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Dynamical evolution of boson stars. Il. Excited states and self-interacting fields
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The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The
previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields
with self-couplings. Self-couplings can significantly change the physical dimensions of boson stars, making
them much more astrophysically interestifggg., having mass of the order of 0.1 solar maske stable §)
and unstabley) branches of equilibrium configurations of boson stars of self-interacting fields are studied;
their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared
to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and
compared. Excited states also have equilibrium configurationsSvithdU branch structures; both branches
are intrinsically unstable under a generic perturbation but have very different instability time scales. We carry
out a detailed study of the instability time scales of these configurations. It is found that highly excited states
spontaneously decay through a cascade of intermediate states similar to atomic transitions.
[S0556-282(98)02220-9

PACS numbd(s): 04.40.Dg

l. INTRODUCTION 10' kg at ¢(0).=0.271 (for bosons of massn=1 Ge\).
Configurations for which¢(0)<<¢(0), (the S branch are
Various particle physics models suggest that bosonstable to perturbationg5,12] while those with ¢(0)
might play an important role in the evolution of the universe.> ¢(0). (the U branch are unstable. Stability here refers to
These models predict the abundant production of thesthe ability of a¢(0)< ¢(0), star to settle to a new configu-
bosonic particles in the early universe and their presence iration in the same branch under perturbations.$£0)
large numbers even today. Although the bosonic particles> ¢(0),. configuration star is unstable in that, upon perturba-
have never actually been directly detected, they are considions, it cannot stay on the same branch. If it cannot lose
ered as leading candidates of dark mafidr These bosons enough mass and settle to a stable state, it either collapses to
could by a Jeans instability mechanidi®] condense into a black hole or disperses to infinity. Stable boson stars have
compact gravitating objects such as boson stars. very specific quasinormal modes of oscillation under pertur-
Boson stars are made up of self-gravitating complex scabations, a feature important for the detection and identifica-
lar fields with or without further self-coupling3,4]. The tion of these stars.
equilibrium configurations represent an exact balance be- In the present paper the study of papgs]lis extended to
tween the attractive effect of gravity and the natural tendencyhe excited state boson star and to the case p#é self-
for the scalar field to disperse. The stability of such an objecinteracting scalar field. The dynamical evolutions of such
is hence a central issue. It is well known that equilibriumsystems are studied numerically.
configurations of boson stars have stab$ énd unstable The action for the system studied in this paper is given by
(U) branches as well as a hierarchy of ground and excited
stated 3—-13]. Recently a review paper has also appeared in 1
addition to those i3] and[4] which outlines all the relevant  |= —_ J d4x\/__gR_f d?x
boson star literaturgl4]. In the first paper in this seri¢$§], 167G
the dynamical evolution under various perturbations of 1
ground state boson stars made up of non-self-interacting sca-  + -m2?®d*d + —)\|d>|4) } (1.1
lar fields was studied. 2 4
In the absence of self-coupling the mass profile of the
ground state configurations, when plotted against the centrglhere are two reasons to include the self-coupling interaction
density ¢(0), has a peak at :O.633n§,|/m (wheremp, re-  [6,8]. First, without thex ¢* term, the maximum mass of a
fers to the Planck magsorresponding to a mass of about boson star,

1
\/__g( E gMV(gl-L(I)* (?V(I)
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M =O.633n§,|/m (1.2 section of Sec. Ill, the migration of d-branch stafthat for
which ¢(0)> ¢(0).] to the S-branch is described. The es-
(wheremp, refers to the Planck mass amithe mass of the sential features of the=0 case are retained. If@d-branch
boson, could be too small to be astrophysically significant. star is perturbed by the addition of mass, the star will col-
For example, fom=1 GeV, M=10 M, where M is  lapse to a black hole. When, as a result of perturbation, the
the solar mass. On the other hand, for interacting fields, evestar's mass is reduced, corresponding to annihilation of sca-
with a small coupling, the mass of the star can be ldfije lar particles, the star expands and moves to $Haranch,

In this case, oscillates, and settles to a new equilibrium configuration of
5 lower mass.
M ~0.06yN Mp, (1.3 Section IV studies various aspects of the evolution of ex-
' m2’ ' cited states. Excited states have similar band structures to

ground state stars. In this paper, we study generic perturba-
which is larger than Eq(1.2) by a factor of~Amp,/m tions that may exist for a boson star in an astrophysical en-
~10"\/\, for m=1 GeV. A moderate value of=0.01 then  Vironment, e.g., some additional scalar particles falling in.
leads toM =0.1M 5, which is particularly interesting due to TheS-branch excited states have previously been found to be
the gravitational microlensing dafa5]. (It should be noted, Stable under infinitesimal perturbations that conserve the to-
however, that for smaller values of bosonic massne can tal mass and particle number of the boson $#dr We find
have boson stars of the order of solar masses even withotftat these stars are inherently unstable irrespective of
self-coupling[16]). whether they lie on th& or theU branch but the time scales
Second, boson stars give us a way to study local aniso®f instability are different. This result is consistent with the
ropy and its effects. The larger the self-coupling parameter study of infinitesimal perturbatiorfd.2]. If they cannot lose
the smaller the fractional anisotropy. Changing the selfenough mass to transit to the ground state, they either col-
coupling parameter for a given central density provides dapse to black holes or, as in the case of stars for wMch
way to vary this anisotropy in a natural wf§]. By anisot- >Nm (M=mass of the stafN=number of bosons angh
ropy we mean that the radial and tangential components of mass of one bosgndisperse to infinity. The decay of
the pressure are different. This is of interest because devigome higher excited configurations is also studied. These
tions from perfect fluid assumptions for even nuclear mattehigher node configurations cascade through intermediate
is expected in the presence of strong gravitational fields. Iwonfigurations of lower excited states on their way to col-
boson stars this anisotropy appears very naturally. Althougkapse. This is reminiscent of atomic transitions where atoms
we have not studied specifically the anisotropies in this pago from an excited state to lower states through intermediate
per, it provides motivation for adding a self-coupling term. ones, lending credence to the idea that boson stars are like
The results of paper | are also extended by considering thgravitational atom$3]. A brief conclusion follows in Sec. V.
evolution of excited states with and without self-coupling. An appendix at the end shows some features of the the high
This is of importance because if boson stars exist and ard (A=X\/47m?G) configurations, including a calculation of
detected, they are most likely those interacting with theirquasinormal modes.
environment and going through some excitation process. Ex-
cited configurations might also be intermediate stages during 1I. FORMULATION AND EQUILIBRIUM MODELS
the formation process of these stars. In this study the con- _ . . .
figurations considered are spherically symmetric; all pertur- N this section the mathematical formulation of the prob-
bations of equilibrium configurations are purely radial. Full €M, the creation of the equilibrium and perturbed boson star

3D simulations are underway and will be reported in a futurd0des and the numerical code used to study them are de-

paper. The remainder of this paper is organized as follows:Scribed. The formulation is the same as that of paper I in this

Section Il sets up the mathematical foundations of theseries 5] except 'for the self-interactiqn term. The numerical
problem, including the equilibrium and evolution equations.tre"]‘tmem_useo_I in this code has various |mprovem_ents over
The calculation of the initial data sets is discussed and thi"at described in paper I. Some details of the numerical code,

techniques used to evolve the system numerically are briefl§-9-» convergence tests etc., which are similar to those re-
outlined. orted in paper | will not be repeated here.

