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Inflation and nonsingular spacetimes of cosmic strings

Inyong Cho*
Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155

~Received 12 May 1998; published 9 October 1998!

Inflation of cosmic gauge and global strings is investigated by numerically solving the combined Einstein
and field equations. Above some critical symmetry-breaking scales, the strings undergo inflation along the
radial direction as well as the axial direction at the core. The nonsingular nature of the spacetimes around
supercritical gauge and global strings is discussed and contrasted to the singular static solutions that have been
discussed in the literature.@S0556-2821~98!08220-4#

PACS number~s!: 98.80.Cq, 04.20.Gz
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I. INTRODUCTION

Cosmic strings are linelike topological defects that m
form as a result of a phase transition in the early universe
a string is associated with a magnetic field, it is called
gauge string; otherwise, it is a global string. They have
tracted much attention because of their cosmological imp
tance: the deficit angle in the spacetime geometry and a
didate for the seed of structure formation in the ea
universe.

It was proposed that topological defects can inflate if
symmetry-breaking scale satisfiesh*hc;O(mp) in Refs.
@1,2#. This was later verified in numerical simulations b
Sakai et al. @3#. They found, in particular, that the critica
value of h for domain walls and global monopoles ishc
.0.33mp . Then what about cosmic strings? There is no r
son why we exclude cosmic strings out of the topologi
inflationary category. Recently, it was numerically prov
that a~211!-dimensional gauge string can inflate by de La
et al. @4#.

In this paper, we shall numerically solve the combin
Einstein and field equations for a gauge and a global strin
~311! spacetime dimensions. For the gauge string, we
that the core inflates ifh*0.25mp with unit winding number
in the critical coupling case~Bogomol’nyi limit!. For the
global string,h*0.23mp . The critical values decrease as t
winding number increases. For the gauge string, the crit
value also decreases slightly as the coupling of the ga
field to the scalar field becomes weaker than the s
coupling of the scalar field.

The asymptotic spacetime of a gauge string is known
be conical @5#. This spacetime exhibits a deficit angleD
58pGm, wherem;h2 is the mass per unit length of th
string. When the symmetry-breaking scale is sufficien
large, the deficit angle exceeds 2p and analyses of the stati
solution show that the spacetime possesses a physical s
larity outside the core of the string@6–8#. However, from our
numerical results we know that supermassive strings are
namical and undergo inflation at the core. Therefore, we
lieve that the static treatment of supermassive strings lo
its validity and that we should treat them in a time-depend
way.

*Electronic address: cho@cosmos2.phy.tufts.edu
0556-2821/98/58~10!/103509~9!/$15.00 58 1035
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For global strings, the singularity exists regardless of
symmetry-breaking scale. Many people have tried to fin
static solution of a global string and they found that the
also exists a physical singularity outside the core of
string@9–12#. What was suggested to remove this singular
is again a time-dependent treatment of the string. Greg
@13# introduced a specific metric which has an axial tim
dependence and showed that this spacetime is nonsingu

In our work, we follow the evolution of supermassiv
gauge and global strings in a general time-dependent m
and show that no singularity develops in the spacetim
around the strings.

In the next section, we solve the Abelian Higgs model
a gauge string and discuss its inflation and spacetime ge
etry. Section III is devoted to global strings. Our conclusio
are summarized in Sec. IV. In the Appendix, we show t
equations in detail and the numerical algorithms.

II. GAUGE STRING

Let us consider the Abelian Higgs model of a string w
a complex scalar fieldF and a U~1! gauge fieldAm , coupled
to gravity. The action is

S5E d4xA2gS R
16pG

1LD , ~2.1!

whereR is Ricci scalar and the LagrangianL is

L52DmFD̄mF̄2
1

4
FmnFmn2V~FF̄!. ~2.2!

Here the covariant derivative isDm5¹m1 ieAm , the gauge
field strength isFmn5¹mAn2¹nAm , and the potential is

