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Searching for long strings in CMB maps
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Using analytical methods and Monte Carlo simulations, we analyze new statistics designed to detect isolated
step-like discontinuities which are coherent over large areas of cosmic microwave background pixel maps.
Such coherent temperature discontinuities are predicted by theKaiser-Stebbinseffect to form due to long
cosmic strings in our present horizon. The background of the coherent step-like seed is assumed to be a scale
invariant Gaussian random field which could have been produced by a superposition of seeds on smaller scales
and/or by inflationary quantum fluctuations. We find that the proposed statistics can detect the presence of a
coherent discontinuity at a sensitivity level almost an order of magnitude better compared to more conventional
statistics such as skewness or kurtosis.@S0556-2821~98!11720-4#

PACS number~s!: 98.80.Es
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I. INTRODUCTION

The major progress achieved during the past 15 year
both theory and cosmological observations has turned
search for the origin of cosmic structure into one of the m
exciting fields of scientific research. Despite the severe c
straints imposed by detailed observational data on theo
for structure formation, the central question remains op
What is the origin of primordial fluctuations that gave rise
structure in the universe?Two classes of theories attemptin
to answer this question have emerged during the past tw
years and have managed to survive through the observat
constraints with only minor adjustments.

According to the first class, primordial fluctuations a
produced by quantum fluctuations of a linearly coupled s
lar field during a period of inflation@1#. These fluctuations
are subsequently expected to become classical and pro
the progenitors of structure in the universe. Because of
extremely small linear coupling of the scalar field, needed
preserve the observed large scale homogeneity, the infla
ary perturbations are expected by the central limit theorem
obey Gaussian statistics. This is not the case for the sec
class of theories.

According to this second class@2#, primordial perturba-
tions are provided byseedsof trapped energy density pro
duced during symmetry breaking phase transitions in
early universe. Such symmetry breaking is predicted
grand unified theories~GUTs! to occur at early times as th
universe cools and expands. The geometry of the produ
seeds, known astopological defectsis determined by the
topology of the vacuum manifold of the physically realiz
GUT. Thus the defects may be pointlike~monopoles!, line-
like ~cosmic strings!, planar ~domain walls! or collapsing
pointlike ~textures!.

The cosmic string theory@3# for structure formation is the
oldest and~together with textures@4#! best studied theory o
the topological defect class. By fixing its single free para
eterGm ~m is theeffectivemass per unit length of the wiggl
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string G is Newtons constant and we have used units w
c51) to a value consistent with microphysical requireme
coming from GUTs (Gm.1026), the theory is consisten
with the noise in pulsar signal arrival times assuming that
noise is due to gravitational radiation emitted by the def
network @5#. It may account for large scale filaments an
sheets@6# ~this is also the case with a large class of Gauss
models!, galaxy formation at epochsz;223 @7# ~which
could account well for quasars! and galactic magnetic field
@8#. With appropriate bias, it can also provide large sc
peculiar velocities@9# and is consistent with the amplitude
spectral index@10# and the statistics@11# of the cosmic mi-
crowave background~CMB! anisotropies measured by th
Cosmic Background Explorer~COBE! Collaboration@12# on
large angular scales.

Various statistical tests have been applied on the Diff
ential Microwave Radiometer~DMR! maps by the COBE
team and all of them have indicated that the CMB fluctu
tions are Gaussian on these scales@13#. More recent studies
@14# however applying non-standard statistical tests on
4-year DMR maps have revealed the presence of n
Gaussian features on these maps. It is therefore importa
design and apply new statistical tests on the available C
data in order to verify or falsify the above claims for no
Gaussianity and to derive the characteristics of the disc
ered non-Gaussian features. There have been several
esting statistical tests proposed recently which attemp
address this issue on CMB@15# and large scale structure@16#
data.

In spite of its attractive features, the cosmic string theo
for structure formation is faced with problems on smal
angular scales if normalized on the COBE data. In particu
it has been shown@17# that the consistency of CMB dat
with the galaxy distribution data requires an enormous b
factor. In addition, it has been shown@18# that vector modes
generically dominate in the CMB fluctuations induced
cosmic strings. This manifests itself as a domination of
scale invariant part of the string spectrum down to 1° –
scales leading to a subdominant broad Doppler peak. Th
not consistent with CMB data@19# which indicate the pres-
ence of a pronounced Doppler peak on these scales.
©1998 The American Physical Society07-1
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The above mentioned problems have recently reduced
interest on cosmic string based models. However one sh
not underestimate the fact that there are still significant
certainties on both the data and the studies indicating
above results. The situation is expected to clarify as the
oretical studies get more refined and also when sev
planned CMB experiments@20,19# of equally high quality,
but on smaller angular scales provide a wealth of new in
mation within the next few years.

The CMB observations provide a valuable direct pro
for identifying signatures of cosmic strings. The ma
mechanism by which strings can produce CMB fluctuatio
on angular scales larger than 1–2 degrees has been well
ied both analytically@21# and using numerical simulation
@10# and is known as theKaiser-Stebbins effect@22#. Accord-
ing to this effect, moving long strings present between
time of recombinationt rec and the present timet0 , produce
step-like temperature discontinuities between photons
reach the observer through opposite sides of the string. T
discontinuities are due to the peculiar nature of the space
around a long string which even though islocally flat, glo-
bally has the geometry of a cone with deficit angle 8pGm.
The magnitude of the discontinuity is proportional to t
deficit angle, to the string velocityvs and depends on th
relative orientation between the unit vector along the strinŝ

and the unit photon wave-vectork̂. It is given by@21#

dT

T
564pGmvsgsk̂•~ v̂s3 ŝ! ~1!

where gs is the relativistic Lorentz factor and the sig
changes when the string is crossed. The angular scale
which this discontinuity persists is given by the radius
curvature of the string which according to simulations@23# is
approximately equal to the horizon scale.

