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The brick-wall model seeks to explain the Bekenstein-Hawking entropy as a wall contribution to the thermal
entropy of ambient quantum fields raised to the Hawking temperature. Reservations have been expressed
concerning the self-consistency of this model. For example, it predicts large thermal energy densities near the
wall, producing a substantial mass correction and, presumably, a large gravitational back reaction. We re-
examine this model and conclude that these reservations are unfounded once the ground state—the Boulware
state—is correctly identified. We argue that the brick-wall model and the Gibbons-Hawking instahich
ascribes a topological origin to the Bekenstein-Hawking enfrepg mutually exclusive, alternative descrip-
tions (complementary in the sense of Bpluf the same physic$S0556-282(98)11520-5

PACS numbdrs): 04.70.Dy

[. INTRODUCTION Unfortunately, the Euclidean approach provides no in-
sight into the dynamical origin 08z . On the contrary, it
The prescription appears to suggest that one has to thinlSgf as having a
topological origin in some sense.

Interesting and suggestive, but still short of ideal from a
physical point of view, are the interpretations which require
an appeal to the past or future history of the black hole, or to
for assigning a “Bekenstein-Hawking entropy3gy to a  ensembles of such histories; for instance, “expj repre-
black hole of surface areA was first inferred in the mid- sents the number of quantum-mechanically distinct ways in
1970s from the formal similarities between black hole dy-which the black hole could have been madé], or those
namics and thermodynami¢&], combined with Hawking's ~ which relateSgy, to the entropy of the evaporation products
discovery[2] that black holes radiate thermally with a char- [6,7].

1 2

acteristic(Hawking temperature In thermodynamics, entropy is a state function with a
definite value at each moment of tinfat least for quasi-
Tu="tikol2m, (1.2 stationary, near-equilibrium processesCorrespondingly,

one would ideally like to have a direct physical understand-
where kg is the surface gravity. Thalg, is a genuine ther- ing of Sy, for a specific black hole at a given moment in
modynamical entropy is given credence by the “generalizederms of the dynamical degrees of freedom existing at that
second law"[3,4], which states that the sum 8y and the  moment, together with an explanation of how it comes to
entropy of surrounding matter is non-decreasing in anyhave the simple universal forgl.1), independent of the na-
(quasi-statig interaction. ture and number of the fundamental fields and all details of
Much work and discussion have been devoted to the prolthe microphysic$8].
lem of deriving and understanding the enigmatic formula An interpretation which holds promise of meeting these
(1.1) in a more direct and fundamental way. requirements is thagy, is entanglement entropy, associated
A statistical derivation of Eq(1.1) for stationary black with modes and correlations hidden from external observers
holes, using analytic contlnuatlon to the Euclidean sector angly the presence of the horizon. If the black hole originates
imposing a Matsubara perlo'ﬂH on Euclidean time, was from a pure state, there is perfect correlation between the
developed by Gibbons and Hawkifg] in 1977. According internal and external modes, and the entanglement entropy
to their derivation,Sg,; emerges already at zero-loop order, can therefore equally well be found by counting external
as a contribution to the partition function from the extrinsic- modes. A program of this type was first clearly formulated
curvature boundary terms which accompany the Einsteinby Bombelli, Koul, Lee and Sorkif9] in a 1986 paper
Hilbert gravitational action(Only the outer boundary at in- which attracted little notice at the time. It was independently
finity actually contributes. There is no inner boundary,re-initiated by Srednicki10] and by Frolov and Novikoy8]
because the horizon is represented by a regular point in tha 1993.
Euclidean sector of a non-extremal black hole with the above It turns out, remarkably, that the entanglement entropy is
periodic identification, corresponding to the Hartle-Hawkingproportional to the area of the dividing wall. This is a robust
state for ambient quantum fieldls. result which holds not only for black hole horizof&,11],
but also for cavities artificially cut out of Minkowski space
[9,10,12. However, the coefficient of proportionality is for-
*Permanent address: Canadian Institute for Advanced Researchally infinite, corresponding to the fact that modes of arbi-
Cosmology Program, Department of Physics and Astronomy, Unitrarily small wavelength can exist close to the horizon or
versity of Victoria, Victoria BC, Canada V8W 3P6. partition. (This, incidentally, yields the correct answer—
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infinity—for the entropy of a classical black holeBut an  Hawking state but the Boulware stdtE7], corresponding to
infinitely sharp boundary violates quantum mechanicszero temperature, which has a quite different behavior near
Quantum fluctuations will prevent events closer to the horithe gravitational radius.

zon than about a Planck lengtp from being seen on the The Boulware state in a static spherical geometry is de-
outside. Introducing an effective cutoff of this order repro-fined as being free of modes having positive frequency with
duces the Bekenstein-Hawking formula.l) with a coeffi-  respect to the conventional Schwarzschild timét infinity
cient of the right order of magnitude. it approaches the Minkowski vacuum with zero stress-

