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2D extremal black holes as solitons
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We discuss the relationship between two-dimensid28)) dilaton gravity models and sine-Gordon-like
field theories. We show that there is a one-to-one correspondence between the solutions of 2D dilaton gravity
and the solutions of &wo fieldy generalization of the sine-Gordon model. In particular, we find a connection
between the soliton solutions of the generalized sine-Gordon model and extremal black hole solutions of 2D
dilaton gravity. As a by-product of our calculations we find an easy way to generate cosmological solutions of
2D dilaton gravity.[S0556-282(98)02518-1]

PACS numbe(s): 04.70.Bw, 04.50th, 11.10.Kk

I. INTRODUCTION nection between solitons of the generalized sine-Gordon
Th tion bet black hol d turbai model andextremalblack hole solutions of 2D dilaton grav-
€ connection between biack holes and nonperturba 'Vﬁy. We also explain why in the JT model this correspon-

structures of string theory, such as Bogomolnyi-Prasadyence holds for the generic black hole solutions and not only
Sommerfield BPS solitons orD-branes, has been one of the ¢4, the extremal one.

main ingredients of the last deyelopments in string theory The structure of the paper is the following. In Sec. Il we
[1,2]. Black hole thermodynamics seems to have a naturadhow that the field equations of 2D dilaton gravity can be
explanation in terms of microscopic string and membrangeduced to those of a generalized sine-Gordon model. In Sec.
physics[2], opening new ways to address olénd new ||| we derive the static solutions of the generalized sine-
fundamental problems of black hole physics. Gordon model. The conditions that have to be satisfied for
On the other hand, the same fundamental problems ahese solutions to describe solitons, are also presented and
black hole physics have been analyzed in the recent literatuiienplemented. In Sec. IV we discuss the relationship between
using low-dimensional gravity models. In particular, two- the solitons and the black holes of the 2D dilaton gravity
dimensional(2D) dilaton gravity models have been used totheory. In Sec. V we use topological arguments to classify
tackle challenging questions such as the ultimate fate othe soliton solutions of the generalized sine-Gordon model.
black holes or the loss of quantum coherence in the blacky Sec. VI we apply the general formulas that we have de-
hole evaporation proce$3]. Although no definitive answers rived to some particular 2D dilaton gravity models. In Sec.
to the abovementioned problems have been found, 2D dilaVIl we discuss a by-product of our calculations, namely, an
ton gravity models still provide a useful and simple frame-€asy way to generate cosmological solutions of 2D dilaton
work to describe 4D black hole physics. gravity models. Finally, in Sec. VIII we present our conclu-
If one wants to use the new ideas of string theory in theSions.
context of 2D dilaton gravity models, one has to investigate
the role that solutions such as solitons play in these models. || 2D DILATON GRAVITY AND GENERALIZED
Moreover, for particular 2D dilaton gravity models we have SINE-GORDON FIELD THEORY
a direct relationship between BPS solitons of the 4D string
effective theory and solutions of the 2D model. For instance, Let us consider the generic two-dimensional dilaton grav-
the Jackiw-TeitelbointJT) model[4] can be used to describe ity model. Using a Weyl rescaling of the metric and a rep-
the S'wave sector of the extremdd =4, supersymmetric, arametrization of the dilaton, one can write the most general
black hole solutions of models with dilaton coupliry action for the model in the forrf®]
=1W3 [5,6]. L
In a recent papef7], using the well-known correspon- _
dence between solutions of the sine-Gordon theory and con- 9 ®1= 5 f d?x=g[®R+A2V(P)], (1)
stant curvature metrics, Gegenberg and Kunstatter found a

relationship between black holes of JT dilaton gravity andwhereR is the curvature of the 2D spacetimé(®) is an
solitons of the sine-Gordon field theof]. In this paper we  arbitrary function of the dilatorb, and the 2D metrig,,

explore the possibility to generalize this correspondence t@as signature1,1). The field equations derived from the
generic 2D dilaton gravity models, whose solutions, in gen-ction (1) have the simple forni9]