The connection between the above mentioned ve
modes and the Kaiser-Stebbins effect is made through
scale invariant part of the CMB spectrum which may be s
either as an outcome of the vector modes@18# or as a result
of the Kaiser-Stebbins effect induced by strings on all sca
from t rec to t0 @24#.

As Eq. ~1! indicates, the amplitude of the string induce
discontinuity drops like cosu as we move away from the
string. Thus on a typical sky patch of about 100°3100° with
a string passing through its center, the amplitude of the
continuity will drop at the edge of the map to about one h
of its maximum value achieved in the region of the strin
For the purposes of the statistics considered here which
based on nonlocal properties of CMB maps~differences of
large sector temperatures!, the cosu profile of the string in-
duced discontinuity may be replaced by a step function w
effective amplitude 4pGme f fvsgs5q4pGmvsgs where q
P@1/2,1#. The precise value ofq may be obtained by de
manding that the statistics applied on a map with a disco
nuity described by the exact cosu profile and on a map with
10350
he
ld
-
e

e-
al

r-

e

s
ud-

e

at
se
e

ver
f

or
he
n

s

s-
lf
.
re

h

ti-

a discontinuity described by the approximate step funct
profile give the same results. We will not attempt the prec
determination of the parameterq in this study because ou
goal is to suggest new statistics that can sensitively detec
presence of string induced discontinuities. The precise va
of Gm is expected to be larger by the factor 1/q compared to
the valueGme f f corresponding to the effective step functio
that can be revealed by the proposed statistics.

The growth of the horizon fromt rec to t0 results in a
superposition of a large number of step-like temperat
seeds of all sizes starting from about 2°~the angular size of
the horizon att rec) to about 180°~the present horizon scale!.
By the central limit theorem, this large number of supe
posed seeds results in a pattern of fluctuations that ob
approximately Gaussian statistics. Thus the probability d
tribution for the temperature of each pixel of a CMB ma
with resolution larger than about 1° – 2° is Gaussian to
good approximation@18,25#. It has therefore been considere
to be impossible to distinguish structure formation mod
based on cosmic strings from corresponding models ba
on inflation, using CMB maps with resolution angle larg
than 1° – 2°. Theoretical studies have thus focused on id
tifying the statistical signatures of cosmic strings on angu
scales less than 1°@11# where the number of superpose
seeds is smaller and the non-Gaussian character of fluc
tions is expected to be stronger.1

These efforts however have been faced with the com
cated and model dependent physical processes occurrin
small angular scales. Such effects include isolated fo
ground point sources~particularly for high resolution CMB
maps!, reionization physics, string properties on small sca
~kinks, loops, etc.! which require detailed simulations of bot
the string network and the cosmic background, in order to
properly taken into account. Even though there are preli
nary efforts for such detailed simulations@18#, it has become
clear that it will take some time before theory and expe
ments on angular scales less than a few arcmin reach a
racy levels leading to detectable non-Gaussian string sig
tures.

An alternative approach to the problem is instead of
cusing on small scales where the number of superpo
seeds is small, to focus on larger angular scales where
spite the large number of superposed seeds there is als
herence of induced fluctuations on large angular scales.
amples of studies along these lines include Refs.@27,28#.
Fluctuations on these scales may be viewed as a super
tion of a Gaussian scale invariant background coming ma
from small scale seeds plus a small number of step-like
continuities which are coherent and persist on angular sc
of order 100°. These are produced by long strings presen
our present horizon.Our goal is to find a statistic specially
designed to detect this large scale coherence and use
find the minimum amplitude of a coherent discontinuity th

1The non-Gaussian features for texture maps are stronger
those of cosmic strings mainly because of the generically sma
number of textures per horizon volume@26#.
7-2
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SEARCHING FOR LONG STRINGS IN CMB MAPS PHYSICAL REVIEW D58 103507
can be detected at the ms (m.1) level relative to a given
scale invariant or noise dominated Gaussian backgrou
Such a statistic is equally effective onanyangular resolution
scale and its effectiveness is only diminished as the num
of pixels of the CMB map is reduced or the noise is
creased. The statistical variable we focus on, in Secs. II
III is the sample mean difference~SMD! of temperatures
between large neighboring sectors of a CMB map. Th
sectors are separated by a random straight line in two dim
sional maps or by a random point in one dimensional ma
The union of the two sectors gives back the complete m
We show that the statistics of the SMD variable are mu
more sensitive in detecting the presence of a coherent s
like seed than conventional statistics like the skewness or
kurtosis@29–31#.

We also discuss an alternative statistic, the maxim
sample difference~MSD! that is more sensitive in certai
cases, but less robust than the SMD. This statistic is base
finding the maximum from a large sample of temperat
differences between large neighboring sectors of CMB ma
We show that for noise dominated data the MSD statisti
even more sensitive than the SMD statistic. However,
sensitivity gets rapidly reduced when significant correlatio
are introduced in the underlying Gaussian data. Thus
MSD statistic is more sensitive, but less robust compare
the SMD statistic.

The structure of this paper is the following: In the ne
section titled ‘‘Sample Mean Difference,’’ we study analy
cally the statistics of the SMD variable and show that
average value is a sensitive quantity in detecting the pres
of a randomly placed step-function on top of a Gauss
map. We then compare with the sensitivity of theskewness
and kurtosis statistics. We find that the sensitivity of th
SMD statistic is significantly superior to that of skewne
and kurtosis in detecting the step function. These analyt
results are shown for the case of one-dimensional maps
the extension to the case of two dimensional maps
straightforward.