V~FF̄!5
l

4
~FF̄2h2!2,

wheree is the coupling constant between gauge and sc
fields,l is the self-coupling constant of the scalar field, a
h is the symmetry-breaking scale of the scalar field. We
a general cylindrically symmetric metric

ds252dt21B~ t,r !2dr21C~ t,r !2r 2du21H~ t,r !2dz2.
~2.3!
©1998 The American Physical Society09-1
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FIG. 1. A plot of d/H0
21 vs n for the h

5(0.1,0.5,1.0,2.0,3.0)mp gauge strings~from the
bottom to the top! in flat spacetime. The dashe
line corresponds toAn as a reference.H0

21 is the
horizon size at the center of the string.
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2 .) In these coordinates, we ca

use a time-dependent generalization of the usual Niels
Olesen ansatz for the scalar and gauge fields:

F5f~ t,r !einu,

Am52
n

e
a~ t,r !¹mu,

wheren is the winding number of the string. We also set t
usual boundary conditions

f~ t,0!50, f~ t,`!5h, a~ t,0!50, a~ t,`!51.
~2.4!

For the above action, Einstein’s equation is

Gmn58pGTmn ,

where the energy-momentum tensor is given by

Tmn5DmFD̄nF̄1DnFD̄mF̄1gabFmaFnb1gmnL.
~2.5!

The scalar field equation is

DmDmF5
]V~FF̄!

]F̄
,

10350
n-

and the gauge field equation is

¹nFmn5 ie~F̄¹mF2F¹mF̄!22e2AmFF̄.

The detailed equations are given in the Appendix.
The static solution at a large distance from the core is

ds252dT21dR21~124Gm!2R2du21dZ2, ~2.6!

wherem is the mass per unit length of the string and prop
tional to h2. The metric ~2.6! exhibits a deficit angleD
58pGm. As h increases, the deficit angle also increas
When the deficit angle exceeds 2p, the static solution~2.6!
ceases to exist and we expect that the string becomes
namical and undergoes inflation at the core in this regim

Let us consider the role of the winding number for infl
tion. The coupling between scalar and gauge fields is gi
by

b[S ms

mv
D 2

5
l

2e2 ,

wherems and mv are masses of scalar and gauge fields.
the limit of critical coupling~Bogomol’nyi limit!, b51, the
mass per unit length ism52punuh2 @14#. Then the critical
value ofh at which the static solution~2.6! ceases to exist is
proportional to 1/An. Therefore, as the winding number in
creases, the core of the string can inflate at lower symme
TABLE I. ~a! The critical values ofh for the gauge string in the Bogomol’nyi limitb51. ~b! The critical
values ofh for n51.

~a!

n 1 2 3 4

hc /mp 0.2560.005 0.1760.005 0.1360.005 0.1160.005

~b!

b 0.5 1 2 3 4

hc /mp 0.25560.0025 0.2560.0025 0.2460.0025 0.23560.0025 0.23560.0025
9-2
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FIG. 2. The scalar field con-
figurations as functions of the
proper radius CH0r at H0t
50,2,4 ~from the left to the right!
for the h50.5mp gauge string (n
51, b51). The rapid growth of
the proper radius in the core re
gion indicates inflation.
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breaking scales@4#. Another way to explain the inflation o
topological defects is the core size being bigger than
horizon scale@1,2#. Under this condition the gravitationa
effect becomes important in the core region and the def
are supposed to inflate. The energy density of the string
be roughly estimated by

r;H2;
m

d2 ;
nh2

d2 ,

whered is the core size andH is the Hubble parameter. Th
core size is then

d

H21
;Anh. ~2.7!

The core of the string can inflate when its size becom
comparable to the horizon scale,d/H21;1. This condition
gives againhc;1/An from Eq. ~2.7!. In other words, for a
given symmetry-breaking scaleh, the core sized is propor-
tional toAn. Therefore, as the winding number increases,
wider core of the string can inflate at lower symmetr
breaking scales. Figure 1 shows the core sizes as functio
the winding number for severalh ’s in the flat spacetime.

One important effect of the gauge field coupled to t
scalar field is that it makes the string well localized an
thereby, suppresses the energy divergence along the r
direction. As the coupling constantb increases, the effect o
the gauge field becomes weaker; therefore, the core size
comes bigger. The string has a better chance to inflate
the bigger core acquired asb increases.

