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2D extremal black holes as solitons
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We discuss the relationship between two-dimensional~2D! dilaton gravity models and sine-Gordon-like
field theories. We show that there is a one-to-one correspondence between the solutions of 2D dilaton gravity
and the solutions of a~two fields! generalization of the sine-Gordon model. In particular, we find a connection
between the soliton solutions of the generalized sine-Gordon model and extremal black hole solutions of 2D
dilaton gravity. As a by-product of our calculations we find an easy way to generate cosmological solutions of
2D dilaton gravity.@S0556-2821~98!02518-1#

PACS number~s!: 04.70.Bw, 04.50.1h, 11.10.Kk
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I. INTRODUCTION

The connection between black holes and nonperturba
structures of string theory, such as Bogomol’nyi-Pras
Sommerfield~BPS! solitons orD-branes, has been one of th
main ingredients of the last developments in string the
@1,2#. Black hole thermodynamics seems to have a nat
explanation in terms of microscopic string and membra
physics @2#, opening new ways to address old~and new!
fundamental problems of black hole physics.

On the other hand, the same fundamental problems
black hole physics have been analyzed in the recent litera
using low-dimensional gravity models. In particular, tw
dimensional~2D! dilaton gravity models have been used
tackle challenging questions such as the ultimate fate
black holes or the loss of quantum coherence in the bl
hole evaporation process@3#. Although no definitive answers
to the abovementioned problems have been found, 2D d
ton gravity models still provide a useful and simple fram
work to describe 4D black hole physics.

If one wants to use the new ideas of string theory in
context of 2D dilaton gravity models, one has to investig
the role that solutions such as solitons play in these mod
Moreover, for particular 2D dilaton gravity models we ha
a direct relationship between BPS solitons of the 4D str
effective theory and solutions of the 2D model. For instan
the Jackiw-Teitelboim~JT! model@4# can be used to describ
the S-wave sector of the extremalD54, supersymmetric
black hole solutions of models with dilaton couplinga
51/) @5,6#.

In a recent paper@7#, using the well-known correspon
dence between solutions of the sine-Gordon theory and
stant curvature metrics, Gegenberg and Kunstatter foun
relationship between black holes of JT dilaton gravity a
solitons of the sine-Gordon field theory@8#. In this paper we
explore the possibility to generalize this correspondence
generic 2D dilaton gravity models, whose solutions, in g
eral, are not spacetimes of constant curvature. We find
the field equations for 2D dilaton gravity are equivalent
those derived from a~two fields! generalization of the sine
Gordon model. From this correspondence we derive a c
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nection between solitons of the generalized sine-Gor
model andextremalblack hole solutions of 2D dilaton grav
ity. We also explain why in the JT model this correspo
dence holds for the generic black hole solutions and not o
for the extremal one.

The structure of the paper is the following. In Sec. II w
show that the field equations of 2D dilaton gravity can
reduced to those of a generalized sine-Gordon model. In
III we derive the static solutions of the generalized sin
Gordon model. The conditions that have to be satisfied
these solutions to describe solitons, are also presented
implemented. In Sec. IV we discuss the relationship betw
the solitons and the black holes of the 2D dilaton grav
theory. In Sec. V we use topological arguments to class
the soliton solutions of the generalized sine-Gordon mod
In Sec. VI we apply the general formulas that we have
rived to some particular 2D dilaton gravity models. In Se
VII we discuss a by-product of our calculations, namely,
easy way to generate cosmological solutions of 2D dila
gravity models. Finally, in Sec. VIII we present our concl
sions.

II. 2D DILATON GRAVITY AND GENERALIZED
SINE-GORDON FIELD THEORY

Let us consider the generic two-dimensional dilaton gr
ity model. Using a Weyl rescaling of the metric and a re
arametrization of the dilaton, one can write the most gene
action for the model in the form@9#

S@gmn ,F#5
1

2p E d2xA2g@FR1l2V~F!#, ~1!

whereR is the curvature of the 2D spacetime,V(F) is an
arbitrary function of the dilatonF, and the 2D metricgmn

has signature (21,1). The field equations derived from th
action ~1! have the simple form@9#

R52l2
dV

dF
, ~2!

