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Inflation and nonsingular spacetimes of cosmic strings
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Inflation of cosmic gauge and global strings is investigated by numerically solving the combined Einstein
and field equations. Above some critical symmetry-breaking scales, the strings undergo inflation along the
radial direction as well as the axial direction at the core. The nonsingular nature of the spacetimes around
supercritical gauge and global strings is discussed and contrasted to the singular static solutions that have been
discussed in the literaturgS0556-282198)08220-4

PACS numbeps): 98.80.Cq, 04.20.Gz

I. INTRODUCTION For global strings, the singularity exists regardless of the
symmetry-breaking scale. Many people have tried to find a

Cosmic strings are linelike topological defects that maystatic solution of a global string and they found that there
form as a result of a phase transition in the early universe. lalso exists a physical singularity outside the core of the
a string is associated with a magnetic field, it is called astring[9—-12]. What was suggested to remove this singularity
gauge string; otherwise, it is a global string. They have atis again a time-dependent treatment of the string. Gregory
tracted much attention because of their cosmological import13] introduced a specific metric which has an axial time
tance: the deficit angle in the spacetime geometry and a calependence and showed that this spacetime is nonsingular.
didate for the seed of structure formation in the early In our work, we follow the evolution of supermassive
universe. gauge and global strings in a general time-dependent metric

It was proposed that topological defects can inflate if theand show that no singularity develops in the spacetimes
symmetry-breaking scale satisfieg= 7.~O(m,) in Refs. around the strings.

[1,2]. This was later verified in numerical simulations by In the next section, we solve the Abelian Higgs model of
Sakaiet al. [3]. They found, in particular, that the critical a gauge string and discuss its inflation and spacetime geom-
value of » for domain walls and global monopoles i~ etry. Section Ill is devoted to global strings. Our conclusions
=0.33m,. Then what about cosmic strings? There is no reaare summarized in Sec. IV. In the Appendix, we show the
son why we exclude cosmic strings out of the topologicalequations in detail and the numerical algorithms.

inflationary category. Recently, it was numerically proved

that a(2+1)-dimensional gauge string can inflate by de Laix Il. GAUGE STRING

et al.[4]. ) ) . ) .

In this paper, we shall numerically solve the combined L&t us conS|der_the Abelian Higgs model of a string with
Einstein and field equations for a gauge and a global string iR complex scalar field and a U1) gauge fieldA, , coupled
(3+1) spacetime dimensions. For the gauge string, we find® gravity. The action is
that the core inflates ify= 0.25m,, with unit winding number R
in the cr|.t|cal coupling caseéquomol’nw limit). For the S:j d“x\/—_g( +£), 2.1)
global string,»=0.23n,,. The critical values decrease as the 167G
winding number increases. For the gauge string, the critical
value also decreases slightly as the coupling of the gaug&hereR is Ricci scalar and the Lagrangiahis
field to the scalar field becomes weaker than the self-
coupling of the scalar field.

The asymptotic spacetime of a gauge string is known to
be conical[5]. This spacetime exhibits a deficit angle
=87Gpu, whereu~ 5? is the mass per unit length of the Here the covariant derivative B,=V ,+ieA,, the gauge
string. When the symmetry-breaking scale is sufficientlyfield strength is=,,=V ,A,—V A, , and the potential is
large, the deficit angle exceeds2nd analyses of the static
solution show that the spacetime possesses a physical singu-
larity outside the core of the strif§—8|. However, from our
numerical results we know that supermassive strings are dy-
namical and undergo inflation at the core. Therefore, we bewheree is the coupling constant between gauge and scalar
lieve that the static treatment of supermassive strings losefelds, \ is the self-coupling constant of the scalar field, and
its validity and that we should treat them in a time-dependent, is the symmetry-breaking scale of the scalar field. We use
way. a general cylindrically symmetric metric