We numerically solve the field equations introduced e
lier. Initially we assume a flat spacetime and obtain the ini
scalar and gauge fieldsf(0,r ) and a(0,r ) by numerically
solving the flat-spacetime field equations. We then solve
time-dependent field equations to trace the evolution of th
fields as well as the gravitational fieldgmn . We define the
core size by the proper radiusCr at which the scalar field is
f5h/2 and determine whether inflation occurs by observ
the growth of this proper radius. Forn51 and b51, the
10350
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critical value ofh for inflation is found to behc.0.25mp .
This value is remarkably close to the critical value 0.255mp
found by Laguna and Garfinkle@8#, at which the static solu-
tion becomes singular. The critical value decreases asn and
b increase as expected. The critical values ofh are given in
Table I for severaln’s andb ’s. Figure 2 shows the evolution
of the scalar field configuration as a function of the prop
radius.t and r are scaled in units of the horizon size at t
center,H0

215@8pGV(f50)/3#21/2. We can see clearly tha
the proper radius grows very rapidly~exponentially! in the
core region.

Having found the inflationary behavior in the superma
sive string,1 it is worthwhile to discuss its spacetime. For th
supermassive string, the static solution~2.6! is no longer
valid. However, since the energy-momentum tensor of
string falls off rapidly outside the core, the asymptotic for
of the metric must be one of the two Levi-Civita` metrics
@15#,

ds252dt21dz21dr21~a1r 1a2!2du2, ~2.8!

which is conical, or

ds25~b1R1b2!4/3~2dT21dZ2!1dR2

1~b1R1b2!22/3du2, ~2.9!

which is a special case of a Kasner metric@16#. The qualities
of the metrics~2.8! and ~2.9! depend on the signs of th
constantsa1 , a2 , b1 , and b2 . When a1 and a2 have the
same sign, the metric~2.8! is equivalent to the metric~2.6!.
For b1 andb2 with different signs, Laguna and Garfinkle@8#
examined the contention that the asymptotic spacetime of
supermassive string is described by the metric~2.9!. For a1
and a2 with different signs, Ortiz@7# demonstrated that the

1‘‘Supermassive’’ was named for the gauge string to which
static solution~2.6! no longer applies.
9-3
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FIG. 3. Plots of ~a! log10B,
log10C, and ~b! log10H vs H0r at
H0t51,3,5 ~from the bottom to
the top! for the h50.5mp gauge
string (n51, b51). The metric
terms behave regularly inr and t.
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metric ~2.8! can also be a solution. In both cases, the spa
times possess physical singularities atr 52a2 /a1 and R5
2b2 /b1 . The singularity approaches the core ash increases.
Nevertheless, it is not clear whether it is physically sensi
to have a singularity in the string spacetime. Since we h
shown that the supermassive string undergoes inflation,
believe that the static treatment is no longer valid and
string should be treated in a time-dependent way to desc
its dynamical nature. We expect that the time-depend
treatment removes the singularity from the spacetime of
supermassive string.

One simple way to examine the existence of a phys
singularity is to analyze the metric. The Riemann tensor c
tains the second derivatives of the metric terms. If the me
terms do not contain cusps and are smooth functions of
coordinates up to the second derivatives, then the scala
variants calculated by the Riemann tensor are finite and
safe to say that no singularity develops in the spaceti
While we perform the numerical calculation, we follow th
evolution of the metric. Figure 3 shows logarithmic values
the metric termsB, C, andH at several moments of time
They are smooth functions ofr and change also smoothly i
10350
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t. We also calculate the Kretschmann scalarRabgdRabgd.
This invariant is finite everywhere and every moment in tim
as shown in Fig. 4. Therefore, we conclude that the tim
dependent treatment of supermassive strings make
singularity-free spacetime possible. This treatment is a
useful to deal with the singularity of the global string in th
next section.