Section IIl details the evolution of ground state configu- 1€ action for a self-gravitating scalar field given by Eq.

rations with self-coupling. We show that they have simgar (1-1) leads to the scalar field equation

andU branch structures as _boson stars without s_elf-coupling. gD, —mPd —\(D*D)D=0 2.
S branch stars are stable with regard to perturbations. By this "

we mean that under small perturbations they return to confor the complex scalar field=®d;+i®d, and the Einstein
figurations on the same branch although not to the samgeld equations
configurations. We studied in detail the fundamental quasi-

normal modes of oscillation oB-branch stardthose for

which ¢(0)< ¢(0).]. They are important characteristics for

observations. They can also be used to predict the end point

of the evolution of perturbed stars, as well as a comparison The metric for this spherically symmetric system can be
between modes for different self-couplings. In the next subwritten as

R R=87GT,,.

uv Egp,v
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Mass Profiles for Ground State Stars
with Self-Coupling

ds?=—N?dt?+ g?dr?+r2dQ?, (2.2

whereg, the radial metric, andl, the lapse, are functions of
(t,r) with r being the circumferential radius. This form of the
metric is known as the radial gauge. In the absence of a shift
vector 82, this form of the metric can be maintained for all
time by enforcing the polar slicing condition. This is a con-
dition on the lapse that requirds,;;+K,,=0 whereK;; is
the extrinsic curvature tensor. This slicing condition causes —
the lapseN to decrease rapidly if an apparent horizon is -~
approached17]. "
The equilibrium boson star configurations are those in
which the metric is time independent. The scalar fidid
itself oscillates with fixed frequency,:

1.5 ‘ T ‘ ‘ T ‘

Mass (m,

D(t,r)=dy(r)e o, (2.3 : ” 1

but due to the dl) symmetry of the Lagrangian, the stress L i
energy tensor and the spacetime geometry are time indepen- 00— -
dent. In dimensionless coordinates we have 1 e L L

0.0 0.5 1.0 1.5
r=mr, t=wgt, oc=47wGP, 7 (0)
N=N m A= ZL (2.49) FIG. 1. The mass profiles of ground state boson stars for differ-
@o m°4mwG ent values of the self-coupling constaktare shown. The increase

. . ) . in mass withA is clear although the profiles are very similar.
and the Einstein and Klein-Gordon equations under these

conditions are which is also found in white dwarfs and neutron stars. The
mass grows to a maximum as the central density is increased,

o X1 @5 and then decreases with further increase in central density.
1 @2 1 (See Fig. 1. The maximum mass increases withbut the
xi=—|-+—- rg2g(2) X1— {_z -1 gog2+A(g2gg) profile is similar. The expectation, that the branch to the left
rr N of the maximum is stablebranch while that to the right
(2.6 (U-branch is unstable, as in the case of ground state con-
1lg ¢ 1 1 figurations without self—_c_oupling, is found to be true. Stabil-
[ [_ _Z 4 agrg3( 1+ — |+ ng%*‘ —A(g%aﬁ)} ity here refers to the ability oB-branch stars to settle to new
2[r r N 2 S-branch configurations when perturbed, a feature of impor-
(27 tance for the long term existence of these stars.
2 2 2
N’ = ; {— ? NTg + gNUo(l N2)+rNy? A. Evolution equations
The configurations described above are time independent,
1, 4 equilibrium solutions to the Einstein equations. The aim of
— EAg Nrog|, 28 this paper is to study their dynamical properties according to

the coupled Einstein—Klein-Gordon equations. In this paper
whereo,=®,\47G. A prime denotes/dr and an overdot only spherically symmetric configurations are studied. In ac-
denotesd/ot. All quantities in this paper are reported in tual numerical evolution the following set of variables is
terms of these dimensionless parameters unless explicitighosen:
stated otherwise. Regularity at the origin requires that
=0)=1 and that all other quantities be finiterat 0. For the
solution to represent an isolated star, it is required tat
=)=0. This constitutes an eigenvalue problem. For each 29
choice ofo(r=0), the above set of equations has a solution
only whenN(r =0) takes on certain values. Different eigen- Where
values correspond to a different number of nodes in the so-
lution of o(r). Solutions are also obtained for different val-
ues of the coupling parametex. Different families of
equilibrium configurations are shown in Fig. 1. The mass
profile of ground state boson stars with self-coupling has thend the subscripts o#; denote the real and imaginary parts
familiar structure seen in non-self-interacting fieldS]  of the scalar field multiplied by.

_ B _1ayy 19y,
h1=roy,  r=roy, M= o M= T

(2.10

Q
Il
Ql|lz
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In terms of these variables and the dimensionless ones in The boundary condition on the scalar field is an outgoing
the previous section the evolution equations are as followsscalar wave condition. However, since the dispersion relation

The radial metric functiory evolves according to of the massive scalar field is non-trivial,
g=N(m0}+ m0h). (2.12) a?k?= w?— N?m? (2.17
The polar slicing equation, which is integrated on each timéwherea=N/g), there is no perfect algorithm for the imple-
slice, is given by mentation of the outgoing wave condition. Here we have
adopted a two tier approach:
g>-1 . (i) A “sponge” region [5] is constructed by adding a
N'= Cl r[(o1)?+(05)*~g%(o5+03)] potential term at the outer edge of the computational domain:
2 2 2 !
mtm Ar . r " @
+— 2—92 (03 +03)?2|. (2.12 m=a' Y+ ey — i GN+ — + A (i + )
The Klein-Gordon equation for the scalar field can be written + !(Tri +y!), i=1,2, ry—D=r=ry (2.18
as N '
) a’ s s _ wherer  is ther value of the outermost grid point ari?l is
m=a' i tayi— ¢ N+ ——+ A (Y1) |, 1=12, an adjustable parameter representing the width of the sponge.

2.13 D is typically chosen to be a few times the wavelength of the
scalar radiation moving out. The extra potential term in the
above equation is designed to allow waves to propagate out-
ward but damp incoming waves.
(i) At the outermost grid point we require

1;0i=a77i, |:l,2 (214)

The Hamiltonian constraint equation is given by

- . N?
29’ +gz—1_ 7Ti+7T§_0'12+0'é2_( 2, 42) ¢=—a¢'—71ﬂ. (2.19
Eg rzgz r2g2 gz g3 2

A This is an exact outgoing wave condition only in the case

- E(aer a§)2=0. (2.15 m=0. The second term on the right hand side represents the
finite m correction to leading orddrecall thatN=Nm/ ).

The sponge is designed to absorb the reflection coming from

It is not solved during the evolution, but as it is in principle this approximate outgoing wave condition. We note that re-

consr?ri\rﬁcii 2{ trhefetxml;t'?:: ?iqurla\tlons,rlt IS rr}clrslltor?:; Cllot?erl])(:ent work on this problem following a hyperbolic approach
asa cator of the numerical accuracy ot the simulalionge e g 1o provide a simple and more accurate outgoing

For further details sefs]. boundary conditiof18].