In the third section titled ‘‘Monte Carlo Simulations,’’ we
perform Monte Carlo simulations of Gaussian maps with a
without step-like discontinuities in one and two dimensio
Applying the skewness, kurtosis and average of SMD sta
tics on these maps, we verify the analytical results of Sec
and find the minimum step-function amplitude that is dete
able by the average SMD statistic. In Sec. IV we show b
analytically and numerically that the MSD statistic can
significantly more sensitive and accurate even compare
the SMD statistic when applied to noise dominated data.

Finally in Sec. V we conclude, summarize and discuss
prospect of applying the average of SMD statistic and
MSD statistic to presently available CMB maps includi
the COBE data. That analysis@32# will be presented sepa
rately.

II. SAMPLE MEAN DIFFERENCE

Consider a one dimensional array ofn pixel variablesxn .
Let these variables be initially distributed according to
10350
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standardized Gaussian probability distribution. Consider n
a step-function of amplitude 2a superposed so that the dis
continuity is between pixelsi 0 and i 011 ~Fig. 1!. The new
probability distribution for a random pixel variablex is

P~x!5
f

A2p
e2~x2a!2/21

12 f

A2p
e2~x1a!2/2 ~2!

where f 5 i 0 /n. We are looking for a statistic that will opti
mally distinguish between a Gaussian array with a sup
posed step-function and a Gaussian array without one.
obvious statistics to try first are the moments of the distrib
tion ~2! with a50 andaÞ0.2

The moment generating function corresponding to Eq.~2!
is

M ~ t !5 f eat1t2/21~12 f !e2at1t2/2. ~3!

It is straightforward to obtain all the distribution moments
differentiating the generating function@33# and using

^xj
n&5

dnM

dtn U
t50

. ~4!

The meanm(a, f ), variances2(a, f ), skewnesss(a, f )
and kurtosisk(a, f ) can be obtained in a straightforwar
way by proper differentiation ofM (t) as follows:

2With no loss of generality we may assumea positive or 0 be-
cause from the statistical point of view there isa↔2a symmetry.

FIG. 1. A large scale coherent step-function discontinuity sup
posed on a one dimensional pixel map~the pixel-label k will be
used in the definition of the SMD statistic and should not be c
fused with the kurtosis!.
7-3
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m~a, f ![^x&5a f 2a~12 f !

s2~a, f ![^~x2m!2&5114a2f ~12 f !

s~a, f ![
^~x2m!3&

s3 5
8a3f ~123 f 12 f 2!

„114a2f ~12 f !…3/2

k~a, f ![
^~x2m!4&

s4 5
318a2f ~312a223 f 228a2f 112a2f 226a2f 3!

„114a2f ~12 f !…2
.
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For a50 we obtain the Gaussian values for the skewn
and the kurtosiss(0,f )50, k(0,f )53 as expected. Fora
Þ0 the moments deviate from the Gaussian values. In o
to find the minimum value ofa for which the moments can
distinguish between a Gaussian pattern and a Gaussian1Step
pattern, we must compare the deviation of moments fr
their Gaussian values with the standard deviation of
sample moments. The mean values of the skewness an
kurtosis are easily obtained by integrating with respect tf
from 0 to 1, i.e., assuming that it is equally probable for t
step-function to be superposed at any point of the lattice

s̄~a!5^s~a, f !&5E
0

1

d f s~a, f !50 ~5!

k̄~a!5^k~a, f !&5E
0

1

d f k~a, f !. ~6!

These values are to be compared with the standard devia
of the moments, obtained as follows: The variance of
skewness over several n-pixel array realizations with fixef
anda is

Ds2~a, f !5^~ ŝ2s!2& ~7!

where ŝ[s11 . . . 1sn /n is the sample skewness from
given pixel array realization,s is the actual skewness~for
n→`) andsi[(xi2m)3/s3 is the measured skewness on
given pixel. Now

^ŝ&5
n^s1&

n
5^s1&5s. ~8!

Also

^ ŝ2&5
1

n
^sj

2&1S 12
1

nD ^sj&
2 ~9!

where j is any pixel number (j P@1,n#). Thus

Ds2~a, f !5
1

n
~^sj

2&2^sj&
2!. ~10!

Similarly for the variance of the sample kurtosis, we hav
10350
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Dk2~a, f !5
1

n
~^kj

2&2^kj&
2! ~11!

with kj5(1/s4)(xj2m)4 and ^kj
2&51/s8^(xj2m)8&.

The minimum valueamin of a detectable at 1s level is
obtained from the equations

E
0

1

d f@s~amin , f !2Ds~amin , f !#50 ~12!

E
0

1

d f@„k~amin , f !23…2Dk~amin , f !#50. ~13!

Since@from Eq.~4!# s̄(a)50 which is equal to the Gaussia
value, the skewness can only be used to detect a step f
tion by comparing the standard deviationD s̄ for a50 and
aÞ0. By demandingD s̄(amin).2D s̄(a50), we obtain
amin.2.5. If instead we demand the standard deviation d
ference to be larger than 1s, i.e., D s̄(amin).mD s̄(a50)
with m.2, we obtain an even larger value foramin . This
result is independent of the number of pixelsn. For the
kurtosis we obtain from Eqs.~11!, ~13! amin.4 for n
5103, while for amin50.5, n.106 is required.

