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Searching for long strings in CMB maps
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Using analytical methods and Monte Carlo simulations, we analyze new statistics designed to detect isolated
step-like discontinuities which are coherent over large areas of cosmic microwave background pixel maps.
Such coherent temperature discontinuities are predicted byamer-Stebbinseffect to form due to long
cosmic strings in our present horizon. The background of the coherent step-like seed is assumed to be a scale
invariant Gaussian random field which could have been produced by a superposition of seeds on smaller scales
and/or by inflationary quantum fluctuations. We find that the proposed statistics can detect the presence of a
coherent discontinuity at a sensitivity level almost an order of magnitude better compared to more conventional
statistics such as skewness or kurtop#)556-282(198)11720-4

PACS numbd(s): 98.80.Es

I. INTRODUCTION string G is Newtons constant and we have used units with
c=1) to a value consistent with microphysical requirements
The major progress achieved during the past 15 years iooming from GUTs Gu=10 °), the theory is consistent
both theory and cosmological observations has turned theith the noise in pulsar signal arrival times assuming that the
search for the origin of cosmic structure into one of the moshoise is due to gravitational radiation emitted by the defect
exciting fields of scientific research. Despite the severe cometwork [5]. It may account for large scale filaments and
straints imposed by detailed observational data on theoriesheetg6] (this is also the case with a large class of Gaussian
for structure formation, the central question remains openmodels, galaxy formation at epochz~2—3 [7] (which
What is the origin of primordial fluctuations that gave rise to could account well for quasarand galactic magnetic fields
structure in the universePwo classes of theories attempting [8]. With appropriate bias, it can also provide large scale
to answer this question have emerged during the past twenfyeculiar velocitied9] and is consistent with the amplitude,
years and have managed to survive through the observationgppectral indeX10] and the statisticg11] of the cosmic mi-
constraints with only minor adjustments. crowave backgroundCMB) anisotropies measured by the
According to the first class, primordial fluctuations are Cosmic Background ExploréCOBE) Collaboration12] on
produced by quantum fluctuations of a linearly coupled scalarge angular scales.
lar field during a period of inflatiofil]. These fluctuations Various statistical tests have been applied on the Differ-
are subsequently expected to become classical and provigatial Microwave RadiometefDMR) maps by the COBE
the progenitors of structure in the universe. Because of theeam and all of them have indicated that the CMB fluctua-
extremely small linear coupling of the scalar field, needed tdions are Gaussian on these scdlk3]. More recent studies
preserve the observed large scale homogeneity, the inflatiofii4] however applying non-standard statistical tests on the
ary perturbations are expected by the central limit theorem td-year DMR maps have revealed the presence of non-
obey Gaussian statistics. This is not the case for the secor@aussian features on these maps. It is therefore important to
class of theories. design and apply new statistical tests on the available CMB
According to this second clag&], primordial perturba- data in order to verify or falsify the above claims for non-
tions are provided byeedsof trapped energy density pro- Gaussianity and to derive the characteristics of the discov-
duced during symmetry breaking phase transitions in thered non-Gaussian features. There have been several inter-
early universe. Such symmetry breaking is predicted byesting statistical tests proposed recently which attempt to
grand unified theorie6GUTS) to occur at early times as the address this issue on CMRS5] and large scale structuf&6]
universe cools and expands. The geometry of the producetghta.
seeds, known agopological defectds determined by the In spite of its attractive features, the cosmic string theory
topology of the vacuum manifold of the physically realized for structure formation is faced with problems on smaller
GUT. Thus the defects may be pointlikmonopoleg line-  angular scales if normalized on the COBE data. In particular,
like (cosmic strings planar (domain wall$ or collapsing it has been showfl17] that the consistency of CMB data
pointlike (textures. with the galaxy distribution data requires an enormous bias
The cosmic string theor}8] for structure formation is the factor. In addition, it has been shoWh8] that vector modes
oldest andtogether with texturep4]) best studied theory of generically dominate in the CMB fluctuations induced by
the topological defect class. By fixing its single free param-cosmic strings. This manifests itself as a domination of the
eterGu (u is theeffectivemass per unit length of the wiggly scale invariant part of the string spectrum down to 1°-2°
scales leading to a subdominant broad Doppler peak. This is
not consistent with CMB datfl9] which indicate the pres-
*Email address: leandros@physics.uch.gr ence of a pronounced Doppler peak on these scales.
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The above mentioned problems have recently reduced thee discontinuity described by the approximate step function
interest on cosmic string based models. However one shoulgrofile give the same results. We will not attempt the precise
not underestimate the fact that there are still significant unedetermination of the parametgrin this study because our
certainties on both the data and the studies indicating thgoal is to suggest new statistics that can sensitively detect the
above results. The situation is expected to clarify as the thepresence of string induced discontinuities. The precise value
oretical studies get more refined and also when severglf g, is expected to be larger by the factogompared to

planned CMB experiment20,19 of equally high quality,  the valueG ., corresponding to the effective step function
but on smaller angular scales provide a wealth of new infory,at can be revealed by the proposed statistics.

mation within the next few years.