B. Boundary conditions
Ill. DYNAMICAL EVOLUTIONS OF PERTURBED

Regularity conditions require thag(r=0)=1, andg, N, GROUND STATE STARS WITH SELF-INTERACTION
o1 ando, have vanishing first spatial derivativesrat 0. To

implement this condition numerically, the rangerofs ex-
tended to include negative values; N, o4 and o, are re- We study the dynamical properties of the boson stars by
quired to be symmetric about=0. In additionyy, &,, 7 perturbing the equilibrium field distribution. The accretion or

and m, are antisymmetric about=0. The antisymmetry al- annihilation of scalar particles is simulated by the addition of
lows the determination of; at the origin as the first deriva- a field in the outer regions of the star or by decreasing it in
tives of 4; atr =0. The value of the lapse function is fixed at denser regions of the star respectively. Another type of per-

the outer edge on each time slice. Its value at the origin igurbation that has been effected is changjngand ¢, of the
determined by integrating E¢2.15 inward from the outer  equilibrium configuration. This perturbation changes the ki-
boundary. The value off is determined by the evolution. netic energy density distribution. In either case the changes
The mass of the star is determined by the valug @ft the  in the metric functiongy andN are determined by the con-

A. Nature of perturbations

edge of the grid: straint equations and the polar-slicing conditfamegrating
9 Egs. (2.12 and (2.15 on the initial slice] The magnitude
M= Er{ 1— 1 } Mpy (2.16 and the length scale of the perturbations can be chosen arbi-
2 g%() trarily. The perturbations are always spherically symmetric.

In the rest of this section we present results obtained on
wheremp, is the Planck mass and is the mass of the boson the dynamical evolutions of ground state equilibrium con-
making up the star. figurations perturbed in this manner. Evolutions of both
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Comparison of Unperturbed and Perturbed Initial Profiles tion. The oscillations damp out in time as the star starts set-
120 ' ' tling to the new configuration. A plot of mass vs time is
shown in Fig. 8c). The amount of scalar radiation decreases
in time as the oscillations damp out, as can be seen from the
figure. The slope of the curve steadily decreases as the star
starts settling down to its new lower mass configuration. The
mass is measured at the inner edge of the sponge. Exact
details of the curves have some dependence on the sponge
Kedial Mo Pomnated parameters but the basic results are the same.
Density-Unperturbed A characteristic of the boson star that could be important
. R [ - Density-Perturbed . . . . . L H
: for its observation and identification is its fundamental oscil-
lation frequency which can be determined from Figb)3
We foundf=1[199N(=)]=4.7x 10 3. The oscillation fre-
quencies for a large number &-branch stars have been
compiled in this way. Figure(4) shows a plot of the oscil-
105 i lation frequency versus mass for many slightly perturbed
configurations (masses within 0.1% of the unperturbed
mass$. As the mass increases, the frequency increases and
then drops down as the transition pojtM/do(0)=0] is
. approached, signaling the onset of instability. This is seen for
1.00 : s both the non-self-interacting as well as the self-interacting
radius case. These quasinormal modes of oscillation characterize
S-branch stars. The point of transition from tBeto the U
%ranch corresponds to a zero frequency of oscillafid].

A=10

110 .

o+l

FIG. 2. The comparison of a strongly perturbed ground stat

— — 2 —
Aglg’ Sbranch .Sta'[M_*0'78]'?7'/“,‘7(0'2’0'1] tl? thel,l(‘j”f,’er' Oscillations of boson stars have also been discussed using
turbed configuratiog M =0.722n,/m] is shown. The solid lines oo qironhe theory ifL9]. The results they find are consis-

correspond to the unperturbed configuration and the dashed ones Ot with the fundamental quasi normai-mode frequencies
the perturbed star. The perturbation shown corresponds to the addi-

. i _ reported in this paper.
tion of a scalar-fieldr at t=0. For a given mass highek,S-branch stars have a lower

oscillation frequency than similar mass lowerstars, unless
one is near the transition point of the lowrconfiguration.
This is not too surprising, since for a given mass the radius
of the star increases with increasilg We have seen this
trend even forA values as high as 160Bee discussion on
As shown in Ref[5], in the free field A=0) case, a high A stars in the Appendix However, since the maximum
perturbedS-branch star oscillates with a definite frequency, mass of higheA configurations is greater than that of lower
losing mass through bursts of scalar radiation at each expark configurations, their maximum oscillation frequency could
sion and finally settles to a ne®branch configuration of be greater than that for lowet stars.(This can be under-
lower mass. Here the effect of a self-interactitigerm on  stood as a size effect: on ti&branch, higher mass stars are
this behavior is examined. In Fi@ a typical example of the smaller and have higher frequencje$his can be seen in
perturbed field configuration and radial metric of a star ofFig. 4@). The maximum oscillation frequencies &4f=5 and
A =10 with a central density of-(0)=0.1 is shown. This A =10 configurations are higher than that of the=0 case.
star has been perturbed by accretion of scalar particles in As the stars get much larger, though, the highest frequency
region of lower density. Its evolution is detailed below. starts to decrease, for example the maximum frequency for
Figure 3a) shows the radial metric as a function of dis- A =30 stars being less than that &f=15 stars which is in
tance for the same configuration at various times. The labelgself lower than that of the\ =10 case. A perturbation cal-
A,B,C,D correspond to time&n units of the inverse of the culation for the highA case is shown in the Appendix to
underlying scalar field frequengyt=192,306,391,505 re- show the dependence of quasinormal mode frequencigs on
spectively. The positions of the peaks are labeledor high A configurations. The frequency is proportional to
Rq,Ra,Re,Rc,Rp, whereRy is the position of the initial the inverse of the square root @f. Thus as the stars get
unperturbed peak. HerBy=7.95, R,=8.55, Rg=6.6, R¢ really big they oscillate less and less rapidly and numerically
=8.2 andRp=6.65 where the length scales are in terms ofit is no longer feasible to evolve therfThe time step used in
the inverse mass of the boson. The oscillations are showthe numerical simulation cannot be increased as it is deter-
clearly in Fig. 3b) which is a plot of the maximum value of mined by the intrinsic oscillation time scale of the scalar
the radial metric as a function of time. The point where thisfield, which is many orders of magnitude shorter than the
function is a maximum corresponds to the core of the stapscillation time scale of the whole star for these cases.
contracting to its minimum size in a cycle. Similarly, the  The quasinormal mode curves are also useful in determin-
maximum radial metric starts to decrease as the star expandag the evolutions of strongly perturbestbranch stars and
At each expansion the star loses mass through scalar radite final configurations they could settle into. A perturbed

S-branch andJ-branch stars with and without self-coupling
are considered.

B. S-branch perturbations
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Radial Metric Evolution of a Stable Boson Star Maximum gry for Perturbed
[——r—r—r—r—h—ﬂ*. L B e I Stable Boson Star
r ; ! 7 122 — T ‘ T T 1 ‘ T ‘
4B J
1.2 — D — <‘ D |
i i 120 l —
- N - I J
o -
. o 0 L
o
a0 o
11— — ©
=
b =
» _ £
unperturbed configuration > 3
©
_ = i
R RC‘ ] ]
].O S| RADRLL U S i 1 L L . '—j L B
0 10 20 30 = b
(a) r 1.14 1 | 1 1 1 ‘ ! - i
0 2000 4000 6000
(b) ¢

Mass Loss for Stable Perturbed Boson Star

079 [ T T ‘ T ‘ T ‘
0.78 — |
7] L N
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= 3 J
= L ]
-+
o N
© L
0.77 — —
L \\\ i
= \\\\ .
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FIG. 3. (a) The evolution of the radial metrig,, = g2 for the configuration shown in Fig. 2. The initial perturbed configuration is labeled
t=0. The unperturbed configuration is also shown. The spatial distributions of the radial metric |AbBI€&ID correspond to times
=192,306,391,505 respectively. The radial positions of the peaks of the radial metric for these times ar&lapBlgdR: , andRy . The
valuesRg andR, are so close that they appear as one thick line in the fighyelhe peak value of the perturbed radial metric is plotted
over a long time. The points labelédB,C,D correspond to the same labels(@. The oscillations decay in timéc) The total mass of the
star is plotted as a function of time. The mass loss through scalar radiation decreases in time as the oscillations start damping out.