The entanglement interpretation seems to be implicit ingnergy. At smaller radii, vacuum polarization induces a non-
and is certainly closely related to a pioneering calculatiorvanishing stress-energy, which diverges near a brick wall
done by 't Hooft[13] in 1985. He considered the statistical skirting the gravitational radius. The asymptotic behavior is
thermodynamics of quantum fields in the Hartle-Hawkingthat of a thermal stress-energy—the characteristic tempera-
state(i.e. having the Hawking temperatufg, at large radii  ture is the local acceleration temperature for static observers,
propagating on a fixed Schwarzschild background of masdiverging near the gravitational radiusut with the oppo-

M. To control divergences, 't Hooft introduced a “brick site sign The Boulware state is energetically depressed be-
wall’—actually a static spherical mirror at which the fields low the vacuum(We shall reserve the word “vacuum” for a
are required to satisfy Dirichlet or Neumann boundarycondition of zero stress-energy; in general, it is not a quan-
conditions—with radius a little larger than the gravitationaltum state).

radius 2V. He found, in addition to the expected volume-  The quantum fields with temperatufg at infinity which
dependent thermodynamical quantities describing hot fieldd Hooft introduced into his brick wall model have a local
in a nearly flat space, additional wall contributions propor-temperature and a thermal stress-energy which also diverge
tional to the area. These contributions are, however, alsoear the gravitational radius. To obtain the tdthavitating
proportional toa 2, where« is the proper altitude of the stress-energy, one must add the contributions of(Buwl-

wall above the gravitational radius, and thus diverge in thevare ground state and the thermal excitations. The diverg-
limit «— 0. For a specific choice af (which depends on the ing parts of these contributions cancel. The sum is bounded,
number of fields, etc., but is generally of ordgy), 't Hooft  of orderM ~4 near the gravitational radiugence small for
was able to recover the Bekenstein-Hawking form{ilal) large massgsand in the limita— 0 indistinguishable from
with the correct coefficient. the Hartle-Hawking stress-energy.

However, this calculation raises a number of questions Thus, it is perfectly legitimate to neglect back reaction in
which have caused many, including 't Hooft himself, to havethe brick wall model. With the proper identification of the
reservations about its validity and consistency. ground state, problem(®) and(c) above resolve themselves.

(a) Sgy is here obtained as a one-loop effect, originating The same basic observation resolves prob{emIn the
from thermal excitations of the quantum fields. Does thisEuclidean sector of the brick-wall spacetirfweith Matsub-
material contribution tdSgy, have to beaddedto the zero- ara periodT '), it is not true that there is no inner boundary.
loop Gibbons-Hawking contribution which arises from the The inner boundary is the brick wall itself, and its boundary
gravitational part of the action and already by itself accountsontribution to the Euclidean action cancels that of the outer
for the full value ofSgy? [14] boundary at infinity. So the Gibbons-Hawking zero-loop

(b) The ambient quantum fields were assumed to be in theontribution is now zero. The “geometrical entropy” of the
Hartle-Hawking state. Their stress-energy should therefor&ibbons-Hawking “instanton” thus provides an alternative,
be boundedof orderM ~# in Planck unit$ near the gravita- complementary description dBg,, not a supplementary
tional radius, and negligibly small for large masses. How-contribution to the entropy of thermal excitations as calcu-
ever, 't Hooft's calculation assigns to them enormouslated from the brick wall model.

(Planck-level energy densities near the wall. In Sec. Il we summarize essential properties of the Boul-
(c) The integrated field energy gives a wall contribution toware and Hartle-Hawking states that play a role in this paper.
the mass In Sec. Il we sketch the physical essence of the brick-wall

model by using a particle description of quantum fields. A
systematic treatment of the model is deferred to Sec. IV, in
which the results in Sec. Il are rigorously derived from the
quantum field theory in curved spacetimes. Section V is de-
when « is adjusted to give the correct value 8f,. This  Vvoted to summarize this paper. In Appendix A, for complete-
suggests a substantial gravitational back reacfit8] and  ness, we apply the so-called on-shell method to the brick
that the assumption of a fixed geometrical background mayvall model and show that in the on-shell method we might
be inconsistenf14—186. miss some physical degrees of freedom. Hence, we do not
Our main purpose in this paper is to point out that theseddopt the on-shell method in the main body of this paper.
difficulties are only apparent and easy to resolve. The basic
remark is that thédorick-wall model strictly interpretgd does || tuE BOULWARE AND HARTLE-HAWKING STATES
not represent a black holdt represents the exterior of a
starlike object with a reflecting surface, compressed to nearly It is useful to begin by summarizing briefly the essential
(but not quite its gravitational radius. The ground state for properties of the quantum states that will play a role in our
qguantum fields propagating around this star is not the Hartlediscussion.

