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Distance-redshift relation in an isotropic inhomogeneous universe:
Spherically symmetric dust-shell universe
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The relation between the angular diameter distance and reddhiit (elation) in a spherically symmetric
dust-shell universe is studied. This model has large inhomogeneities of matter distribution on small scales. We
have discovered that the relation agrees with that of an appropriate Friedmanftreéfia) model if we set
a “homogeneous” expansion law and a *homogeneous” averaged density field. This will support the aver-
aging hypothesis that a universe looks like a FL model in spite of small-scale fluctuations of density field, if its
averaged density field is homogeneous on large sd8€$§56-282(198)09320-3

PACS numbg(s): 98.80.Es, 04.30.Nk, 04.56h, 95.30.Sf

[. INTRODUCTION averaging one likes, it is uncertain whether this background

FL model agrees with the FL model whose cosmological
The standard big bang model is based on the assumptigparameters were defined at the stage of decoupling. The dis-
of the homogeneous and isotropic distribution of matter angrepancies might appear, for example, in the estimate of the
radiation. This assumption then leads to the Robertsondensity of baryonic matter, the density parameter, the age of
Walker (RW) space-time geometry and the Friedmann-Our universe, and so on. These still remain a non-trivial ques-

Lemaltre (FL) universe modélthrough the Einstein equa- tion to which we have to give a clear answer.

tions. This model has succeeded in explaining various A number of approaches have been made to study how

important observational facts: Hubble’s expansion law, thdh€ small-scale inhomogeneities affect the global dynamics

content of light elements and the isotropy of the cosmic mi-Whe.n .averaged on Iarger scalds-7]. The first work which
crowave background radiatiG€MBR) [1]. explicitly showed the existence of such an effect was per-

The CMBR conversely gives a strong observational basigormed by Futamaspd]. Assuming small deviation of the

for the assumption of homogeneity and isotropy of our uni_space-hme geometry from the RW one, Futamase con-

) X X A : structed an elegant formalism by the use of the post-
verse b_y Its h!gh_ly Isotropic d|str|but|<_)n_together W'th the Newtonian expansion and Isaacson’s prescription to take into
Copernican principle. Indeed, the deviation of our univers

A i ; - €ccount the back reaction of the small-scale inhomogeneities
from a homogeneous and isotropic space is as small.a% 10 o the global cosmic expansion. After his works, Buchert
[2] at the stage of decoupling. Thus our universe is wellyng Enlers[5] studied this back reaction problem in the
approximated by a FL model before this stage. On the otheframework of the Newtonian cosmology in which the corre-
hand, the present universe is highly inhomogeneous on smadhonding background FL model is uniquely determined
scales; the density contrast is of the order 0’0 the solar  through the spatial averaging of physical quantities without
system, 1B on galactic scales, and of the order of unity evenany uncontrolled approximation. They showed that inhomo-
on the scale of superclusters. We have to go beyond Figeneities do not influence the overall expansion in spatially
models in considering such systems. compact modelgthe topology of its spatial section &) if

For a long time, we have regarded that a FL model is ahey are averaged over the whole space. In other cases, the
large-scale “average” of a locally inhomogeneous universesignificance of inhomogeneities may depend on the cosmol-
(averaging hypothesisEven though the observational data ogy one adopts. Another interesting approach has been made
are consistent with the picture that our universe is describetly Carfora and Piotrkowskg], in which three-dimensional
well by a RW metric, we are not sure how to derive thegeometry is deformed according to the Ricci-Hamiltonian
background FL model from the inhomogeneous universe bylow which they say would be equivalent to changing the
any averaging procedure, or how the non-linear inhomogescale of averaging. They derive a homogeneous geometry
neities on small scales affect large-scale behavior of the uniwhich corresponds to a large-scale average of an inhomoge-
verse[3]. Although one can derive a background FL modelneous universe, and discussed the effect of inhomogeneities
from observations of the nearby galaxies with any rule ofon the cosmological parameters.