star loses mass and settles to a final configuration corre- C. U-branch perturbations

sponding to a position on the solid line in the figure. In Fig. oy the case of non-self-interacting fields it was shown in
4(b) we single out the\ =10 curve and plot the evolution of Ref, [5] that accretion of scalar fields cauddsbranch stars
the S-branch star discussed above. The poirfs P2, P3  tg collapse to black holes. However, lowering the density can
show the route to a new configuration. These points corremake the star migrate to th®branch. These features are
spond to timest=0, 1200 and 4800 respectively. By ex- also seen in the presence of self-coupli®§]. Figure 5
trapolating this line to where it meets tide=10 curve one shows a migratingA =30 star whose unperturbed overall
could expect a final mass of about rﬁﬁ/m. field densityo has been decreased by about 10%. Figiag 5
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Quasinormal Mode Comparisons Quasinormal Modes and Stable Star Migration
Different Self-Couplings A=10
6.0 ‘ 6.0 | | | |
P o A=0
............ A=S
50 - x A=10
A & A=15
<3 © A=30
; v v A=100
_ 40 A P * A=200 1
o B 4% g 8 55 B
ha o ;
(Z" 30 . % o1 A o o T v__‘:
g ¥ Lo v
o i v
Ij.'f ¥ O" v * - —
20t Ly * ] D
ox?‘of = * han
S - ’ g 5.0
10 r g
3 o
& o
@ w
0.0 ‘ . ‘
0.0 1.0 20 3.0
(a) Mass (m,,’/m)
45 4
4.0 1 1 1 L
0.70 0.75 0.80 0.85 0.90 0.95
(b) Mass (mpf/m)

FIG. 4. (a) The oscillation frequencies of different ground state boson star configurations are plotted as functions of mas$, fbr
10, 15, 30, 100 and 200. The curves are obtained by slightly pertugérurbed mass within 0.1% of the unperturbed m&dsranch stars.
They reach a peak and then drop down at the approach of the maximum mass allowed for /a giigealing a transition from stability to
instability. The frequencies for a given mass for highestars are lower than those for low&ras a result of their increased size. However,
their overall maximum frequencies could get bigger than for lowstars because of their increase in maximum mass. As can be\sebn
and A =10 stars have higher maximum frequencies tham\deO stars. As the stars get very much larger the maximum comes down as
shown in the figureA =30 stars have lower maximum frequency thes 15 stars which have lower maximal frequency of oscillation than
do A=10 stars.(b) The highly perturbed\ =10 S-branch star of Fig. 3 has an oscillation frequency below Ake10 solid line. Its
movement towards the solid line is shown through pofits P2 andP3 corresponding to times 0, 1200, and 4800 respectively.

shows the behavior of the radial metric in time as a function For higher central density stars on tbebranch, the mass

of radius. It oscillates about the fingtbranch configuration versus central density curve has a second, gentler peak, simi-
that it will settle into. This final state is shown on the plot aslar to the white dwarf neutron star situation. One might sus-

a dark line. Figure &) shows the maximum radial metric as pect that this corresponds to another stable and unstable
a function of time. The star initially expands rapidly as it branch respectively. However, we find that configurations on

moves to theS-branch. This can be seen from the sharp drop?oth sides of the peak are unstable. These configurations
in the radial metric. Once it moves to the stable branch, i@lways disperse upon perturbation, consistent with the fact

oscillates about the new configuration that it is going to settidhat they haveM>Nm, whereM was the mass of the star
to. Figure %c) shows the mass of the star as a function of2ndNm was the number of bosons multiplied by the mass of

time. It loses mass at each expansion, losing less and le8P0SON-
mass at each subsequent expansion, and the curve get%
smoother and smoother as it prepares to settle to its fin
state.

Figure 6, which shows the oscillation frequency as a func
tion of mass forA =30, can be used to predict the end point
of migration. Point$Q1, Q2, Q3 andQ4 show the migration
of this star. These 'cor.respond to times OT 200, 1000, 2.00 tars which need a different technique due to the very differ-
and _3500._ Th_e _oscnlatlon is clearly damping out. The ﬁnalent time scales involved in these evolutions.
configuration it is expected to settle down to is shown as a
dot and corresponds to a stable star of central dewgif)
=0.0817 with a mass of 1.037,23|/m. This example is typi-
cal of a number of simulations df-branch ground state Excited states of boson stars have field configurations
configurations with self-coupling. characterized by nodes. The first excited state has one node,

In summary ground state configurations of boson stars
ith self-coupling have stable S and unstable )
ranches just like boson stars without self-coupling. The
stable configurations have very specific quasinormal modes
‘of oscillation. The addition of a self-coupling term serves to
increase their mass. The cases considered so far correspond
0 A~10 or less. The Appendix deals with very high

IV. EVOLUTIONS OF EXCITED STATES
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FIG. 5. (a) The radial metricg?=g,, of a perturbedJ-branch ground state star is shown at various times. The curvesalt2@3d
correspond to time$=10, 20, 30, 340, 440, 540 and 640. The unperturbed star has a central def@jty0.23 and a self-coupling

parameter\ = 30. The initial equilibrium metric configuration is also shown. The overall field density of this star has been lowered by about

10%. Thet=0 curve corresponds to the initial perturbed radial metric. In the asymptotic regiis not oscillating but monotonically

decreasing due to the mass lo&s. The maximum value of the radial metric is plotted as a function of time. The initial sharp drop in the
radial metric signifies the expansion of the star as it proceeds to the stable branch. There it oscillates about the new stable configuration that

it is going to settle to. This corresponds to a star of nMss1.037m32,/m [whose metric configuration has been shown in figaras a dark

line]. The pointsa andc correspond to two minima in the peak@f which occur when the core of the star reaches its local maximum size.

Likewise the maxima in the peak gf, atb andd correspond to the core of the star reaching its local minimum &x&he mass is plotted

against time. The mass loss through scalar radiation at each expansion of titeoc@eponding to the maximum radial metric reaching a

minimum) decreases in time as the oscillations damp out.

the second has two and so on. Studying their stability and thdensity curves for ground, first and second excited states of
time scale of decay is important in determining the likeli- boson stars without self-coupling. The maximum mass in-
creases with the number of nodes as expected. The similarity

hood of finding them in nature.