3
AM=gM (1.3
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In a curved spacetime there is no unique choice of time

o
coordinate. Different choices lead to different definitions of PHH:PHHZG_hTa ,
positive-frequency modes and different ground states.
In any static spacetime with statiilling) time param- Ty=Hhwol2m (2.5

etert, the Boulware stat¢B) is the one annulled by the

annihilation operatoray;, associated with “Killing modes”  which is appropriate for one-dimensional scalar radiation at

(positive-frequency irt). In an asymptotically flat spackB) the Hawking temperaturé, .

approaches the Minkowski vacuum at infinity. For the Boulware state, the boundary conditiorPis p
In the spacetime of a stationary eternal black hole, the=0 whenr=o. The integration constant in E¢2.3) must

Hartle-Hawking stat¢HH) is the one annuler by, s, the  vanish, and we find

annihilation operators associated with “Kruskal modes”

(positive-frequency in the Kruskal lightlike coordinatels bk

V). This state appears empty of “particles” to free falling B™ 24x f(r)"’

observers at the horizon, and its stress-energy is bounded

there(not quite zero, because of irremovable vacuum polar- ho

ization effects. pe=Pg+ 5 —1"(1). (2.6
If, just for illustrative purposes, we consider a

(1+1)-dimensional spacetime, it is easy to give concretdf a horizon were presenpg andPg would diverge there to

form to these remarks. We consider a spacetime with metrie- o,

5 For the difference of these two stress tensors,

ds?=—f(r)dt?+ 6L (2.) AT =(TD)un—(TDg, (2.7)

and denote by(r) the redshifted gravitational force, i.e., the Eds.(2.4) and(2.6) give the exactly thermal form
upward acceleratioa(r) of a stationary test-particle reduced o

by the redshift faptofl’z(r), S0 that;<(r)=%f’(r). A hori- AP=Ap=—Tr), 2.9
zon is characterized by=r,, f(ro)=0, and its surface 6#1
gravity defined byky=3f'(r). _ .

Quantum effects induce an effective quantum stressWnere T(r) =Ty /Vi(r) is the local temperature in the

energyT,, (a,b, --=r,t) in the background geometrg.1) Hartle-Hawking state. We recall that thermal equilibrium in
If we asaskijmé ’no net’ energy flusTi(= 0)—thus excluain.g any static gravitational field requires the local temperafure

the Unruh state-F,;, is completely specified by a quantum o rise with depth in accordance with Tolman's |§#5]

energy densitp= —T{ and pressur®=T;. These are com- T\/%: const. 2.9
pletely determinedup to a boundary conditigrby the con-
servation |ang;b=0 and the trace anomaly, which is We have found, for this (% 1)-dimensional example,
that the Hartle-Hawking state is thermally excited above the
TaziR 2.2 zero-temperaturéBoulware ground state to a local tempera-
a 24 ' ture T(r) which grows without bound near the horizon. Nev-

ertheless, it is the Hartle-Hawking state which best approxi-
for a massless scalar field, wiR=—f"(r) for the metric mates what a gravitational theorist would call a “vacuum”

(2.1). Integration gives at the horizon.
These remarks remain at least qualitatively valid in (3
fi +1)-dimensions, with obvious changes arising from the di-
—- (.2 y
HPr)= 2447(" (r)+cons). 23 mensionality. In particular, the (81)-dimensional analogue

of Eq. (2.8) for a massless scalar field,

Different choices of the constant of integration correspond to 5

different boundary conditions, i.e., to different quantum AT
states. 3AP=Ap= 30ﬁgT (r), (2.10
For the Hartle-Hawking state, we requiReand p to be o
bounded at the horizon=r, giving holds to a very good approximation, both far from the black
hole and near the horizon. In the intermediate zone there are
ho k3= K3(r) deviations, but they always remain boundd®], and will
Pun= 24r (1) not affect our considerations.
A ll. BRICK-WALL MODEL
P =Punt 1) 24 We shall briefly sketch the physical essence of the brick-
wall model. (A systematic treatment is deferred to Sec.)IV.
Whenr — this reduces t¢settingf(r)— 1] We wish to study the thermodynamics of hot quantum
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fields confined to the outside of a spherical star with a pere is +1 for bosons and-1 for fermions and the factoh
fectly reflecting surface whose radiugis a little larger than  takes care of helicities and the number of particle species.
its gravitational radiug,. To keep the total field energy The total entropy is given by the integral
bounded, we suppose the system enclosed in a spherical con-
tainer of radiud.>r. [t 9

It will be sufficiently general to assume for the geometry S= frls(r)4ﬂ-r dr/\f, 3.7
outside the star a spherical background metric of the form

dr2 where we have taken account of the proper volume element

r : ; -112

_ 5 2 12 as given by the metri€3.1). The factorf does not, how-

ds’ f(rydt*+ f(r) FredQs. @1 ever, appear in the integral for the gravitational mass of the
thermal excitation$20] (it is canceled, roughly speaking, by

This includes as special cases the Schwarzschild, Reissneregative gravitational potential enejgy