As inflation proceeds at the core of the string, the me
termsB, C, andH grow rapidly and the de Sitter expansio
is established around the center of the string:

Ḃ

B
'

Ċ

C
'

Ḣ

H
'A8pG

3
V~f50!.

In addition to radial inflation, the string also inflates alon
the axial direction at the core. As shown in Fig. 5, at t
core, the ratio (Ḣ/H)/(Ḃ/B) remains close to a constan
~'1!. This indicates that the expanding behavior along thz
direction is similar to that along ther direction.
9-4



re

INFLATION AND NONSINGULAR SPACETIMES OF . . . PHYSICAL REVIEW D58 103509
FIG. 4. A plot of RabgdRabgd/H0
4 vs H0r at

H0t52,4,6 ~from the right to the left! for the h
50.5mp gauge string (n51, b51). The scalar
invariant is finite everywhere. The generic pictu
is not very different for differenth ’s.
th
ti
e
e

he
e
te
y-
t b

in
e

g
the

as
III. GLOBAL STRING

In this section, we consider the model of a U~1! global
string. The action, field equations, and the metric are
same as those of the gauge string in the previous sec
without the gauge field (Am50). In the absence of the gaug
field the scalar field configuration of a global string stretch
farther radially. The situation is equivalent to that of t
gauge string withb→` (e→0). On the basis of the caus
of inflation discussed in the previous section, this guaran
that the global string will inflate at a lower symmetr
breaking scale and that the inflationary picture should no
much different. Forn51, the critical value ofh for inflation
is found to behc'0.23mp which is slightly lower than that
of the gauge string. The critical value decreases as the w
ing number increases. The critical values are given for s
10350
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eral winding numbers in Table II.
As mentioned in the Introduction, a static global strin

has a physical singularity outside the core. In this region,
energy-momentum tensor is given by

T0
05T1

15T3
352T2

25
h2

g22
, ~3.1!

and the closed-form solution of the Einstein equations w
found by Cohen and Kaplan@9#:

ds25S u

u0
D ~2dt21dz2!1g2S u0

u D 1/2

e~u0
2
2u2!/u0~du21du2!,

~3.2!
FIG. 5. A plot of (Ḣ/H)/(Ḃ/B) vs H0r at
H0t52,3,4,5~from the bottom to the top! for the
h50.5mp gauge string (n51, b51). The ratio
stays close to a constant ('1) in the core region
(H0r &0.5).
9-5
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TABLE II. The critical values ofh for the global string.

n 1 2 3 4 5

hc /mp 0.2360.0025 0.15560.0025 0.11560.0025 0.09560.0025 0.07560.0025
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whereu051/8pGh2, andg is a constant of integration. Thi
metric is transformed to the linearized solution obtained
Harari and Sikivie@10# whenh!mp :

ds25@124Gm~r !#~2dt21dz2!1dr2

1@128Gm~r !#r 2du2. ~3.3!

Here m(r ).*d
r T0

02prdr .2ph2ln(r/d) is the string mass
per unit length out to a distance scaler from the core~'d!.
The relation betweenu and r is u'u02 ln(r/d). Then the
boundary of the core in the metric~3.2! is located atu.u0
andu5` corresponds to the center of the string. The so
tion ~3.2! exhibits coordinate singularities atu50 and u
5`. The one atu50 turns out to be a physical one and t
existence of this singularity was also examined by analyz
the field equations in Refs.@11,12#. For grand-unified-theory
scale strings (h;1016 GeV;1023mp), the singularity is
expelled outside the horizon; therefore, it does not cause
cosmological trouble. However, for supermassive strings
is located near the core and could thus be problematic.
10350
y
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In a similar way to the supermassive gauge string, o
way to escape from this trouble is to introduce a tim
dependent string. Indeed, Gregory@13# removed the singu-
larity by taking a specific time-dependent form of the metr
only axial time dependence was introduced. But this me
still has a coordinate singularity~not a physical one!. It was
later questioned by Wang and Nogales@17# that this coordi-
nate singularity is unstable to both test particles and phys
perturbations. In particular, they argued that the back re
tion of the perturbations of null dust fluids will turn the co
ordinate singularity into a physical one. However, the situ
tion is quite different for the supermassive strings. Beca
of the dynamical nature of the supermassive strings, we n
to solve the system with a general time-dependent metric
scalar field.