Using the alternative test, i.e., demandingD k̄(amin)
.2D k̄(a50) we obtaina.2 and this result is independen
of the number of pixelsn as in the case of skewness. Th
for the usual pixel maps wheren is up to O(1000), the
kurtosis is not able to detect a step function withuau<2 at
the 1s level.3 This result remains unchanged for other stat
tical variables defined bylocal linear combinations of pixels
~e.g., differences of neighboring pixel variables@11#! since
the effect of a single discontinuity remains negligible if th
long range coherence is not taken into account.

For CMB temperature maps with (dT/T) rms.231025,
the detectable value ofGm is

a[4pGm~vsgs!cosu.2S dT

T D
rms

.431025

⇒Gm~vsgs!cosu*331026 ~14!

3As in all cases discussed in this paper,a is measured in units of
standard deviation~rms! of the underlying Gaussian map.
7-4
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SEARCHING FOR LONG STRINGS IN CMB MAPS PHYSICAL REVIEW D58 103507
whereu is an angle obtained from the relative orientation
the string with respect to the observer. According to simu
tions^vsgs& rms.0.2 and forGm,231025, the detection of
the Kaiser-Stebbins effect using statistics based on skew
and kurtosis is not possible. This excluded range howe
includes all the cosmologically interesting values ofGm.

It is therefore important to look for alternative statistic
variables that are more sensitive in detecting the presenc
coherent discontinuities superposed on Gaussian map
will be shown that the SMD is such a statistical variable.
similar and even more effective statistic, the MSD will b
discussed in Sec. IV.

Consider a pixel array~Fig. 1! of n pixel Gaussian ran-
dom variablesXj with a step function covering the whol
array, superposed such that the discontinuity is located
after pixel i 0 . To every pixelk of the array, we may assoc
ate the random variableYk defined as the difference betwee
the mean value of the pixels 1 throughk minus the mean
value of the pixelsk11 throughn. It is straightforward to
show that

Yk5DX̄k12a
n2 i 0

n2k
kP@1,i 0# ~15!

Yk5DX̄k12a
i 0

k
kP@ i 0 ,n21# ~16!

where DX̄k[1/k( j 51
k Xj21/(n2k)( j 5k11

n Xj . Thus we
have constructed a new arrayYk , (k51, . . . ,n21) from the
SMD of the original array. We will focus on the averag
valueZ of the SMD defined as:

Z5
1

n21 (
k51

n21

Yk . ~17!

Using Eqs.~15!–~17! we obtain

Z5
1

n21 F (
k51

n21

DX̄k12aS (
k51

i 0 12 i 0 /n

12k/n
1 (

k5 i 011

n21
i 0 /n

k/n D G .

~18!

With the definitionsf [ i 0 /n, j[k/n and the assumptionn
@1, we obtain:

Z5
1

n21 (
k51

n21

DX̄k22a@~12 f !ln~12 f !1 f ln f #.

~19!

Thus the mean ofZ over many realizations of the array is

^Z&5
1

n21 (
k51

n21

^DX̄k&24aF E
0

1

d f f ln f G5a. ~20!

The variance ofZ is due both to the underlying Gaussia
map and to the variation off 5 i 0 /n ~assuminga fixed!. The
variance due to the Gaussian background is
10350
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s1,Z
2 5

1

~n21!2 (
k51

n21 S 1

k
1

1

n2kD
.

1

~n21!2 (
k51

n21
1

k/n~12k/n!

.eE
e

12e dj

j~12j!
, ~21!

where we have replaced( by n*dj, e5O(1/n), j5k/n, we
have assumedn@1 and we have used the fact that the va
ance of the sample mean of a standardized Gaussian po
tion with size j is 1/j . Now from Eq.~21!, we obtain

s1,Z
2 .2e ln e2.

2 ln n

n
. ~22!

The variance of thef -dependent part of Z is

s2,Z
2 5^Z2

2&2^Z2&
2 ~23!

where Z2[22a@(12 f )ln(12f )1f ln f#. From Eq. ~20!
we have^Z2&5a and ^Z2

2& is easily obtained as

^Z2
2&5E

0

1

d f Z2
2~ f !.

4

3
a2. ~24!

Thus

sZ
2[s1,Z

2 1s2,Z
2 5

2 ln n

n
1

1

3
a2. ~25!

In order to be able to distinguish between a Gaussian1Step
map and a purely Gaussian one, at thems level we demand
that

uZaÞ02Za50u>ms1Z ~26!

where we have used the variances1Z of a given realization.
This implies that the minimum value ofa, amin that can be
detected using this test is

amin5mS 2 ln n

n D 1/2

~27!

and forn5O(103) we obtainamin.0.2m which for m51 is
about an order of magnitude improvementover the corre-
sponding sensitivity of tests based on the moments skew
and kurtosis. The reason for this significant improvemen
the fact that the SMD statistical variable picks up thecoher-
enceproperties introduced by the step function on the Gau
ian map. The moments on the other hand pick up only lo
properties of the pixels and do not amplify the long ran
coherence of the step-like discontinuity.

As discussed in the Introduction@see Eq.~1!# the profile
of the temperature discontinuity induced by a long stri
does not correspond to an exact flat step function, but h
profile that drops like cos(u2u0) where u0 is the angular
location of the discontinuity in one dimensional data. Ho
7-5
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L. PERIVOLAROPOULOS PHYSICAL REVIEW D58 103507
ever for the purposes of the statistics considered here,
general profile is well approximated by an effective st
function with amplitude that is typically larger than half o
the maximum amplitude of the real discontinuity.

