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Dynamical evolution of boson stars. II. Excited states and self-interacting fields
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The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The
previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields
with self-couplings. Self-couplings can significantly change the physical dimensions of boson stars, making
them much more astrophysically interesting~e.g., having mass of the order of 0.1 solar mass!. The stable (S)
and unstable (U) branches of equilibrium configurations of boson stars of self-interacting fields are studied;
their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared
to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and
compared. Excited states also have equilibrium configurations withS andU branch structures; both branches
are intrinsically unstable under a generic perturbation but have very different instability time scales. We carry
out a detailed study of the instability time scales of these configurations. It is found that highly excited states
spontaneously decay through a cascade of intermediate states similar to atomic transitions.
@S0556-2821~98!02220-6#

PACS number~s!: 04.40.Dg
on
e
es
e
le
s

c

b
nc
je
m

ite

t

o
sc

th
t

ut

to
-

a-
se

es to
ave
ur-
ca-

ch

by

tion
a

I. INTRODUCTION

Various particle physics models suggest that bos
might play an important role in the evolution of the univers
These models predict the abundant production of th
bosonic particles in the early universe and their presenc
large numbers even today. Although the bosonic partic
have never actually been directly detected, they are con
ered as leading candidates of dark matter@1#. These bosons
could by a Jeans instability mechanism@2# condense into
compact gravitating objects such as boson stars.

Boson stars are made up of self-gravitating complex s
lar fields with or without further self-coupling@3,4#. The
equilibrium configurations represent an exact balance
tween the attractive effect of gravity and the natural tende
for the scalar field to disperse. The stability of such an ob
is hence a central issue. It is well known that equilibriu
configurations of boson stars have stable (S) and unstable
(U) branches as well as a hierarchy of ground and exc
states@3–13#. Recently a review paper has also appeared
addition to those in@3# and@4# which outlines all the relevan
boson star literature@14#. In the first paper in this series@5#,
the dynamical evolution under various perturbations
ground state boson stars made up of non-self-interacting
lar fields was studied.

In the absence of self-coupling the mass profile of
ground state configurations, when plotted against the cen
densityf~0!, has a peak atM50.633mPl

2 /m ~wheremPl re-
fers to the Planck mass! corresponding to a mass of abo
0556-2821/98/58~10!/104004~20!/$15.00 58 1040
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1011 kg at f(0)c50.271 ~for bosons of massm51 GeV!.
Configurations for whichf(0),f(0)c ~the S branch! are
stable to perturbations@5,12# while those with f(0)
.f(0)c ~the U branch! are unstable. Stability here refers
the ability of af(0),f(0)c star to settle to a new configu
ration in the same branch under perturbations. Af(0)
.f(0)c configuration star is unstable in that, upon perturb
tions, it cannot stay on the same branch. If it cannot lo
enough mass and settle to a stable state, it either collaps
a black hole or disperses to infinity. Stable boson stars h
very specific quasinormal modes of oscillation under pert
bations, a feature important for the detection and identifi
tion of these stars.

In the present paper the study of paper I@5# is extended to
the excited state boson star and to the case of alf4 self-
interacting scalar field. The dynamical evolutions of su
systems are studied numerically.

The action for the system studied in this paper is given

I 5
1

16pG E d4xA2gR2E d4xFA2gS 1

2
gmn]mF* ]nF

1
1

2
m2F* F1

1

4
luFu4D G . ~1.1!

There are two reasons to include the self-coupling interac
@6,8#. First, without thelf4 term, the maximum mass of
boson star,
© 1998 The American Physical Society04-1
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M50.633mPl
2 /m ~1.2!

~wheremPl refers to the Planck mass andm the mass of the
boson!, could be too small to be astrophysically significa
For example, form51 GeV, M510219M ( where M ( is
the solar mass. On the other hand, for interacting fields, e
with a small coupling, the mass of the star can be large@6#.
In this case,

M;0.06Al
mPl

3

m2 , ~1.3!

which is larger than Eq.~1.2! by a factor of;AlmPl /m
;1019Al, for m51 GeV. A moderate value ofl50.01 then
leads toM50.1M ( , which is particularly interesting due t
the gravitational microlensing data@15#. ~It should be noted,
however, that for smaller values of bosonic massm one can
have boson stars of the order of solar masses even wit
self-coupling@16#!.

Second, boson stars give us a way to study local ani
ropy and its effects. The larger the self-coupling parametel,
the smaller the fractional anisotropy. Changing the s
coupling parameter for a given central density provide
way to vary this anisotropy in a natural way@8#. By anisot-
ropy we mean that the radial and tangential component
the pressure are different. This is of interest because de
tions from perfect fluid assumptions for even nuclear ma
is expected in the presence of strong gravitational fields
boson stars this anisotropy appears very naturally. Altho
we have not studied specifically the anisotropies in this
per, it provides motivation for adding a self-coupling term

The results of paper I are also extended by considering
evolution of excited states with and without self-couplin
This is of importance because if boson stars exist and
detected, they are most likely those interacting with th
environment and going through some excitation process.
cited configurations might also be intermediate stages du
the formation process of these stars. In this study the c
figurations considered are spherically symmetric; all per
bations of equilibrium configurations are purely radial. F
3D simulations are underway and will be reported in a fut
paper. The remainder of this paper is organized as follow

Section II sets up the mathematical foundations of
problem, including the equilibrium and evolution equation
The calculation of the initial data sets is discussed and
techniques used to evolve the system numerically are br
outlined.

Section III details the evolution of ground state config
rations with self-coupling. We show that they have similaS
andU branch structures as boson stars without self-coupl
S branch stars are stable with regard to perturbations. By
we mean that under small perturbations they return to c
figurations on the same branch although not to the sa
configurations. We studied in detail the fundamental qua
normal modes of oscillation ofS-branch stars@those for
which f(0),f(0)c#. They are important characteristics fo
observations. They can also be used to predict the end p
of the evolution of perturbed stars, as well as a compari
between modes for different self-couplings. In the next s
10400
.

en

ut

t-

f-
a

of
ia-
r

In
h
-

he
.
re
ir
x-
g

n-
r-
l
e
:
e
.
e
y

-

g.
is
n-
e

i-

int
n
-

section of Sec. III, the migration of aU-branch star@that for
which f(0).f(0)c# to the S-branch is described. The es
sential features of thel50 case are retained. If aU-branch
star is perturbed by the addition of mass, the star will c
lapse to a black hole. When, as a result of perturbation,
star’s mass is reduced, corresponding to annihilation of s
lar particles, the star expands and moves to theS-branch,
oscillates, and settles to a new equilibrium configuration
lower mass.

Section IV studies various aspects of the evolution of
cited states. Excited states have similar band structure
ground state stars. In this paper, we study generic pertu
tions that may exist for a boson star in an astrophysical
vironment, e.g., some additional scalar particles falling
TheS-branch excited states have previously been found to
stable under infinitesimal perturbations that conserve the
tal mass and particle number of the boson star@4#. We find
that these stars are inherently unstable irrespective
whether they lie on theS or theU branch but the time scale
of instability are different. This result is consistent with th
study of infinitesimal perturbations@12#. If they cannot lose
enough mass to transit to the ground state, they either
lapse to black holes or, as in the case of stars for whichM
.Nm (M5mass of the star,N5number of bosons andm
5mass of one boson!, disperse to infinity. The decay o
some higher excited configurations is also studied. Th
higher node configurations cascade through intermed
configurations of lower excited states on their way to c
lapse. This is reminiscent of atomic transitions where ato
go from an excited state to lower states through intermed
ones, lending credence to the idea that boson stars are
gravitational atoms@3#. A brief conclusion follows in Sec. V.
An appendix at the end shows some features of the the
L (L5l/4pm2G) configurations, including a calculation o
quasinormal modes.