. ; . The growth of the horizon from,.. to ty results in a
T_he C.MB obs_ervatlons provide a valugble direct pro.besuperposition of a large number of step-like temperature
for identifying signatures of cosmic strings. The main

. ) i . seeds of all sizes starting from about @fe angular size of
mechanism by which strings can produce CMB fluctuations e horizon at,..) to about 180°(the present horizon scale

on angular scales larger than 1-2 degrees has been well st ;- .
ied both analytically[21] and using numerical simulations 5Y the central limit theorem, this large number of super-
[10] and is known as thiaiser-Stebbins effef22]. Accord- posed .seeds results ina pa}ttgrn of fluctuations thgj[ obgys
ing to this effect, moving long strings present between th@pprquately Gaussian statistics. Thu_s the probability dis-
time of recombinatior, .. and the present timg, produce trl_butlon for_the temperature of each plxel_ of a CMB map
step-like temperature discontinuities between photons tha¥ith resolution larger than about 1°-2° is Gaussian to a
reach the observer through opposite sides of the string. The§®0d approximatiofi18,23. It has therefore been considered
discontinuities are due to the peculiar nature of the spacetimi® be impossible to distinguish structure formation models
around a long string which even thoughligally flat, glo- based on cosmic strings from corresponding models based
bally has the geometry of a cone with deficit angleGu. on inflation, using CMB maps with resolution angle larger
The magnitude of the discontinuity is proportional to thethan 1°—2°. Theoretical studies have thus focused on iden-
deficit angle, to the string velocity; and depends on the tifying the statistical signatures of cosmic strings on angular
relative orientation between the unit vector along the stsing Scalés less than 1f11] where the number of superposed
and the unit photon wave-vectér It is given by[21] seeds is smaller and the non-Gaussian character of fluctua-
tions is expected to be stronger.

These efforts however have been faced with the compli-
cated and model dependent physical processes occurring on
ST . small angular scales. Such effects include isolated fore-
T = T4mCuvsysk- (vsXs) (1) ground point source§articularly for high resolution CMB

maps, reionization physics, string properties on small scales
(kinks, loops, etg.which require detailed simulations of both
the string network and the cosmic background, in order to be

where y, is the relativistic Lorentz factor and the sign Properly taken into account. Even though there are prelimi-
changes when the string is crossed. The angular scale ovBary efforts for such detailed simulatiofs], it has become
which this discontinuity persists is given by the radius ofclear that it will take some time before theory and experi-
curvature of the string which according to simulati¢#g] is ~ Ments on angular scales less than a few arcmin reach accu-
approximately equal to the horizon scale. racy levels leading to detectable non-Gaussian string signa-
The connection between the above mentioned vectolUres.
modes and the Kaiser-Stebbins effect is made through the An alternative approach to the problem is instead of fo-
scale invariant part of the CMB spectrum which may be see§using on small scales where the number of superposed
either as an outcome of the vector mo@#8] or as a result S€€ds is small, to focus on larger angular scales where de-
of the Kaiser-Stebbins effect induced by strings on all scale§Pite the large number of superposed seeds there is also co-
from t,c to to [24]. herence of |ndu'ced fluctuations on Iarge angular scales. Ex-
As Eq. (1) indicates, the amplitude of the string induced @mples of studies along these lines include RE#3,28.
discontinuity drops like cog as we move away from the Fluctuations on these scales may be viewed as a superposi-
string. Thus on a typical sky patch of about 16GP00° with tion of a Gaussian scale invariant background comlng_maln_ly
a string passing through its center, the amplitude of the disrom small scale seeds plus a small number of step-like dis-
continuity will drop at the edge of the map to about one halfcontinuities which are coherent and persist on_angular scaI(_es
of its maximum value achieved in the region of the string.0f order 100°. These are produced by long strings present in
For the purposes of the statistics considered here which afr present horizorOur goal is to find a statistic specially
based on nonlocal properties of CMB mafaifferences of QeS|gned to detect thls_ large scale coheren_ce an.d use it to
large sector temperatupeshe cosd profile of the string in- find the minimum amplitude of a coherent discontinuity that
duced discontinuity may be replaced by a step function with
effective amplitude 4Guqivsys=04mGuvsys Where q
€[1/2,1]. The precise value off may be obtained by de-  The non-Gaussian features for texture maps are stronger than
manding that the statistics applied on a map with a discontithose of cosmic strings mainly because of the generically smaller
nuity described by the exact cégprofile and on a map with number of textures per horizon volurfi2g].
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can be detected at thean(m>1) level relative to a given k
scale invariant or noise dominated Gaussian background.
Such a statistic is equally effective anyangular resolution
scale and its effectiveness is only diminished as the number
of pixels of the CMB map is reduced or the noise is in- : o e o | . . 20
creased. The statistical variable we focus on, in Secs. Il and ! holod bl n-lboom

Il is the sample mean differenc€SMD) of temperatures

between large neighboring sectors of a CMB map. These

sectors are separated by a random straight line in two dimen- FIG. 1. A large scale coherent step-function discontinuity super-
sional maps or by a random point in one dimensional mapsPosed on a one dimensional pixel méhe pixel-label k will be
The union of the two sectors gives back the complete map,_lsed in the definition of the SMD statistic and should not be con-
We show that the statistics of the SMD variable are mucHused with the kurtosjs

more sensitive in detecting the presence of a coherent step-

like seed than conventional statistics like the skewness or the

kurtosis[29-31].