We now solve the equations numerically as we did for
gauge string. Figure 6 shows the logarithmic values of
metric termsB, C, andH and Fig. 7 shows the Kretschman
scalarRabgdRabgd at several moments of time. Their regul
FIG. 6. Plots of~a! log10B, log10C, and ~b!
log10H vs H0r at H0t51,3,5 ~from the bottom to
the top! for the h50.4mp global string (n51).
The metric terms behave regularly inr and t.
9-6
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FIG. 7. A plot of RabgdRabgd/H0
4 vs H0r at

H0t52,4,6 ~from the right to the left! for the h
50.4mp global string (n51). The scalar invari-
ant is finite everywhere. The generic picture
not very different for differenth ’s. The core is
located atH0r &0.5.
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behaviors allow us to conclude that no singularity develo
in the spacetime of a global string. For largeh global strings
like supermassive gauge strings, the appropriate way to
with their dynamical nature is to use a time-dependent tr
ment.

IV. CONCLUSIONS

We have investigated inflation in cosmic strings. In t
core region, the strings undergo inflation radially as well
axially whenh*hc . With unit winding number (n51) the
critical values for inflation were found to behc'0.25mp for
a gauge string in the Bogomol’nyi limit (b51) and hc
50.23mp for a global string. The critical values decrease
n and b increase. We have explained thishc variation in
terms of the core size of defects. The core of defects infla
when its size becomes bigger than the horizon scale:
larger n and b, strings have bigger cores, and the glob
string has a bigger core than the gauge string for a givenh.
Regardless of the symmetry-breaking scaleh, around the
center of defects the de Sitter expansion is established s
the scalar field stays about the top of the potential (f'0).
However, this is not sufficient for the cores of defects
inflate. Inflation requires another condition, which is the co
size being comparable to the horizon scale so that the
can be dynamical due to the gravitational effect. Or, equi
10350
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lently, the potentialV(f) needs to be flat enough atf'0 so
that the fieldf can spend enough time about the top of t
potential. For this condition to be satisfied, the symmet
breaking scaleh needs to be sufficiently large. This descri
tion also explains why we have somewhat lower critical v
ues ofh for strings than those for domain walls and glob
monopoles (hc'0.33mp). Strings have bigger cores at th
same symmetry-breaking scale than the other defects.

For supermassive gauge strings and all scale glo
strings, we have had troublesome physical singularities o
side the core when we treat them in a static way. The eleg
exit to nonsingular spacetimes is to introduce a tim
dependent treatment. From the numerical simulations
could show that there is no singularity developing arou
time-dependent supermassive strings. Although the deve
ment of singularities in topological spacetimes can, in pr
ciple, depend on the initial conditions, our result proves t
the singularities of supermassive strings are artifacts of st
solutions.
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APPENDIX: FIELD EQUATIONS AND NUMERICAL ALGORITHMS

Einstein’s equations with the metric~2.3! and the energy-momentum tensor~2.5! are

2G0
05K1

1K2
21K2

2K3
31K3

3K1
11

1

B2S 2
C9

C
2

H9

H
1

B8

B

C8

C
2

C8

C

H8

H
1

H8

H

B8

B
1

B8

Br
22

C8

Cr
2

H8

Hr D
58pGF ḟ21

f82

B2
1

n2

C2r 2 f2~12a!21
n2

2e2

1

C2r 2S ȧ21
a82

B2 D 1V~f!G , ~A1!
9-7
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1

2
~2G1

11G2
21G3

3!5K̇1
12~K1

1!22
1

2
~K1

1K2
22K2

2K3
31K3

3K1
1!

1
1

2B2S C9

C
1

H9

H
2

B8

B

C8

C
2

C8

C

H8

H
2

H8

H

B8

B
2

B8

Br
12

C8

Cr
2

H8

Hr D
54pGF ḟ223

f82

B2
1

n2

C2r 2 f2~12a!22
n2

2e2

1

C2r 2S ȧ21
a82

B2 D 2V~f!G , ~A2!