II. FORMULATION AND EQUILIBRIUM MODELS

In this section the mathematical formulation of the pro
lem, the creation of the equilibrium and perturbed boson s
modes and the numerical code used to study them are
scribed. The formulation is the same as that of paper I in
series@5# except for the self-interaction term. The numeric
treatment used in this code has various improvements o
that described in paper I. Some details of the numerical co
e.g., convergence tests etc., which are similar to those
ported in paper I will not be repeated here.

The action for a self-gravitating scalar field given by E
~1.1! leads to the scalar field equation

gmnF ;mn2m2F2l~F* F!F50 ~2.1!

for the complex scalar fieldF5F11 iF2 and the Einstein
field equations

Rmn2
1

2
gmnR58pGTmn .

The metric for this spherically symmetric system can
written as
4-2



f
e
h
ll
n-

se
is

i

ss
pe

es

in
ci

ac
io
n-
s
l-

s
th

he
sed,
sity.

left

on-
il-

or-

ent,
of
to

per
ac-
is

ts

fer-
e

DYNAMICAL EVOLUTION OF BOSON STARS. II. . . . PHYSICAL REVIEW D 58 104004
ds252N2dt21g2dr21r2dV2, ~2.2!

whereg, the radial metric, andN, the lapse, are functions o
~t,r ! with r being the circumferential radius. This form of th
metric is known as the radial gauge. In the absence of a s
vectorba, this form of the metric can be maintained for a
time by enforcing the polar slicing condition. This is a co
dition on the lapse that requiresKuu1Kff50 whereKi j is
the extrinsic curvature tensor. This slicing condition cau
the lapseN to decrease rapidly if an apparent horizon
approached@17#.

The equilibrium boson star configurations are those
which the metric is time independent. The scalar fieldF
itself oscillates with fixed frequencyv0 :

F~ t,r !5F0~r !e2 iv0t, ~2.3!

but due to the U~1! symmetry of the Lagrangian, the stre
energy tensor and the spacetime geometry are time inde
dent. In dimensionless coordinates we have

r 5mr , t5v0t, s5A4pGF,

N5N
m

v0
, L5

l

m24pG
, ~2.4!

and the Einstein and Klein-Gordon equations under th
conditions are

s085x1 ~2.5!

x1852F1

r
1

g2

r
2rg2s0

2Gx12F 1

N2 21Gs0g21L~g2s0
3!

~2.6!

g85
1

2 Fg

r
2

g3

r
1s0

2rg3S 11
1

N2D1rgx1
21

1

2
L~g3rs0

4!G
~2.7!

N85
1

2 F2
N

r
1

Ng2

r
1

rg2s0
2

N
~12N2!1rNx1

2

2
1

2
Lg2Nrs0

4G , ~2.8!

wheres0[F0A4pG. A prime denotes]/]r and an overdot
denotes]/]t. All quantities in this paper are reported
terms of these dimensionless parameters unless expli
stated otherwise. Regularity at the origin requires thatg(r
50)51 and that all other quantities be finite atr 50. For the
solution to represent an isolated star, it is required thats(r
5`)50. This constitutes an eigenvalue problem. For e
choice ofs(r 50), the above set of equations has a solut
only whenN(r 50) takes on certain values. Different eige
values correspond to a different number of nodes in the
lution of s(r ). Solutions are also obtained for different va
ues of the coupling parameterl. Different families of
equilibrium configurations are shown in Fig. 1. The ma
profile of ground state boson stars with self-coupling has
familiar structure seen in non-self-interacting fields@5#
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which is also found in white dwarfs and neutron stars. T
mass grows to a maximum as the central density is increa
and then decreases with further increase in central den
~See Fig. 1.! The maximum mass increases withL but the
profile is similar. The expectation, that the branch to the
of the maximum is stable (S-branch! while that to the right
(U-branch! is unstable, as in the case of ground state c
figurations without self-coupling, is found to be true. Stab
ity here refers to the ability ofS-branch stars to settle to new
S-branch configurations when perturbed, a feature of imp
tance for the long term existence of these stars.

A. Evolution equations

The configurations described above are time independ
equilibrium solutions to the Einstein equations. The aim
this paper is to study their dynamical properties according
the coupled Einstein–Klein-Gordon equations. In this pa
only spherically symmetric configurations are studied. In
tual numerical evolution the following set of variables
chosen:

c1[rs1 , c2[rs2 , p1[
1

a

]c1

]t
, p2[

1

a

]c2

]t
,

~2.9!

where

a[
N

g
, ~2.10!

and the subscripts onc i denote the real and imaginary par
of the scalar field multiplied byr .

FIG. 1. The mass profiles of ground state boson stars for dif
ent values of the self-coupling constantL are shown. The increas
in mass withL is clear although the profiles are very similar.
4-3
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BALAKRISHNA, SEIDEL, AND SUEN PHYSICAL REVIEW D58 104004
In terms of these variables and the dimensionless one
the previous section the evolution equations are as follo
The radial metric functiong evolves according to

ġ5N~p1s181p2s28!. ~2.11!

The polar slicing equation, which is integrated on each ti
slice, is given by

N85
N

2 Fg221

r
1r @~s18!21~s28!22g2~s1

21s2
2!#

1
p1

21p2
2

r
2

g2Lr

2
~s1

21s2
2!2G . ~2.12!

The Klein-Gordon equation for the scalar field can be writ
as

ṗ i5a8c i81ac i92c iFgN1
a8

r
1L~c1

21c2
2!G , i 51,2,

~2.13!

ċ i5ap i , i 51,2. ~2.14!

The Hamiltonian constraint equation is given by

2g8

rg3 1
g221

r 2g2 2
p1

21p2
2

r 2g2 2
s18

21s28
2

g2 2~s1
21s2

2!

2
L

2
~s1

21s2
2!250. ~2.15!

It is not solved during the evolution, but as it is in princip
conserved by the evolution equations, it is monitored clos
as an indicator of the numerical accuracy of the simulati
For further details see@5#.

B. Boundary conditions

Regularity conditions require thatg(r 50)51, andg, N,
s1 ands2 have vanishing first spatial derivatives atr 50. To
implement this condition numerically, the range ofr is ex-
tended to include negative values;g, N, s1 and s2 are re-
quired to be symmetric aboutr 50. In additionc1 , c2 , p1
andp2 are antisymmetric aboutr 50. The antisymmetry al-
lows the determination off i at the origin as the first deriva
tives ofc i at r 50. The value of the lapse function is fixed
the outer edge on each time slice. Its value at the origi
determined by integrating Eq.~2.15! inward from the outer
boundary. The value ofg is determined by the evolution
The mass of the star is determined by the value ofg at the
edge of the grid:

M5
1

2
r F12

1

g2~`!G mPl
2

m
, ~2.16!

wheremPl is the Planck mass andm is the mass of the boso
making up the star.
10400
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The boundary condition on the scalar field is an outgo
scalar wave condition. However, since the dispersion rela
of the massive scalar field is non-trivial,

a2k25v22N2m2 ~2.17!