The mass profiles of excited state boson stars are similaf mass profiles of excited boson stars to their ground state
to ground state stars. Figure 7 shows the mass versus centmunterparts might lead one to expect stable and unstable
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Quasinormal Modes and Unstable Star Migration Mass Profiles of 0, 1 and 2 Node Stars
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FIG. 7. The masses of 0-node, 1-node and 2-node boson stars
35 1 without self-coupling are plotted as a function of central density.
The maximum mass of 1-node stars is 1:35@m while the maxi-
mum mass for 2-node stars is expectedly greater at 2@951.
The profiles are deceptively similar to their ground state counter-

3.0 . : . part. Excited state stars are inherently unstable irrespective of the
0.8 1.0 1.2 : .
branch they lie on, unlike ground state stars that can be termed
Mass . .
stable or unstable depending on whether they lie on the branch to

FIG. 6. The migration of th&J-branch star considered in Fig. 5 the left of the maximum mass or to the right respectively.
is shown after the star has moved to ®branch. Point®Q1, Q2,
Q3 andQ4 correspond to times 500, 1000, 2000 and 3500 respecthe dynamical evolution and carry out a study of the insta-
tively. Here too the mass loss decreases in time and the star finallyility time scales.
settles to a stable configuration. Excited state stars with masses less than the maximum
mass of aground state configuration always form ground

configurations to the left and right of the maximum massState stable configurations_. In fact even stars with masses
respectively in analogy with ground state configurationsSOmewhat greater than this can lose enough mass during
However, our numerical studies show that the excited bosoH€ir evolution so as to go to the ground state. Figuis 8
star configurations on both sides of the peak are inherenti§hoWs a perturbed 1-node star whose mass has been reduced
unstable except that the time scales for instability are differPy about 8% to 0.875//m by a perturbation making a tran-
ent. If they cannot lose enough mass to go to the groundition to the ground state although the mass is greater than
state, they become black holes or totally disperse. This oghe maximum ground state mass of 0.63m. A substan-
curs even if no explicit perturbations are put in the numericatial amount of scalar radiation is emitted in the dynamical
evolution other than those introduced by the finite differenc-evolution, which brings the mass below the critical value.
ing error in the numerical integration. We have also carriedThe evolution of the radial metric function is shown. Al-
out perturbations that correspond to more scalar particlethough the plot is shown only to a radius: 100, the actual
falling on to the star or those that decrease the scalar fieldvolution was carried out to=300. The two peaks &t
strength at the center point corresponding to scalar particles O are indicative of a first excited state. One of the peaks
decaying through some channgf§. The instability shows disappears gradually as the star goes to the ground state. The
up in all cases studied. We note that this instabilitpagin ~ star then oscillates about the ground state configuration that
contradiction with the result d4], which concluded tha® it will finally settle into. In Fig. &) we show a 3 node
branch excited states are stable under infinitesimal perturbaonfiguration with a total mass of 0.82,/m, going to the
tions that strictly conservi®l andN (whereM is the mass of ground state after radiation by scalar waves carries off the
the starN the number of bosons amd the boson magsOur  excess mass and kinetic energy. We have plotted the density
result of instability under generic perturbation is consistenfunction against the radius and time of evolution. By the
with the studies ofA =0 stars under infinitesimal perturba- density function we mean densitymultiplied by anr? fac-

tion [12]. The presence of a self-coupling term increases théor which is the mass pedr at radiusr. pr? hasn+1

time scale of instability but the essential pattern remains thenaxima for amn node star and hence here we have 4 sets of
same. In the following we will first give a detailed account of lines initially. At the end of the simulation, we see that it
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1 Node Boson Star-Transition further increases towards td =Nm point the expansion
| 20 , to Ground State phase becomes longer. In Fig(ap we show the density
R I I R B B function (pxr?) against radius at various times for 4 con-
= 4 figurations[an S branch configuration withr(0)=0.1 and
t 7 three U branch configurations of central densitie0)
[ Ad =0.3, 6(0)=0.4 ando(0)=0.5]. The initial configurations
are the equilibrium ones without any explicit perturbation
(except those introduced by the discretization used in the
numerical simulations The first frame shows th8 branch
star radiating a little as it makes a transition to the ground
state. However, it cannot sustain this state for long and it
collapses to a black hole. The time of decay decreases in the
case of d&J branch stars of central density 0.3 and 0.4. How-

1.05

ever, for theo(0)=0.5 star the star is clearly more disper-

sive than the previous ones. It goes through an expansion

phase initially although it finally collapses to a black hole.

Configurations witho(0)>0.54 haveM >Nm. They do not
1.00 collapse to black holes but disperse to infinity.

Next we turn to a study of instability time scales. In simu-
(@) r lations where a black hole will form, the imminent develop-
ment of an apparent horizon leads to a rapid collapse of the
lapse due to the polar slicing used in the evolution. We take
the time of collapse of the lapse at the origintd 0 of its
initial central value to be the approximate time for formation
of the black hole. Figure (8 shows this time scale for a
1-node star without self-coupling. We plot the decay time
scales of first excited state stars as a function of central field
density. Again no explicit perturbation is applied in these
evolutions other than the discretization error in the simula-
tion. In order to make a fair comparison of the time scale due
to such a perturbation we cover the radius of the star in all
FIG. 8. (a) The transition of a first excited state star to the Cas€s by the same number of grid points. The maximum
ground state is shown. Here the radial metric is plotted againsground state mass for stars without self-coupling is around
radius for various times starting frot=0 and then fort,=250,  .633n3,/m. This corresponds to a central density @f
t,=500, t,=1245, t4=4000, t.=5000, t;=5505, t;=6000 and =0.021 for a 1-node star. We described earlier that stars
t,=6370. The initial unperturbed and perturbed configurations argvith central densities below,=0.048(mass of O.9m§,|/m)
shown. (The perturbed configuration has the lower second peak.|gse enough mass and move to the ground state. Beyond that
The initial mass of the star wad =.901Im3,/m after perturbation.  gnd up to theM =Nm point they collapse to black holes,
The_radia_l metric initially has two peaks indicative of a 1-nodeyhile stars withM>Nm corresponding to a central field
conflgqratlon. As the.star evolves aqd goes to the ground state Ortfensity of 0(0)>0.541 disperse to infinity. The time by
peak disappears. This can be seen in the curves fgey . Once ok "collapse takes place to a black hole decreases with
in the ground sta}te it _oscnlates and _fl_nally settles into a stabl ncreasing central density along tBéranch. This trend con-
ground state configurationib) The transition 6a 3 node configu- . S . — .
ration of mass 0.9h3/m. This star loses enough mass during the tinues for a while into the) branch(starting atg._ 0.25 un
course of its evolution to move to the ground state. o~0.4) bUt_"’_‘S one approaches the= Nr_n po_mt the stars
lose a significant amount of matter to infinity before they
settles down to a ground state configuration with small os€ollapse to black holes and evolve on a longer time scale.
cillations with ever decreasing amplitude. For these simulaFor example a star of central density 0.5 has an initial radius
tions of low central density stars we put in an explicit per-of r ~9. (The radius of the star is defined as the radius which
turbation to the equilibrium configuration since the contains 95% of the mass of the s}dts radius increases to
instability time scales are extremely long without that. as much as 115, more than an order of magnitude, before it
For stars with higher central density, there is a criticalstarts collapsing. Dispersion time scales of a couple of stars
density above which the stars cannot lose enough mass to gor M >Nm which disperse to infinitfinstead of collapsing
to the ground state but collapse to black holes. In our nuto a black holgare also shown on the figure. To give a sense
merical simulation for one node stars this critical density isof the instability time scales of these configurations we take
o(0)=0,=0.048. As the central density is increased thethe time scale to be the time by which these stars disperse to
kinetic energy of the highly compressed initial equilibrium 10 times their original radii. This time drops drastically for
configuration is increased and the star first expands beforgtars withM>Nm.
the eventual collapse to a black hole. As the central density Next we turn to the case of #0. Figure 10a) shows