eral, are not spacetimes of constant curvature. We find that

the field equations for 2D dilaton gravity are equivalent to dv
those derived from #&wo fields generalization of the sine- R= —)\Zﬁ, (2)
Gordon model. From this correspondence we derive a con-
)\2
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By means of a suitable parametrization of the 2D metric one A2

can map the solutions of Eq&2), (3) into solutions of a + 5 sinw=¢)V(w+¢) |, (10

generalized sine-Gordon model in 2D Euclidean space. In

fact, using the invariance of the theory under coordinatgynere ,#7=(—1,1). The scalar fields has negative kinetic

transformations we can write the 2D spacetime metric in theenergy.

form Let us conclude this section with some remarks on the
correspondence that we have established between the dilaton

dx2, (4)  9ravity model (1) and the generalized sine-Gordon field
theory (8). Although there is a one-to-one correspondence

o . (up to spacetime diffeomorphisms of the dilaton gravity

whereu=u(x,t). Taking into account that the corresponding {heory) between the solutions of the two theories, this does

. (u u
d52=—SIn2<§)dt2+C052 z

curvature tensor is not mean that one can construct a metric solution that covers
5 the whole 2D spacetime, once a solution of E@, (7) is
R=— ——(d2u+d2u), (5)  known. In general, this is not possible owing to the particular
sinu parametrization of the metric, given by E¢g), which allows

the metric coefficienty;; and g,, to take values only in
[0,1]. However, one can take analytic continuations of the
solutions. To this end, we can consider a parametrization of
the metric obtained by replacing in E@) the trigonometric

one can show that the field equatioi®3, (3) are equivalent
to the following set of equations in 2D Euclidean space:

A2 dV , ; .
2 2= — — gj with the hyperbolic functions
(dfu+azu) > 4D sinu, (6) yp
u u
A2 ds’= —sinhz(i dt’+ cosﬁz(i)dxz. (11)
(32D + 92D) = -V cosu. (7)

Starting from this expression for the metric, we can repeat
Notice that Eq(2) is equivalent to Eq(6), one of the three the steps that led to the field equatiof®, (7) and to the
equations in Eq(3) translates into Eq.7), whereas the other action(8). What we find now is an equivalence between the
two equations in Eq(3) are integrability conditions for the Minkowskian(Euclidean dilaton gravity field equation€2),
system(6), (7). (3) and the generalized MinkowskiafEuclidean sinh-
Instead of considering 2D dilaton gravity in Minkowski Gordon field theory obtained by replacing in E(®—(8) the
space, one can also start from the Euclidean formulation ofrigonometric with the corresponding hyperbolic functions.
this theory. In this case, one can easily demonstrate thin conclusion, in order to have a complete correspondence
equivalence of the Euclidean field equati@8y (3) with the  between 2D spacetime structures of the dilaton gravity
Minkowskian counterpart of Eq$6), (7). The corresponding theory and solutions of sine-Gordon-like field theories, we

equations are obtained performing the Wick rotatiesit. need both the sine- and sinh-Gordon models.
The field theory defined by the field equatid@s$, (7) can
be considered as éwo field) generalization of the sine- IIl. SOLITON SOLUTIONS
Gordon model. Equatior(6) reduces to the sine-Gordon
equation forvV=® [7] or, more generally, for constant con- It is well known that the dilaton gravity modél) admits

figurations ®, of the dilaton, with V(®gy)=0, (dV/ solutions that can be interpreted as 2D black hpl€s11,6.
dd)(d,)>0. The field equations6), (7) can be also ob- On the other hand, one expects the generalized sine-Gordon

tained extremizing an action, which in Minkowski space hastheory (8) to have soliton solutions that, in view of the re-
the form sults of the previous section, should be related to 2D black

hole solutions. For arbitrary potentidllthe existence of soli-
1 ) N2 ton solutions is no& priori evident. We will therefore begin
S= > J d x( dOu— 7V sinu|, ) our discussion by answering the question about the existence
of solitons in the mode(8).
whereO= — 92+ 2. Solitons are nonsingular field configurations that describe