~wherea5N/g!, there is no perfect algorithm for the imple
mentation of the outgoing wave condition. Here we ha
adopted a two tier approach:

~i! A ‘‘sponge’’ region @5# is constructed by adding a
potential term at the outer edge of the computational dom

ṗ i5a8c i81ac i92c iFgN1
a8

r
1L~c1

21c2
2!G

1
V

N
~p i1c i8!, i 51,2, r N2D<r<r N ~2.18!

wherer N is ther value of the outermost grid point andD is
an adjustable parameter representing the width of the spo
D is typically chosen to be a few times the wavelength of
scalar radiation moving out. The extra potential term in t
above equation is designed to allow waves to propagate
ward but damp incoming waves.

~ii ! At the outermost grid point we require

c̈52aċ82
N2

2
c. ~2.19!

This is an exact outgoing wave condition only in the ca
m50. The second term on the right hand side represents
finite m correction to leading order~recall thatN5Nm/v0!.
The sponge is designed to absorb the reflection coming f
this approximate outgoing wave condition. We note that
cent work on this problem following a hyperbolic approa
seems to provide a simple and more accurate outgo
boundary condition@18#.

III. DYNAMICAL EVOLUTIONS OF PERTURBED
GROUND STATE STARS WITH SELF-INTERACTION

A. Nature of perturbations

We study the dynamical properties of the boson stars
perturbing the equilibrium field distribution. The accretion
annihilation of scalar particles is simulated by the addition
a field in the outer regions of the star or by decreasing i
denser regions of the star respectively. Another type of p
turbation that has been effected is changingċ1 andċ2 of the
equilibrium configuration. This perturbation changes the
netic energy density distribution. In either case the chan
in the metric functionsg andN are determined by the con
straint equations and the polar-slicing condition@integrating
Eqs. ~2.12! and ~2.15! on the initial slice.# The magnitude
and the length scale of the perturbations can be chosen
trarily. The perturbations are always spherically symmetr

In the rest of this section we present results obtained
the dynamical evolutions of ground state equilibrium co
figurations perturbed in this manner. Evolutions of bo
4-4
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DYNAMICAL EVOLUTION OF BOSON STARS. II. . . . PHYSICAL REVIEW D 58 104004
S-branch andU-branch stars with and without self-couplin
are considered.

B. S-branch perturbations

As shown in Ref.@5#, in the free field (L50) case, a
perturbedS-branch star oscillates with a definite frequenc
losing mass through bursts of scalar radiation at each ex
sion and finally settles to a newS-branch configuration of
lower mass. Here the effect of a self-interactingL term on
this behavior is examined. In Fig. 2 a typical example of the
perturbed field configuration and radial metric of a star
L510 with a central density ofs(0)50.1 is shown. This
star has been perturbed by accretion of scalar particles
region of lower density. Its evolution is detailed below.

Figure 3~a! shows the radial metric as a function of di
tance for the same configuration at various times. The la
A,B,C,D correspond to times~in units of the inverse of the
underlying scalar field frequency! t5192,306,391,505 re
spectively. The positions of the peaks are labe
R0 ,RA ,RB ,RC ,RD , whereR0 is the position of the initial
unperturbed peak. HereR057.95, RA58.55, RB56.6, RC
58.2 andRD56.65 where the length scales are in terms
the inverse mass of the boson. The oscillations are sh
clearly in Fig. 3~b! which is a plot of the maximum value o
the radial metric as a function of time. The point where t
function is a maximum corresponds to the core of the s
contracting to its minimum size in a cycle. Similarly, th
maximum radial metric starts to decrease as the star expa
At each expansion the star loses mass through scalar r

FIG. 2. The comparison of a strongly perturbed ground s
L510, S-branch star@M50.781mPl

2 /m,s(0)50.1# to the unper-
turbed configuration@M50.722mPl

2 /m# is shown. The solid lines
correspond to the unperturbed configuration and the dashed on
the perturbed star. The perturbation shown corresponds to the
tion of a scalar-fields at t50.
10400
,
n-
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tion. The oscillations damp out in time as the star starts
tling to the new configuration. A plot of mass vs time
shown in Fig. 3~c!. The amount of scalar radiation decreas
in time as the oscillations damp out, as can be seen from
figure. The slope of the curve steadily decreases as the
starts settling down to its new lower mass configuration. T
mass is measured at the inner edge of the sponge. E
details of the curves have some dependence on the sp
parameters but the basic results are the same.

A characteristic of the boson star that could be import
for its observation and identification is its fundamental osc
lation frequency which can be determined from Fig. 3~b!.
We foundf 51/@199N(`)#54.731023. The oscillation fre-
quencies for a large number ofS-branch stars have bee
compiled in this way. Figure 4~a! shows a plot of the oscil-
lation frequency versus mass for many slightly perturb
configurations ~masses within 0.1% of the unperturbe
mass!. As the mass increases, the frequency increases
then drops down as the transition point@dM/ds(0)50# is
approached, signaling the onset of instability. This is seen
both the non-self-interacting as well as the self-interact
case. These quasinormal modes of oscillation characte
S-branch stars. The point of transition from theS to the U
branch corresponds to a zero frequency of oscillation@12#.

Oscillations of boson stars have also been discussed u
catastrophe theory in@19#. The results they find are consis
tent with the fundamental quasi normal-mode frequenc
reported in this paper.

For a given mass higherL,S-branch stars have a lowe
oscillation frequency than similar mass lowerL stars, unless
one is near the transition point of the lowerL configuration.
This is not too surprising, since for a given mass the rad
of the star increases with increasingL. We have seen this
trend even forL values as high as 1600~see discussion on
high L stars in the Appendix!. However, since the maximum
mass of higherL configurations is greater than that of low
L configurations, their maximum oscillation frequency cou
be greater than that for lowerL stars.~This can be under-
stood as a size effect: on theS-branch, higher mass stars a
smaller and have higher frequencies.! This can be seen in
Fig. 4~a!. The maximum oscillation frequencies ofL55 and
L510 configurations are higher than that of theL50 case.
As the stars get much larger, though, the highest freque
starts to decrease, for example the maximum frequency
L530 stars being less than that ofL515 stars which is in
itself lower than that of theL510 case. A perturbation cal
culation for the highL case is shown in the Appendix t
show the dependence of quasinormal mode frequencies oL
for high L configurations. The frequency is proportional
the inverse of the square root ofL. Thus as the stars ge
really big they oscillate less and less rapidly and numerica
it is no longer feasible to evolve them.~The time step used in
the numerical simulation cannot be increased as it is de
mined by the intrinsic oscillation time scale of the sca
field, which is many orders of magnitude shorter than
oscillation time scale of the whole star for these cases.!