We also discuss an alternative statistic, the maximunstandardized Gaussian probability distribution. Consider now
sample differenc€MSD) that is more sensitive in certain a step-function of amplitudea2superposed so that the dis-
cases, but less robust than the SMD. This statistic is based @ontinuity is between pixelg, andiy+ 1 (Fig. 1). The new
finding the maximum from a large sample of temperatureprobability distribution for a random pixel variableis
differences between large neighboring sectors of CMB maps.
We show that for noise dominated data the MSD statistic is
even more sensitive than the SMD statistic. However, this
sensitivity gets rapidly reduced when significant correlations

are introduced in the underlying Gaussian data. Thus the p(x):Le—<x—a>2/2+l__fe—(x+a)2/2 )
MSD statistic is more sensitive, but less robust compared to N2 N2

the SMD statistic.
The structure of this paper is the following: In the next
section titled “Sample Mean Difference,” we study analyti- ) ) o ) ]
cally the statistics of the SMD variable and show that itsWheref=io/n. We are looking for a statistic that will opti-
average value is a sensitive quantity in detecting the presenéBally distinguish between a Gaussian array with a super-
of a randomly placed step-function on top of a GaussiarP0Sed step-function and a Gaussian array without one. The
map. We then compare with the sensitivity of tkewness waous s'tatlst|cs to try flrstzare the moments of the distribu-
and kurtosis statistics. We find that the sensitivity of the tion (2) with =0 anda#0.~ _
SMD statistic is significantly superior to that of skewness The moment generating function corresponding to @j.
and kurtosis in detecting the step function. These analyticdf
results are shown for the case of one-dimensional maps, but
the extension to the case of two dimensional maps is
straightforward.
In the third section titled “Monte Carlo Simulations,” we M(t)= feat+t2/2+(1_f )e*atHZ/Z_ ®)
perform Monte Carlo simulations of Gaussian maps with and
without step-like discontinuities in one and two dimensions.
Applying the skewness, kurtosis and average of SMD statis-
tics on these maps, we verify the analytical results of Sec. Iltis straightforward to obtain all the distribution moments by
and find the minimum step-function amplitude that is detectdifferentiating the generating functid83] and using
able by the average SMD statistic. In Sec. IV we show both
analytically and numerically that the MSD statistic can be
significantly more sensitive and accurate even compared to n
the SMD statistic when applied to noise dominated data. <X_n>:d_M ()
Finally in Sec. V we conclude, summarize and discuss the ! dt" (=
prospect of applying the average of SMD statistic and the
MSD statistic to presently available CMB maps including
the COBE data. That analysi82] will be presented sepa-
rately. The meanu(a,f ), variancec?(a,f ), skewnesss(a,f )
and kurtosisk(a,f ) can be obtained in a straightforward
way by proper differentiation of1(t) as follows:

0

Il. SAMPLE MEAN DIFFERENCE

Consider a one dimensional arrayropixel variablesx,, . 2Wwith no loss of generality we may assumepositive or 0 be-
Let these variables be initially distributed according to acause from the statistical point of view theredis> — « symmetry.
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pmla,f)=(X)=af—a(l-1)
d?(a,f)=((x—p)?)=1+4a*F(1—1)

{((x=w)®)  8a®f(1-3f+2f?)
Sl = s T W aa?f (1= 1 )2

(x—w)*  3+8a?f(3+2a?—3f2—8a?f +12a%f2—6a°f3)
=

k(a,T)= (1+4a2f(1—1))? '

For «=0 we obtain the Gaussian values for the skewness 1
and the kurtosis(0,f )=0, k(0,f )=3 as expected. Fax AR (a,f )= ﬁ(<kj2>_<kj>2) 11
#0 the moments deviate from the Gaussian values. In order
to find the minimum value o# for which the moments can \ith kj= (1) (x;— p)* and<kj2>:1/g8<(xj_ﬂ)8>_
distinguish between a Gaussian pattern and a GausSiap The minimum valuea, of « detectable at & level is
pattern, we must compare the deviation of moments fronyptained from the equations
their Gaussian values with the standard deviation of the
sample moments. The mean values of the skewness and the 1
kurtosis are easily obtained by integrating with respect to fo dfls(amin,f )= As(amin,f )]=0 (12
from 0 to 1, i.e., assuming that it is equally probable for the
step-function to be superposed at any point of the lattice. 1
Jodf[(k(amm.f )—3)— Ak(amin,f )]=0. (13

J— 1
s(a)=(s(a,f ))zf dfs(a,f )=0 (5) o
0 Since[from Eq.(4)] s(«) =0 which is equal to the Gaussian

value, the skewness can only be used to detect a step func-

?(a)z(k(a,f )>=fldfk(a/,f ). (6) tion by comparing the s_tandard de\iatim; for a=0 and

0 a#0. By demandingAs(ami,)=2As(a¢=0), we obtain
amin=2.5. If instead we demand the standard deviation dif-

These values are to be compared with the standard deviatioR§ance to be larger thanoli.e.. As(aw..)=mAs(a=0
of the moments, obtained as follows: The variance of th d Lie. As(amn) (a=0)
skewness over several n-pixel array realizations with fiiked
anda is

&vith m>2, we obtain an even larger value fat,;,. This
result is independent of the number of pixels For the
kurtosis we obtain from Eqgs(11), (13) ami,=4 for n
=10°, while for a,;,=0.5, n=1CF is required.

Using the alternative test, i.e., demandidgk(amin)

=2Ak(a=0) we obtaine=2 and this result is independent
of the number of pixels as in the case of skewness. Thus
for the usual pixel maps where is up to O(1000), the
kurtosis is not able to detect a step function with<2 at
the 1o level? This result remains unchanged for other statis-
tical variables defined bipcal linear combinations of pixels
_ n(sy) —(sy)=5 (8) (e.g., differences of neighboring pixel variablglsl]) since

n ! ' the effect of a single discontinuity remains negligible if the

long range coherence is not taken into account.