An unpleasant feature of the mod8) is that it describes Ipcalized state; of finite energy. Usually, necessary condi-
a system of two scalar fields of opposite signature. This cations for the existence of solitons can be found requiring the

be easily seen performing a field redefinition that diagonal€N€rgy of the solution to be finite. Differently from the usual
izes the kinetic energy of the fields sine-Gordon model, in the case under consideration the en-

ergy functional is not positive definite. This is a consequence
d=w+¢, uU=w— . (9)  of the presence of a scalar field with negative kinetic energy.
From the action(8) it follows for the energy functional

Up to surface terms, the actidB) becomes 5

1 (= A
1 E(u,@)zEJ dX((?tq)ﬁtU'Fé’xq)ﬁxu-i- ?V sinu|.
- _ 2 % MY —

S 5 fd x(n W3 W—n*"d,dd,b (12)
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Let us focus on static solutions of the field equations. To Equations(16), (17) do not give full account of the gen-
single out soliton solutions we requite=0 and, atx— eral static solution of the field equations. In fact we have two
+oo, two-parameter families of solutions that are not contained in

Egs.(16), (17). The first family is obtained by taking a con-
au=0, d,H=0. (13)  stantu field,

Note that for static solutions, the field equations impy do

«V and d,®x=sinu [see Eq.(15) later]. Hence, conditions )\(X_Xo):ij \/ﬁ u=nm. (18

(13) imply alsoV sinu=0 at x— *. Conditions(13) are (=1

sufficient but not necessary for the finiteness of the energyrhe second family of solutions corresponds to a constant
In fact, one can easily construct field configurations of finitegjaton field. These solutions exist onlyVf(®) has at least
energy for whichd,u and/or3,® are different than zero one zerod =d,. For (dV/d®)(P,)>0 the field equations

asymptotically. The existence of these configurations is reredquce to those of the usual sine-Gordon model
lated to the fact that the energy is not positive definite. It is

not clear to us whether a soliton interpretation of these solu- , A2 dv ]

tions is also possible. U=~ 5@ (Posinu. (19)
The system of differential equationt§), (7) admits the

constant-field solutionsi=nwz, ®=®,, with V(dy)=0. Using Egs.(12) and(15), one can calculate the energy of

One would like to identify some of these constant solutionghe solutiong(16), (17). A straightforward calculation gives
as vacua of the theory. However, in the model under consid-

eration one cannot define the vacuum in the usual way, just E=MK[®(x)]-K[®(=)]}. (20)
by looking for local minima of the potential energy. The . . . .
problem is that our model contains a field with the wrong 13Hztavmg|f(t)ur_1dtan e>;p_l|i:_|t form otfhthe Solythtr:ls, fcond|t|;)?;
sign of the kinetic energy term. This fact makes the usuaf ) translate into restrictions on the admissible form of the

arguments about stability meaningless. On the other han&illaton potentialVV and on the values of the integration con-

because we are looking for soliton solutions, which tend as-slt‘"‘mtS parametrizing the general solution. Using @) in

ymptotically to some constant field configuration, we need toEq' (13), one gets

use a notion of vacuum of the model. The vacua of the model V[®(+)]=0. (21)
are defined as the zero energy, constant-field configurations

®,,uq that satisfy, additionally, the following conditions. From Eq.(16) it follows (from now on we will set the physi-
For @ =®, the field equationg6), (7) reduce to the usual cally irrelevant integration constaat=1)

sine-Gordon equation fas, whereas foiuu=ug they reduce
to the equations of motion of a scalar fieldwith potential ®'=\{(K—c)(1-K+c). (22
V(®P). These conditions single out, as vacua of the model
the following constant values of the fields

inserting Eq.(22) into Eq. (13), one finds the value of the
integration constant for which the solutiong16), (17) de-

u=2nm, n=0+1+*2,..., ®=d,, scribe solitons
dv c=K[®(£x)]. (23
= —_— > . ) - .
Vi®0)=0. g (Po)=0 (14 It follows that the modek8) admits static soliton solu-