The quasinormal mode curves are also useful in determ
ing the evolutions of strongly perturbedS-branch stars and
the final configurations they could settle into. A perturb

e

to
di-
4-5
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FIG. 3. ~a! The evolution of the radial metricgrr 5g2 for the configuration shown in Fig. 2. The initial perturbed configuration is labe
t50. The unperturbed configuration is also shown. The spatial distributions of the radial metric labeledA,B,C,D correspond to timest
5192,306,391,505 respectively. The radial positions of the peaks of the radial metric for these times are labeledRA , RB , RC , andRD . The
valuesRB andRD are so close that they appear as one thick line in the figure.~b! The peak value of the perturbed radial metric is plott
over a long time. The points labeledA,B,C,D correspond to the same labels in~a!. The oscillations decay in time.~c! The total mass of the
star is plotted as a function of time. The mass loss through scalar radiation decreases in time as the oscillations start damping o
rr
ig
f

rr
x-

in

an
e

ll
star loses mass and settles to a final configuration co
sponding to a position on the solid line in the figure. In F
4~b! we single out theL510 curve and plot the evolution o
the S-branch star discussed above. The pointsP1, P2, P3
show the route to a new configuration. These points co
spond to timest50, 1200 and 4800 respectively. By e
trapolating this line to where it meets theL510 curve one
could expect a final mass of about .76mPl

2 /m.
10400
e-
.

e-

C. U-branch perturbations

For the case of non-self-interacting fields it was shown
Ref. @5# that accretion of scalar fields causesU-branch stars
to collapse to black holes. However, lowering the density c
make the star migrate to theS-branch. These features ar
also seen in the presence of self-coupling@20#. Figure 5
shows a migratingL530 star whose unperturbed overa
field densitys has been decreased by about 10%. Figure 5~a!
4-6
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FIG. 4. ~a! The oscillation frequencies of different ground state boson star configurations are plotted as functions of mass, forL50, 5,
10, 15, 30, 100 and 200. The curves are obtained by slightly perturbing~perturbed mass within 0.1% of the unperturbed mass! S-branch stars.
They reach a peak and then drop down at the approach of the maximum mass allowed for a givenL signaling a transition from stability to
instability. The frequencies for a given mass for higherL stars are lower than those for lowerL as a result of their increased size. Howev
their overall maximum frequencies could get bigger than for lowerL stars because of their increase in maximum mass. As can be seenL55
andL510 stars have higher maximum frequencies than doL50 stars. As the stars get very much larger the maximum comes dow
shown in the figure.L530 stars have lower maximum frequency thanL515 stars which have lower maximal frequency of oscillation th
do L510 stars.~b! The highly perturbedL510 S-branch star of Fig. 3 has an oscillation frequency below theL510 solid line. Its
movement towards the solid line is shown through pointsP1, P2 andP3 corresponding to times 0, 1200, and 4800 respectively.
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shows the behavior of the radial metric in time as a funct
of radius. It oscillates about the finalS-branch configuration
that it will settle into. This final state is shown on the plot
a dark line. Figure 5~b! shows the maximum radial metric a
a function of time. The star initially expands rapidly as
moves to theS-branch. This can be seen from the sharp d
in the radial metric. Once it moves to the stable branch
oscillates about the new configuration that it is going to se
to. Figure 5~c! shows the mass of the star as a function
time. It loses mass at each expansion, losing less and
mass at each subsequent expansion, and the curve
smoother and smoother as it prepares to settle to its
state.

Figure 6, which shows the oscillation frequency as a fu
tion of mass forL530, can be used to predict the end po
of migration. PointsQ1, Q2, Q3 andQ4 show the migration
of this star. These correspond to times of 500, 1000, 2
and 3500. The oscillation is clearly damping out. The fin
configuration it is expected to settle down to is shown a
dot and corresponds to a stable star of central densitys(0)
50.0817 with a mass of 1.037mPl

2 /m. This example is typi-
cal of a number of simulations ofU-branch ground state
configurations with self-coupling.
10400
n

p
it
e
f
ss
ets
al

-
t

0
l
a

For higher central density stars on theU-branch, the mass
versus central density curve has a second, gentler peak,
lar to the white dwarf neutron star situation. One might s
pect that this corresponds to another stable and unst
branch respectively. However, we find that configurations
both sides of the peak are unstable. These configurat
always disperse upon perturbation, consistent with the
that they haveM.Nm, whereM was the mass of the sta
andNm was the number of bosons multiplied by the mass
a boson.

In summary ground state configurations of boson st
with self-coupling have stable (S) and unstable (U)
branches just like boson stars without self-coupling. T
stable configurations have very specific quasinormal mo
of oscillation. The addition of a self-coupling term serves
increase their mass. The cases considered so far corres
to L;102 or less. The Appendix deals with very highL
stars which need a different technique due to the very dif
ent time scales involved in these evolutions.

IV. EVOLUTIONS OF EXCITED STATES

Excited states of boson stars have field configurati
characterized by nodes. The first excited state has one n
4-7
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FIG. 5. ~a! The radial metricg25grr of a perturbedU-branch ground state star is shown at various times. The curves 1,2,3,a,b,c,d
correspond to timest510, 20, 30, 340, 440, 540 and 640. The unperturbed star has a central densitys(0)50.23 and a self-coupling
parameterL530. The initial equilibrium metric configuration is also shown. The overall field density of this star has been lowered by
10%. Thet50 curve corresponds to the initial perturbed radial metric. In the asymptotic regiong2 is not oscillating but monotonically
decreasing due to the mass loss.~b! The maximum value of the radial metric is plotted as a function of time. The initial sharp drop i
radial metric signifies the expansion of the star as it proceeds to the stable branch. There it oscillates about the new stable configu
it is going to settle to. This corresponds to a star of massM51.037mPl

2 /m @whose metric configuration has been shown in figure~a! as a dark
line#. The pointsa andc correspond to two minima in the peak ofgrr which occur when the core of the star reaches its local maximum s
Likewise the maxima in the peak ofgrr at b andd correspond to the core of the star reaching its local minimum size.~c! The mass is plotted
against time. The mass loss through scalar radiation at each expansion of the core~corresponding to the maximum radial metric reaching
minimum! decreases in time as the oscillations damp out.
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the second has two and so on. Studying their stability and
time scale of decay is important in determining the like
hood of finding them in nature.

The mass profiles of excited state boson stars are sim
to ground state stars. Figure 7 shows the mass versus ce
10400
e

ar
tral

density curves for ground, first and second excited state
boson stars without self-coupling. The maximum mass
creases with the number of nodes as expected. The simil
of mass profiles of excited boson stars to their ground s
counterparts might lead one to expect stable and unst
4-8
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configurations to the left and right of the maximum ma
respectively in analogy with ground state configuratio
However, our numerical studies show that the excited bo
star configurations on both sides of the peak are inhere
unstable except that the time scales for instability are dif
ent. If they cannot lose enough mass to go to the gro
state, they become black holes or totally disperse. This
curs even if no explicit perturbations are put in the numeri
evolution other than those introduced by the finite differe
ing error in the numerical integration. We have also carr
out perturbations that correspond to more scalar parti
falling on to the star or those that decrease the scalar
strength at the center point corresponding to scalar parti
decaying through some channels@5#. The instability shows
up in all cases studied. We note that this instability isnot in
contradiction with the result of@4#, which concluded thatS
branch excited states are stable under infinitesimal pertu
tions that strictly conserveM andN ~whereM is the mass of
the star,N the number of bosons andm the boson mass!. Our
result of instability under generic perturbation is consist
with the studies ofL50 stars under infinitesimal perturba
tion @12#. The presence of a self-coupling term increases
time scale of instability but the essential pattern remains
same. In the following we will first give a detailed account

FIG. 6. The migration of theU-branch star considered in Fig.
is shown after the star has moved to theS-branch. PointsQ1, Q2,
Q3 andQ4 correspond to times 500, 1000, 2000 and 3500 resp
tively. Here too the mass loss decreases in time and the star fi
settles to a stable configuration.
10400
s
.
n
ly
r-
d
c-
l
-
d
s

ld
es

a-

t

e
e

the dynamical evolution and carry out a study of the ins
bility time scales.