¹m¹nF2
l2

2
gmnV50. ~3!
© 1998 The American Physical Society01-1
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MARIANO CADONI PHYSICAL REVIEW D 58 104001
By means of a suitable parametrization of the 2D metric o
can map the solutions of Eqs.~2!, ~3! into solutions of a
generalized sine-Gordon model in 2D Euclidean space
fact, using the invariance of the theory under coordin
transformations we can write the 2D spacetime metric in
form

ds252sin2S u

2Ddt21cos2S u

2Ddx2, ~4!

whereu5u(x,t). Taking into account that the correspondin
curvature tensor is

R52
2

sin u
~] t

2u1]x
2u!, ~5!

one can show that the field equations~2!, ~3! are equivalent
to the following set of equations in 2D Euclidean space:

~] t
2u1]x

2u!5
l2

2

dV

dF
sin u, ~6!

~] t
2F1]x

2F!5
l2

2
V cosu. ~7!

Notice that Eq.~2! is equivalent to Eq.~6!, one of the three
equations in Eq.~3! translates into Eq.~7!, whereas the othe
two equations in Eq.~3! are integrability conditions for the
system~6!, ~7!.

Instead of considering 2D dilaton gravity in Minkows
space, one can also start from the Euclidean formulation
this theory. In this case, one can easily demonstrate
equivalence of the Euclidean field equations~2!, ~3! with the
Minkowskian counterpart of Eqs.~6!, ~7!. The corresponding
equations are obtained performing the Wick rotationt→ i t .

The field theory defined by the field equations~6!, ~7! can
be considered as a~two field! generalization of the sine
Gordon model. Equation~6! reduces to the sine-Gordo
equation forV5F @7# or, more generally, for constant con
figurations F0 of the dilaton, with V(F0)50, (dV/
dF)(F0).0. The field equations~6!, ~7! can be also ob-
tained extremizing an action, which in Minkowski space h
the form

S5
1

2 E d2xS Fhu2
l2

2
V sin uD , ~8!

whereh52] t
21]x

2 .
An unpleasant feature of the model~8! is that it describes

a system of two scalar fields of opposite signature. This
be easily seen performing a field redefinition that diagon
izes the kinetic energy of the fields

F5w1f, u5w2f. ~9!

Up to surface terms, the action~8! becomes

S52
1

2 E d2xS hmn]mw]nw2hmn]mf]nf
10400
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l2

2
sin~w2f!V~w1f! D , ~10!

wherehmn5(21,1). The scalar fieldf has negative kinetic
energy.

Let us conclude this section with some remarks on
correspondence that we have established between the di
gravity model ~1! and the generalized sine-Gordon fie
theory ~8!. Although there is a one-to-one corresponden
~up to spacetime diffeomorphisms of the dilaton grav
theory! between the solutions of the two theories, this do
not mean that one can construct a metric solution that co
the whole 2D spacetime, once a solution of Eqs.~6!, ~7! is
known. In general, this is not possible owing to the particu
parametrization of the metric, given by Eq.~4!, which allows
the metric coefficientsgtt and gxx to take values only in
@0,1#. However, one can take analytic continuations of t
solutions. To this end, we can consider a parametrization
the metric obtained by replacing in Eq.~4! the trigonometric
with the hyperbolic functions

ds252sinh2S u

2Ddt21cosh2S u

2Ddx2. ~11!

Starting from this expression for the metric, we can rep
the steps that led to the field equations~6!, ~7! and to the
action~8!. What we find now is an equivalence between t
Minkowskian~Euclidean! dilaton gravity field equations~2!,
~3! and the generalized Minkowskian~Euclidean! sinh-
Gordon field theory obtained by replacing in Eqs.~6!–~8! the
trigonometric with the corresponding hyperbolic function
In conclusion, in order to have a complete corresponde
between 2D spacetime structures of the dilaton grav
theory and solutions of sine-Gordon-like field theories,
need both the sine- and sinh-Gordon models.