radius

— T
0 2000 4000 6000 8000 10000 12000 14000 16000
(b) time
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FIG. 9. (a) A comparison of the manner of black hole formation of four excited state configurations. The first fram® Banch star
of central densityr(0)=0.1 that tries to go to the ground state but fails to. As the central density increases decays to black holes occur on
a shorter time scale. A plot of the collapse dflebranch of central density(0)=0.3 is shown in the next frame. Stars get more dispersive
as one moves farther along thebranch. A star of central density 0.4 shown in the third frame has a decay time close to the previous one.
Decay times then start to increase. A star of central density 0.5 close i #hdm point[ ~ ¢(0)=0.541 disperses to over 10 times its
radius before collapsing to a black holg) The decay time to black holes is plotted as a function of central density, for one node
configurationd(first excited states of boson stars without self-coupling. Perturbations are only due to the finite differencing effects of the
numerical scheme. To make the comparisons meaningful the 95% mass (a&tiok is our definition for radius of a staof every
configuration considered was covered by the same number of grid points. Configurations for which the central-(@&)sity, move to the
ground state. This value of the critical density=0.048 corresponds to a maks=0.91m3,/m. o,=0.021 is the value of the central
density corresponding to a malgk= 0.633n,2,|/m, which is the maximum mass of a ground state boson star. The decay time decreases with
increasingo(0) and this continues even fer(0)>0.25 which is the point of transition from ti&branch to thdJ-branch. The decay time
then starts to increase as one approachebitidN m point corresponding to a central densit§0)=0.541, beyond which the stars disperse
to infinity rather than become black holes. The dispersion times of two such stars to 10 times their origindD&#diusass radiysare also
shown in the figure.
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Instability Time Scale of a 1-node Star
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FIG. 9 (Continued.

black hole formation for aA =30 star in the first excited has central density(0)=0.075 and it collapses to a black
state, with a central density(0)=0.1. This star had an hole after a long evolution. In the process we see intermedi-
initial radius of about 20.7 where the radius is again definedite states with fewer numbers of nodes. For comparison in
as that containing 95% of the mass. The lapse finally colfig. 11(c) show a contour plot for the 5 node star up to a
lapses to zero, indicating that an apparent horizon is about ttiime oft= 1000 at which time it has decayed into a four node
form. The time scale of collapse to the black hole wasstate, against the equilibrium density functiohao4 node
around 1985 compared to a time scale of less than 800 for star with central density=0.06. Very clearly the maxima
0(0)=0.122 star of similar radius without self-coupling are at similar radi{although the sizes of the peaks are some-
which is shown in Fig. 1(®). This is to be expected as the  what differen.
term represents a repulsive force. The time is again deter- This feature of nodes disappearing and the star cascading
mined by the lapse collapsing to 19of its original value at  through lower excited states is characteristic of the decay of
r=0. higher excited states of boson stars. Although in this case
We now turn to the evolution of a highly excited state. In and at this time the decaying star is close to a specific lower
Fig. 11(a) we show the initial field configuration of a star excited state, in general the decaying star is roughly a com-
containing 5 nodes. For a five node star the density has bination of lower excited configurations. This is similar to
central maximum, and then five local maxima, each subsethe decay of atoms in excited states. However, we note that
guent one smaller than the one preceding it. This star is thefor the “gravitational atom”[3] there is no exact superposi-
evolved without any perturbation except those introduced byion due to the intrinsic non-linearity of the system.
the discretization error of the numerical evolution. In Fig.
11(b).we .shqw a cozntour plot of the; evolution of the density V. CONCLUSION
function in time.pr< hasn+1 maxima for ann node star
and hence here we initially have 6 sets of lines centered at In the first paper in this series, the behavior of boson star
dimensionless =5, 13, 35, 52 and 75 respectively. This star ground state configurations under various perturbations was
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reported. In this paper the study has been extended to include Black Hole Formation of a 1 Node Star
boson stars of self-interacting fields and also the behavior of
boson stars in the excited state.

The self-coupling term is important as it can have dra-
matic effects on the mass of the boson sféis leading to
boson stars of the order of a solar mass. The mass profile
retains the features of boson stars without self-coupling, hav-
ing a central maximum with a stable branch and an unstable
branch. All configurations to the left of the central maximum
in the mass vs central density cur(gee Fig. 1 are stable. =
Under small perturbations they have very specific quasinor-
mal modes of oscillation as seen in Figs. 4 and 6 and under
perturbations they settle down to new configurations on the
same branch. Configurations that lie on the unstable or
U-branch either migrate to new configurations on the
S-branch or collapse to black holes, when perturbed. These
are characteristics shared by boson stars with or without self-
coupling.

Excited states are configurations with nodes. The field of 0 =0 40 60
ann™ excited state star hasnodes and its radial metric has
n+1 peaks. Their mass profiles are similar to the profiles of
boson stars in the ground state, which makes it appear as if
they have a stable and an unstable branch of configurations

» ;
|

However, irrespective of which branch they lie on, excited - A=0

boson stars are unstable with different instability time scales. 10— —]
Low density excited stars having masses close to ground | t.=42 |
state configurations will form ground state boson stars after ! ;4,_//7/

evolution. Denser configurations form black holes with the g A— "
decay time decreasing with increasing central density until F / 1

one approaches the density corresponding to zero binding L
energy. As the central density approaches this central density =
the kinetic energy of the star starts to increase as it becomes
more dispersive. It still collapses to a black hole but on a
larger time scale. Beyond this point for densities correspond- - /’ 1
ing to positive binding energy the stars disperse to infinity. L b —t =750 ]
We studied the time scales of their instability in Fig. 9.

An interesting feature in the collapse of excited state bo-
son stars is that they cascade through intermediate states
during this process, rather like atoms transiting from excited
states to the ground state, suggesting that boson stars behay 0 20 40 60
in some ways like gravitational atoni8]. However, an in-
vestigation of the possible decay channglslection rules
seems much more difficulff at all possible or meaningful _ ) o

FIG. 10. (a) The evolution of the metric functioN“= —g,, for

here, due to the intrinsic nonlinearity of the theory. In this_ '~ _ . ! . ;
paper we have reported the evolutions of spherically Symg A =30, 0(0)=0.1 boson star in the first excited state, without

metric confiqurations. We are currently extending the studhd™ explicit perturbation, is shown. The configuration lies on the
g ' y 9 % branch and has an initial madd =1.743n3,/m. The various

to full 3D without gpherlqa}l Symmgtry. Th'e nume:rlcal Stuqy}ime slices correspond to times=0, t,=1060, t,=1950 andt,

of 3D bogon stars in addition to belng an |nterestlng physical_ 1985. The lapse function collapses as an apparent horizon is ap-
prqblem is also a testbed for 3-dimensional nu_memcal CF)de%roached, signaling the formation of the black h@alicative of an
which enable us to study compact self-gravitating ObjeCt$herent instability of excited stategh) The evolution of the met-
without having to deal with hydrodynamic sources as in neusic function N2= — gy, for a A=0, ¢(0)=0.122 boson star in the
tron stars and singularities as in the case of black holes. Ifist excited state, without any explicit perturbation, is shown. The
particular we aim to study the general two body problem inconfiguration lies on theS-branch and has an initial madd
relativity by evolving two 3-dimensional scalar field configu- =1.23m2 /m. The various time slices correspond to tintes0,
rations. The inspiral coalescence of such systems could hawg=450, t,=720, t.=750 andty,=770. This star has a radius of
interesting physical implications as the gravitational wave20.7 which is about the same as that of the configuratiofajin
emitted does not sensitively depend on the internal structur&gain, the lapse function collapses when an apparent horizon is
of the compact objects until the late stages of coalescencepproached, as a black hole is being formed. The time scale of
Studying the 1D behavior has been an important tool in testeollapse is much less than for tile=30 case in parta).