Our analysis so far has assumed that the Gaussian
ablesXj are independent and that the only correlation is
troduced by the superposed step-function. In a realistic s
however, the underlying Gaussian map will be derived fr
a roughly scale invariant spectrum and thus there will
correlations among the pixels. These correlations will also
affected by the instrument noise. In addition, our analysis
been limited so far to one dimensional maps, while m
CMB experiments are now obtaining two-dimensional ma
In order to take all these effects into account, we need
apply the statistics of the SMD variable onto maps co
structed by Monte Carlo simulations. This is the focus of
following section.

Clearly, cosmic variance@30# does not allow any theory
to make a unique prediction for any statistical variable. Th
the role of the Monte Carlo simulations will also be used
give us an estimate of the probability for each value o
given statistical variable in the context of a given mod
~with or without superposed temperature discontinuities!.

III. MONTE-CARLO SIMULATIONS

We start by constructing an array ofn Gaussian random
variables Xj , j 51, . . . ,n with a power spectrumP(k)
5k2m. The process by which this type of maps are co
structed is standard in the literature@34#, but we will briefly
repeat it here for completeness and for pedagogical purpo
The valuesXj associated with the pixelj are obtained as the
Fourier transform of a functiong(k) (k51, . . . ,n) with the
following properties:

For eachk, the amplitudeug(k)u is an independent Gauss
ian random variable with 0 mean and varianceP(k)
51/km.

The phaseuk of each Fourier componentg(k) is an inde-
pendent random variable in the range@0,2p# with uniform
probability distributionP(uk)51/2p.

The Fourier components are related by complex conju
tion relations needed to give areal variableXj .

The discrete Fourier transform definition used is

Xj5
1

An
(
k51

n

g~k!e2p i ~k21!~ j 21!/n ~28!

and the numerical programming was implemented us
Mathematica@35#. The arrayXj obtained in the way de
scribed above is then standardized to the arrayXj

s , with

Xj
s[

~Xj2m!

s
~29!

wherem and s2 are the sample mean and sample varia
for the realization of the arrayXj . A new arrayXj8 is then
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constructed by superposing on the arrayXj
s a step function of

amplitude 2a with discontinuity at a random pointi 0 . The
arrayXj8 is thus obtained as

Xj85Xj
s1a

j 2 i 0

u j 2 i 0u
, j 51, . . . ,n. ~30!

Next we apply the statistics discussed in the previous sec
to several realizations of the arraysXj

s andXj8 in an effort to
find the most sensitive statistic that can distinguish amo
them. Our goal also is to find the minimum value ofa that
can be distinguished by that statistic at the 1s level, thus
testing the analytical results of the previous section.

We have used a lattice with 2000 pixels and a scale
variant power spectrum which for one-dimensional data
P(k)5k21. This a typical lattice-size for present day~and
upcoming! CMB maps. For example, each one of the qu
cube faces in the COBE maps has approximately 1000 pi
even though there is not complete independence among
pixels due to beam overlap. As Eq.~27! shows, the sensitiv-
ity of the SMD statistic improves as the number of pixels
a map increases. In Table I we show the results for the sk
ness, the kurtosis and the average SMD for theXj arrays,
with a50, 0.25, 0.50 and 1.0. The SMD average was o
tained as in Sec. II by first constructing the array of sam
mean differences and then obtaining its average value,
dicted to be equal toa by the analytical study of Sec. II.

These statistics were applied to 50 random realization
the arrayXj

s . The mean values of the statistics consider
with their 1s standard deviations obtained over these 50
alizations are shown in the following Table I.

The analytical prediction of Sec. II for the SMD averag
valuea is in good agreement with the results of the Mon
Carlo simulations. The standard deviation of this result is
in such a good agreement with the analytical prediction
cause the assumption of complete independence among
els made by the analytical treatment is not realized in
Monte Carlo simulations. There a scale invariant spectr
was considered and thus there was a non-trivial correla
among the pixels of the arrays.

A simple way to improve further the sensitivity of th
SMD statistical variable is to ignore a numberl of boundary
pixels of the SMD array, thus constructing its average us
the SMD of pixelsl 11, . . . ,n2 l . From Eq.~21!, the vari-
ance of the SMD for these pixels is significantly lower th
the corresponding variance of the 2l pixels close to the

TABLE I. A comparison of the effectiveness of the statisti
considered, in detecting the presence of a coherent step discon
ity with amplitude 2a relative to the standard deviation of the u
derlying scale invariant Gaussian map.

a Skewness Kurtosis SMD Average

0.00 0.0160.11 2.9760.19 0.0260.31
0.25 0.0160.11 2.9560.20 0.2560.33
0.50 0.0260.11 2.8860.21 0.4860.38
1.00 0.0360.20 2.8260.32 0.9860.48
7-6
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boundaries. In addition, if the step is located within the c
tral n22l pixels, the SMD average may be shown to
larger thana, thus further amplifying the step signature. F
l 5150 the variance of the SMD averageis reducedby about
20%, while the SMD average isincreasedby about 20%,
thus allowing the detection of steps as low asa50.25 at the
1s level. The price to pay for this sensitivity improvement
the reduction of the effective pixel area where the search
steps is made.

We have also used the SMD statistical variable for n
scale invariant power spectra and found that it works be
for P(k)5k2m with 0<m,1 than form.1. This is to be
expected because large values ofm imply larger correlations
among pixels which in turn leads to a smaller number
effectively independent pixels and thus a larger value for
variance of the SMD average.

It is straightforward to generalize the one dimensio
Monte Carlo simulations to two dimensions. In that case
use the two-dimensional discrete Fourier transform as an
proximation to an expansion to spherical harmonics. T
approximation is good for small area maps of the celes
sphere. We used the following definition of the two dime
sional discrete Fourier transform.