III. SOLITON SOLUTIONS

It is well known that the dilaton gravity model~1! admits
solutions that can be interpreted as 2D black holes@10,11,6#.
On the other hand, one expects the generalized sine-Go
theory ~8! to have soliton solutions that, in view of the re
sults of the previous section, should be related to 2D bl
hole solutions. For arbitrary potentialV the existence of soli-
ton solutions is nota priori evident. We will therefore begin
our discussion by answering the question about the existe
of solitons in the model~8!.

Solitons are nonsingular field configurations that descr
localized states of finite energy. Usually, necessary con
tions for the existence of solitons can be found requiring
energy of the solution to be finite. Differently from the usu
sine-Gordon model, in the case under consideration the
ergy functional is not positive definite. This is a consequen
of the presence of a scalar field with negative kinetic ener
From the action~8! it follows for the energy functional

E~u,F!5
1

2 E
2`

`

dxS ] tF] tu1]xF]xu1
l2

2
V sin uD .

~12!
1-2
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2D EXTREMAL BLACK HOLES AS SOLITONS PHYSICAL REVIEW D58 104001
Let us focus on static solutions of the field equations.
single out soliton solutions we requireE>0 and, atx→
6`,

]xu50, ]xF50. ~13!

Note that for static solutions, the field equations imply]xu
}V and ]xF}sinu @see Eq.~15! later#. Hence, conditions
~13! imply also V sinu50 at x→6`. Conditions~13! are
sufficient but not necessary for the finiteness of the ene
In fact, one can easily construct field configurations of fin
energy for which]xu and/or ]xF are different than zero
asymptotically. The existence of these configurations is
lated to the fact that the energy is not positive definite. I
not clear to us whether a soliton interpretation of these s
tions is also possible.

The system of differential equations~6!, ~7! admits the
constant-field solutionsu5np, F5F0 , with V(F0)50.
One would like to identify some of these constant solutio
as vacua of the theory. However, in the model under con
eration one cannot define the vacuum in the usual way,
by looking for local minima of the potential energy. Th
problem is that our model contains a field with the wro
sign of the kinetic energy term. This fact makes the us
arguments about stability meaningless. On the other h
because we are looking for soliton solutions, which tend
ymptotically to some constant field configuration, we need
use a notion of vacuum of the model. The vacua of the mo
are defined as the zero energy, constant-field configurat
F0 ,u0 that satisfy, additionally, the following conditions
For F5F0 the field equations~6!, ~7! reduce to the usua
sine-Gordon equation foru, whereas foru5u0 they reduce
to the equations of motion of a scalar fieldF with potential
V(F). These conditions single out, as vacua of the mod
the following constant values of the fields

u52np, n50,61,62, . . . , F5F0 ,

V~F0!50,
dV

dF
~F0!.0. ~14!

For static configurations the field equations~6!, ~7! can be
integrated exactly. The first integral is

u85laV, F85
l

2a
sin u, ~15!

where 85d/dx and a is an integration constant. A furthe
integration gives the final form of the solutions

l~x2x0!56E dF

A~K2c!@12a2~K2c!#
, ~16!

sin
u

2
56aAK2c, ~17!

whereK5K(F)5*FdtV(t) and c,x0 are integration con-
stants.
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Equations~16!, ~17! do not give full account of the gen
eral static solution of the field equations. In fact we have t
two-parameter families of solutions that are not contained
Eqs.~16!, ~17!. The first family is obtained by taking a con
stantu field,

l~x2x0!56E dF

A~21!nK2b
, u5np. ~18!

The second family of solutions corresponds to a cons
dilaton field. These solutions exist only ifV(F) has at least
one zeroF5F0 . For (dV/dF)(F0).0 the field equations
reduce to those of the usual sine-Gordon model

u95
l2

2

dV

dF
~F0!sin u. ~19!

Using Eqs.~12! and~15!, one can calculate the energy o
the solutions~16!, ~17!. A straightforward calculation gives

E5l$K@F~`!#2K@F~2`!#%. ~20!