Also For CMB temperature maps WithdT/T),;ms=2X 10",
the detectable value @ u is

As?(a,f )=((s—9)?) (7

where s=s;+...+s,/n is the sample skewness from a
given pixel array realizations is the actual skewneggor
n—) ands,=(x;— u)%/ o is the measured skewness on a
given pixel. Now

(s)

=1 <s-2>+(1— 3)<s~>2 ©
j j oT B
n n a=47Gu(vsys)COS a>2( ?) ~4x107°

wherej is any pixel number {e[1,n]). Thus
=Gu(vsys)COsH=3x10 © (14)

1
As*(a,F )= ~((s})=(s))?). 10 —

3As in all cases discussed in this paperis measured in units of
Similarly for the variance of the sample kurtosis, we have standard deviatiofrms) of the underlying Gaussian map.
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where @ is an angle obtained from the relative orientation of

the string with respect to the observer. According to simula-

tions(vs¥s)ms=0.2 and forGu<2x 10>, the detection of
the Kaiser-Stebbins effect using statistics based on skewne

and kurtosis is not possible. This excluded range however

includes all the cosmologically interesting valuesGy.
It is therefore important to look for alternative statistical

variables that are more sensitive in detecting the presence of
coherent discontinuities superposed on Gaussian maps. It

will be shown that the SMD is such a statistical variable. A
similar and even more effective statistic, the MSD will be
discussed in Sec. IV.

Consider a pixel arrayFig. 1) of n pixel Gaussian ran-
dom variablesX; with a step function covering the whole

PHYSICAL REVIEW B8 103507

2

N2 12 &

n-1

>

k=1

1-€ dé—’
_“L &1-¢)

where we have replace&xiby nfd¢, e=0(1/n), é=k/n, we

have assumed>1 and we have used the fact that the vari-
ance of the sample mean of a standardized Gaussian popula-
tion with sizej is 1/j. Now from Eq.(21), we obtain

SS
1

(17

1
k/n(1—k/n)

(21)

array, superposed such that the discontinuity is located just

after pixeliy. To every pixelk of the array, we may associ-
ate the random variabMé, defined as the difference between
the mean value of the pixels 1 throughminus the mean
value of the pixelk+ 1 throughn. It is straightforward to
show that

J— n—
Yk:AXk+2aﬁ ke[l,io] (15)
Yk—AXk—I—Za k€[|0 n— 1] (16)
where AX=1KZ¥_;X;—1/(n—K)='_,,,X;. Thus we

have constructed a new array, (k= . .h—1) from the
SMD of the original array. We will focus on the average
valueZ of the SMD defined as:

1"
= 2 (17)
Using Eqs.(15—(17) we obtain
n—-1 io . n—-1 .
— 1—ig/n ig/n
“Th1 Lzl Mcr2e| 2 Togn 2 ”
(18)

With the definitionsf=iy/n, é&=k/n and the assumption
>1, we obtain:

1 n—-1
Z=—— 12 AX—2a[(1—f)In(1—f )+f In f].

(19

Thus the mean oZ over many realizations of the array is

1
fdf finf
0

The variance ofZ is due both to the underlying Gaussian
map and to the variation df=i,/n (assumingx fixed). The
variance due to the Gaussian background is

=a. (20

1 n—-1 .
()= kzl (AX)—da

2Inn
a’fz2 —eln 2= (22
The variance of thé-dependent part of Z is
032=(23)—(Z5)* (23

where Z,=—2a[(1—f )In(1—f)+fInf]. From Eq. (20
we have(Z,)=a and(Z3) is easily obtained as

2 ! 2 4 2
(Z5)= | dfz5(f )2§a . (24)
0
Thus
2Inn 1
oo= criz-l- Ug,z: —Q T3 a?. (25

In order to be able to distinguish between a Gaussiep
map and a purely Gaussian one, at the level we demand
that

|Za¢0_za20|>m012 (26)
where we have used the variangg, of a given realization.
This implies that the minimum value @f, «,;, that can be
detected using this test is

) 1/2

and forn=0(10% we obtaina ;,=0.2m which form=1 is
aboutan order of magnitude improvemeaver the corre-
sponding sensitivity of tests based on the moments skewness
and kurtosis. The reason for this significant improvement is
the fact that the SMD statistical variable picks up toder-
enceproperties introduced by the step function on the Gauss-
ian map. The moments on the other hand pick up only local
properties of the pixels and do not amplify the long range
coherence of the step-like discontinuity.

As discussed in the Introductidsee Eq.(1)] the profile
of the temperature discontinuity induced by a long string
does not correspond to an exact flat step function, but has a
profile that drops like co®-6;) where 6, is the angular
location of the discontinuity in one dimensional data. How-

2Inn
n

(27)

amin:m(
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ever for the purposes of the statistics considered here, this TABLE I. A comparison of the effectiveness of the statistics
general profile is well approximated by an effective Stepconsidered, in detecting the presence of a coherent step discontinu-
function with amplitude that is typically larger than half of ity with amplitude 2» relative to the standard deviation of the un-

the maximum amplitude of the real discontinuity. derlying scale invariant Gaussian map.