In spite of these works, the effect of inhomogeneities on
the cosmological parameters remains unclear; there are even

*Email address: sugiura@tap.scphys.kyoto-u.ac.jp apparent discrepancies in their statements. The reason seems
Email address: nakao@tap.scphys.kyoto-u.ac.jp o lie in the different definition of back reaction of inhomo-

T il add kao@ hys.k ' to lie in the diff t definiti f back ti f inh

*Email address: harada@tap.scphys.kyoto-u.ac.jp geneities[8]; its definition is ambiguous since they do not

lwe use the term “Robertson-Walker space-time” when we fo-treat observable quantities in these works. Thus, in order to
cus on geometrical aspects of a homogeneous and isotropic modeinderstand clearly the effects of inhomogeneities, it is nec-
and “Friedmann-Lemane model” when we discuss its dynamics essary to relate them with physical quantities which we can
and observable quantities. give an unambiguous definition.
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Bildhauer[9] showed that the global cosmic expansion
rate is not isotropic if the back reaction of small-scale inho-
mogeneities are taken into account and then investigated it
observational effects on the CMBR. After this work, photon
Bildhauer and Futamadd 0] discussed the possibility that e e
the observed dipole anisotropy in the CMBR comes from
this effect. These works are significant in the sense that the
back reactions on the observable quantities were discusse!
but they did not consider the cases where we try to determine
the cosmological parameters by observing an inhomoge-
neous universe. FIG. 1. Dust-shell universe.

In this paper, we investigate the relation between distance
and redshift in an inhomogeneous universe. As an inhomowherex is a Gaussian coordinate£0 on the shejlin the
geneous model, we take a spherically symmetric dust-sheflirection normal to the shell.
model, in which light rays travel from each dust shell toward Since each region between the shells is vacuum, the
an observer at the center. We calculate angular diamet§Pace-time is described by the Schwarzschild geometry by
distance-redshiftd,-z) relation and compare it with that of he Birkhoff's theorem. The line element in tiiéa region is
a FL model. Our main goal in this paper is to clarify the Written in the form
condition under which the distance-redshift relation of a Gm oGm| -1
dust-shell universe behaves like that of a FL model. We in- dgf: —(1— —')dt2+(1— —') dr2+r2dQ2?,
vestigate the behavior of the averaged density around the r r
observer at the center when we gradually extend the aver- (2.2)
aged region to the outer shells, and discuss the relatiop,q e the parameten; will be referred to as a gravitational

among the behavior of the averaged density, the energy dePﬁass (n,=0), andd) is the line element of a unit sphere.
sity of the FL model, and the observed distance-redshift re- .. i<t de’rive the expansion law of thn shell follow-

lation. ing[12—15. Let n® be a unit space-like vector normal to the

: We_ note two Interesting points gf_ a dust-shell mOde"trajectory of the shell, and define the projection operhtbr
First, its dynamics is exactly solved; it is not necessary to_ $_nnb E th iected Einstei i
assume the existence of homogeneous background in order~a NaN". From the projected Einstein equation

to obtain the behavior of density fluctuations. Secondly, it 1
can treat a dls_cr(_ate mass distribution where thg linear pertur- Rabhghgz 877(3( Tab— Egab'r) hg‘hg, (2.3
bation theory is invalid, and can also treat a highly general-
relativistic situation where the scale of inhomogeneities are .
comparable to the horizon scale. one obtains

The organization of this paper is as follows. In the next 1
section, we present pasw equations for the dynamics of a £ K 4+ SRcd—Kch=8WG<Tabh?h3— EthT ,
dust-shell universe, distance to the shells from the center,
and redshift of the shells measured by an observer at the
center. We give our results and discussiondgnz relation

i-th region (i+1)-th region

i-th shell

(2.9

o .__where £ is the Lie derivative alongn® and °R.q is the
and al\(/eraggd dle\r/15|ty in Sec. IIl, followed by ConCIUdIngthree-dimensional Ricci tensor on the timelike hypersurface
remarks in Sec. 1v. . . generated by the motion of the shell. The extrinsic curvature
We follow the sign convention of the Riemann tensor andK is defined bvK..=—1hchds h dK=K® T
the metric tensor if11] and adopt the unit of=1 ap IS CEIINEC DY Bap= —2NaNpEnNed, aNA 1=1,,
' =TZ. Integration of Eq.(2.4) over an infinitesimal range
alongn? yields

Il. FORMULATION OF DUST-SHELL UNIVERSE 1
Kap— Kap=87G| Sap— 5 hapS|, 2.
A. Equation of motion of dust-shell ab™ Nap™ O ( ab p'ab ) 29