_ _ _ _ _ tions, approaching for— = the constant field configura-
For static configurations the field equatid$, (7) can be  tions (14) with n=+1, if the equationV(®)=0 admits at

integrated exactly. The first integral is least one solutio® y=d (=) with (dV/dd)(Py)>0. The
soliton solutions are given by Eqg16), (17) with ¢

,_ , )\ . :K((Do)
u=rav, of=oosinuy, (19 Note that Egs.(13) are solved also by=K[®(*x)]

—1. However, it is evident from Eqgl7) that the corre-
where '=d/dx anda is an integration constant. A further sponding solutions tend asymptotically to==* . They

integration gives the final form of the solutions cannot be taken into consideration if one requires, as we do
here, that the soliton solutions approach asymptotically to
dd one of the vacudl4). The energy of the soliton, given by
A(X=Xg)=* (16)  Eq.(20), is zero if®(x)=d(—»)=d,, whereas it is dif-

— —22K—0o) ]’
VK=o)[1-a%(K-0)] ferent from zero if the potentiaV has more then one zero
" and if K[® (o) ]#K[P(—x)].

sinE:ta K—-c, (17)
IV. SOLITON SOLUTIONS AND BLACK HOLES
whereK=K(®)=[®d7V(7) andc,x, are integration con- In the previous section we derived soliton solutions of the
stants. model(8). The purpose of this section is to discuss the rela-
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tionship between these soliton solutions and the black hole V. TOPOLOGICAL ANALYSIS
solutions of the 2D dilaton gravity modél). . ) . . .

The solutions(16), (17) can be used in a straightforward in d-lt;h?anc?é%ttlCsofi:t%r:]flgglri?c?nnssg‘?ﬁe(r%) @?eéﬁgbfanmgi
way to generate static solutions of the dilaton gravity theory.eratg ropacating soliton solutions erforr.nin in E(qg_ﬁ)
We just need to insert Eg&l6), (17) into the expressioKy) (17) th% tfangsforrgation P 9 ’
for the metric of the 2D spacetime. Defining a new spacelike

coordinater, X— y(x*vt), (26)

ﬁ: J(1—K+c)(K—c) (24) Wherey= 1/y1—v? andv is the velocity of propagation of
dx ' the soliton. Apart from the solutiond6), (17) there are no
other time-independent soliton solutions of the they
we can write the spacetime metric and the dilaton in the fornBeing described by nonlinear equations the behavior of the
many-soliton system is always time dependent. The admis-
ds?= —(K—c)dt?+(K—c) 1dr?, @®=xr. (25  sible number of solitons can be determined in the usual way,
using topological properties of the symmetry group of the
model (8). Conditions(13) imply that every soliton solution
of the field equations tends asymptotically to one of vacuum

related to the masisl of the solutionc=2M/\. Under suit- conf|gurat|on(lz_1). Therefore the number of ad"_"ss'b'_e soli-
tons is determined by the number of ways in which the

able conditions the solution®5) can be interpreted as 2D points x=+o (the zero sphejecan be mapped into the

black holes. Hence, every dilaton gravity model, whose di-___ . P . .
laton potentialV(®) has at least one zer®=d, with manifold of constant-field configurationgl4). We have,

; : ; therefore, a one-to-one correspondence between solitons and
(dV/d®)(®y)>0, has a solution, with mass given by '
=AK(D()/2, that can be realized as a soliton solut{@s), elements of the homotopy groum,(G/H), whereG andH

. . : . re, respectively, the group of internal symmetries of the
(}7). Conversely, given a soliton solution of the genera“.ZEd%odel and the residual symmetry of the vaétd). G andH
sine-Gordon mode(8), one can always construct a solution

. . / depend on the form of the dilaton potential For genericv
\(/)Jittr?igi?:ll)a;on gravity modef1), which has the fornf25) the model(8) has an invariance grou=2Xx2Z,, whereZ
= 0)-