X~ i , j !5
1

n (
k1 ,k251

n

g~k1 ,k2!e2p i @~ i 21!~k121!1~ j 21!~k221!#/n

~31!

referring to an3n square lattice. In order to construct th
background of scale invariant Gaussian fluctuations, we u
g(k1 ,k2) as a complex random variable. For scale inva
ance, the amplitude ofg(k1 ,k2) was obtained from a Gauss
ian probability distribution with 0 mean and variance

s2~k1 ,k2!5P~k1 ,k2!5
1

k1
21k2

2 . ~32!

This scaling law in two dimensions for the power spectru
secures scale invariance because it can easily be shown
the correlation function~obtained as the Fourier transform
the power spectrum! is invariant to scale transformations o
the angular variable.

The corresponding phaseuk1 ,k2
for the (k1 ,k2) mode was

also determined randomly from a uniform probability dist
bution P(uk1 ,k2

)51/2p in order to secure Gaussianity fo

the mapX( i , j ).
The corresponding map with a superposed coherent

discontinuity was obtained from the standardized Gaus
mapXs( i , j ) as

X8~ i , j !5Xs~ i , j !1a
j 2ai2b

u j 2ai2bu
~33!

where

a5
y22y1

x22x1
~34!

b5y12ax1 , ~35!
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i.e., the line of step discontinuityj 5ai1b is determined by
the two random points (x1 ,y1) and (x2 ,y2) of the map
X( i , j ). The skewness and kurtosis of the two maps are
tained in the usual way. For example, for the standardi
Gaussian mapXs( i , j ), we have

s5
1

n2 (
i , j

n

Xs~ i , j !3 ~36!

k5
1

n2 (
i , j

n

Xs~ i , j !4. ~37!

The main effect of the flat sky approximation used in t
considered maps is that what is straight lines in our appro
mate flat maps would have some curvature if the spher
maps were used. However, the fact that the discontinui
are produced by straight lines is not crucial in our study.
fact, realistic string induced discontinuities are expected
have some small curvature provided that the curvature ra
is approximately the horizon scale.

The SMD statistical variable is obtained by considering
set of random straight lines bisecting the map and for e
line taking the difference of the sample means from the t
parts of the map. A random line here is defined as a stra
line that goes through two points whose coordinates are
lected randomly from a uniform distribution in the coord
nate range corresponding to the map. The random selec
of the pair of points secures that the map is uniformly pop
lated by lines because each point of the map has by cons
tion equal probability to be on one of the random straig
lines. For example, consider a line defined by the rand
points (x1 ,y1) and (x2 ,y2) of the map. The line equation i
j 5ai1b with a, b obtained from Eqs.~34! and ~35!. The
SMD obtained from this line is

SMD5US1

n1
2

S2

n2
U ~38!

where

S15(
i 51

n

(
j 5Max@~ai1b!,1#

n

Xs~ i , j ! ~39!

S25(
i 51

n

(
j 51

Min@~ai1b!,n#

Xs~ i , j ! ~40!

and n1 , n2 are the corresponding numbers of terms in t
sums. For a Step1Gaussian map, the indexs gets replaced
by 8.

The average and variance of the SMD is obtained by
eraging over a large number of random test lines (a,b) and a
large number of map realizations. The results of the appl
tion of the three statistics~skewness, kurtosis and SMD av
erage! on 30330 scale invariant Gaussian maps for vario
values of step amplitudesa are shown in Table II. Uncorre
lated Gaussian noise was also superposed on the signal
signal to noise ratio 2.0. The random points defining the
7-7
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lines were excluded from the outermost three rows and
umns of the maps thus reducing somewhat the varianc
the SMD average.

The results of Table II are in qualitative agreement w
those of Table I and with the analytical results valid for t
one dimensional maps. Clearly the details of the one dim
sional analysis are not valid in the two dimensional case
so the agreement cannot be quantitative. The results stil
dicate however that the SMD statistic is significantly mo
sensitive compared to conventional statistics for the de
tion of coherent discontinuities on CMB maps. This statis
can detect coherent discontinuities with minimum amplitu
amin.0.5 at the 1s to 2s level wherea is the amplitude
relative to the standard deviation of the underlying scale
variant Gaussian map.

IV. MAXIMUM SAMPLE DIFFERENCE

An alternative statistic that can be significantly more s
sitive than the SMD in certain cases is the MSD. For an o
dimensional set of data, the MSD statistical variab
Max(r k) is defined as

Max~r k!5MaxS Yk

s~Yk!
D ~41!

whereYk is given by Eqs.~15!, ~16! ands(Yk) is the stan-
dard deviation ofYk given by

s~Yk!5A1

k
1

1

n2k
. ~42!

The variabler k has variance unity and mean

m~a,n,k,i 0!52a
~n2 i 0!/~n2k!

s~Yk!
1,k, i 0 ~43!

m~a,n,k,i 0!52a
i 0 /k

s~Yk!
i 0,k,n21. ~44!