Our analysis so far has assumed that the Gaussian vafi= :
ablesX; are independent and that the only correlation is in- ¢ Skewness Kurtosis SMD Average
troduced by the superposed ste_p-function.' Ina rea_listic setup g go 0.010.11 2.970.19 0.02-0.31
however, the und_erlylr_lg Gaussian map will be derived _from 0.25 0.010.11 2.95-0.20 0.25-0.33
a roughly scale invariant spectrum and thus there will be g 0.02-0 11 288-021 0.48-0.38

correlations among the pixels. These correlations will also be
affected by the instrument noise. In addition, our analysis has
been limited so far to one dimensional maps, while most

CMB experiments are now obtaining two-dimensional maps ; .
. ctonstructed by superposing on the ar)(’f)a step function of
In order to take all these effects into account, we need tQ y SUperp 9 P

apply the statistics of the SMD variable onto maps Con_amplltu’d_e 2 with d|§cont|nU|ty at a random poinp. The
structed by Monte Carlo simulations. This is the focus of thearrayxj is thus obtained as
following section. o

Clearly, cosmic variancg30] does not allow any theory X' = X5+ 171o Ci=1...n (30)
to make a unique prediction for any statistical variable. Thus
the role of the Monte Carlo simulations will also be used to
give us an estimate of the probability for each value of aNext we apply the statistics discussed in the previous section
given statistical variable in the context of a given modelto several realizations of the arra)$ andX; in an effort to
(with or without superposed temperature discontinuities  find the most sensitive statistic that can distinguish among

them. Our goal also is to find the minimum value @that
IIl. MONTE-CARLO SIMULATIONS can be distinguished by that statistic at the l&vel, thus
testing the analytical results of the previous section.

We start by constructing an array nfGaussian random  We have used a lattice with 2000 pixels and a scale in-
variables X;, j=1,...,n with a power spectrumP(k)  variant power spectrum which for one-dimensional data is
=k™™. The process by which this type of maps are con-p(k)=k~1. This a typical lattice-size for present dégnd
structed is standard in the literatUi@4], but we will briefly upcoming CMB maps. For example, each one of the quad
repeat it here for completeness and for pedagogical purposesube faces in the COBE maps has approximately 1000 pixels
The valuesX; associated with the pix¢lare obtained as the even though there is not complete independence among the
Fourier transform of a functiog(k) (k=1,...n) with the  pixels due to beam overlap. As E@7) shows, the sensitiv-
following properties: ity of the SMD statistic improves as the number of pixels in

For eachk, the amplitudeg(k)| is an independent Gauss- a map increases. In Table | we show the results for the skew-

ian random variable with 0 mean and variane¢k)  ness, the kurtosis and the average SMD for Xjearrays,

=1K". with =0, 0.25, 0.50 and 1.0. The SMD average was ob-
tained as in Sec. Il by first constructing the array of sample
. . . . mean differences and then obtaining its average value, pre-
penden't. random vquable in the rar{@e2m] with uniform dicted to be equal te by the analyticgal study ofgSec. I. P
probability distributionP( ) = 1/2. These statistics were applied to 50 random realizations of

The Fourier Components are related by Comp|ex Conjugathe al’l’ayX]-S. The mean values of the statistics considered

0.03:0.20 2.82:0.32 0.98-0.48

The phase), of each Fourier componegik) is an inde-

tion relations needed to giveraal variableX; . with their 1o standard deviations obtained over these 50 re-
alizations are shown in the following Table I.
The discrete Fourier transform definition used is The analytical prediction of Sec. Il for the SMD average

value « is in good agreement with the results of the Monte

1 " , ' Carlo simulations. The standard deviation of this result is not

Xj=—%= > g(k)e?mitk=D(i-1in (28)  in such a good agreement with the analytical prediction be-
Vn s cause the assumption of complete independence among pix-

els made by the analytical treatment is not realized in the

and the numerical programming was implemented usingyonte Carlo simulations. There a scale invariant spectrum
Mathematica[35]. The arrayX; obtained in the way de- a5 considered and thus there was a non-trivial correlation

scribed above is then standardized to the akaywith among the pixels of the arrays.
A simple way to improve further the sensitivity of the
XS= (Xj— ) (29) SMD statistical variable is to ignore a numbesf boundary
) o pixels of the SMD array, thus constructing its average using

the SMD of pixelsl+1,... nh—I. From Eq.(21), the vari-
where u and o2 are the sample mean and sample variancance of the SMD for these pixels is significantly lower than
for the realization of the arra)(j. A new arrayXJ-’ is then the corresponding variance of thd Rixels close to the
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boundaries. In addition, if the step is located within the ceni.e., the line of step discontinuity=ai+b is determined by
tral n—2I pixels, the SMD average may be shown to bethe two random pointsx;,y;) and (,,y,) of the map

larger thanw, thus further amplifying the step signature. For
| =150 the variance of the SMD averaigereducedby about
20%, while the SMD average imcreasedby about 20%,
thus allowing the detection of steps as lowaas 0.25 at the
1o level. The price to pay for this sensitivity improvement is

the reduction of the effective pixel area where the search for

steps is made.