Having found an explicit form of the solutions, condition
~13! translate into restrictions on the admissible form of t
dilaton potentialV and on the values of the integration co
stants parametrizing the general solution. Using Eq.~15! in
Eq. ~13!, one gets

V@F~6`!#50. ~21!

From Eq.~16! it follows ~from now on we will set the physi-
cally irrelevant integration constanta51)

F85lA~K2c!~12K1c!. ~22!

Inserting Eq.~22! into Eq. ~13!, one finds the value of the
integration constantc for which the solutions~16!, ~17! de-
scribe solitons

c5K@F~6`!#. ~23!

It follows that the model~8! admits static soliton solu-
tions, approaching forx→6` the constant field configura
tions ~14! with n561, if the equationV(F)50 admits at
least one solutionF05F(6`) with (dV/dF)(F0).0. The
soliton solutions are given by Eqs.~16!, ~17! with c
5K(F0).

Note that Eqs.~13! are solved also byc5K@F(6`)#
21. However, it is evident from Eq.~17! that the corre-
sponding solutions tend asymptotically tou56p. They
cannot be taken into consideration if one requires, as we
here, that the soliton solutions approach asymptotically
one of the vacua~14!. The energy of the soliton, given b
Eq. ~20!, is zero if F(`)5F(2`)5F0 , whereas it is dif-
ferent from zero if the potentialV has more then one zer
and if K@F(`)#ÞK@F(2`)#.

IV. SOLITON SOLUTIONS AND BLACK HOLES

In the previous section we derived soliton solutions of t
model~8!. The purpose of this section is to discuss the re
1-3
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MARIANO CADONI PHYSICAL REVIEW D 58 104001
tionship between these soliton solutions and the black h
solutions of the 2D dilaton gravity model~1!.

The solutions~16!, ~17! can be used in a straightforwar
way to generate static solutions of the dilaton gravity theo
We just need to insert Eqs.~16!, ~17! into the expression~4!
for the metric of the 2D spacetime. Defining a new space
coordinater ,

dr

dx
5A~12K1c!~K2c!, ~24!

we can write the spacetime metric and the dilaton in the fo

ds252~K2c!dt21~K2c!21dr2, F5lr . ~25!

This is the general form for the static solution of 2D d
laton gravity@11#. The parameterc appearing in Eqs.~25! is
related to the massM of the solutionc52M /l. Under suit-
able conditions the solutions~25! can be interpreted as 2D
black holes. Hence, every dilaton gravity model, whose
laton potentialV(F) has at least one zeroF5F0 with
(dV/dF)(F0).0, has a solution, with mass given byM
5lK(F0)/2, that can be realized as a soliton solution~16!,
~17!. Conversely, given a soliton solution of the generaliz
sine-Gordon model~8!, one can always construct a solutio
of the 2D dilaton gravity model~1!, which has the form~25!
with c5K(F0).

If the solution of the 2D dilaton gravity model describes
black hole, the soliton solution can be put in corresponde
with a 2D black hole. Furthermore, one can easily show t
the solutions of 2D dilaton gravity model that can be realiz
as solitons of the model~8! describe spacetimes with n
event horizons, which eventually can be interpreted as
tremal black holes. In fact, assuming that the functionK(F)
is monotonic in the considered range of variation ofF ~this
condition is necessary for the black hole interpretation! it
follows that the functionF(F)5K(F)2K(F0) has only
one zero, atF5F0 , which owing to condition~21! is actu-
ally a double zero, (dF/dF)(F0)5V(F0)50. As a conse-
quence the Killing vector associated with the solution~25!
with c5K(F0) cannot become spacelike anywhere, i.e.,
spacetime has no event horizons.

The previous statement seems to contradict the resul
Ref. @7# for the JT model. In Ref.@7# it has been shown tha
every black solution of the JT theory can be put in cor
spondence with a soliton solution of the sine Gordon mod
Later in this paper we will discuss this point in detail and w
will argue that this behavior is due to a peculiar feature of
black hole solutions of the JT model.