Nordstran and de Sitter geometries, or any combination of

these. L )
Into this space we introduce a collection of quantum AMnerm= jrlp(r)d'”r dr. (3.8
fields, raised to some temperaturg at large distances, and
in_ thermal equilibrium. The local temperatufdr) is then The integrals(3.7) and (3.8) are dominated by two con-
given by Tolman's law2.9), tributions for large container radius and for smallAr=r
_ —I’OZ
T(r)=T.f 3.2 (@) A volume term, proportional td 7L3, representing

the entropy and mass-energy of a homogeneous quantum gas
and becomes very large whan-r,=ro+Ar. We shall iy g flat space(since f=1 almost everywhere in the con-
presently identifyT.. with the Hawking temperatur&, of  tginer if L/r,—) at a uniform temperaturg.. . This is the

the horizonr =r, of the exterior metri¢3.1), continued(il-  resylt that would have been expected, and we do not need to
legitimately) into the internal domaim<(r . consider it in detail.
Characteristic wavelengths of this radiation are small (b) Of more interest is the contribution of gas near the

compared to other relevant length scalesrvature, size of jnner wallr=r 1, which we now proceed to study further.
containey in the regions of interest to us. Near the star'sywe shall find that it is proportional to the wall area, and
surface, diverging like (Ar)~* whenAr —0.

Because of the high local temperatutieaear the wall for

—fU

N~HIT=TV2hIT. <1, 3.3 small Ar, we may insert the ultrarelativistic approximations
Elsewhere in the large container, at large distances from the E>m, p=E, v=1
star,

into the integralg3.5). This gives
f=1, A=A/T,~ro<L. (3.9
1 N = x3dx

Therefore, a particle description should be a good approxi- = §p=WT fo e (3.9

mation to the statistical thermodynamics of the fields
(Equivalently, one can arrive at this conclusion by consider-

. . . , in Planck units b=2=7% =27). The purely numerical inte-
!lr?dtgizvlf\/? solution fo the wave equation, cf. 't Hoglt3] gral has the value 3! multiplied by &*/90 andZ 7#/90 for

€=0,1 and—1 respectively, and we shall adopt 3!, absorb-

For particles of restmass, energyE, 3-momenturmp ing any small discrepancy int&/. Then, from Eq(3.5),

and 3-velocityy as viewed by a local stationary observer, the

energy density, pressuré® and entropy densitg are given
X 3N 4 AN 3
by the standard expressions p=—T4 s=—T (3.10
= E 4xp’dp _ _
p=/\/f FE 1 in terms of the local temperatufe given by Eq.(3.2).
0 —

Substituting Eq.(3.10 into Eq. (3.7) gives for the wall

contribution to the total entropy
P_ij vp 4mwpidp

-3 ePE_¢ R AN rite dr
3Joetme D Swan=—z 47TriTo3¢J'rl 0k (3.11
s=pB(p+P). (3.5
where§is an arbitrary small length subject dr < 5<r,. It
Here, as usual, is useful to express this result in terms of the proper altitude
a of the inner wall above the horizon=r of the exterior
E2—p2=m?, ov=pl/E, B=T7% (3.6)  geometry(3.1). [Since Eq.(3.1) only applies forr>r, the
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physical space does not, of course, contain any horjate.
assume thaf(r) has a(simple zero forr=r,, so we can
write

1
f(r)zzKo(r_ro),KOZEf,(ro)¢0 (r—>r0),

(3.12
where kg is the surface gravity. Then
LY 1 5
a=| f 2dr=>Al’=§K0a’ , (3.13
o
and Eq.(3.1) can be written
N T. \3 1A a1
SWa”_9071'a2 kol2m) 4 (314

in Planck units, wherd=4r? is the wall area.
Similarly, we find from Egs(3.8) and(3.10 that thermal
excitations near the wall contribute
N T. \®
AMinermwall = 7802 P AT, (3.1
to the gravitational mass of the system.
The wall contribution to the free energy

F=AM-T.S (3.16
is
N 3
Fwall ™~ 1440702 (KO/ZW) Ale. 317

The entropy is recoverable from the free energy by the sta

dard prescription

Swall= — (3.18

[Observe that this is an “off-shell” prescriptiof21]: the
geometrical quantitie®\, « and, in particular, the surface

gravity ko are kept fixed when the temperature is varied in

Eqg. (3.17.]
Following 't Hooft [13], we now introduce a crude cutoff

to allow for quantum-gravity fluctuations by fixing the wall

altitude « so that

(3.19

Swan=Sgn, Wwhen T.=Ty,
where the Bekenstein-Hawking entrof3g,, and Hawking
temperatureT,, are defined to be theurely geometrical
guantities defined by Eqgs(1.1) and (1.2) in terms of
the wall's area A and redshifted acceleration
(=surface gravity)xy. From Egs.(3.19 and(3.14), restor-
ing conventional units for a moment, we find

a=1,yNI90m, (3.20

PHYSICAL REVIEW D58 104005

so thata is very near the Planck length if the effective num-
ber N of basic quantum fields in nature is on the order of
300.