05—

0.0t—4 —

104004-13



BALAKRISHNA, SEIDEL, AND SUEN

Equilibrium Field Configuration of a 5 Node Star
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5 Node Star Cascading To Black Hole
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FIG. 11. (a) The initial field configuration of a 5-node star. The field has 5 nodes or extrema. The absolute value of each extremum is

S(0)=0.06
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clearly smaller than the one preceding(if) A contour plot of a perturbed 5-node star that ends in a black hole shgwing as a function

of distance(vertical axig and of time(horizontal axig is shown. The density is highest at the origin and has five other local maxima, each
smaller than the previous one. The values of the maxima at the end are very small compared to the earlier ones, and to enhance the feature:
pXr? rather than jusp is shown in the plots. Each set of lines represents the maximea<ef and the number of lines in a set gives an

indication of the height of the maximum. This particular configuration has a central density(f=0.075 and initial masM

=3.07m§,,/m. This star cascades through an intermediate 4 node (statendt= 1000 before proceeding to form a black hole. Cascades
are characteristic of excited boson star decays similar to atoms in excited states going through intermediate states when transiting to the

ground state(c) The equilibrium density functionfa 4 node star of central densigy=0.06 (right frame is placed alongside the contour
plot of the 5 node star described (ib) up to a time oft= 1000 when it has gone iota 4 node statéeft frame. This plot shows that the
transition of the 5 node star is to a perturbed 4 node state close to the one sh@yvbefore it continues its evolution to a black hole.
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Comparison of Exact and Approximate Functions
For a High Lambda Configuration

Comparison of Exact and Approximate Initial Field Comparison of Exact and Approximate Radial Metric
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FIG. 12. The equilibrium profiles of A =800 star with central density=0.05 derived from the highh approximate equations and the
exact ones are compared. A Schwarzschild exterior is attached to the approximate solution after the field vanishes. The three plots show the
field o, g,, andggg respectively. Clearly, the approximation matches the exact solution very well.
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ing our 3D codes, providing testbeds in the spherically symwhere the primes refer to differentiation with respect tdn
metric limit. the limit of A=, one can keep terms to leading order in
1/J/A in Egs.(A2)—(A4). In particular Eq(A2) reduces to

ACKNOWLEDGMENTS

We are happy to acknowledge helpful discussions with
Greg Daues and Malcolm Tobias. This research is supported
in part by the McDonnell Center for Space Sciences, the
Institute of Mathematical Science of the Chinese University o .
of Hong Kong, the NSF Supercomputing Meta CemerHovv_ever, we note that thls_ is valid o_nly for a ground state
(MCA935025, National Science FoundatioriPhy 96- configuration. For a stqte with nodes it would not be reason-
00507, and NSF(Phy-07882 able to rEgIect derivative terms compared to terms propor-

tional to o, which is zero at a node.
To get an estimate of the accuracy of the higlapproxi-
APPENDIX: HIGH A CASE—EQUILIBRIUM mation, we compare the solution using the approximate
CONFIGURATION AND QUASINORMAL MODE equation for highA to the brute force numerical solution of
DETERMINATION the complete set of equations, for\a= 800, o= 0.05 boson

While calculating the eigenvalue for the equilibrium bo- Star in the ground state in Fig. 12. The agreement of the
son star, it is found that it gets increasingly difficult to cal- fields is quite good until the outer region where the approxi-
culate the eigenvalue as the value'ofjets large because we Mate equations cause the_fleld to abruptly fall to zero. Com-
are faced with a set of stiff equations. There are two scales tBarisons of the radial metric and the lapse are also shown. In
the problem: a scale of slow variation of the field inside athe A= limit the approximate equations are exact and the
certain radius related ta followed by rapid decay outside it. Star really has an outer surface reminiscent of a neutron star.
This makes an effective surface layer to the star, making ith fact, an equation of state can be writ{@). In Fig. 13 the
more similar to neutron stars. It turns out that the large mass and particle number versus central densifyr high A
limit can be treated using a set of approximate equations thatars is shown. One expects as in the case of other ground
are exact in theA = limit [6]. By making the change of state configurations that the configurations with>N,m
variables disperse when perturbed while those on théranch with

M <N,m would be unstable and, if unable to migrate to the
S branch under perturbations, would form black holétere
ol — we use the symbd\, for the particle number and ndt so
r=r/JA, o=\Ao (A1) as not to confuse i? with the lapse as both these functions
figure prominently in the analysis that followdhe particle
number is calculated from the curreift and is given by

N=(g2+1) 12 (AB)

the equilibrium equations reduce to

1_ 11 g2 — —]— 171 — N =47Tf 23 L o?dr (AB)
e 22 y_ T = 2 p .
AC INF rgcog|o \/K{Nz 1llog9 N
N 1l (A2) Hereo has been replaced hyo andd® by 47r2dr for the
JA (9%0% spherically symmetric case. In terms of thar coordinates
we see thaN,=VAN,.
3 TABLE I. The ratio of the QNM frequency foA = 1600 to the
g'= E g_ g=+;2r_g3 1+ i + ir_gg’z QNM frequency for a giver\ is compared to\ >%40 (which is the
21 7 0 N2| A 0 predicted ratio for large\) for A =1200, 800 and 1600. The higher
A values match better as expected. The initial central density is
1 (0)=0.4.
+5(g% ag) (A3)
A
A 1/f f 1600/ f V1600 Percent(%) error
. 1| N Ng rg%o} , 01— 1600 1220 1 1
N=3| =t—*—x (N )+\/_K rNog 1200 1070  0.877 0.866 1.25
800 880 0.7213 0.707 1.9
1 o 600 770 0.6311 0.612 3
- EgZNrag : (A4)
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0'2=0'0(I’)502(I’,t).

High Lambda Configurations (A8)
0.25 . ; ; :
The Klein-Gordon equation can be written as
, N g, L1 1, 9° .
ot F+W_E o;tg ﬁz_l_EAa'l A
0.20 i
9° g| - i
+ﬁ2 N—a (0-1+0-2)_2W2-0-2. (Ag)
% 015 1 , - I .
S The field oy satisfies the equilibrium equation
N;‘T- ny | Z & _ % ’
g Oo N g Oo
? 0.10 . ,
—— Mass A do
. 2 2 _
= - --- Particle Number +0Jo Z—NS—l—E(Tl UO—N—(Z)O'O—O. (A10)
0.05 ‘ Expanding to first order perturbations using E¢89) and
(A10) we get
N/ gl (T/
R e 2—°> sc)
0.00 1 1 1 i 1 g 0-0
0 5 10 15 20 25 30
049069’ —0958g  NgSN’—NgSN
o go gg Ng
FIG. 13. The mass of a high star generated from the approxi- 3 g5 (260,+501) + 2 Sq— [\
mate equations is plotted as a functioncof a/A*?). It shows the N2 T2 o0 N2 9009 No

same basic structure as the profiles generated forNawing exact
equations. The peak is at about A2#m32 /m which means that to
achieve 0.M, would takeA of the order of 16f, a very large star

to evolve numerically. Also plotted m (N is the particle number

andm the mass of a bosgnThe crossing point of the two curves prom
represents the transition from negative to positive binding energy.