As we have already noted in Sec. II the corresponde
between black holes and soliton solutions is limited to
region of the 2D spacetime. Using the coordinater defined in
Eq. ~24! to parametrize the 2D spacetime and taking in
account Eq.~4!, one can easily realize that this region
defined by 0<„K(lr …22M /l)<1. From the discussion in
Sec. II it is also evident that the spacetime region (K(lr )
22M /l)>1 can be put in correspondence with a gene
ized sinh-Gordon model.
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V. TOPOLOGICAL ANALYSIS

The static configurations~16!, ~17! describe time-
independent soliton solutions of the model~8!. One can gen-
erate propagating soliton solutions performing in Eqs.~16!,
~17! the transformation

x→g~x6vt !, ~26!

whereg51/A12v2 andv is the velocity of propagation o
the soliton. Apart from the solutions~16!, ~17! there are no
other time-independent soliton solutions of the theory~8!.
Being described by nonlinear equations the behavior of
many-soliton system is always time dependent. The adm
sible number of solitons can be determined in the usual w
using topological properties of the symmetry group of t
model ~8!. Conditions~13! imply that every soliton solution
of the field equations tends asymptotically to one of vacu
configuration~14!. Therefore the number of admissible so
tons is determined by the number of ways in which t
points x56` ~the zero sphere! can be mapped into the
manifold of constant-field configurations~14!. We have,
therefore, a one-to-one correspondence between solitons
elements of the homotopy groupp0(G/H), whereG andH
are, respectively, the group of internal symmetries of
model and the residual symmetry of the vacua~14!. G andH
depend on the form of the dilaton potentialV. For genericV
the model~8! has an invariance groupG5Z3Z2 , whereZ
andZ2 are, respectively, the infinite discrete group of tran
lations and the finite group of inversions of the fieldu:

u→u12pn, u→2u. ~27!

Note that the effect of the transformationZ2 on the action~8!
is to flip its sign. The vacua~14! have a residualZ2 symme-
try, so that the homotopy group is

p0S Z3Z2

Z2
D5p0~Z!5Z. ~28!

The same result holds for the usual sine-Gordon model.
particular choices of the dilaton potentialV we can haveZ
3Z2,G andp(G/H)ÞZ. In the next section we will give
examples of this kind of behavior.

It is well known that field theories that admit soliton s
lutions have conserved currents, corresponding to conse
topological charges. For the model under consideration
can define two independent topological currents

J~u!
n 5enm]mu, J~F!

n 5enm]mF. ~29!

The associated topological charges are

N~u!5
1

2p E
2`

`

dxJ~u!
0 5

1

2p
@u~`!2u~2`!#,

N~F!5
1

2 E
2`

`

dxJ~F!
0 5

1

2
@F~`!2F~2`!#. ~30!
1-4
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VI. SOME EXAMPLES

In this section we apply the general formulation describ
in the previous sections to some particular 2D dilaton grav
models. We will consider three examples: the JT theory
fined by a dilaton potentialV(F)52F, a model with a
degree-three polynomial potentialV(F)54F(F221), and
a sinhF model with potentialV(F)5sinh 2F.

A. The JT model

The JT model is characterized by the potentialV(F)
52F, which has a zero atF50 with dV/dF52. Accord-
ing to the discussion of the previous sections, we expect
corresponding generalized sine-Gordon model to have s
ton solutions, described by Eqs.~16!, ~17! with c5K(0)
50. With K5F2 and c50 we can perform explicitly the
integration in Eq.~16!, the final form of the soliton solution
is

u564 arctan expl~x2x0!, F215coshl~x2x0!.
~31!

The previous solution has zero energy. Depending on
sign in Eqs.~31!, we have solitons and antisolitons. Th
corresponding solution of the JT model is the extremal bl
hole solution~the ground state of the model! with M50,

ds252F2dt21F22dr2, F5lr . ~32!

The symmetry group of the model isG5Z2
(F)3Z2

(u)3Z(u),
whereZ2

(F) is the transformationF→2F andZ2
(u)3Z(u) is

the symmetry group of the sine-Gordon model given by E
~27!. The vacuaF50, u52np have a residual symmetr
Z2

(F)3Z2
(u) , so that for the homotopy group we have

p0S G

H D5Z. ~33!