If the solution of the 2D dilaton gravity model describes aand Z, are, respectively, the infinite discrete group of trans-

black hole, the soliton solution can be put in correspondenc%at'onS and the finite group of inversions of the field
with a 2D black hole. Furthermore, one can easily show that
the solutions of 2D dilaton gravity model that can be realized
as solitons of the mode(8) describe spacetimes with no
event horizons, which eventually can be interpreted as e
tremal black holes. In fact, assuming that the functdid)
is monotonic in the considered range of variationdofthis
condition is necessary for the black hole interpretatiiin 7%7
follows that the funct|an(<b)_=K(<D)—K(<bo) hf';\s only Wo( 2) = mo(2)=Z. (29)
one zero, atb=d,, which owing to condition21) is actu- Z,
ally a double zero,dF/d®)(dy) =V (Py)=0. As a conse-
quence the Killing vector associated with the soluti@,)  The same result holds for the usual sine-Gordon model. For
with c=K(®,) cannot become spacelike anywhere, i.e., theparticular choices of the dilaton potentidlwe can haveZ
spacetime has no event horizons. XZ,CG andw(G/H)#Z. In the next section we will give
The previous statement seems to contradict the results @xamples of this kind of behavior.
Ref.[7] for the JT model. In Refl7] it has been shown that It is well known that field theories that admit soliton so-
every black solution of the JT theory can be put in corre-lutions have conserved currents, corresponding to conserved
spondence with a soliton solution of the sine Gordon modeltopological charges. For the model under consideration we
Later in this paper we will discuss this point in detail and wecan define two independent topological currents
will argue that this behavior is due to a peculiar feature of the
black hole solutions of the JT model. J(”u)= €""a,u, J(Vq,)z €"d,®. (29
As we have already noted in Sec. Il the correspondence
between black holes and soliton solutions is limited to aThe associated topological charges are
region of the 2D spacetime. Using the coordimatiefined in
Eq. (24) to parametrize the 2D spacetime and taking into % 0 1
account Eq.(4), one can easily realize that this region is Nu= o j_wdx‘]w):ﬁ[u(w)—u(—oo)].
defined by G=(K(Ar)—2M/A)<1. From the discussion in
Sec. Il it is also evident that the spacetime regigt{Xr) 1 (= 1
—2M/N\)=1 can be put in correspondence with a general- S j — T d(0)—B(— o0
ized sinh-Gordon model. Ne=3 _wdef’q,) pLPE)=®(=)] (30

This is the general form for the static solution of 2D di-
laton gravity[11]. The parametec appearing in Eq925) is

u—u+27n, u——u. (27)

)J}Iote that the effect of the transformati@n on the action(8)
is to flip its sign. The vacu@l4) have a residuat, symme-
try, so that the homotopy group is
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VI. SOME EXAMPLES solution. Using these coordinate transformations one can al-
Jvays map the solitofB1) into a generic static solution of the

in tlr?etglrseiﬁ)cjgge\,\clﬁoizptlg ;Z?ngeegg:?éz?;?]gg)agﬁgtggsgcrg?/ﬁy\]T model. This feature is a peculiarity of the JT model that is
models. We will consider three examples: the JT theory de[mt expected to hold for a generic 2D dilaton gravity model.

fined by a dilaton potentiaV(®)=2d, a model with a

degree-three polynomial potent{®)=4d(P2—1), and B. Degree-three polynomial potential

a sinh® model with potentialV(®) = sinh 2b. Let us now consider a model withi=4®(d2—1). The
model has the same symmetry group as the JT model,
A. The JT model namely,G=Z{" x zWx z\, Differently than the JT case,

The JT model is characterized by the potentigip) ~ NOW the vacuab==1, u=2n= break thez5" symmetry,
=2®, which has a zero ab=0 with dV/d®=2. Accord- the residual symmetry group being néiv= 2(2”) . Therefore,
ing to the discussion of the previous sections, we expect th§1e model will admit a richer spectrum of soliton solutions.
corresponding generalized sine-Gordon model to have solilhe homotopy group isro(G/H)=2?xZ, so that in this
ton solutions, described by Eqél6), (17) with c=K(0)  case we can have a different than zero topological charge
=0. With K=®2 andc=0 we can perform explicitly the No- The soliton solutions can be classified using a topologi-

integration in Eq(16), the final form of the soliton solution Cal charge vectoX=(N¢,,N,) with entriesNg, ,N, given by
is Eq. (30). The topologically trivial solutions, characterized by