X(i,j). The skewness and kurtosis of the two maps are ob-
tained in the usual way. For example, for the standardized
Gaussian mag3(i,j), we have

1 n
=—ZEJ X%(i,j)3 (36)

We have also used the SMD statistical variable for non-
scale invariant power spectra and found that it works better
for P(k)=k™™ with 0<m<1 than form>1. This is to be
expected because large valuesrimply larger correlations
among pixels which in turn leads to a smaller number ofThe main effect of the flat sky approximation used in the
effectively independent pixels and thus a larger value for theonsidered maps is that what is straight lines in our approxi-
variance of the SMD average. mate flat maps would have some curvature if the spherical

It is straightforward to generalize the one dimensionalmaps were used. However, the fact that the discontinuities
Monte Carlo simulations to two dimensions. In that case weare produced by straight lines is not crucial in our study. In
use the two-dimensional discrete Fourier transform as an agact, realistic string induced discontinuities are expected to
proximation to an expansion to spherical harmonics. Thidhave some small curvature provided that the curvature radius
approximation is good for small area maps of the celestiais approximately the horizon scale.
sphere. We used the following definition of the two dimen- The SMD statistical variable is obtained by considering a
sional discrete Fourier transform. set of random straight lines bisecting the map and for each
line taking the difference of the sample means from the two
parts of the map. A random line here is defined as a straight
line that goes through two points whose coordinates are se-
lected randomly from a uniform distribution in the coordi-
nate range corresponding to the map. The random selection
referring to anxn square lattice. In order to construct the of the pair of points secures that the map is uniformly popu-
background of scale invariant Gaussian fluctuations, we usddted by lines because each point of the map has by construc-
g(kq,ky) as a complex random variable. For scale invari-tion equal probability to be on one of the random straight
ance, the amplitude af(k;,k,) was obtained from a Gauss- lines. For example, consider a line defined by the random
ian probability distribution with 0 mean and variance points &,,y1) and (x,,y,) of the map. The line equation is
j=ai+b with a, b obtained from Eqs(34) and (35). The
SMD obtained from this line is

> Xt

i

(37)

:N|H

X(i,])

3|I—‘

n
E g(Ky ,ky)e?mli= Dk =D+ (= 1k =1)]/n
o=

(31

2 _ _
0(Ky,kp) =P(kq,kp) = CH e (32 .

1”2

SMD= (38

This scaling law in two dimensions for the power spectrum
secures scale invariance because it can easily be shown that
the correlation functioriobtained as the Fourier transform of \yhere
the power spectrujns invariant to scale transformations of
the angular variable.

The corresponding phaséﬁgl,kz for the (k;,k,) mode was

also determined randomly from a uniform probability distri-
bution P(Hkl,k2)=1/27r in order to secure Gaussianity for
the mapX(i,j).

The corresponding map with a superposed coherent step

discontinuity was obtained from the standardized Gaussian
mapXs(i,j) as andnq, n, are the corresponding numbers of terms in the
sums. For a StepGaussian map, the indekgets replaced

n

i=1 j=Max (ai+h),1]

X3(i,)) (39

n Min[(ai+b),n]
=2 ;1 XS(i,j) (40)

L o j—ai-b by .
X7(i,j)=X3(0,) + “Ti—ai-b| (33 The average and variance of the SMD is obtained by av-
eraging over a large number of random test lined}] and a
where large number of map realizations. The results of the applica-
tion of the three statisticskewness, kurtosis and SMD av-
_YoY1 (34) erage on 30x 30 scale invariant Gaussian maps for various
Xo—X1 values of step amplitudes are shown in Table Il. Uncorre-
lated Gaussian noise was also superposed on the signal with
b=y;—ax, (35 signal to noise ratio 2.0. The random points defining the test
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TABLE II. A comparison of the effectiveness of the statistics
considered in two dimensional maps. The signal to noise ratio was
2.0. Points defining the line discontinuities were excluded from the
three outermost rows and columns of the maps.

Discontinuity

|

a Skewness Kurtosis SMD Average
0.00 0.04-0.13 3.08-0.20 0.01-0.03
0.25 0.02-0.08 2.97-0.13 0.14-0.09 -
| K Partition
0.50 0.05:0.14 2.910.24 0.34£0.19
1.00 0.02£0.24 2.95-0.30 0.56£0.31

lines were excluded from the outermost three rows and col-
umns of the maps thus reducing somewhat the variance %f_
the SMD average. IS
The results of Table Il are in qualitative agreement with
those of Table | and with the analytical results valid for the

FIG. 2. The sample division described Byand the coherent
continuity location described by divide the 2d pixel-map into
four parts with corresponding number of pixéls, i=1,..., 4.

one dimensional maps. Clearly the details of the one diment_he location and shape of the coherent discontinuity in the 2d

sional analysis are not valid in the two dimensional case an@p (in the simplest case of a straight line discontindigy

so the agreement cannot be quantitative. The results still if€Presents only two numbgrd.et also the set of parameters
dicate however that the SMD statistic is significantly morek describe the location of the sample division of the 2d map.
sensitive compared to conventional statistics for the detecyith the sample division described @and the coherent
tion of coherent dlscontlnwtl_es_qn CMB maps. This Sta_t'sncdiscontinuity location described by, the 2d pixel-map is
can detect coherent discontinuities with minimum amplitudeyivided into four parts with corresponding number of pixels

amin=0.5 at the I to 20 level wherea is the amplitude . =1 . 4.This division is shown in Fig. 2 where the

. .. . . i
rela_\tlve to the_standard deviation of the underlying scale iNpartsN; are defined. For simplicity, hereafter we will omit
variant Gaussian map.