We put a number of spherica]ly symmgtric shells WhOS‘%/vhere the suffix *“+” denotes a quantity evaluated at the
centers are common at=0 (see Fig. 1 The innermost shell utside of the shell and " at the inside. Using Eq(2.5)
is called the first shell, the next one is called the second shel nd the Gauss-Codazzi reIationgnanb= — 3R+K bKab
a

and so on. The region enclosed by the-()th shell andth
shell is called theth region. Each shell is infinitesimally hell:
thin, characterized by the surface stress-energy tensor whic% '

—K?, one finds that the following relation holds for a dust-

is given by SP(K fp+Kap) =0. (2.6)
b= |im fﬂ'rabdx, (2.2 Combining Eqgs.(2.5) and (2.6) and substituting the ex-
e—0J € pression of the metric and the stress-energy tensor, we obtain
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the following equation for the circumferential radits(the
“expansion law” of the dust shell

dri)2_26M+(i)i (M_(i))2 G?mZ(i)
dr) T limdy) T T
(2.7)
whereM .. is defined by
L Mitmig
Mi(h=—7%—. (2.9
M_(i)=m; ;—m;, 2.9

PHYSICAL REVIEW 38 103504

Then the expansion law of the dust-shell is written as
1dr\% 8 ool % 8 o[
rdr) ~37enl) Tl
(2.19

We see that the first term behaves like a non-relativistic mat-
ter term in the Hubble equation of FL models, the second
and the third like a curvature and a radiation source term.
From this point of viewp; andk; play roles of the “energy
density” and the “curvature,” respectively. The radiation-
like term might be regarded as the effect of the binding en-
ergy of the shell14]. Further, it is worthwhile to note that
this radiation-like term is consistent with Futamase’s result

2 G%mi(i)

4rt

andr is the proper time of the shell. We have also introducedabout the effect of the small-scale inhomogeneities on the

the “baryonic” massmg(i) given byms(i)=47rsiri2 where
s; is the surface density of thigh shell;s;= —S3(i). It can

global cosmic expansiofd]. Seeing this, one may expect
that the inhomogeneities tend to make the Hubble parameter

be shown that this baryonic mass is a constant of motion blarger compared with a homogeneous universe which has the
the conservation lawgl.,=0, where the semicolon denotes Same “energy density” of non-relativistic matter. However,
the three-dimensional covariant derivative on the trajectonjhis radiation-like term does not necessarily imply the larger

of the shell.
In this paper, we shall use a common proper tirrfer all
the shells. The relation betweerand the time coordinate,

Hubble parameter. In order to see the effect of this term on
the Hubble parameter, we need to investigate the distance-
redshift relation by solving the null geodesic equations and

in Schwarzschild space-time is obtained as follows. Firstcompare the result in the inhomogeneous space-time and that
note that two Schwarzschild time coordinates are assigned @ the FL model. Such an analysis will be performed in the

each shell: theth shell has the timg ) measured in théth
region and ) measured in thei ¢+ 1)th region. Then, from

following sections.
A dust-shell universe is specified if we set the parameters

the normalization condition for the 4-velocity of a shell, we contained in Eq(2.15, i.e., p;, ki, X, and an initial hy-

obtain
dt ) ri L 2Gmi+l+ dr;\?]%2
dr ri—2Gm, 4 i E '
(2.10
dt_y ri L 2Gm  (dr;|?]2 -
dr - ri_ZGmi B I + E ( ) :D

The procedure to determine the initial points of each time

coordinate is described later.

B. The solution and initial condition

persurface. When we increase the number of the shells to
infinity with p; andk; being finite and independent ofwe
will mention this limit as “largeN limit” ), the dust-shell
universe approaches a FL model if we take an appropriate
initial hypersurface, as we will see in Sec. Ill. Then the pa-
rametergp; andk; agree with the ordinary energy density and
curvature in the Hubble equation.
We take

ki=0 (2.19
for all i in the remaining sections. This means that the in-
crease in the gravitational masg is equal to the baryonic
mass of the shell. In other words, the kinetic energy of the