For two dimensional data sets, the indexk̄ labelspartitions
by which the two dimensional pixel-surface is divided in tw
parts. In the Monte-Carlo simulations studied here, we h
considered only map divisions represented by straight lin
It is straightforward however to generalize this to other typ
of divisions. In the 2d caseYk̄ is generalized to the expres
sion given in Eq.~38!. Let the set of parametersī 0 describe

TABLE II. A comparison of the effectiveness of the statisti
considered in two dimensional maps. The signal to noise ratio
2.0. Points defining the line discontinuities were excluded from
three outermost rows and columns of the maps.

a Skewness Kurtosis SMD Average

0.00 0.0460.13 3.0060.20 0.0160.03
0.25 0.0260.08 2.9760.13 0.1460.09
0.50 0.0560.14 2.9160.24 0.3460.19
1.00 0.0260.24 2.9560.30 0.5660.31
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the location and shape of the coherent discontinuity in the
map ~in the simplest case of a straight line discontinuityī 0
represents only two numbers!. Let also the set of parameter
k̄ describe the location of the sample division of the 2d m
With the sample division described byk̄ and the coheren
discontinuity location described byī 0 , the 2d pixel-map is
divided into four parts with corresponding number of pixe
Ni , i 51, . . . ,4.This division is shown in Fig. 2 where th
partsNi are defined. For simplicity, hereafter we will om
the bar inī 0 and k̄ thus using the same notation as in the
case. Thus

Yk5
S1

N11N4
2

S2

N21N3
~45!

s~Yk!5A 1

N11N4
1

1

N21N3
~46!

with

r k[
Yk

s~Yk!
5uk12a

wk~ i 0!

s~Yk!
~47!

where uk[D x̄k /s(Yk) is a standardized Gaussian rando
variable and

wk~ i 0!5
1

2 S N12N4

N11N4
2

N22N3

N21N3
D . ~48!

Define now ae f f5awk( i 0). Clearly, when the partitionk
coincides with the discontinuityi 0 (N4→0 andN2→0), we
haveae f f→a. Otherwise,uae f fu,uau. The statistical vari-
able r k is Gaussian with variance unity and mean

^r k&5
2ae f f

s~Yk!
<

2a

s~Yk!
. ~49!

The Max(ur ku) after n trials ~partitions! is therefore a sensi
tive function ofae f f ~in the limit where we takeall possible
partitions we will also have a partition withae f f→a).

s
e

FIG. 2. The sample division described byk and the coherent
discontinuity location described byi 0 divide the 2d pixel-map into
four parts with corresponding number of pixelsNi , i 51, . . . ,4.
7-8
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Now assume that aftern trials ~partitions!, we found
Max(ur ku)5V0.0. Since the variableuk of Eq. ~53! is stan-
dardized Gaussian, the probabilityp.(V0) at each trial that
we obtain a valueV0 or larger forur ku is

p.~V0 ,ae f f!5
1

A2p
E

uV0u

`

drke
2@r k2„2ae f f /s~Yk!…#2/2

1
1

A2p
E

2`

2uV0u
drke

2@r k2„2ae f f /s~Yk!…#2/2.

~50!

Using the binomial distribution, we find the probability forx
values ofr k aboveV0 after n partitions to be

Px~n,V0 ,ae f f!5
n!

x! ~n2x!!
p.~V0 ,ae f f!

x

3„12p.~V0 ,ae f f!…
n21. ~51!

In our case we haveonly oneoccurrence ofV0 ~since it is
maximum! and the probability for this to happen
P1(n,V0 ,ae f f). Thus, from a 2d pixel-map, we can measu
V0 ~the maximum ofr k), n ~the number of divisions used i
the test! ands(Yk0

) ~for the partitionk0 that corresponds to

V0). With this input, we obtain the probability distributio
P1(ae f f) givenn, V0 ands(Yk0

). For example, assume tha

we measuredV0 with 100 divisions (n5100) in a 30
330 pixel map. A reasonable value ofs(Yk0

) ~to be ob-
tained exactly from the data! is

s~Yk̄0
!5A 1

N11N4
1

1

N21N3
.

2

AN
.0.07. ~52!

Given n, V0 and s(Yk0
), the probability distribution

P1(ae f f) is an even function ofae f f , completely determined
and has maximaP1(ae f f

max) at 6ae f f
max. For largerV0 we ex-

pect largerae f f
max.

For example, it may be easily verified using Eq.~51! and
the package Mathematica that withn5100, we have
uae f f

maxu50 for V<V0
crit.2.5. In general, givenn, V0 and

s(Yk̄0
), we can determine the probability distribution fo

ae f f and therefore the most probable value ofae f f ~a lower
bound ona! can be found. We also find the probability th
there is no coherent discontinuity on the map asP1(ae f f

50) ~for V0,V0
crit it is most probable that there is no co

herent discontinuity on the map!.
In Fig. 3 we show a plot ofP1(ae f f) for V052.6 ~con-
10350
tinuous line!, V053.0 ~dotted line! and V054.5 ~dashed
line!. Notice that the probabilityP1(ae f f) is not normalized
to unity. Instead it may be verified tha
2*2`

1`dae f fP1(ae f f)/s(Yk).0.7 for V0*2.5, i.e., the ap-

propriately normalized probability isP̃1.2.8P1 /s(Yk).
This is effectively the probability that a valueV0 will be
detected as MSD given that there is a hidden discontin
with amplitudeae f f in the underlying map. This can also b
interpreted as the probability that there is a hidden disco
nuity with amplitudeae f f given that a measurement ha
given a valueV0 for the MSD. Clearly forV0<2.6, it is most
probable that there is no coherent discontinuity on the m
(ae f f

max50). On the other hand, forV053.0, the most prob-
able value ofae f f is uae f f

maxu50.04, while the probability that
there is no coherent discontinuity on the map is about h
i.e., P1(ae f f50).P1(ae f f

max)/2.
It is important to verify the above analytical results usi

Monte Carlo simulations of 2d data. We considered 2d
330 data sets as described in Sec. III with uncorrelated s
dardized Gaussian data~white noise!. On these we superpos
a coherent discontinuity with amplitude 2a and a in the
range@0,0.45#. For eacha we construct 10 maps and findV0
and its standard deviations(V0). We also find s(Yk̄0

)

which was practically constant ats(Yk̄0
).0.07 as predicted

analytically @Eq. ~52!#. With the inputV0 and s(Yk̄0
), we

constructP1(ae f f) and find uae f f
maxu, P1(ae f f

max) and P1(0).
These results are shown in Table III.