the bar ini_o andk thus using the same notation as in the 1d

case. Thus
IV. MAXIMUM SAMPLE DIFFERENCE
An alternative statistic that can be significantly more sen- Y. = S _ S, (45)
sitive than the SMD in certain cases is the MSD. For an one KNy +N,  No+ N3
dimensional set of data, the MSD statistical variable
Max(r,) is defined as \/ 1 1
Yk ) O-(Yk): N1+N4+ N2+N3 (46)
Max(r,)=Max| ———~ (41
" o(Yi) with
whereY, is given by Eqs(15), (16) anda(Y)) is the stan- v Wi(i)
dard deviation ofy, given by = ——— = U+ 20— (47)
a(Yy) a(Yy)
1 1 B
oY= KT ok (42 \where u=Ax./o(Y,) is a standardized Gaussian random
variable and
The variabler, has variance unity and mean
(. ) 1 Nl_N4 NZ_N3 (48)
n—ig)/(n—k Willo) = 5 - .
M(a,n,k,i0)=2a¢ 1<k<i, (43 2 \N1+Ng  Np+N;3
a(Yy)
) Define now aqi= aw(ip). Clearly, when the partitiork
S lo . _ coincides with the discontinuity, (N,—0 andN,—0), we
M(a’n’k'IO)_Zao(Yk) lo<k=<n-1. (44) have a.;— a. Otherwise,|aqi<|a|. The statistical vari-

N abler, is Gaussian with variance unity and mean
For two dimensional data sets, the indeXabelspartitions
by which the two dimensional pixel-surface is divided in two 2ae11 2«
i ' ' i (ro= = :
parts. In the Monte-Carlo simulations studied here, we have a(Yo)  a(Yy)
considered only map divisions represented by straight lines.
Itis straightforward however to generalize this to other typesthe Max(r,|) aftern trials (partitiong is therefore a sensi-
of divisions. In the 2d cas¥y is generalized to the expres- tive function of ay; (in the limit where we takall possible
sion given in Eq(38). Let the set of parameteig describe partitions we will also have a partition withes— ).

(49
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Now assume that aften trials (partitiong, we found P(o)
Max(|r)=V>0. Since the variable, of Eq. (53) is stan-
dardized Gaussian, the probabiliy. (V) ateach trial that
we obtain a valué/, or larger for|r,| is

1 3
P~ (Vo,aerr) = N drye [ Gaerlo (L2

a J Vol

7|V0‘ 2
drke_[rk—(zaeff/U(Yk))] /2

=1
+
V2m ) o1

FIG. 3. A plot of Py(ae¢) for Vy=2.6 (continuous ling V,
=3.0 (dotted ling andV,=4.5 (dashed ling

(50

Using the binomial distribution, we find the probability for

values ofr, aboveV, aftern partitions to be tinuous ling, Vy=3.0 (dotted ling and Vy,=4.5 (dashed

line). Notice that the probability?;(.¢;) is not normalized
to unity. Instead it may be verified that
nl 2 " daesPr(aes)/o(Y,)=0.7 for Vo=2.5, i.e., the ap-
Px(n,Vo, aetr) = X!(n—_x)!p>(V0v“eff)x propriately normalized probability isP;=2.8P;/a(Y}).
This is effectively the probability that a valug, will be
_ detected as MSD given that there is a hidden discontinuity
X(1=p=(Vo,aer)" ™. (51) with amplitudea,; in the underlying map. This can also be
interpreted as the probability that there is a hidden disconti-
nuity with amplitude aq¢; given that a measurement has
given a valueV, for the MSD. Clearly folV;<2.6, it is most
probable that there is no coherent discontinuity on the map
(agf;=0). On the other hand, fov,= 3.0, the most prob-
able value ofagy; is |agi ] =0.04, while the probability that
there is no coherent discontinuity on the map is about half,

In our case we havenly oneoccurrence oW, (since it is
maximun) and the probability for this to happen is
P.(n,Vg,aet1). Thus, from a 2d pixel-map, we can measure
V, (the maximum ofr}), n (the number of divisions used in
the testanda(Yy ) (for the partitionk, that corresponds to

V,). With this input, we obtain the probability distribution .
0) P P y i.e., Pi(aer=0)=P1(agii)/2.

P1(aerr) givenn, VO. andU(Yko_)'_ Eor example, as.sume that It is important to verify the above analytical results using
we measuredV, with 100 divisions (=100) in a 30 \onte Carlo simulations of 2d data. We considered 2d 30
X 30 pixel map. A reasonable value of(Yy ) (to be ob-  « 30 data sets as described in Sec. Il with uncorrelated stan-
tained exactly from the dakas dardized Gaussian dafahite nois¢. On these we superpose
a coherent discontinuity with amplitudea2and « in the
range[0,0.45. For eacha we construct 10 maps and fit,
\/ 1 1 2 and its standard deviationr(Vy). We also find o(Yy)
o(Yi)= + ~—=0.07. (52 . . N 0
0 Ni+N;  Ny+Nj \/ﬁ which was practically constant arl(YkO)—O.07 as predicted
analytically [Eq. (52)]. With the inputV, and o(Yy ), we
o ma ma
Given n, Vo and o(Yy), the probability distribution %gztéufefuﬁg?;ﬁ zggvj:]n?n|€|¥-gé?é m_l(ae”x) and P(0).
P1(aes) is an even function of.¢;, completely determined Comparinga,¢s With @, we confirm that in all simulated
and has maxim®;(agy;) at = agfy. For largerV, we ex-  cases/aly] is a lower bound orjal. It is also clear from
pect largerag;*. Table 11l that the MSD method can detect the presence of a
For example, it may be easily verified using Ef1) and  coherent discontinuity witlk=0.06 with probability ratio
the package Mathematica that with=100, we have
lali@1=0 for V=V{"'=2.5. In general, givem, V, and
o(Y;O), we can determine the probability distribution for P1(ae:=0.06 6 -
aqts and therefore the most probable valueaQf; (a lower Pi(aesr=0) (63
bound ona) can be found. We also find the probability that
there is no coherent discontinuity on the mapRag aeys
=0) (for Vo<V{™ it is most probable that there is no co- The application of the MSD statistic discussed above was
herent discontinuity on the map done on a white noise background with a coherent disconti-
In Fig. 3 we show a plot oP(a.ss) for Vo=2.6 (con-  nuity superposed. For this type of data, we have shown that
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TABLE lIl. The effectiveness of the MSD statistic considered in  Instead of attempting a rough modeling of these effects,
two dimensional maps with a flat spectrum of fluctuatiéndite e have made a very robust and reasonable assumption: The
noisg. The first column shows the magnitude of the coherent disstatistics of CMB fluctuations induced by a string network on
continuity superposed on the standardized Gaussian map and ti?rge angular scales are either Gauss$@was the common
fourth column shows shows tragerivedmost probable value value belief so faj or “minimally non-Gaussian” in the sense that