X=(0,0), are given by the vacu®==*1, u=2ns. The
u= =4 arctan exp\(X—Xo), @ t=cosh\(x—Xo). soliton solutions labeled by<=(0,=n) are usual sine-
(31)  Gordon solitons, i.e they have a constabt= + 1, dilaton,

. . . whereasu is the solution of the sine-Gordon equation
The previous solution has zero energy. Depending on the

sign in Egs.(31), we have solitons and antisolitons. The —d?u+d2u=4x2 sinu. (34)
corresponding solution of the JT model is the extremal black
hole solution(the ground state of the modetith M =0, The solitons characterized b¥=(=*1,0) arekinks They

b o oo have a constar field, u=2n7, whereasd is solution of
ds?’=—d%dt>+d~2dr?, d=\r. B2 the equation

The symmetry group of the model 8=2z5" x z{ x zW, — 2P+ 2D = 202D (D2 — 1), (35)
wherez{®) is the transformatio — —® andz{")x 2\ is "

the symmetry group of the sine-Gordon model given by Eqwhich admits thekink solution

(27). The vacua® =0, u=2ns have a residual symmetry

Z®x zW | so that for the homotopy group we have ®==xtanhA(x—xo). (36)
G Finally, we have the soliton solutions witK=(*1,
Wo(ﬁ) =Z (33 *n). The solitons withn=1 are given by Eqs(16), (17)

with K=®*—2d2 andc=K(*+1)=—1. With these posi-

The model admits soliton solutions with topological chargedions Eqs(16), (17) can be easily integrated. Here, we do not
(30) given by N#y=0, Niy=+n, n=0,1..., where the write down the resulting expression because it is rather cum-

plus sign refers to soliton and the minus sign to antisolitorP€rS0me and not essential for our purposes. This soliton so-
solutions. In particular the time-independent solitqgd)  lution has zero energy and is in correspondence with an ex-
have topological charg®lq)=0, Nyy= =1, respectively tremal black hole solution of the 2D dilaton gravity model

] u it ] ]

for the soliton and the antisoliton. (B2 112442 2_1\—2H4 2 _
That the soliton solutiong31) can be put in correspon- ds’ (@7 1%+ (DT-1)75dr?, - ®=Ar. (37)

dence with solutions of the JT theory has previously beefrne previous metric is extremal because the generic solution
demonstrated by Gegenberg and Kunstdfdr They have  of the 2D dilaton gravity model has an horizon fd@=1

also shown that the soliton solutidB1) can be put in cor- J1+c. Solution (37) is the c=—1 solution and it is
respondence with every=0 or M>0) black hole solu-  harefore. the extremal one. '

tion of the JT theory, not only with th#1=0 extremal so-
lution (32). This seems in contradiction with our result of
Sec. IV, stating that only 2D spacetimes with no event hori-
zons are in correspondence with soliton solutions of the As a last example, we consider a model wii{®)
theory (8). The two results are not in contradiction because=sinh 2b. The vacua, the symmetry gro@ and the group

of a well-known feature of the JT model, namely, the factof residual symmetry are the same as those of the JT theory.
that all the static solutions of the JT theory are differentAs a consequence, also the homotopy group is the same,
parametrization of the same manifold, 2D anti—de Sittermy(G/H)=Z. The soliton solutions with topological charge
spacetime (see, for example, Ref[6], and references N,==1 can be easily obtained using Edq36), (17) with
therein. There is always a coordinate transformation relatingk (®) = (cosh 2p)/2 andc=K(0)=1/2. These soliton solu-
the M=0 solution (32) with the genericM >0 black hole tions have zero energy and can be written in the form