Comparingae f f with a, we confirm that in all simulated
casesuae f f

maxu is a lower bound onuau. It is also clear from
Table III that the MSD method can detect the presence o
coherent discontinuity witha*0.06 with probability ratio

P1~ae f f50.06!

P1~ae f f50!
.6. ~53!

The application of the MSD statistic discussed above w
done on a white noise background with a coherent disco
nuity superposed. For this type of data, we have shown

FIG. 3. A plot of P1(ae f f) for V052.6 ~continuous line!, V0

53.0 ~dotted line! andV054.5 ~dashed line!.
7-9
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L. PERIVOLAROPOULOS PHYSICAL REVIEW D58 103507
the MSD statistic is significantly more sensitive even co
pared to the SMD statistic in revealing the existence of
discontinuity hidden in the data. This task however becom
more difficult if the background data are not just Gauss
white noise~or noise dominated!, but are Gaussian scale in
variant or have even stronger correlations~steeper spectrum!.
The reason is that stronger correlations tend to mimic
existence of a coherent discontinuity by the formation
large pixel clusters of higher or lower temperatures. In fa
we have shown using additional Monte-Carlo simulations
correlated data that the MSD statistic is not as robust as
SMD statistic. When we include correlations in the da
~e.g., scale invariance!, the sensitivity of the MSD statistic
drops rapidly to the level of the SMD statistic, i.e., it ca
detect a coherent discontinuity witha*0.4. This implies
that the MSD statistic is more useful in detecting the pr
ence of coherent discontinuities only when applied to no
dominated data.

V. CONCLUDING REMARKS

An important issue that needs to be clarified is the follo
ing: ‘‘What are the effects of other strings giving rise to the
own step discontinuity? Do they decrease the sensitivity
the suggested statistical tests?’’

No attempt is made in this paper to model the fluctuatio
of ‘‘other strings.’’ Any such attempt~even those of simula
tions! is faced with the possibility of serious errors due
incorrect assumptions. Even basic features of the string s
ing solution are still under serious debate. For example, th
have been serious claims recently@36# that realistic field the-
oretical cosmological simulations of gauged string evolut
would have no wiggles for long strings and no loop comp
nent. In addition, the physical processes affecting the C
photons are not well known especially in defect based m
els. The issues of reionization, fluctuations present on the
scattering surface, wiggles of long strings and other effe
have only been crudely modeled so far.

TABLE III. The effectiveness of the MSD statistic considered
two dimensional maps with a flat spectrum of fluctuations~white
noise!. The first column shows the magnitude of the coherent d
continuity superposed on the standardized Gaussian map an
fourth column shows shows thederivedmost probable value value
of ae f f ~the lower bound ofa! based on the MSD statistic.

a V0 s(Yk̄0
) uae f f

maxu P1(0)/P1(uae f f
maxu)

0.00 2.660.5 0.07 0.060.01 1.00
0.03 2.860.6 0.07 0.0260.02 0.83
0.06 3.460.7 0.07 0.0460.02 0.16
0.1 4.160.7 0.07 0.0660.03 0.01
0.2 5.660.7 0.07 0.1160.03 0.0
0.25 7.560.7 0.07 0.1860.03 0.0
0.3 9.060.9 0.07 0.2460.03 0.0
0.35 9.860.8 0.07 0.2760.03 0.0
0.4 10.461.1 0.07 0.2960.03 0.0
0.45 12.461.6 0.07 0.3660.04 0.0
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Instead of attempting a rough modeling of these effec
we have made a very robust and reasonable assumption
statistics of CMB fluctuations induced by a string network
large angular scales are either Gaussian~as was the common
belief so far! or ‘‘minimally non-Gaussian’’ in the sense tha
the only non-Gaussianity is due to a late long string. Ad
tional types of non-Gaussianity are not excluded and t
can be classified in two categories:

~1! The types that would amplify the above define
‘‘minimal non-Gaussianity’’ and would therefore make i
detection easier by using the proposed~or other! tests. In that
case the proposed tests would only be able to find a lo
bound onGm which however turns out to be cosmological
quite interesting given the sensitivity of the tests for dete
ing the ‘‘minimal non-Gaussianity.’’

~2! The types that tend to cancel the ‘‘minimal no
Gaussianity’’ induced by a single long string. In this case
proposed test will not be a sensitive probe for string induc
non-Gaussianity and more refined tests will be required
its detection.

The qualitative features of cosmic string simulations se
to indicate that ‘‘minimal non-Gaussianity’’ most probab
dominates on large angular scales~there are about 10 long
strings per horizon scale with typical horizon size curvatur!.
Cosmic variance however can play a crucial role here mo
fying locally the expected qualitative features of the stri
network. The fact remains that the proposed statistical t
are particularly sensitive in detecting special types of n
Gaussianity on CMB maps which could be associated w
features induced by a cosmic string network. Therefore i
worth applying them on present and upcoming CMB data

The question that has been addressed in this paper is
following: Given the presently known values fordT/Trms
from COBE on large angular scales, what is the minimu
value ofGm detectable under the above stated assumptio
‘‘minimal non-Gaussianity’’? Using the SMD or MSD sta
tistics which are specially designed to detect coherent t
perature discontinuities on top of Gaussian tempera
maps, we may obtain non-trivial upper or evenlower bounds
on the values ofGmvsgs which are highly robust and inde
pendent of the details of the string evolution and the reso
tion of the CMB maps. Application of these statistics on t
COBE data has recently been completed@32# and is pre-
sented separately.
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