— 1 —
£=-D, DD~ JF, Fr-V(®D). (22

V(<I><I_>>=%<<I><I_>— )%,

ds?=—dt?+B(t,r)?dr?+ C(t,r)%r2d 8>+ H(t,r)?d 2.
*Electronic address: cho@cosmos2.phy.tufts.edu (2.3
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FIG. 1. A plot of 6/Hy* vs n for the 7
=(0.1,0.5,1.0,2.0,3.00, gauge stringgfrom the
bottom to the topin flat spacetime. The dashed
line corresponds ta/n as a referenced, * is the
horizon size at the center of the string.
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(We usefi=c=1, G=1/mj.) In these coordinates, we can and the gauge field equation is

use a time-dependent generalization of the usual Nielsen- V'E =ie(<fV d—PV 5)—2e2A OD.
Olesen ansatz for the scalar and gauge fields: my H # “
D= (t.r)en’ The detailed equations are given in the Appendix.

The static solution at a large distance from the core is
ds?=—dT?+dR?+ (1—4Gu)?R?d#?+dZ?, (2.6

whereu is the mass per unit length of the string and propor-
wheren is the winding number of the string. We also set thetional to 7%. The metric (2.6) exhibits a deficit angleA
usual boundary conditions =8wGu. As 7 increases, the deficit angle also increases.
When the deficit angle exceedsr2the static solutior(2.6)
#(1,0=0, o(t,°)=7 a(t,00=0, aft,0)=1. ceases to exist and we expect that the string becomes dy-
(2.4 namical and undergoes inflation at the core in this regime.
Let us consider the role of the winding number for infla-
tion. The coupling between scalar and gauge fields is given

G,,=87GT,,, by

n
A== a(tnV,0,

"

For the above action, Einstein's equation is

where the energy-momentum tensor is given by

BE

2e®’

mg\? A
=) =y

- - v
TMV=DM<I>DV<I>+DV<I>D#¢>+g"‘BFWFVﬁ+gW£. _
(2.5  wheremg and m, are masses of scalar and gauge fields. In
the limit of critical coupling(Bogomol'nyi limit), 8=1, the
mass per unit length is.=2|n|»? [14]. Then the critical
— value of » at which the static solutio(2.6) ceases to exist is
m proportional to 1{/n. Therefore, as the winding number in-
b creases, the core of the string can inflate at lower symmetry-

The scalar field equation is
D, Dtd=

TABLE I. (a) The critical values ofy for the gauge string in the Bogomol'nyi limg= 1. (b) The critical
values ofy for n=1.

(@

n 1 2 3 4
7cImg 0.25+0.005 0.17-0.005 0.13-0.005 0.110.005
(b)
B 0.5 1 2 3 4
770/mp 0.255+0.0025 0.25-0.0025 0.24-0.0025 0.2350.0025 0.2350.0025
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i FIG. 2. The scalar field con-
figurations as functions of the
proper radius CHqor at Hgt
=0,2,4 (from the left to the right
for the »=0.5m, gauge string i
=1, B=1). The rapid growth of
the proper radius in the core re-
gion indicates inflation.

25 30 s CrH,'

breaking scale$4]. Another way to explain the inflation of critical value of 7 for inflation is found to bern.=0.25m,.
topological defects is the core size being bigger than th&his value is remarkably close to the critical value 01235
horizon scale[1,2]. Under this condition the gravitational found by Laguna and Garfinkle&], at which the static solu-
effect becomes important in the core region and the defectson becomes singular. The critical value decreases arsd
are supposed to inflate. The energy density of the string cag increase as expected. The critical values;adre given in
be roughly estimated by Table | for severah’s and’s. Figure 2 shows the evolution
2 of the scalar field configuration as a function of the proper
, M N7y : A . ,
p~H ~ 2T radius.t andr are scaled in units of the horizon size at the
centerH, '=[87GV(4=0)/3]"2 We can see clearly that
whered is the core size anHl is the Hubble parameter. The the proper radius grows very rapid{gxponentially in the
core size is then core region.
S Having found the inflationary behavior in the supermas-
-~ \/ﬁ,]_ (2.7 sive string! it is worthwhile to discuss its spacetime. For the
H™! supermassive string, the static soluti@®6) is no longer
The core of the string can inflate when its size becomeyalid. However, since the energy-momentum tensor of the
comparable to the horizon scalé/H ~*~1. This condition string falls off rapidly outside the core, the asymptotic form

