
to a uniformly accelerated observer as a thermal excita
above his negative-energy~Rindler! ground state.@This cor-
responds to settingf (r )5r in the (111)-dimensional ex-
ample treated in Sec. II.#

That the entropy of thermal excitations can sing
handedly account forSBH without cutoffs or otherad hoc
adjustments can be shown by a thermodynamical argum
@24#. One considers the reversible quasi-static contractio
a massive thin spherical shell toward its gravitational rad
The exterior ground state is the Boulware state, whose str
energy diverges to large negative values in the limit. To n
tralize the resulting back reaction, the exterior is filled w
thermal radiation to produce a ‘‘topped-up’’ Boulware sta
~TUB! whose temperature equals the acceleration temp
ture at the shell’s radius. To maintain thermal equilibriu
~and hence applicability of the first law! the shell itself must
be raised to the same temperature. The first law of ther
dynamics then shows that the shell’s entropy approachesSBH
~in the non-extremal case! for essentially arbitrary equation
of state. Thus, the (shell1TUB) configuration passe
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smoothly to black hole1Hartle-Hawking state in the limit.
It thus appears that one has two complementary desc

tions, ~a! and ~b!, of physics near an event horizon, corr
sponding to different Fock representations, i.e., differ
definitions of positive frequency and ground state. The B
goliubov transformation that links these representations
known@28#. However, because of the infinite number of fie
modes, the two ground states are unitarily inequivalent@29#.
This signals some kind of phase transition~formation of a
condensate! in the passage between description~a!, which
explainsSBH as a thermal effect, and description~b!, which
explains it as geometry. We know that a condensation a
ally does occur at this point; it is more usually called gra
tational collapse.

It will be interesting to explore the deeper implications
these connections.
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APPENDIX: ON-SHELL BRICK WALL MODEL

When we performed the differentiation with respect tob`

to obtain the total energy and the entropy, the surface gra
k0 of the black hole and the inverse temperatureb` of gas
on the black hole background were considered as indep
dent quantities. Since in equilibrium these quantities are
lated byb`

215k0/2p, we have imposed this relation, whic
we call the on-shell condition, after the differentiation.
fact, we have shown that the wall contribution to gravit
tional energy is zero and the back reaction can be neglec
if and only if the on-shell condition is satisfied.

On the other hand, in the so-called on-shell meth
@21,15#, the on-shell condition is implemented before the d
ferentiation. Now let us investigate what we might call
on-shell brick wall model. With the on-shell condition, th
wall contribution to the free energy of the scalar field co
sidered in Sec. IV is calculated as
5-9
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Fwall
~on shell!52

A

4

b`
21

360p

1

a2 . ~A1!

If we define total energy and entropy in the on-shell meth
by

Uwall
~on shell![

]

]b`
~b`Fwall

~on shell!!,

Swall
~on shell![b`

2 ]

]b`
Fwall

~on shell! , ~A2!

then these quantities can be calculated as
v.

10400
d

Uwall
~on shell!50,

Swall
~on shell!5

A

4

1

360p

1

a2 5
1

4
Swall , ~A3!

whereSwall is the wall contribution~3.14! to entropy of the
scalar field withT`5TH .

It is notable that the total energyUwall
(on shell) in the on-shell

method is zero irrespective of the value of the cutoffa. How-
ever, Swall

(on shell) is always smaller thanSwall . It is because
some physical degrees of freedom are frozen by impos
the on-shell condition before the differentiation. Thus, w
might miss the physical degrees of freedom in the on-s
method.
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