1

2
~G1

12G2
21G3

3!5K̇2
22~K2

2!22
1

2
~K1

1K2
21K2

2K3
32K3

3K1
1!1

1

2B2S C9

C
2

H9

H
2

B8

B

C8

C
1

C8

C

H8

H
1

H8

H

B8

B
2

B8

Br
12

C8

Cr
1

H8

Hr D
54pGF ḟ21

f82

B2
23

n2

C2r 2 f2~12a!21
n2

2e2

1

C2r 2S 3ȧ22
a82

B2 D 2V~f!G , ~A3!

1

2
~G1

11G2
22G3

3!5K̇3
32~K3

3!22
1

2
~2K1

1K2
21K2

2K3
31K3

3K1
1!

1
1

2B2S 2
C9

C
1

H9

H
1

B8

B

C8

C
1

C8

C

H8

H
2

H8

H

B8

B
1

B8

Br
22

C8

Cr
1

H8

Hr D
54pGF ḟ21

f82

B2
1

n2

C2r 2 f2~12a!22
n2

2e2

1

C2r 2S ȧ223
a82

B2 D 2V~f!G , ~A4!

G015K2
281K3

382~K1
12K2

2!S C8

C
1

1

r D2~K1
12K3

3!
H8

H
52ḟf81

n2

e2

1

C2r 2ȧa8, ~A5!

where

K1
152

Ḃ

B
, K2

252
Ċ

C
, K3

352
Ḣ

H
. ~A6!

The field equation forf is

f̈2~K1
11K2

21K3
3!ḟ2

f9

B2
1

1

B2S B8

B
2

C8

C
2

H8

H
2

1

r Df81
n2

C2r 2 f~12a!21
l

2
f~f22h2!50. ~A7!

The field equation fora is

ä2~K1
12K2

21K3
3!ȧ2

a9

B2
1

1

B2S B8

B
1

C8

C
2

H8

H
1

1

r Da812e2f2~a21!50. ~A8!
e

d

r

y

-

on
on-
t

ee

the
al
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ht
re
pe-
The field equations for the global string are obtained by s
ting a50. At t50, we assume a flat spacetime,B(0,r )
5C(0,r )5H(0,r )51, and zero velocities of scalar an

gauge fields,ḟ(0,r )5ȧ(0,r )50. Then we solve the scala
and vector field equations~A7! and ~A8! to obtainf(0,r )
anda(0,r ). HereK1

1(0,r ) andK2
2(0,r ) are evaluated by the

Hamiltonian and momentum constraint equations~A1! and
~A5! after settingK3

3(0,r )50. In the next time step,B(t,r ),
C(t,r ), andH(t,r ) are calculated by Eq.~A6!. TheKi

i(t,r )’s
are calculated by Eqs.~A2!–~A4!, andf(t,r ) anda(t,r ) are
calculated by Eqs.~A7! and ~A8!. The boundary conditions
for f anda are given in Eq.~2.4!. We also use the boundar

conditionH8(t,0)50(K3
3850) and apply the regularity con
10350
t-dition K1
1(t,0)5K2

2(t,0) at the origin. To solve the field
equations numerically, we use the modified Crank-Nichols
method. We insist that the Hamiltonian and momentum c
straint equations~A1! and~A5! be satisfied at every momen
although they are not solved directly.

We have only two constraint equations to set initial thr
Ki

i(0,r )’s. So we assumeK3
3(0,r )50 which is consistent

with Einstein’s equations. Nonetheless, it might not be
best choice. However, even if this choice is not the optim
one to describe our physical system, the numerical sys
will find its correct route propagating with the speed of lig
from the center of the string. The region in which we a
interested relaxes to the correct configuration during the
riod of our numerical iteration.
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@15# T. Levi-Cività, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat

Rend.28, 101 ~1919!.
@16# E. Kasner, Am. J. Math.43, 217 ~1921!.
@17# A. Wang and J. Nogales, Phys. Rev. D56, 6217~1997!.
9-9