The model admits soliton solutions with topological charg
~30! given by N(F)50, N(u)56n, n50,1 . . . , where the
plus sign refers to soliton and the minus sign to antisoli
solutions. In particular the time-independent solitons~31!
have topological chargeN(F)50, N(u)561, respectively,
for the soliton and the antisoliton.

That the soliton solutions~31! can be put in correspon
dence with solutions of the JT theory has previously be
demonstrated by Gegenberg and Kunstatter@7#. They have
also shown that the soliton solution~31! can be put in cor-
respondence with every (M50 or M.0) black hole solu-
tion of the JT theory, not only with theM50 extremal so-
lution ~32!. This seems in contradiction with our result
Sec. IV, stating that only 2D spacetimes with no event ho
zons are in correspondence with soliton solutions of
theory ~8!. The two results are not in contradiction becau
of a well-known feature of the JT model, namely, the fa
that all the static solutions of the JT theory are differe
parametrization of the same manifold, 2D anti–de Sit
spacetime ~see, for example, Ref.@6#, and references
therein!. There is always a coordinate transformation relat
the M50 solution ~32! with the genericM.0 black hole
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solution. Using these coordinate transformations one can
ways map the soliton~31! into a generic static solution of th
JT model. This feature is a peculiarity of the JT model tha
not expected to hold for a generic 2D dilaton gravity mod

B. Degree-three polynomial potential

Let us now consider a model withV54F(F221). The
model has the same symmetry group as the JT mo
namely,G5Z2

(F)3Z2
(u)3Z(u). Differently than the JT case

now the vacuaF561, u52np break theZ2
(F) symmetry,

the residual symmetry group being nowH5Z2
(u) . Therefore,

the model will admit a richer spectrum of soliton solution
The homotopy group isp0(G/H)5Z23Z, so that in this
case we can have a different than zero topological cha
NF . The soliton solutions can be classified using a topolo
cal charge vectorX5(NF ,Nu) with entriesNF ,Nu given by
Eq. ~30!. The topologically trivial solutions, characterized b
X5(0,0), are given by the vacuaF561, u52np. The
soliton solutions labeled byX5(0,6n) are usual sine-
Gordon solitons, i.e they have a constant,F561, dilaton,
whereasu is the solution of the sine-Gordon equation

2] t
2u1]x

2u54l2 sin u. ~34!

The solitons characterized byX5(61,0) arekinks. They
have a constantu field, u52np, whereasF is solution of
the equation

2] t
2F1]x

2F52l2F~F221!, ~35!

which admits thekink solution

F56tanhl~x2x0!. ~36!

Finally, we have the soliton solutions withX5(61,
6n). The solitons withn51 are given by Eqs.~16!, ~17!
with K5F422F2 and c5K(61)521. With these posi-
tions Eqs.~16!, ~17! can be easily integrated. Here, we do n
write down the resulting expression because it is rather c
bersome and not essential for our purposes. This soliton
lution has zero energy and is in correspondence with an
tremal black hole solution of the 2D dilaton gravity mode

ds252~F221!2dt21~F221!22dr2, F5lr . ~37!

The previous metric is extremal because the generic solu
of the 2D dilaton gravity model has an horizon forF251
1A11c. Solution ~37! is the c521 solution and it is,
therefore, the extremal one.

C. The sinhF model

As a last example, we consider a model withV(F)
5sinh 2F. The vacua, the symmetry groupG, and the group
of residual symmetry are the same as those of the JT the
As a consequence, also the homotopy group is the sa
p0(G/H)5Z. The soliton solutions with topological charg
Nu561 can be easily obtained using Eqs.~16!, ~17! with
K(F)5(cosh 2F)/2 andc5K(0)51/2. These soliton solu-
tions have zero energy and can be written in the form
1-5
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u

2
5

p

2
1arctan@& sinh l~x2x0!#, ~38!

F5Artanh@& coshl~x2x0!#21. ~39!