In order to specify a dust-shell universe, we have to fixshell balances with the potential energy, and hence the total
the parameters in Eq2.7) and the initial hypersurface. We energy becomes equal to the rest mass. This is also the sim-
first rewrite Eq.(2.7) in the form corresponding to the plest case which approaches a flat FL model in the I&fge
Hubble equation of FL models. We denote the initial circum-limit. Choice of the other parameters and the initial hyper-

ferential radius of theth shell byx;, i.e.,

r;=x; oninitial hypersurface. (2.12
We definep; by
M+<i>zgmx?, (2.13
andk; by
(h:ng(i;))Z_ ~hod (214

surface will be discussed in Sec. lll.
For notational convenience, we shall introduce the follow-
ing quantities:

1
©wi=2Gm, ViEEGmS(i) and 0;=2GM_(i).

(2.19

From Egs.(2.8) and(2.9), the following relations hold:
Mi=0oi—2v;, (2.19
Mi+1= 03+ 20 (2.19
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Then the equation for the circumferential radius, of the
ith shell is written in the form

dl’i

dr

1

=—\oir+ Vzi )

fi

(2.20

PHYSICAL REVIEW D 58 103504
2Vi
U(t)i(ri):_z\/E 117(W+Uiivi)
I

o T

Ni=Tieyi—=Z(=)i

2(0,=2v;) (2.28

where we have assumed that each shell initially expands.

From Egs(2.10 and(2.11), the equations for the Schwarzs-
child time coordinates.y;, are obtained as

dt(t)i_ ri+vj

dr

(2.21

ri_O'iIZVi.

Thus, from Eqs(2.20 and(2.21), the equations for the re-
lations betweert .., andr; are given by

dt o) ri(ri=v)

dri a (ri_O'iIZVi)\IO'iri‘F Vi .

(2.22

The above equations can be integrated easily to give th

solution forr;> o= 2y, in the form

\ O'il’i‘f'Viz_(O'iiVi)

t(i)i(ri):(Uiizyi)ln\/g-iri+ Vi2+(0'ii v;)

FT)i(ri)+7+)is (2.23

where

2
T(i)i(ri): F(Uiri+30i2i3vi0'i—21/i2) \IO'iri+ Vi2,
i
(2.249

and7.);'s are integration constants.
There is a coordinate singularity on the Killing horizon;
t(+)i becomes infinite om;= o+ 2v;. For further calcula-

tion the null coordinate is convenient, since we are intereste
in the null geodesics in this space-time. Hence, we shal

2y,
Viayi(r)=+242 1i7il(\/0'iri+vi2_0'i$vi)

-

As expectedU . andV.; are finite onr;=o;*2v; and

are well defined also for;<o;*=2v;. When o;*=2v; is
larger tharr;, bothU ..y andV..); are negative. This means
that theith shell withr;<o;*2wv; is located in the white
hole part of the Schwarzschild space-time. This situation oc-
gurs for the shells beyond the horizon scale.

The determination of the integration constafits,; cor-
responds to the choice of the initial hypersurface. The pro-
cedure to construct the initial hypersurface we adopt is sum-
marized as follows; first, we choose a unit spacelike vector
/® which is directed outward in the ordinary sense with re-
spect tor. Taking this vector as a starting tangential vector,
we extend a spacelike geodesic curve until it reaches the
second shell. This spacelike geodesic curve defines the si-
multaneous hypersurface in the region between the first shell
and the second shell. Next we extend from this intersection
towards the third shell another spacelike geodesic which
starts from another spacelike vector at the second shell. This
second spacelike geodesic generates a spacelike hypersurface
in this region. Repeating this process, we complete the whole
initial hypersurface.

From the above procedure, the integration constant of Eq.
éz.zg is determined as follows. In thi¢h region, the tangent

ri+T(+)i+7z+)i) (2.29

Z(UiiZVi)

ector of the spacelike geodesic is written as

adopt the Kruscal null coordinate which has no coordinate

singularity. Outside the horizon in théh region,r > u; , the
Kruscal null coordinate is given by

—2\/2_Mi(r_ﬂi)llzexﬁ<

t—r
2

), (2.25

VE+2\/2_M(r—,Li)1’2exp<+%), (2.26)