Of arefy (the lower bound of) based on the MSD statistic. the only non-Gaussianity is due to a late long string. Addi-

o Vg o(Yic) | P,(0)/Py(|a™2) tional types pf no'n-Gaussianity. ar.e not excluded and they
can be classified in two categories:

0.00 2.6:05  0.07 0.0+0.01 1.00 (1) The types that would amplify the above defined
0.03 2806  0.07 0.020.02 0.83 “minimal non-Gaussianity” and would therefore make its
0.06  3.4:0.7 0.07 0.040.02 0.16 detection easier by using the proposedothe) tests. In that
0.1 4.1x0.7 0.07 0.06:0.03 0.01 case the proposed tests would only be able to find a lower
0.2 5.6-0.7 0.07 0.13#+0.03 0.0 bound onG u which however turns out to be cosmologically
0.25 7.5-0.7 0.07 0.180.03 0.0 quite interesting given the sensitivity of the tests for detect-
0.3 9.0:0.9 0.07 0.240.03 0.0 ing the “minimal non-Gaussianity.”
0.35 9.8-0.8 0.07 0.2%0.03 0.0 (2) The types that tend to cancel the “minimal non-
0.4 10.4-1.1 0.07 0.29-0.03 0.0 Gaussianity” induced by a single long string. In this case the
045 12.4-1.6 0.07 0.36:0.04 0.0 proposed test will not be a sensitive probe for string induced

non-Gaussianity and more refined tests will be required for
its detection.
the MSD statistic is significantly more sensitive even com- The qualitative features of cosmic string simulations seem
pared to the SMD statistic in revealing the existence of theao indicate that “minimal non-Gaussianity” most probably
discontinuity hidden in the data. This task however becomegominates on large angular scalgisere are about 10 long
more difficult if the background data are not just Gaussiarstrings per horizon scale with typical horizon size curvature
white noise(or noise dominatéd but are Gaussian scale in- Cosmic variance however can play a crucial role here modi-
variant or have even stronger correlatigseeper spectrum  fying locally the expected qualitative features of the string
The reason is that stronger correlations tend to mimic theetwork. The fact remains that the proposed statistical tests
existence of a coherent discontinuity by the formation ofare particularly sensitive in detecting special types of non-
large pixel clusters of higher or lower temperatures. In factGaussianity on CMB maps which could be associated with
we have shown using additional Monte-Carlo simulations offeatures induced by a cosmic string network. Therefore it is
correlated data that the MSD statistic is not as robust as theorth applying them on present and upcoming CMB data.
SMD statistic. When we include correlations in the data The question that has been addressed in this paper is the
(e.g., scale invariangethe sensitivity of the MSD statistic following: Given the presently known values f&T/T s
drops rapidly to the level of the SMD statistic, i.e., it can from COBE on large angular scales, what is the minimum
detect a coherent discontinuity with=0.4. This implies value ofGu detectable under the above stated assumption of
that the MSD statistic is more useful in detecting the pres-‘minimal non-Gaussianity”? Using the SMD or MSD sta-
ence of coherent discontinuities only when applied to noiseistics which are specially designed to detect coherent tem-
dominated data. perature discontinuities on top of Gaussian temperature
maps, we may obtain non-trivial upper or edewer bounds
on the values of5 uv4ys Which are highly robust and inde-

V. CONCLUDING REMARKS pendent of the details of the string evolution and the resolu-

tion of the CMB maps. Application of these statistics on the

An important issue that needs to be clarified is the follow-COBE data has recently been comple{&®] and is pre-
ing: “What are the effects of other strings giving rise to their sented separately.

own step discontinuity? Do they decrease the sensitivity of
the suggested statistical tests?”

No attempt is made in this paper to model the fluctuations
of “other strings.” Any such attempteven those of simula-
tiong) is faced with the possibility of serious errors due to
incorrect assumptions. Even basic features of the string scal- | wish to thank N. Simatos and T. Tomaras for interesting
ing solution are still under serious debate. For example, therdiscussions and for providing helpful comments after reading
have been serious claims recerj®g] that realistic field the- the paper. This work is the result of a network supported by
oretical cosmological simulations of gauged string evolutionthe European Science Foundation. The European Science
would have no wiggles for long strings and no loop compo-Foundation acts as catalyst for the development of science by
nent. In addition, the physical processes affecting the CMBoringing together leading scientists and funding agencies to
photons are not well known especially in defect based moddebate, plan and implement pan-European initiatives. This
els. The issues of reionization, fluctuations present on the lastork was also supported by the EU grant CHRX-CT94-0621
scattering surface, wiggles of long strings and other effectas well as by the Greek General Secretariat of Research and
have only been crudely modeled so far. Technology granfIENEA95-1759.
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