It is significant and crucial that the normalizatit20) is
universa) depending only on fundamental physics, and inde-
pendent of the mechanical and geometrical characteristics of
the system.

With « fixed by Eq.(3.20), the wall's free energy3.16
becomes

3
AT,.

o0

T_H (3.29

Fwan=— 1_6 (

This “off-shell” formula expresses-,,,; in terms of three
independent variables: the temperatlireand the geometri-
cal characteristicé andTy . From Eq.(3.21) we can obtain
the wall entropy either from the thermodynamical Gibbs re-
lation (3.18 (with T,, set equal taT after differentiatior),
or from the Gibbs-Duhem formul.16 which is equivalent
to the statistical-mechanical definitiols= —Tr(p In p).
Thus the distinctiorf21] between “thermodynamical” and
“statistical” entropies disappears in this formulation, be-
cause the geometrical and thermal variables are kept inde-
pendent.

The wall’s thermal mass-energy is given “on shell”
(T.=Ty) by

A Mtherm,wall :1_6ATH (3.22

according to Egs(3.195 and (3.20. For a wall skirting a
Schwarzschild horizon, so that,=(87M) %, this reduces
to 't Hooft's result(1.3).

As already noted, thermal energy is not the only source of
the wall’'s mass. Quantum fields outside the wall have as
their ground state the Boulware state, which has a negative
rgnergy density growing to Planck levels near the wall. On
shell, this very nearly cancels the thermal energy density
(3.10; their sum is, in fact, the Hartle-Hawking valyef.
Egs.(2.7) and(2.10]:

(Tthermt, =7, 7 (T)8=(T K, (3.23

which remains bounded near horizons, and integrates virtu-
ally to zero for a very thin layer near the wall. The total
gravitational mass of the wall is thus, from E@8.15 and

(3.20,
(AM)yan=(AM)ihermwan (AM)g wa

3
=2ATH(T/Tw)* = 1),

16 (3.29

which vanishes on shell. For a central mass which is large in
Planck units, there is no appreciable back reaction of mate-
rial near the wall on the background geome(Byl).

We may conclude that many earlier concefiS—15
were unnecessary: 't Hooft's brick wall model does provide
a perfectly self-consistent description of a configuration
which is indistinguishable from a black hole to outside ob-
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servers, and which accounts for the Bekenstein-Hawking en- 1
tropy purely as thermal entropy of quantum fields at the I=-3 j d*x=g[g""d,pd,p+m5h%].  (4.1)
Hawking temperaturé.e. in the Hartle-Hawking statgpro-
viding one accepts thad hocbut plausible ansat@.20 for  On the background given by E¢B.1), the action is reduced
a Planck-length cutoff near the horizon. to
The model does, however, present us with a feature which
is theoretically possible but appears strange and counterintui- | = f dtL, 4.2
tive from a gravitational theorist’'s point of view. Although
the wall is insubstantialjust like a horizop—i.e., space
there is practically a vacuum and the local curvature low—i
is nevertheless the repository of all of the Bekenstein- 1 1
Hawking entropy in the model. L=—3 f dSsz\/ﬁ[— ?(19t¢)2+f(3r¢)2
It has been argue8] that this is just what might be
expected of black hole entropy in the entanglement picture. 1 . 2 .5
Entanglement will arise from virtual pair-creation in which + r_ZQ 10,y p+miye
one partner is “invisible” and the other “visible'(although
only temporarily—nearly all get reflected back off the poten-Herex' (i=1,2) are coordinates on the 2-sphere. In order to
tial barriep. Such virtual pairs are all created very near themake our system finite let us suppose that two mirror-like
horizon. Thus, on this picture, the entanglement entf@mg  boundaries are placed at=r, andr=L (r,<L), respec-
its divergencg arises almost entirely from the strong corre- tively, and investigate the scalar field in the region between
lation between nearby field variables on the two sides of thehe two boundaries. In the following arguments we quantize
partition, an effect already present in flat sp&22]. the scalar field with respect to the Killing time Hence, the
An alternative(but not necessarily incompatiblpossibil-  ground state obtained below is the Boulware state. After the
ity is that the concentration of entropy at the wall is an arti-quantization, we investigate the statistical mechanics of the
fact of the model or of the choice of Fock representationscalar field in the Boulware state. It will be shown that the
(based on a static observer's definition of positive fre-resulting statistical mechanics is equivalent to the brick wall
qguency. The boundary condition of perfect reflectivity at the model.
wall has no black hole counterpart. Moreover, one may well  Now let us proceed to the quantization procedure. First,
suspect that localization of entanglement entropy is not afhe momentum conjugate (r,x') is
entirely well-defined concep®3] or invariant under changes

twith the LagrangiarlL given by

. 4.3

of the Fock representation. TN
(r,x")= : i, (4.9
IV. THE BRICK WALL MODEL REEXAMINED and the Hamiltonian is given by
In the previous section, we have investigated the statisti- 1 f
cal mechanics of quantum fields in the regiop<r<L of H=5 f d3x rz\/ﬁﬂzﬂz\/ﬁf(&r@z