L1-2) and /1= 1+E?—ﬂ, (2.30
r oor

and the other components vanish, whEyas an integration
constant associated with the geodesic equation and will be
determined by the condition which we will see in the next
section. From Eq(2.30, the equation for the trajectory of
the spacelike geodesic in ther) plane is given by

whereU andV correspond to the retarded time and the ad-

vanced time. Using these Kruscal coordinates, the line ele-

ment in theith region is expressed as

ds’=

R r
- ﬂex;{ - —)dUdV+r2d92. 2.27)
2r M

Similarly to the Schwarzschild time coordinate, two pairs

of Kruscal null coordinated) .; andV.,;, are assigned to
each shell. Using Eq2.23, we obtain the Kruscal null co-
ordinates labeling théth shell in the form

dt E;r32

-—= . (2.31
dr (r—pu) J(A+ED)r —p;
Integrating the above equation, we obtain
t:Fi(r)+Di, (232

where
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ErV(1+EDr — w This eq_yation determind®y,_; . Wg obtain the cir(_:umferen-
Fi(r)= VA EDr -, tial radii of all the shells at the intersection with the null
1+ Ei2 geodesic by the same procedure, i.e., by solving the follow-

ing recurrent relation:

V(A+ED)r— i —Er
+ wil _
piln /(1+Ei2)r—,u,i+Ei\/F Vini(R)=V)it1(Riz1). (2.39
We can determin®,; from the givenR; , ; through this equa-

Ei(3+2E) miIn(V(1+EDr— i+ V(L+EDD o,
+

(1+E2)32 ' In order to derive the expression of redshift, we first write
! down the components of the null geodesic tangent i the
(2.33 region,k*(i), which is given in the Kruscal null coordinate

as
and D; is an integration constant. Initially, we set,);
:t(*)i and t(t)1=0 Then, Sincet(,)i,l=Fi,1(Xi,1) U, 2r r
+Dj_q andt(;)i—1=Fi(xi-1) +D;, we find k (|)=;ex ; ;i , (2.40
I |
Di=Di_1+Fi_1(Xi-1) —Fi(xi-1), (234 and the other components vanish, whexds an integration

constant associated with the geodesic equation. We require
and D,=—F(x;). From the above recurrent relation, we that the observed frequency of the photon at each shell is
obtain uniquely determined. The observed frequeney(i), at the
ith shell is given by
i-1

D= —Fi(Xi,l)-i-jZZ [Fi(xj) —Fj(xj-1)]. (2.39

o) =~k (DU (= 20 L (2.4
2 dr
Using these relations, we obtain the integration constants,
T(+i, fori=2 as . S 1 dVi i
| wob(|+1)=—kﬂ(|)u(,)(|+1)=Ewi dr
Zi)izz [Fi(X))—Fj(Xj—1)]—=(oi=2v;) (242
=2 where
Voixitvi—(oi*v;)
><ln\/O'iXi-i- v+ (=) ~Teoi0a). (239 dVis)i _ 2(JoiRi+ 5 v)

dT \/UiiZViO'i

Ri+T)i(R)+7+)
% 2oran) ) 2B

and fori=1 as

Voixg+vi— (o1 vy)

T+ 1= —(Uli2V1)|r‘.
= Voix+ v+ (o= )

" Tn(xy). Equations(2.41) and(2.42) give the relation between i)
(2.37) andwy(i—1), fori=2, as

C. Redshift and diameter distance wor(1) = (i) wep(i—1), (2.49

We consider a light ray which is emitted from each shellwhere
toward an observer at the center. The light ray goes along a
future directed ingoing radial null geodesic, where “ingo- dv. . /dr
. " . . . (—)i
ing” refers to the direction from a shell toward shells labeled fliy=————+. (2.49
by a smaller number. dVis)i-1/d7

An ingoing radial null geodesic is specified by a constant_
V in the Kruscal null coordinate. The circumferential radius
of theith shell when it intersects the null geodesic is denoted 0)
by R; . The outermost shell considered here is labeleilby _ @ob =y
Then Ry=xy and hence in theMth region, V @on(1)= R, (Ryt+vit JoiRy +v7)=f(1) wey(0),
=V(_ym(xy) is satisfied along the null geodesic. Thus, on (2.49
the (M —1)th shell, the following relation holds

or the first region, a direct calculation leads to

where wq,(0) is the frequency of the light ray observed by
Vism-1(Ry-1) =V ym(Xnm). (2.38 an observer rest at the origin=0. Thus, using the above
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relations, we obtain the redshift of the light ray emitted from My
theith shell toward the observer restrat 0 in the form Ax= Ny (3.9
Wi [ whereNy is some positive integer. Here note thth=rH
1+2z()=—22=T] (). (2.47  and the following relation holds
wob(o) j=1
Our next task is to find the angular diameter-distatige ZGM—*(NH) =1. (3.5