Excited state stars with masses less than the maxim
mass of aground state configuration always form groun
state stable configurations. In fact even stars with mas
somewhat greater than this can lose enough mass du
their evolution so as to go to the ground state. Figure 8~a!
shows a perturbed 1-node star whose mass has been red
by about 8% to 0.9mPl

2 /m by a perturbation making a tran
sition to the ground state although the mass is greater
the maximum ground state mass of 0.633mPl

2 /m. A substan-
tial amount of scalar radiation is emitted in the dynamic
evolution, which brings the mass below the critical valu
The evolution of the radial metric function is shown. A
though the plot is shown only to a radiusr 5100, the actual
evolution was carried out tor 5300. The two peaks att
50 are indicative of a first excited state. One of the pea
disappears gradually as the star goes to the ground state
star then oscillates about the ground state configuration
it will finally settle into. In Fig. 8~b! we show a 3 node
configuration with a total mass of 0.92mPl

2 /m, going to the
ground state after radiation by scalar waves carries off
excess mass and kinetic energy. We have plotted the de
function against the radius and time of evolution. By t
density function we mean densityr multiplied by anr 2 fac-
tor which is the mass perdr at radius r . rr 2 has n11
maxima for ann node star and hence here we have 4 sets
lines initially. At the end of the simulation, we see that

c-
lly

FIG. 7. The masses of 0-node, 1-node and 2-node boson
without self-coupling are plotted as a function of central dens
The maximum mass of 1-node stars is 1.356mPl

2 /m while the maxi-
mum mass for 2-node stars is expectedly greater at 2.095mPl

2 /m.
The profiles are deceptively similar to their ground state coun
part. Excited state stars are inherently unstable irrespective of
branch they lie on, unlike ground state stars that can be ter
stable or unstable depending on whether they lie on the branc
the left of the maximum mass or to the right respectively.
4-9
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settles down to a ground state configuration with small
cillations with ever decreasing amplitude. For these simu
tions of low central density stars we put in an explicit pe
turbation to the equilibrium configuration since th
instability time scales are extremely long without that.

For stars with higher central density, there is a critic
density above which the stars cannot lose enough mass
to the ground state but collapse to black holes. In our
merical simulation for one node stars this critical density
s(0)5s250.048. As the central density is increased t
kinetic energy of the highly compressed initial equilibriu
configuration is increased and the star first expands be
the eventual collapse to a black hole. As the central den

FIG. 8. ~a! The transition of a first excited state star to t
ground state is shown. Here the radial metric is plotted aga
radius for various times starting fromt50 and then forta5250,
tb5500, tc51245, td54000, te55000, t f55505, tg56000 and
th56370. The initial unperturbed and perturbed configurations
shown. ~The perturbed configuration has the lower second pe!
The initial mass of the star wasM5.901mPl

2 /m after perturbation.
The radial metric initially has two peaks indicative of a 1-no
configuration. As the star evolves and goes to the ground state
peak disappears. This can be seen in the curves fromtc– th . Once
in the ground state it oscillates and finally settles into a sta
ground state configuration.~b! The transition of a 3 node configu-
ration of mass 0.91mPl

2 /m. This star loses enough mass during t
course of its evolution to move to the ground state.
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further increases towards theM5Nm point the expansion
phase becomes longer. In Fig. 9~a! we show the density
function (r3r 2) against radius at various times for 4 co
figurations@an S branch configuration withs(0)50.1 and
three U branch configurations of central densitiess(0)
50.3, s(0)50.4 ands(0)50.5#. The initial configurations
are the equilibrium ones without any explicit perturbati
~except those introduced by the discretization used in
numerical simulations!. The first frame shows theS branch
star radiating a little as it makes a transition to the grou
state. However, it cannot sustain this state for long an
collapses to a black hole. The time of decay decreases in
case of aU branch stars of central density 0.3 and 0.4. Ho
ever, for thes(0)50.5 star the star is clearly more dispe
sive than the previous ones. It goes through an expan
phase initially although it finally collapses to a black ho
Configurations withs(0).0.54 haveM.Nm. They do not
collapse to black holes but disperse to infinity.

Next we turn to a study of instability time scales. In sim
lations where a black hole will form, the imminent develo
ment of an apparent horizon leads to a rapid collapse of
lapse due to the polar slicing used in the evolution. We ta
the time of collapse of the lapse at the origin to;1026 of its
initial central value to be the approximate time for formati
of the black hole. Figure 9~b! shows this time scale for a
1-node star without self-coupling. We plot the decay tim
scales of first excited state stars as a function of central fi
density. Again no explicit perturbation is applied in the
evolutions other than the discretization error in the simu
tion. In order to make a fair comparison of the time scale d
to such a perturbation we cover the radius of the star in
cases by the same number of grid points. The maxim
ground state mass for stars without self-coupling is arou
.633mPl

2 /m. This corresponds to a central density ofs1

50.021 for a 1-node star. We described earlier that s
with central densities belows250.048~mass of 0.91mPl

2 /m!
lose enough mass and move to the ground state. Beyond
and up to theM5Nm point they collapse to black holes
while stars withM.Nm corresponding to a central fiel
density of s(0).0.541 disperse to infinity. The time b
which collapse takes place to a black hole decreases
increasing central density along theS branch. This trend con-
tinues for a while into theU branch~starting ats50.25 until
s;0.4! but as one approaches theM5Nm point the stars
lose a significant amount of matter to infinity before th
collapse to black holes and evolve on a longer time sc
For example a star of central density 0.5 has an initial rad
of r;9. ~The radius of the star is defined as the radius wh
contains 95% of the mass of the star.! Its radius increases to
as much as 115, more than an order of magnitude, befo
starts collapsing. Dispersion time scales of a couple of s
for M.Nm which disperse to infinity~instead of collapsing
to a black hole! are also shown on the figure. To give a sen
of the instability time scales of these configurations we ta
the time scale to be the time by which these stars dispers
10 times their original radii. This time drops drastically fo
stars withM@Nm.

Next we turn to the case ofLÞ0. Figure 10~a! shows
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FIG. 9. ~a! A comparison of the manner of black hole formation of four excited state configurations. The first frame is anS branch star
of central densitys(0)50.1 that tries to go to the ground state but fails to. As the central density increases decays to black holes o
a shorter time scale. A plot of the collapse of aU branch of central densitys(0)50.3 is shown in the next frame. Stars get more dispers
as one moves farther along theU branch. A star of central density 0.4 shown in the third frame has a decay time close to the previou
Decay times then start to increase. A star of central density 0.5 close to theM5Nm point @;s(0)50.541# disperses to over 10 times it
radius before collapsing to a black hole.~b! The decay time to black holes is plotted as a function of central density, for one
configurations~first excited states!, of boson stars without self-coupling. Perturbations are only due to the finite differencing effects
numerical scheme. To make the comparisons meaningful the 95% mass radius~which is our definition for radius of a star! of every
configuration considered was covered by the same number of grid points. Configurations for which the central densitys(0),s2 move to the
ground state. This value of the critical densitys250.048 corresponds to a massM50.91mPl

2 /m. s150.021 is the value of the centra
density corresponding to a massM50.633mPl

2 /m, which is the maximum mass of a ground state boson star. The decay time decreas
increasings~0! and this continues even fors(0).0.25 which is the point of transition from theS-branch to theU-branch. The decay time
then starts to increase as one approaches theM5Nm point corresponding to a central densitys(0)50.541, beyond which the stars disper
to infinity rather than become black holes. The dispersion times of two such stars to 10 times their original radius~95% mass radius! are also
shown in the figure.
104004-11
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FIG. 9 ~Continued!.
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black hole formation for aL530 star in the first excited
state, with a central densitys(0)50.1. This star had an
initial radius of about 20.7 where the radius is again defi
as that containing 95% of the mass. The lapse finally
lapses to zero, indicating that an apparent horizon is abo
form. The time scale of collapse to the black hole w
around 1985 compared to a time scale of less than 800
s(0)50.122 star of similar radius without self-couplin
which is shown in Fig. 10~b!. This is to be expected as theL
term represents a repulsive force. The time is again de
mined by the lapse collapsing to 1026 of its original value at
r 50.