gives againy ~1/\/ﬁ from Eq. (2.7). In other words, for a of the metric must be one of the two Levi-Civitaetrics
C . . . 1

given symmetry-breaking scalg the core size’ is propor- (18],

tional to \/ﬁ Therefore, as the winding number increases, the d?= —dt?+dZ2+dr?+ (asr +a,)2d 62 2.9
wider core of the string can inflate at lower symmetry- ! 2 ' '
breaking scales. Figure 1 shows the core sizes as functions @fich is conical, or

the winding number for severaj’s in the flat spacetime.

One important effect of the gauge field coupled to the ds?=(b;R+b,)*}(—dT?+dZ?) +dR?
scalar field is that it makes the string well localized and, o
thereby, suppresses the energy divergence along the radial +(byR+by) " *d6”, 2.9

direction. As the coupling constagtincreases, the effect of L _ i .

the gauge field becomes weaker; therefore, the core size b&Nich is a special case of a Kasner mef(i6]. The qualities

comes bigger. The string has a better chance to inflate witR the metrics(2.8) and (2.9) depend on the signs of the

the bigger core acquired @increases. constantsa;, ap, bl_, and_bz. When a, anda, ha\_/e the
We numerically solve the field equations introduced earS8Me sign, the metri@.8) is equivalent to the metri€2.6).

lier. Initially we assume a flat spacetime and obtain the initialor b1 andb, with different signs, Laguna and GarfinKig]

scalar and gauge field#(0r) and «(0y) by numerically examined t_he cor!tenpon that_the asymptotic s_paceﬂme of the

solving the flat-spacetime field equations. We then solve th€UPermassive string is described by the me(2i®). Fora,

time-dependent field equations to trace the evolution of thes@Nd @, with different signs, Orti7] demonstrated that the

fields as well as the gravitational fielgl,,. We define the

core size by the proper radi@r at which the scalar field is

¢=n/2 and determine whether inflation occurs by observing Supermassive” was named for the gauge string to which the

the growth of this proper radius. For=1 and =1, the static solution(2.6) no longer applies.
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FIG. 3. Plots of (a) log;¢B,
log,(C, and(b) log;oH vs Hyr at
Hot=1,3,5 (from the bottom to
the top for the »=0.5m, gauge
string (h=1, B=1). The metric
s terms behave regularly inandt.

log H —— |

metric (2.8) can also be a solution. In both cases, the space-. We also calculate the Kretschmann sc:ﬂﬁrM&R“ﬁ”.
times possess physical singularitiesrat—a,/a; andR= This invariant is finite everywhere and every moment in time
—b,/b;. The singularity approaches the coresaicreases. as shown in Fig. 4. Therefore, we conclude that the time-
Nevertheless, it is not clear whether it is physically SenSib|Qjependent treatment of supermassive strings makes a
to have a singularity in the string spacetime. Since we havegingularity-free spacetime possible. This treatment is also
shown that the supermassive string undergoes inflation, Wgseful to deal with the singularity of the global string in the
believe that the static treatment is no longer valid and thgext section.

string should be treated in a time-dependent way to describe ag inflation proceeds at the core of the string, the metric

its dynamical nature. We expect that the time-dependeng, msg ¢, andH grow rapidly and the de Sitter expansion
treatment removes the singularity from the spacetime of the, .- blished around the center of the string:

supermassive string.