the spherical backgroun8.1) with the Dirichlet boundary
condition at the boundaries. By using the particle description
with the local temperature given by the Tolman’s law, we +\/§Qijai¢aj¢+r2\/ﬁmi¢2
have obtained the inner-wall contributions of the fields to
entropy and thermal energy. When the former is set to be _ )
equal to the black hole entropy by fixing the cuteffis Eq. Next, promote the fieldp to an operator and expand it as
(3.20, the later becomes comparable with the mass of the 1
background geometry. After that, it has been shown that at N iya—iont
the Hawking temperature the wall contribution to the thermal $lr.x) gm \/zwm[a”'m@”'(r)Y'm(X)e
energy is exactly canceled by the negative energy of the + et
Boulware state, assuming implicitly that the ground state of +anmeni(r) Yim(x') e ], (4.6)
the model is the Boulware state and that the gravitational
energy appearing in the Einstein equation is a sum of thé/
renormalized energy of the Boulware state and the thermal 1
energy of the fields. ) ij g, =

In this section we shall show that these implicit assump- \/ﬁa'( VYY) +1(1+1) Y1 =0,
tions do hold. In the following arguments it will also become
clear how the local description used in the previous section is i i o
derived from the quantum field theory in curved spacetime, j Yim(X) Yy (X)) V(XN AX= 8y S
which is globally defined.

For simplicity, we consider a real scalar field described byand {¢,,(r)} (n=1,2,..) is a set ofreal functions defined
the action below, which is complete with respect to the spacelef

. 4.5

hereY,,,(x') are real spherical harmonics defined by
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functions on the intervat;<r <L for eachl. The positive
constantw,,, is defined as the corresponding eigenvalue:
1+1) wp

Onit = f ¢n=0,

1
r_iar(rzfar‘Pnl) +m¢ (4.7)

@ni(r1)=en(L)=0,

2

L r
fr (Pnl(r)‘Pn’l(r)f_

(r)dr:

S -

The corresponding expansion of the operatér,x') is then

r2JQ(xh

w(r,x)=—i G

x>

nlm

- allm‘PnI(r)Ym(Xi)ei‘”mt]_

I . s
TH [anlm(PnI(r)YIm(Xl)e tont

(4.8

Hence, the usual equal-time commutation relation
[(r.x),m(r’,x
[p(r.X),p(r x')]=[m(r x),m(r’

=isr—r)ex—x"),

)1=0
4.9

becomes

[@nim» @01 e 1= Ba it San
[@nim,@n'1'm]1=0,
,]=0. (4.10

T T
[anlm'an’l’m

The normal-ordered Hamiltonian is given by

(4.10)

:H‘:E wnlaglmanlm-
nim
Thus, the Boulware sta{®), which is defined by

a-nIm|B>:O (4-12)

or Y(n,l,m), is an eigenstate of the normal-ordered Hamil-
tonian with the eigenvalue zero. The Hilbert space of all
guantum states of the scalar field is constructed as a symmet-
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Now we shall investigate the statistical mechanics of the
guantized scalar field. The free eneifgyis given by

e P-F=Trle P~ M]=]]

nlm

(4.19

1—e P=on’

whereB..=T. ! is inverse temperature. For explicit calcula-
tion of the free energy we adopt the WKB approximation.
First, we rewrite the mode functios,,(r) as

@ni(1) =P (r)e ', (4.16

and suppose that the prefactgy (r) varies very slowly:

&r‘ﬁnl r¢n|
— <K, <|k|? 4.1
Gl ek @
Thence, assuming that
a,(r?f)
—rzr | <IKl, (4.18

the field equatiori4.7) of the mode function is reduced to

1

I(1+1)

2

K2=k2(l,wp,) = ms|. (419

Here we mention that the slowly varying conditiof.17)
can be derived from the conditiqd.18 and vice versa. The
number of modes with frequency less thanis given ap-
proximately by

a(w)zf v(l,0)(21+1)dl, (4.20

where v(l,w) is the number of nodes in the mode with

(I, o):

V(l,(x)):% er\/kz(l,w)dr. (4.2)

Here it is understood that the integration with respect to
and| is taken over those values which satisfy<r=<L and
k?(l,w)=0. Thus, when

1

a,(r2f )

r2f

ric Fock space on the Boulware state, and the complete basis

{{Nnimh} (Npim=0,1,2,..) is defined by

|{anm}> H (anlm n|m|B>

4.1
\/anm ( 3)

is satisfied, the free energy is given approximately by

dg(w)

1 (= L.
Fz—f In(1—e A=) —dw=f F(r)4mradr,
Boc 0 dw ry

(4.22

and each member of the basis is an eigenstate of the normal-

ordered Hamiltonian:

:H:|{'\|nlm}>:(%1 wnIanm)|{anm}>- (4.14

where the “free energy densityE(r) is defined by

4rp2dp

In(l e PIE) 2

F(r)= (4.23

1
B(r)
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Here the “local inverse temperatureB(r) is defined by the
Tolman’s law

B(r)=f41r)B.., (4.24

andE is defined byE= \/p*+ m2¢. Hence the total energy
[equal toAMperm given by Eq.(3.8)] and entropyS are
calculated as

U=Tr[ef=F~H):H:]= i ( F):fL (r)4ar2dr

= ‘H: 8. B rlp T ,
(4.25

J

— »(F—:H:) w(F—H)7— p2

=—Tr[e? In e? ] ,Bm(me

=fLs(r)4wr2dr/\/f(r), (4.26

"1

where the “density” p(r) and the “entropy density”s(r)
are defined by

9 ~ [ E 4wpidp
=0B(r)(ﬂ(r)F(r))_Jo eﬁ(r)E_l (277)3 ’

p(r)

s(r)=p3(r) F(r)=B(r)(p(r)+P(r)),

J
apB(r)
(4.27

where the “pressure’P(r) is defined by

p2/E  Amwp?dp

~ 1 (=
P(r) _F(r)zgfo eﬁ(r)E_l (277)3 :

(4.28
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Hence, the contributiod M of the scalar field to the mass of
the background geometry is equal to the Hamiltonian of the
field:

L
AMs—f Ti4mr?dr=H,
r

1

(4.31

whereH is given by Eq.(4.5. When we consider the statis-
tical mechanics of the hot quantized system, contributions of
both vacuum polarization and thermal excitations must be
taken into account. Thus, the contribution to the mass is
given by

(AM)=Tr[eP=F-HIAM(TeM], (4.32
where AM(®" is an operator defined by the expression
(4.31) with T§ replaced by the renormalized stress energy
tensorT("®Mt, . From Eq.(4.31), it is easy to show that

(4.33

where H: is the normal-ordered Hamiltonian given by Eq.
(4.1) and AMg is the zero-point energy of the Boulware
state defined by

AMTeV=:H:+AMg,

L
AMg= —f (B|T"eY|BY47r2dr. (4.34
f1

Hence,(AM) can be decomposed into the contribution of
the thermal excitations and the contribution from the zero-
point energy:

(AM)=U+AMg, (4.35

These expressions are exactly the same as expreg@igns WhereU is given by Eq.(4.25 and equal toAMpem de-
for the local quantities in the statistical mechanics of gas ofined in Eq.(3.9).

particles.

Finally, we have shown that the gravitational mass ap-

Thus, we have shown that the local description of thePearing in the Eins_tein equation is the sum of the energy of
statistical mechanics used in Sec. Il is equivalent to that ofh€ thermal excitation and the mass-energy of the Boulware
the quantized field in the curved background, which is deState. Therefore, as shown in Sec. lll, the wall contribution to
fined globally, and whose ground state is the Boulware statdhe total gravitational mass is zero on shéll.¢Ty) and the

The stress energy tensor of the minimally coupled scalaPackreaction can be neglected. Here, we mention that the

field is given by

2 4l
T =

1 o 2 42
In particular, the {t) component is
N e 2+ f 24 2 qi +m3¢?
=~ 5 | 7 () (0 )"+ 2 Qi pd P+ myh).

(4.30

To obtain the last expression &f(r) we performed an integra-
tion by parts.

corresponding thermal state on shell is called a topped-up
Boulware statg¢24], and can be considered as a generaliza-
tion to spacetimes not necessarily containing a black hole of
the Hartle-Hawking statf25].

V. SUMMARY AND DISCUSSION

Attempts to provide a microscopic explanation of the
Bekenstein-Hawking entropygy initially stemmed from
two quite different directions(See[26] for an up-to-date
review with full references.

Gibbons and Hawking5] took the view thatSgy is of
topological origin, depending crucially on the presence of a
horizon. They showed th&g, emerges as a boundary con-
tribution to the geometrical part of the Euclidean actith.
non-extremal horizon is represented by a regular point in the
Euclidean sector, so the presence of a horizon corresponds to
the absenceof an inner boundary in this sectpr.
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't Hooft [13] sought the origin 0By, in the thermal en-  smoothly to black hol¢ Hartle-Hawking state in the limit.
tropy of ambient quantum fields raised to the Hawking tem- |t thus appears that one has two complementary descrip-
perature. He derived an expression which is indeed propotions, (a) and (b), of physics near an event horizon, corre-
tional to the area, but with a diverging coefficient which hassponding to different Fock representations, i.e., different
to be regulated by interposing a “brick wall” just above the definitions of positive frequency and ground state. The Bo-
gravitational radius and adjusting its altitude by hand to regoliubov transformation that links these representations is
produceSgy with the correct coefficient. known[28]. However, because of the infinite number of field