1 2 2 2
20| 1+ 5 A 0| 89— g5A 5o, =0. (AlD)

Next we turn to the determination of the quasi-normal _ E __
frequency(QNM) of the highA stars. In principle one could Ruv™ 29wR==87CT,, (A12)
determine the QNM using the dynamical studies as per-
formed for theA=0 case. However, the procedure is ex-and
tremely computationally expensive. The scalar field has an
inherent oscillation of about2and the evolution time steps . B
must be small enough to resolve it. However, the code must Tuy=07,0,+C.C=0,,/9" 0,04
run long enough to see a few metric oscillations in order to
determine the quasinormal mode. Asgets large, the sizes 1
of the stars also get large, leading to a lower frequency of -1t ZA”‘72>”‘7”2 (A13)
oscillation. In order to determine the QNM we use instead
the following perturbation analysis based[@11] but using (whereT,,=47GT,,) we get the equations
our notation for lapse, fields, time, radius and self-coupling
as defined in Sec. Il. o 1 (2rsg)’
We write the perturbed fields as 5T0=? (g_g) , (A14)
o=(01+0)e"”, g=go+9, N=No+ 6N . 89 ( 1 Ng) SN’ N§oN
(A7) M= P72, " rg2Ng  TgIN? (A15)

where and
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1(269 N{,)Z NoNj—NgZ  Njgo 1(N(’, goﬂ .
ST2=2{ —| [ 2] + - S22+ —5—a
2 Zr 90[ No N3 Nodo r\No do Nodo g
1[oN"  Ng Ng Ng ( 90 ) 90 ( No )
— S| =2 N+ — SN~ 59’ —— 89| - SN’ — — 6N
9%[ No N3 N3 No9o g 9o g No9o No
N(’)( N§ ) 1( SN’ N§ 59" 0o )H
+2—| N = 28N |+ = —— —~ +259] 1, (A16)
Wg Np r\ Ng NTO Jo 970
and the equations
0_ 203 2 2 2 155 -2, Vot
5T0——F5N——30'0 89+ b0 ma'o-i- — 0" +2| 1+ EAO'O 05 —50‘2m0'0+ — 090007, (Al17)
0 Yo 0 0 0 0
6Tr=—6To+ 403604, (A18)
and
- 2 ) 2 12 2 2 ' 1 ol 2 .2 2 2 Ve
5T2——W5005N——300 69— b0, 270~ g2 %0 -2\ 1+ EAO’Q 0o +50'2N70'0+ — 0903007, (A19)
0 Yo 0 0 0 90
respectively. AddingsT) to 6T} we get
SN’ NgéN 89’ g'ég 211 [Ny 9§ 5 )
—_—— e — =—|=+|>——— - + .
( NO Ng go gg go r NO go 59 4r0'0(1 Ao'o)50'1 (AZO)
Substituting Eq(A20) as well as fordo», from Egs.(A16) and (A19) in Eq. (A11) we get
9o
So+ 8o! 2+N6 gé)—k 1 (9069’ —0489) 35" +25g 062+gg+1 2rg_0
g gq| — - - - g - —
RO TN 9o/ gEro2t? 0 N2 gy [ 0 N2 2r202
Ac3\ op(1 Ny g4 1 ap\? ol
., 2To) Tofz 0 Poy) 2 — |20 2 ' ol
Ool 1+ 5 +<To r TN, g, gob0, N§+g(2) - +(1+Aog)+2rojog| 1+ 5 0. (A21
Adding 6TJ to 8T5 and substituting in EqLA20) and its derivative we get
2 290, , 1 , , 1 20y 2N g
3,59~ [z 99+ 8| 200001 1+§A0'g)a'§g§ Sa1+8|20p2—radgd 1+ EA03)<0'_0+ Ny Tl |90
0
4g/ 6 Nr g/ 25 gll gr 2 g/ N/ gr
_[_20+_ _0__0”59/+_9 9%, ,(%)"_,9%No_9
95 9 \No 9o 9o Y% Yo 90\No 9o
2 2 5 95)2 2<2Na ga”
—80p*— 5 — —5(9095—9p)+2| —— —| +=| —+—||=0. A22
072 gg(gogo 90°) No  do ri Ny "o (A22)
Using the expression for the particle numiéy= [2d3xJ°\/g whered®= .g°%( ¢ ,¢* —c.c.) we get
g p p 0 g g 0 g
9o
, 1-2r— 2 ’
* Yo 1 269 ‘702 Jo Yo 0
ON,=+4m [ drr? ==o3X 89’ —gydg)+ — | — +— | +—dd’
p Wfo NOO‘O aorrag(go 9’ —9069) 9o \ o0 2r20'0 ﬁg oo o
25 1+1062+1+A2 A23
9000, N2 g2l o 590 (A23)
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In terms of bar coordinates defined in the beginning of this section(A&2{) becomes

2

1 g
+92—2(9059 —0099) — A05N2 501
of

No 9o
S0+ rgbay| =+ —— —
A15 1 A15 1 r NO Jo

L 2% i(@z o e AP LN g
9 [Aley) NG 21253 0 A; r No 9o
L 2soi =+ (06)2+(1+_2)+ L oo 14 70 0 (A24)
— 03500001 3t —=| = o — 2royo - 1=0,
20590001 N2 T A gl o0 o)A 000 2
and Eq.(A22) becomes
12 . 29. 8 [2 1 - 1 20}
A % — 69" — Nz 59+ AT5| A T000~ 1+2 )Uogo Soy+ ATE K‘Toz_r 1+2_2);%gg -
+<2—I\lé+g—6) So— — [4go+ ° (N—é—g—()”&g# 2 %, g_(’,) 3go<%_g_(’,)
No  do ! go 9o\No 9o Ado| 90 Yo 9go'No 9o
8_., 2 2 N¢ g’)z 2(2N’ o} }
12 " 12 0 0 0 0
—— - —gi)+2l —=— =] + ===+ =] |s9=0. A25
A %0 T2 5%(9090 90") Ny o No ' 9o g (A25)

Similarly Eq. (A23) becomes

!’

—g

1 259 1(ap\? 1_ng_ogz 1 o) _
2—2(9059 9059)+ <_) —2—20 02 + 1.5:050-
giros go [ A 2r2¢% Ng| A™ oy

1,1 o 2+
NG goA | oy

Using oN,=0 (charge conservatigmvhich is appropriate for larga wheresN, is given by Eq(A26) we get, on putting this

5Np=4wf Fdrr? 32 2 =
0 No o

2
Jo —
T A05%01

(A26)

in Eq. (A24),
Lo 1 —f2 No go) 1 g5 2dg| L 90| 1oo(l No g
o) o — o — [ -
A5 it ATSOTL No Yo WW 0o ~% 2 A o\ T No 9o
1 ,|og 1 [ o} a
_Wgoagl 7+X2r0'00'0 1+7 Al5 50’ 0. (AZ?)

This equation suggests thag goes like 1A% Writing 8g as — x28g and 8o as — y250 we then see from Eq$A25) and

(A27) that the quasinormal mode frequengyfor high A configurations must go like A°® for a given o. We have
numerically evolved stars with the sameand compared the QNM frequencies obtained to the inverse ratios of the square root

of their A values forA =800, A=1200 andA =1600, confirming the above analysis. In Table | we show a comparison
between the perturbation analysis and the numerical result. We see that the perturbation result gets more accurate for increas

ing A. We note that configurations that have the size of a neutron star would have toAhef/@rder 138 with QNM
frequency of ordeyy =10 *°
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