One simple way to examine the existence of a physical
singularity is to analyze the metric. The Riemann tensor con- B C H 877G
tains the second derivatives of the metric terms. If the metric Ss~o~=~\/—75—V(¢=0).
terms do not contain cusps and are smooth functions of the
coordinates up to the second derivatives, then the scalar in-
variants calculated by the Riemann tensor are finite and it is . o _ ) )
safe to say that no singularity develops in the spacetimé.” add_mon_to radial inflation, the string also inflates along
While we perform the numerical calculation, we follow the the axial direction at the core. As shown in Fig. 5, at the
evolution of the metric. Figure 3 shows logarithmic values ofcore, the ratio H/H)/(B/B) remains close to a constant
the metric term$B, C, andH at several moments of time. (=1). This indicates that the expanding behavior alongzhe
They are smooth functions ofand change also smoothly in direction is similar to that along thedirection.
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FIG. 4. A plot of R,s,;R*7IHg vs Hor at
Hot=2,4,6 (from the right to the left for the »
=0.5m, gauge stringif=1, B=1). The scalar
invariant is finite everywhere. The generic picture
is not very different for different’s.

3 4 5 8 oH'

lll. GLOBAL STRING eral winding numbers in Table II.

. . . As mentioned in the Introduction, a static global string

strilrrl]gth'lrshcsae;g:i)gh V‘ﬁéﬁfgﬂggg;gg maggetlhzf r?]lehir?clogi th(:pas a physical singularity outside the core. In this region, the
: ' N . . énergy-momentum tensor is given by

same as those of the gauge string in the previous section

without the gauge fieldK,=0). In the absence of the gauge

field the scalar field configuration of a global string stretches

farther radially. The situation is equivalent to that of the

gauge string with 83— (e—0). On the basis of the cause

of inflation discussed in the previous section, this guaranteegnd the closed-form solution of the Einstein equations was

that the global string will inflate at a lower symmetry- found by Cohen and Kaplai®]:

breaking scale and that the inflationary picture should not be

much different. Fon=1, the critical value ofy for inflation ! 12

is found to bezn.~0.23m, which is slightly lower than that (Y)Y e o[ Yo w—uyu 2 2

of the gauge string. Thepcritical value decreases as the windqsz_(uo)( di*+dz’)+y ( u) el Do(du+de?),

ing number increases. The critical values are given for sev- (3.2

7
ngTizng—ngg—zz, 3.0

FIG. 5. A plot of (H/H)/(B/B) vs Hyr at
Hot=2,3,4,5(from the bottom to the topfor the
7=0.5m, gauge string =1, B=1). The ratio
stays close to a constar#=(l) in the core region
(Hor=<0.5).

031 B
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TABLE Il. The critical values ofz for the global string.

n 1 2 3 4 5

7e/mp 0.23+0.0025 0.1550.0025 0.1150.0025 0.0950.0025 0.0750.0025

whereuo=1/87G »*, andy is a constant of integration. This | 4 similar way to the supermassive gauge string, one
metric is transformed to the linearized solution obtained byyay to escape from this trouble is to introduce a time-

Harari and Sikivie[10] when 7<m: dependent string. Indeed, Gregdn3] removed the singu-
ds?=[1-4Gu(r)](—dt?+dZ) +dr? larity by taking a specific time-dependent form of the metric:
only axial time dependence was introduced. But this metric
+[1-8Gu(r)]r?de?. (3.9  still has a coordinate singularitiot a physical one It was

later questioned by Wang and Nogaldg] that this coordi-
nate singularity is unstable to both test particles and physical
perturbations. In particular, they argued that the back reac-
tion of the perturbations of null dust fluids will turn the co-

andu=c corresponds to the center of the string. The solu-Crdinate singularity into a physical one. However, the situa-

tion (3.2 exhibits coordinate singularities at=0 andu  tON IS quite c_zllfferent for the supermassive strings. Because
— . The one au=0 turns out to be a physical one and the ©f the dynamical nature of the supermassive strings, we need
existence of this singularity was also examined by analyzindg® Solve the system with a general time-dependent metric and
the field equations in Ref§11,17. For grand-unified-theory ~scalar field.