In addition, the brick wall model appears to have severaimodes, the two ground states are unitarily inequival2et.
problematical features—large thermal energy densities neahis signals some kind of phase transitifiormation of a
the WaII,_ pr_oducing a substantia_ll mass co_rrection from thercondensaﬁein the passage between descripti@), which
mal gxcnauons—whmh h_ave r@sed questions about its S?”éxplainsSBH as a thermal effect, and descriptié), which
consistency as a model in which gravitational back reaCt'O’éxplains it as geometry. We know that a condensation actu-

is neglected. ally does occur at this point; it is more usually called gravi-
We have shown that such caveats are seen to be u‘f'ét)i/onal collapse point y 9

founded_once the ground statg of the model is |d_ent|f|ed O™ 1t will be interesting to explore the deeper implications of
rectly. Since there are no horizons above the brick wall, thefhese connections

ground state is the Boulware state, whose negative energy '
almost exactly neutralizes the positive energy of the thermal
excitations. 't Hooft's model is thus a perfectly self-

consistent description of a configuration which to outside ACKNOWLEDGMENTS
observers appears as a black hole but does not actually con-
tain horizons. One of us(S.M.) thanks Professor H. Kodama for his

It is a fairly widely held opinion(e.g.[22,27)) that the continuing encouragement. The oth&W¥.l.) would like to
entropy contributed by thermal excitations or entanglementhank Professors H. Kodama, T. Nakamura and K. Tomita
is a one-loop correction to the zero-lodgpr “classical”) and their associates for the friendly and stimulating atmo-
Gibbons-Hawking contribution. The viewpoint advocated insphere they have provided at the Yukawa Institute for The-
this paper appear@t least superficiallyquite different. We  oretical Physics. He is very grateful to Professors H. Sato
view these two entropy sourcegay-brick wall, no horizon,  and M. Fukugita for their hospitality and many kindnesses.
strong thermal excitations near the wall, Boulware groundje would also like to acknowledge stimulating discussion
state; and(b) black hole, horizon, weakHartle-Hawking  ith Professor M. Sasaki and his group at Osaka University,
stress-energy near the horizon, Hartle-Hawking groundyng with Professors A. Hosoya and H. Ishihara and their
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zon is eccentrically but defensibly explainable, in terms Ofthe Ministry of Educati(.)n, Science, éborts and Culture, and
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state energy—ijust as the Minkowski vacuum is explainabl
to a uniformly accelerated observer as a thermal excitation
above his negative-energRindler ground state[This cor-
responds to setting(r)=r in the (1+1)-dimensional ex- APPENDIX: ON-SHELL BRICK WALL MODEL
ample treated in Sec. I

That the entropy of thermal excitations can single- When we performed the differentiation with respecpto
handedly account foBg,, without cutoffs or otherad hoc  to obtain the total energy and the entropy, the surface gravity
adjustments can be shown by a thermodynamical argument, of the black hole and the inverse temperatgreof gas
[24]. One considers the reversible quasi-static contraction odn the black hole background were considered as indepen-
a massive thin spherical shell toward its gravitational radiusdent quantities. Since in equilibrium these quantities are re-
The exterior ground state is the Boulware state, whose streskted byB. 1= k/27, we have imposed this relation, which
energy diverges to large negative values in the limit. To neuwe call the on-shell condition, after the differentiation. In
tralize the resulting back reaction, the exterior is filled withfact, we have shown that the wall contribution to gravita-
thermal radiation to produce a “topped-up” Boulware statetional energy is zero and the back reaction can be neglected,
(TUB) whose temperature equals the acceleration temperdfand only if the on-shell condition is satisfied.
ture at the shell’s radius. To maintain thermal equilibrium On the other hand, in the so-called on-shell method
(and hence applicability of the first lawthe shell itself must  [21,15, the on-shell condition is implemented before the dif-
be raised to the same temperature. The first law of thermderentiation. Now let us investigate what we might call an
dynamics then shows that the shell’s entropy approaSggs on-shell brick wall model. With the on-shell condition, the
(in the non-extremal cagéor essentially arbitrary equations wall contribution to the free energy of the scalar field con-
of state. Thus, the (shellTUB) configuration passes sidered in Sec. IV is calculated as
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-1 (on shell) _
F(on shel) _ _ é B”’ 1 Al Uwan —0.
wall 2 ( )
4 3607 « A1 1 1
a1 = e =~ Sy, (A3)
If we define total energy and entropy in the on-shell method a 4 360m a® 4
by whereS,,, is the wall contribution3.14) to entropy of the
3 scalar field withT,,=Ty.
ulon shell—= —_ (g fplon sheiby It is notable that the total energy{", 5" in the on-shell
9B method is zero irrespective of the value of the cutafHow-
ever, SN ") is always smaller tha$, ;. It is because
sion she= g2 ? g (on shel) A2 some physical degrees of freedom are frozen by imposing
all _IBoc wall ' ( )

9B

then these quantities can be calculated as

the on-shell condition before the differentiation. Thus, we
might miss the physical degrees of freedom in the on-shell
method.
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