C. The sinh® model
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u ) ds?=—d 7%+ A? sir? (17— 70)dX?,
5= §+arctar|jﬁ sinh A (X—Xg)1, (38)
d=A cos\(7— 7p), (42)
~ -1
® = Artaniv2 cosh\ (x—x)] 2. (39 \whereA= I+ c. This form of the solution has already been

found using a different method in R€fL3].
In the case of a model with a exponential potental
=exp®, Egs.(41) give

The corresponding black hole solution of the 2D dilaton
gravity model is

ds’= —sintt ddt>+sinh 2 ddr2, d=\r. (40

ds’=—d7m?+A? tanh?&(r—r) dx? (43
Again, this is an extremal solution because the horizon of the 2 0 '
general solution is located at sidh=+/c—1/2.
NA
®=—-2In cosh— (17— 7p) + const, (44)
VIl. COSMOLOGICAL SOLUTIONS 2

OF 2D DILATON GRAVITY . . . . .
whereA is an integration constant given as in £42).

An interesting by-product of our discussion is an easy
way to generate general cosmological solutions of 2D dilaton VIIl. CONCLUSIONS
gravity. Although cosmological solutions have already been . .
found for particular 2D dilaton gravity modef42,13, until In this paper we have shown that one can use solutions of

now the solution for the generic model has not been derived? gengralized sin_e-Gordon _model to describe the classical
Cosmological solutions of the modél) can be easily dynamics of 2D dilaton gravity. As a consequence, we have

found using the parametrization of the 2D metric given byfound for a broad class of extremal 2D black holes an under-

Eq. (4) and the equivalence between the field equati@s lying §olitﬁn!c ?olut_ior:s trrllat,'in principle,I can be us_ed. to
(3) in Minkowski space and the field equatiot®), (7) in describe their classical behavior. Our results seem to indicate

Euclidean space. The point is that, because EB)s(7) are that there is a deep connection between extremal configura-
written in Euclidean space, they maintain their form if we tions of 2D black hole and solitonic states. However, for 2D

interchangex—t. Cosmological solutions of 2D dilaton dilaton gravity the situation seems rather different than that

gravity can be, therefore, generated from the static solution! SUP€rgravity theories iD=4. In the latter case the con-

just by interchanging«t. From Eqs(16), (17) the general ition that the solutions preserve at lebst 1 supersymme-
form of the cosmological solutions follows: try implies that they are BPS states, i.e., that they saturate at

least one Bogomol'nyi bound. In this way the extremal black
~_[u(t) u(t) hole solutions have a natural interpretation as BPS solitons.
ds?= —smz(T) dt?+ co T)dxz, In the case of 2D dilaton gravity the absence of bounds re-
lated with symmetries of the modelsuch as the

u Bogomol'nyi bound makes the notion of extremality model
sin( —) =+K-c, dependent. The simplest way to obtain these bounds would
2 be to consider a supersymmetric extension of our model.
Previous investigations of the supersymmetric sine-Gordon

N(t—to) = if do . model indicate, however, that in this model the BPS states
VIK=c)[1—(K—c)] are not soliton$14]. It would be of interest to find out if this
apply also to the supersymmetric extension of the mégjel
Introducing the cosmological timér=sin(/2)dt, the Apart from these difficulties, our approach represents just
solutions take the form a first step in the analysis of the role that solitons play in 2D
dilaton gravity. It leaves many open questions. We have seen

dx2 that there is a sine-Gordon-like theory underlying the classi-
' cal behavior of 2D extremal black holes. However, the most
interesting questions in the black hole physics appear at the
. (u semiclassicalor full quantum level. The natural develop-
—_| =+ —
sm(z) *VJK—c,

u
ds’= —d7-2+c052(§

ment of our approach would be to use the solitons to describe

the semiclassical and the quantum dynamics of 2D extremal

dd black holes. For instance, one could try to use soliton physics

N7—19)= if _ (41 to describe near extremal 2D black holes, to investigate the
vi=(K-c) black hole evaporation process and to give a microscopic

Let us give two examples of the application of EG&L). interpretation of the entropy of the hole.

Consider first the cosmological solutions of the JT model.
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