scale strings §~ 10 GeV~ 10*3mp), the singularity is We now solve the equations numerically as we did for the

expelled outside the horizon; therefore, it does not cause argauge string. Figure 6 shows the logarithmic values of the

cosmological trouble. However, for supermassive strings, itnetric termsB, C, andH and Fig. 7 shows the Kretschmann

is located near the core and could thus be problematic. scalarRaﬁy,sR”‘BV‘s at several moments of time. Their regular

Here ,u(r):f;TSZWrdr:ZWnZIn(r/é) is the string mass
per unit length out to a distance scal&rom the core(~ ).
The relation betweemw andr is u~ugy—In(r/6). Then the
boundary of the core in the metr{8.2) is located atu=u

25

FIG. 6. Plots of(a) log;(B, log;oC, and (b)
log;gH vs Hor atHot=1,3,5 (from the bottom to
the top for the »=0.4m, global string f=1).
The metric terms behave regularly irandt.

loggH —— |
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200 % . FIG. 7. A plot of R,z,sR“®Y’/Hg vs Hor at
Hot=2,4,6 (from the right to the left for the »
=0.4m, global string =1). The scalar invari-

. ant is finite everywhere. The generic picture is
not very different for differenty’s. The core is

located atH,r <0.5.

150 3

10+

2 3 4 5 6 r/H,"

behaviors allow us to conclude that no singularity developdently, the potentiaVW(¢) needs to be flat enough @0 so

in the spacetime of a global string. For largeylobal strings  that the field¢ can spend enough time about the top of the

like supermassive gauge strings, the appropriate way to degbtential. For this condition to be satisfied, the symmetry-

with their dynamical nature is to use a time-dependent treatbreaking scaley needs to be sufficiently large. This descrip-

ment. tion also explains why we have somewhat lower critical val-
ues of » for strings than those for domain walls and global

IV. CONCLUSIONS monopoles .~0.33n,). Strings have bigger cores at the
. _ _ o _ ) same symmetry-breaking scale than the other defects.

We have investigated inflation in cosmic strings. In the g, supermassive gauge strings and all scale global
core region, the strings undergo inflation radially as well asrings, we have had troublesome physical singularities out-
axially when 7= 7. With unit winding number6=1) the  gjqe the core when we treat them in a static way. The elegant
critical values for inflation were found to bg.~0.23m, for  gyit to nonsingular spacetimes is to introduce a time-
a gauge string in the Bogomol'nyi limit4=1) and 7.  dependent treatment. From the numerical simulations we
=0.23m, for a global string. The critical values decrease as;ould show that there is no singularity developing around
n and B increase. We have explained thig variation in  time-dependent supermassive strings. Although the develop-
terms Qf th_e core size of d_efects. The core of _defects inflategent of singularities in topological spacetimes can, in prin-
when its size becomes bigger than the horizon scale: fogiple, depend on the initial conditions, our result proves that

largern and B, strings have bigger cores, and the globalthe singularities of supermassive strings are artifacts of static
string has a bigger core than the gauge string for a giyen gg|ytions.

Regardless of the symmetry-breaking scale around the

center of defects the de Sitter expansion is established since

the scalar figld_stays aboyt. the top of the potentigd=Q). ACKNOWLEDGMENTS
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APPENDIX: FIELD EQUATIONS AND NUMERICAL ALGORITHMS

Einstein’s equations with the metr{2.3) and the energy-momentum teng@r5) are

GO=KIKZ+ K2K3+ KiKLy o - & T BTCT ORI HIB BT o M
0 Ttz 2R3t Bgsl C H B C CH HB Br “Cr Hr