We now turn to the evolution of a highly excited state.
Fig. 11~a! we show the initial field configuration of a sta
containing 5 nodes. For a five node star the density ha
central maximum, and then five local maxima, each sub
quent one smaller than the one preceding it. This star is
evolved without any perturbation except those introduced
the discretization error of the numerical evolution. In F
11~b! we show a contour plot of the evolution of the dens
function in time.rr 2 hasn11 maxima for ann node star
and hence here we initially have 6 sets of lines centere
dimensionlessr 55, 13, 35, 52 and 75 respectively. This s
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has central densitys(0)50.075 and it collapses to a blac
hole after a long evolution. In the process we see interme
ate states with fewer numbers of nodes. For compariso
Fig. 11~c! show a contour plot for the 5 node star up to
time of t51000 at which time it has decayed into a four no
state, against the equilibrium density function of a 4 node
star with central densitys50.06. Very clearly the maxima
are at similar radii~although the sizes of the peaks are som
what different!.

This feature of nodes disappearing and the star casca
through lower excited states is characteristic of the deca
higher excited states of boson stars. Although in this c
and at this time the decaying star is close to a specific lo
excited state, in general the decaying star is roughly a c
bination of lower excited configurations. This is similar
the decay of atoms in excited states. However, we note
for the ‘‘gravitational atom’’@3# there is no exact superpos
tion due to the intrinsic non-linearity of the system.

V. CONCLUSION

In the first paper in this series, the behavior of boson s
ground state configurations under various perturbations
4-12
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DYNAMICAL EVOLUTION OF BOSON STARS. II. . . . PHYSICAL REVIEW D 58 104004
reported. In this paper the study has been extended to inc
boson stars of self-interacting fields and also the behavio
boson stars in the excited state.

The self-coupling term is important as it can have d
matic effects on the mass of the boson stars@6#, leading to
boson stars of the order of a solar mass. The mass pr
retains the features of boson stars without self-coupling, h
ing a central maximum with a stable branch and an unsta
branch. All configurations to the left of the central maximu
in the mass vs central density curve~see Fig. 1! are stable.
Under small perturbations they have very specific quasin
mal modes of oscillation as seen in Figs. 4 and 6 and un
perturbations they settle down to new configurations on
same branch. Configurations that lie on the unstable
U-branch either migrate to new configurations on t
S-branch or collapse to black holes, when perturbed. Th
are characteristics shared by boson stars with or without s
coupling.

Excited states are configurations with nodes. The field
annth excited state star hasn nodes and its radial metric ha
n11 peaks. Their mass profiles are similar to the profiles
boson stars in the ground state, which makes it appear
they have a stable and an unstable branch of configurati
However, irrespective of which branch they lie on, excit
boson stars are unstable with different instability time sca
Low density excited stars having masses close to gro
state configurations will form ground state boson stars a
evolution. Denser configurations form black holes with t
decay time decreasing with increasing central density u
one approaches the density corresponding to zero bin
energy. As the central density approaches this central den
the kinetic energy of the star starts to increase as it beco
more dispersive. It still collapses to a black hole but on
larger time scale. Beyond this point for densities correspo
ing to positive binding energy the stars disperse to infin
We studied the time scales of their instability in Fig. 9.

An interesting feature in the collapse of excited state
son stars is that they cascade through intermediate st
during this process, rather like atoms transiting from exci
states to the ground state, suggesting that boson stars be
in some ways like gravitational atoms@3#. However, an in-
vestigation of the possible decay channels~selection rules!
seems much more difficult~if at all possible or meaningful!
here, due to the intrinsic nonlinearity of the theory. In th
paper we have reported the evolutions of spherically sy
metric configurations. We are currently extending the stu
to full 3D without spherical symmetry. The numerical stu
of 3D boson stars in addition to being an interesting phys
problem is also a testbed for 3-dimensional numerical cod
which enable us to study compact self-gravitating obje
without having to deal with hydrodynamic sources as in n
tron stars and singularities as in the case of black holes
particular we aim to study the general two body problem
relativity by evolving two 3-dimensional scalar field config
rations. The inspiral coalescence of such systems could h
interesting physical implications as the gravitational wa
emitted does not sensitively depend on the internal struc
of the compact objects until the late stages of coalesce
Studying the 1D behavior has been an important tool in t
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FIG. 10. ~a! The evolution of the metric functionN252gtt for
a L530, s(0)50.1 boson star in the first excited state, witho
any explicit perturbation, is shown. The configuration lies on
S-branch and has an initial massM51.743mPl

2 /m. The various
time slices correspond to timest50, ta51060, tb51950 andtc

51985. The lapse function collapses as an apparent horizon is
proached, signaling the formation of the black hole~indicative of an
inherent instability of excited states!. ~b! The evolution of the met-
ric function N252gtt for a L50, s(0)50.122 boson star in the
first excited state, without any explicit perturbation, is shown. T
configuration lies on theS-branch and has an initial massM
51.23mPl

2 /m. The various time slices correspond to timest50,
ta5450, tb5720, tc5750 andtd5770. This star has a radius o
20.7 which is about the same as that of the configuration in~a!.
Again, the lapse function collapses when an apparent horizo
approached, as a black hole is being formed. The time scal
collapse is much less than for theL530 case in part~a!.
4-13
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BALAKRISHNA, SEIDEL, AND SUEN PHYSICAL REVIEW D58 104004
FIG. 11. ~a! The initial field configuration of a 5-node star. The field has 5 nodes or extrema. The absolute value of each extre
clearly smaller than the one preceding it.~b! A contour plot of a perturbed 5-node star that ends in a black hole showingr3r 2 as a function
of distance~vertical axis! and of time~horizontal axis! is shown. The densityr is highest at the origin and has five other local maxima, e
smaller than the previous one. The values of the maxima at the end are very small compared to the earlier ones, and to enhance
r3r 2 rather than justr is shown in the plots. Each set of lines represents the maxima ofr3r 2 and the number of lines in a set gives a
indication of the height of the maximum. This particular configuration has a central density ofs(0)50.075 and initial massM
53.07mPl