The corresponding black hole solution of the 2D dilat
gravity model is

ds252sinh2 Fdt21sinh22 Fdr2, F5lr . ~40!

Again, this is an extremal solution because the horizon of
general solution is located at sinhF5Ac21/2.

VII. COSMOLOGICAL SOLUTIONS
OF 2D DILATON GRAVITY

An interesting by-product of our discussion is an ea
way to generate general cosmological solutions of 2D dila
gravity. Although cosmological solutions have already be
found for particular 2D dilaton gravity models@12,13#, until
now the solution for the generic model has not been deriv

Cosmological solutions of the model~1! can be easily
found using the parametrization of the 2D metric given
Eq. ~4! and the equivalence between the field equations~2!,
~3! in Minkowski space and the field equations~6!, ~7! in
Euclidean space. The point is that, because Eqs.~6!, ~7! are
written in Euclidean space, they maintain their form if w
interchangex↔t. Cosmological solutions of 2D dilaton
gravity can be, therefore, generated from the static solut
just by interchangingx↔t. From Eqs.~16!, ~17! the general
form of the cosmological solutions follows:

ds252sin2S u~ t !

2 Ddt21cos2S u~ t !

2 Ddx2,

sinS u

2D56AK2c,

l~ t2t0!56E dF

A~K2c!@12~K2c!#
.

Introducing the cosmological timedt5sin(u/2)dt, the
solutions take the form

ds252dt21cos2S u

2Ddx2,

sinS u

2D56AK2c,

l~t2t0!56E dF

A12~K2c!
. ~41!

Let us give two examples of the application of Eqs.~41!.
Consider first the cosmological solutions of the JT mod
With K5F2, we can perform the integration in Eq.~41! and
obtain
10400
e

y
n
n

d.

s

l.

ds252dt21A2 sin2 l~t2t0!dx2,

F5A cosl~t2t0!, ~42!

whereA5A11c. This form of the solution has already bee
found using a different method in Ref.@13#.

In the case of a model with a exponential potentialV
5expF, Eqs.~41! give

ds252dt21A2F tanh2
lA

2
~t2t0!Gdx2, ~43!

F522 ln cosh
lA

2
~t2t0!1const, ~44!

whereA is an integration constant given as in Eq.~42!.

VIII. CONCLUSIONS

In this paper we have shown that one can use solution
a generalized sine-Gordon model to describe the class
dynamics of 2D dilaton gravity. As a consequence, we h
found for a broad class of extremal 2D black holes an und
lying solitonic solutions that, in principle, can be used
describe their classical behavior. Our results seem to indi
that there is a deep connection between extremal config
tions of 2D black hole and solitonic states. However, for 2
dilaton gravity the situation seems rather different than t
for supergravity theories inD>4. In the latter case the con
dition that the solutions preserve at leastN51 supersymme-
try implies that they are BPS states, i.e., that they saturat
least one Bogomol’nyi bound. In this way the extremal bla
hole solutions have a natural interpretation as BPS solito
In the case of 2D dilaton gravity the absence of bounds
lated with symmetries of the model~such as the
Bogomol’nyi bound! makes the notion of extremality mode
dependent. The simplest way to obtain these bounds wo
be to consider a supersymmetric extension of our mo
Previous investigations of the supersymmetric sine-Gor
model indicate, however, that in this model the BPS sta
are not solitons@14#. It would be of interest to find out if this
apply also to the supersymmetric extension of the model~8!.

Apart from these difficulties, our approach represents j
a first step in the analysis of the role that solitons play in
dilaton gravity. It leaves many open questions. We have s
that there is a sine-Gordon-like theory underlying the clas
cal behavior of 2D extremal black holes. However, the m
interesting questions in the black hole physics appear at
semiclassical~or full quantum! level. The natural develop
ment of our approach would be to use the solitons to desc
the semiclassical and the quantum dynamics of 2D extre
black holes. For instance, one could try to use soliton phy
to describe near extremal 2D black holes, to investigate
black hole evaporation process and to give a microsco
interpretation of the entropy of the hole.
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