¢/2 r]2 r]2

2, P 21— g)24+
¢ 52 c2¢ (1-a) ™+ 55 522

12

=87G a2+? +V(e) |, (A1)
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1 . 1
5 (= G1+G3+G3) =Ki—(K})?— 5 (KIKI—KIKS+ K3K1)

1 (C/I H/I BI CI CI H! H! B! B/ C/ HI>

"2 C " H BC CH HB Br ‘Cr Hr
N PR L PR S DY Y A2
=4nG| ¢ Egz?ﬂi)( @) 22 C? “ T g2 (P) ], (A2)
1 . 1 cC” H' B'C'" C'H H' B B’ c' H’
- 1_ 2 3\ _w2_ 2 __ 12 203 _ w3y, (= - - = - - — — -
2(G1mGat Gy =Ko (KY™= 5 (KiKa+ KoK K3K1)+§Z(c H BC CH HB Br “cr Hr)
P P L PR UL PPN BV A3
=4nG| ¢ ?—CTrzfﬁ(—a) 262 22 a—g—(dﬂ. (A3)
1 1 2 3 3 3\2 1 12 21,3 3l
E(Gl+Gz_Gs):K3_(K3) —5(_K1K2+K2K3+K3K1)
+ 1 CH+HU+B/ C/+C/ H/ H/ B/+BI C/+H/
2B2 C H B C C H H B Br Cr Hr
=47G ¢2+¢—,2+—2—2n2 3 (1—a)?— " —nl a2—3a—12 —V(¢) (A4)
B2 C¢r 2e2 Cxr B2 '
, ) ! H . 21 .
Gor=K3 +K3 —(Ki=K))| &+ 7|~ (Ki—K )7 =26¢"+ 5 opoaa’, (A5)
where
B C H
Ki=—g5. Ki=—5. Ki=—4. (A6)
The field equation fok is
W4 . s @ 1(B" C H' 1) = n? SN
d—(Ki+K3+K3) - §+@ B C H T ¢ +w¢(1—0) +§¢(¢ —7°)=0. (A7)
The field equation for is
. . " 1(B" C' H’
ikl k2ikho X B ) 5a2420 1y —
a—(Ki—K5+K3)a BZ+BZ B+C H+I‘ a'+2e“¢p(a—1)=0. (A8)

The field equations for the global string are obtained by setdition Ki(t,0)=K5(t,0) at the origin. To solve the field
ting «=0. At t=0, we assume a flat spacetimB(O,r)  equations numerically, we use the modified Crank-Nicholson
=C(0r)=H(0r)=1, and zero velocities of scalar and method. We insist that the Hamiltonian and momentum con-
gauge fields$(0r)=a(0r)=0. Then we solve the scalar Straint equationgAl) and(A5) be satisfied at every moment
and vector field equationéA7) and (A8) to obtain ¢(0r)  although they are not solved directly. o
anda(0r). HereK1(0r) andK2(0yr) are evaluated by the We have only two constraint equations to set initial three

i y 3 _ . . .
Hamiltonian and momentum constraint equatigAd) and ~ Ki(0r)’s. So we assumé&3(0r)=0 which is consistent
(A5) after settingKg(Or):O. In the next time stefB(t,r) with Einstein’s equations. Nonetheless, it might not be the

i ) best choice. However, even if this choice is not the optimal
C(t’r)i aTdHétt’:) are calculated bi/j EqAG). TZeKi(t,r) S one to describe our physical system, the numerical system
are calculated by EqeA2)—(A4), and4(t,r) anda(t,r) ar® will find its correct route propagating with the speed of light
calculated by EqstA7) and (A8). The boundary conditions  ¢rom the center of the string. The region in which we are

for ¢ anda are given i”,EQ(Z-A')- We also use the boundary jnierested relaxes to the correct configuration during the pe-
conditionH’(t,O)=0(K§ =0) and apply the regularity con- riod of our numerical iteration.
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