2 /m. This star cascades through an intermediate 4 node state~aroundt51000! before proceeding to form a black hole. Cascad
are characteristic of excited boson star decays similar to atoms in excited states going through intermediate states when trans
ground state.~c! The equilibrium density function of a 4 node star of central densitys50.06 ~right frame! is placed alongside the contou
plot of the 5 node star described in~b! up to a time oft51000 when it has gone into a 4 node state~left frame!. This plot shows that the
transition of the 5 node star is to a perturbed 4 node state close to the one shown in~c! before it continues its evolution to a black hole.
104004-14
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DYNAMICAL EVOLUTION OF BOSON STARS. II. . . . PHYSICAL REVIEW D 58 104004
FIG. 12. The equilibrium profiles of aL5800 star with central densitys50.05 derived from the highL approximate equations and th
exact ones are compared. A Schwarzschild exterior is attached to the approximate solution after the field vanishes. The three plot
field s, grr andg00 respectively. Clearly, the approximation matches the exact solution very well.
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ing our 3D codes, providing testbeds in the spherically sy
metric limit.
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APPENDIX: HIGH L CASE—EQUILIBRIUM
CONFIGURATION AND QUASINORMAL MODE

DETERMINATION

While calculating the eigenvalue for the equilibrium b
son star, it is found that it gets increasingly difficult to ca
culate the eigenvalue as the value ofL gets large because w
are faced with a set of stiff equations. There are two scale
the problem: a scale of slow variation of the field inside
certain radius related toL followed by rapid decay outside it
This makes an effective surface layer to the star, makin
more similar to neutron stars. It turns out that the largeL
limit can be treated using a set of approximate equations
are exact in theL5` limit @6#. By making the change o
variables

r̄ 5r /AL, s̄5ALs ~A1!

the equilibrium equations reduce to

1

L
s̄952

1

L F1

r̄
1

g2

r̄
2 r̄ g2s̄0

2G s̄82
1

AL
F 1

N2 21G s̄0g2

1
1

AL
~g2s̄0

3! ~A2!

g85
1

2 Fg

r̄
2

g3

r̄
1s̄0

2r̄ g3F11
1

N2G1
1

AL
r̄ gs̄08

2

1
1

2
~g3r̄ s̄0

4!G ~A3!

N85
1

2 F2
N

r̄
1

Ng2

r̄
1

r̄ g2s̄0
2

N
~12N2!1

1

AL
r̄ Ns̄08

2

2
1

2
g2Nr̄s̄0

4G , ~A4!
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where the primes refer to differentiation with respect tor̄ . In
the limit of L5`, one can keep terms to leading order
1/AL in Eqs.~A2!–~A4!. In particular Eq.~A2! reduces to

N5~ s̄211!21/2. ~A5!

However, we note that this is valid only for a ground sta
configuration. For a state with nodes it would not be reas
able to neglect derivative terms compared to terms prop
tional to s̄, which is zero at a node.

To get an estimate of the accuracy of the highL approxi-
mation, we compare the solution using the approxim
equation for highL to the brute force numerical solution o
the complete set of equations, for aL5800, s50.05 boson
star in the ground state in Fig. 12. The agreement of
fields is quite good until the outer region where the appro
mate equations cause the field to abruptly fall to zero. Co
parisons of the radial metric and the lapse are also shown
the L5` limit the approximate equations are exact and
star really has an outer surface reminiscent of a neutron
In fact, an equation of state can be written@6#. In Fig. 13 the
mass and particle number versus central densitys̄ for high L
stars is shown. One expects as in the case of other gro
state configurations that the configurations withM.Npm
disperse when perturbed while those on theU branch with
M,Npm would be unstable and, if unable to migrate to t
S branch under perturbations, would form black holes.~Here
we use the symbolNp for the particle number and notN so
as not to confuse it with the lapse as both these functi
figure prominently in the analysis that follows.! The particle
number is calculated from the currentJ0 and is given by

Np54pE r 2
g

N
vs2dr. ~A6!

Hereṡ has been replaced byvs andd3r by 4pr 2dr for the
spherically symmetric case. In terms of thebar coordinates
we see thatN̄p5ALNp .

TABLE I. The ratio of the QNM frequency forL51600 to the
QNM frequency for a givenL is compared toL0.5/40 ~which is the
predicted ratio for largeL! for L51200, 800 and 1600. The highe
L values match better as expected. The initial central densit

s̄(0)50.4.

L 1/f f 1600/ f
A L

1600 Percent~%! error

1600 1220 1 1
1200 1070 0.877 0.866 1.25
800 880 0.7213 0.707 1.9
600 770 0.6311 0.612 3
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Next we turn to the determination of the quasi-norm
frequency~QNM! of the highL stars. In principle one could
determine the QNM using the dynamical studies as p
formed for theL50 case. However, the procedure is e
tremely computationally expensive. The scalar field has
inherent oscillation of about 2p and the evolution time step
must be small enough to resolve it. However, the code m
run long enough to see a few metric oscillations in order
determine the quasinormal mode. AsL gets large, the size
of the stars also get large, leading to a lower frequency
oscillation. In order to determine the QNM we use inste
the following perturbation analysis based on@8,11# but using
our notation for lapse, fields, time, radius and self-coupl
as defined in Sec. II.

We write the perturbed fields as

s5~s11is2!eivt, g5g01dg, N5N01dN
~A7!

where

FIG. 13. The mass of a highL star generated from the approx

mate equations is plotted as a function ofs̄ (s/L1/2). It shows the
same basic structure as the profiles generated for lowL using exact
equations. The peak is at about .22L1/2mPl

2 /m which means that to
achieve 0.1M ( would takeL of the order of 1038, a very large star
to evolve numerically. Also plotted isNm (N is the particle number
andm the mass of a boson!. The crossing point of the two curve
represents the transition from negative to positive binding ener
10400
l

r-

n

st
o

f
d

g

s15s0~r !@11ds1~r ,t !#, s25s0~r !ds2~r ,t !.
~A8!

The Klein-Gordon equation can be written as

s191S 2

r
1

N8

N
2

g8

g Ds181g2S 1

N2 212
1

2
Ls1

2Ds12
g2

N2 s̈1

1
g2

N2 S Ṅ

N
2

ġ

g
D ~ ṡ11s2!22

g2

N2 ṡ2 . ~A9!

The fields0 satisfies the equilibrium equation

s091S 2

r
1

N08

N
2

g08

g Ds08

1g0
2S 1

2N0
2 212

L

2
s1

2Ds02
g0

2

N0
2 s050. ~A10!

Expanding to first order perturbations using Eqs.~A9! and
~A10! we get

ds191S 2

r
1

N08

N
2

g08

g
12

s08

s0
D ds18

2
s08

s0
S g0dg82g08dg

g0
2 2

N0dN82N08dN

N0
2 D

2
g0

2

N0
2 ~2dṡ21ds̈1!1

2

N0
2 S g0dg2

dN

N0
D

22g0S 11
1

2
Ls0

2D dg2g0
2Ls0

2ds150. ~A11!

From

Rmn2
1

2
gmnR528pGTmn ~A12!

and

Tmn5s ,m* s ,n1c.c.2gmnFgabs ,a* s ,b

2S 11
1

4
Lisi2D isi2G ~A13!

~whereTmn54pGTmn! we get the equations

dT0
05

1

2r 2 S 2rdg

g0
3 D 8

, ~A14!

dT1
15

dg

g0
3 S 1

r 2 22
N09

N0
D 2

dN8

rg0
2N0

2
N08dN

rg0
2N2 , ~A15!

and

.
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dT2
25

1

2 H 2dg

g0
F S N08

N0
D 2

1
N0N092N08

2

N0
2 2

N08g08

N0g0
1

1

r S N08

N0
2

g08

g0
D G1

1

N0
2g0

dg̈

2
1

g0
2 FdN9

N0
22

N08

N0
2 dN81

N08

N0
2 dN2

N08

N0g0
S dg82

g08

g0
dgD 2

g08

N0g0
S dN82

N08

N0
dND

12
N08

N0
2 S dN82

N08

N0
dND 1

1

r S dN8

N0
2

N08

N0
2 dN2

dg8

g0
1

g08

g0
2 dgD G J , ~A16!

and the equations

dT0
052

2s0
2

N0
3 dN2

2

g0
3 s08

2dg1ds1F 2

N0
2 s0

21
2

g0
2 s08

212S 11
1

2
Ls0

2Ds0
2G2dṡ2

2

N0
2 s0

21
2

g0
2 s0s08ds18 , ~A17!

dT1
152dT0

014s0
2ds1 , ~A18!

and

dT2
252

2

N0
3 s0

2dN2
2

g0
3 s08

2dg2ds1F 2

N0
2 s0

22
2

g0
2 s08

222S 11
1

2
Ls0

2Ds0
2G1dṡ2

2

N0
2 s0

21
2

g0
2 s0s08ds18 , ~A19!

respectively. AddingdT0
0 to dT1

1 we get

S dN8

N0
2

N08dN

N0
2 2

dg8

g0
1

g8dg

g0
2 D 5

2

g0
F1

r
1S N08

N0
2

g08

g0
D Gdg24rs0

2~11Ls0
2!ds1 . ~A20!

Substituting Eq.~A20! as well as fordṡ2 from Eqs.~A16! and ~A19! in Eq. ~A11! we get

ds191ds18S 2

r
1

N08

N0
2

g08

g0
D 1

1

g0
2rs0

2 ~g0dg82g08dg!2
g0

2

N0
2 ds̈11

2dg

g0

F s08
2

s0
1

g0
2

N0
2 1

122r
g08

g0

2r 2s0
2

2g0
2S 11

Ls0
2

2 D 1
s08

s0
S 1

r
1

N08

N0
2

g08

g0
D G2g0

2ds1F 1

N0
2 1

1

g0
2 S s08

s0
D 2

1~11Ls0
2!12rs08s0S 11

Ls0
2

2 D G50. ~A21!

Adding dT0
0 to dT2

2 and substituting in Eq.~A20! and its derivative we get

2

g0
dg92

2g0

N0
2 d̈g18F2s0s082r S 11

1

2
Ls0

2Ds0
2g0

2Gds1818F2s08
22rs0

2g0
2S 11

1

2
Ls0

2D S 2s08

s0
1H 2N08

N0
1

g08

g0
J D Gds1

2F4g08

g0
2 1

6

g0
S N08

N0
2

g08

g0
D Gdg81

2dg

g0
Fg09

g0
12S g08

g0
D 2

23
g08

g0
S N08

N0
2

g08

g0
D

28s08
22

2

r 2 2
2

g0
2 ~g0g092g08

2!12S N08

N0
2

g08

g0
D 2

1
2

r S 2N08

N0
1

g08

g0
D G50. ~A22!

Using the expression for the particle numberNp5*0
`d3xJ0Ag whereJ05ig00(f ,0f* 2c.c.) we get

dNp514pE
0

`

drr 2
g0

N0
s0

2XH 1

g0
2rs0

2 ~g0dg82g08dg!1
2dg

g0

S s08
2

s0
1

122r
g08

g0

2r 2s0
2 1

g0
2

N0
2
D 1

s08

s0
ds8

2g0
2ds1F 1

N0
2 1

1

g0
2 S s08

s0
D 2

1S 11
L

2
s0

2D G J . ~A23!
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In terms of bar coordinates defined in the beginning of this section, Eq.~A21! becomes

1

L1.5ds̄191
1

L1.5ds̄18S 2

r̄
1

N08

N0
2

g08

g0
D 1

1

g0
2r̄ s̄0

2 ~g0dg82g08dg!2
1

L0.5

g0
2

N0
2 ds̈̄1

1
2dg

g0

F 1

L S s̄08

s̄0
D 2

1
g0

2

N0
2 1

122r̄
g08

g0

2r̄ 2s̄0
2

2g0
2S 11

s̄0
2

2
D 1

1

L

s̄08

s̄0
S 1

r̄
1

N08

N0
2

g08

g0
D G

2
1

L0.5g0
2ds̄1F 1

N0
2 1

1

Lg0
2 S s̄08

s̄0
D 2

1~11s̄0
2!1

1

L
2r̄ s̄08s̄0S 11

s̄0
2

2
D G50, ~A24!

and Eq.~A22! becomes

1

L

2

g0
dg92

2g0

N2 d̈g1
8

L1.5F 2

L
s̄0s̄082r S 11

1

2
s̄0

2D s̄0
2g0

2Gds̄181
8

L1.5H 2

L
s̄08

22r S 11
1

2
s̄0

2D s̄0
2g0

2F2s̄08

s̄0

1S 2N08

N0
1

g08

g0
D G J ds̄12

1

L F4g08

g0
2 1

6

g0
S N08

N0
2

g08

g0
D Gdg81

2

Lg0
Fg09

g0
12S g08

g0
D 2

23
g08

g0
S N08

N0
2

g08

g0
D

2
8

L
s̄08

22
2

r 2 2
2

g0
2 ~g0g092g08

2!12S N08

N0
2

g08

g0
D 2

1
2

r S 2N08

N0
1

g08

g0
D Gdg50. ~A25!

Similarly Eq. ~A23! becomes

dNp54pE
0

`

1drr 2
g0

N0
s̄0

2XH 1

g0
2r̄ s̄0

2 ~g0dg82g08dg!1
2dg

g0

F 1

L S s̄08

s̄0
D 2

1

122r̄
g08

g0

2r̄ 2s̄0
2

g0
2

N0
2
G1

1

L1.5

s̄08

s̄0

ds̄8

2
g0

2

L0.5
ds̄1F 1

N0
2 1

1

g0
2L S s̄08

s̄0
D 2

1S 11
1

2
s̄0

2D G J . ~A26!

UsingdNp50 ~charge conservation! which is appropriate for largeL wheredNp is given by Eq.~A26! we get, on putting this
in Eq. ~A24!,

1

L1.5ds̄191
1

L1.5ds̄18S 2

r̄
1

N08

N0
2

g08

g0
D 12

1

L0.5

g0
2

N0
2 ds̈̄11

2dg

g0
F2g0

2S 11
s̄0

2

2
D 1

1

L

s̄08

s̄0
S 1

r̄
1

N08

N0
2

g08

g0
D G

2
1

L0.5g0
2ds̄1F s̄0

2

2
1

1

L
2r̄ s̄08s̄0S 11

s̄0
2

2
D G2

s̄08

L1.5s̄0

ds̄50. ~A27!

This equation suggests thatdg goes like 1/L0.5. Writing d̈g as2x2dg and d̈s̄ as2x2ds we then see from Eqs.~A25! and
~A27! that the quasinormal mode frequencyx for high L configurations must go like 1/L0.5 for a given s̄. We have
numerically evolved stars with the sames̄ and compared the QNM frequencies obtained to the inverse ratios of the squar
of their L values forL5800, L51200 andL51600, confirming the above analysis. In Table I we show a compar
between the perturbation analysis and the numerical result. We see that the perturbation result gets more accurate fo
ing L. We note that configurations that have the size of a neutron star would have to haveL of order 1038 with QNM
frequency of orderx510219.
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