The definition ofdy, is XNy

Hencer corresponds to the “mean Schwarzschild radius”
(2.48 of the Nyth and (N + 1)th regions.
' Before we proceed, we estimate the magnitude of the
radiation-like term in equatiof2.15. From Egs.(2.13 and

whereD is the physical length of the source perpendicular to(2.8) with m;=0, we find

the line of sight, and is the observed angular size. Since the

space we are considering is spherically symmetric, the diam- 1

eter distance from the observer at the center toitheshell Gmyp_1= —3(n—1)2(4n— Dry, (3.6)
agrees with the circumferential radi&® when the null geo- N

desic intersects it;

dAE

| O

1
. Gmy,= —n?(4n—3)ry, 3.
da(i)=R;. (2.49 o= g (A3 @7
We calculate thal,-z relation in the dust-shell universe wheren is a positive integer. From Eq§2.16), (2.14), and
using the relation$2.39, (2.47) and (2.49. (2.9, we findmy(i)=m, . ;—m; and obtain
I1l. RESULTS AND DISCUSSION 6n2—6n+1
. Gm(2n—1)= ————ry, (3.9
A. Setting the parameters of dust-shell model Na
As mentioned in the previous section, the choice of the
parameters and the initial hypersurface determines the be- 6n2
havior of a dust-shell universe. Since we are interested in Gmy2n)= — . (3.9
cases which have a FL limit, we set the parameters so that H

they approach a FL model in the larbelimit. ) S
For most cases described below, we set the mass distribdus, when we consider a largé limit with fixing X,
tion of shells as =ry(i/Ny), the baryonic masGmy(i)=0(Ny?) is re-
garded as a small quantity, compared witM, (i) and
pi=p. (independent ofi), (3.1) Qmi . That is, the radiation-like term is_ of ord(ar,]2 of the
first term and can be neglected whip is large.

at the initial slice. This is not unique, but the simplest case _ ) o
which goes to a FL model in the largeélimit. Using p., we B. Distance-redshift relation in “orthogonal” model
defineHgye andry by As described in the previous section, the choiceEpf
corresponds to choice of initial hypersurface. In a FL model,
the simultaneous hypersurface is orthogonal to the trajectory
thellzrﬁzz —pe. (3.2 of matter. Thus, we try choosing; so that the vector? is

3 orthogonal to the trajectory of each shéle will refer to

this choice as “model A’). From the conditioMau?+)(i
In terms of FL modelsH ¢, andry may be regarded as the _ 1)=0 atr=r,_,, we obtain

“Hubble constant” and “Hubble horizon radius.” However,

we cannot say anything at this stage about what relation they 1

zlzve with the Hubble constant and horizon scale of FL mod- E,= — o1+ Vi2—1' (3.10
. -

For x;, we put . . .
In Fig. 2 we plot the angular diameter distance as a func-

tion of redshift of each shell for various,; with a common

Xi( Tinit) =1AX (3.3 Hgheyin the case of model A. The total number of shélis
is taken to be Bl;. We emit a photon toward the center
with a constant intervahx from each shell so that every photon reaches the center si-
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5 T T T T T T T T T 5_I T T I T T T I T T ™)
4= . 4k .
ol _‘ 5l E
o [ ] Sl |
2 [ . ol .
1 - 1 _:
O-I L L | ] ] ] | L L L O-' L L | 1 1 1 | I I L
0 2 4 0 2 4
Z Z

FIG. 2. Angular diameter distance-redshift relation in dust-shell FIG. 3. Angular diameter distance-redshift refation in the dust-
universe for model A. Data points are connected by solid lines. Théhell universe for model A in the case Nf;=10 (solid line) and
definition of the models is summarized at the end of Sec. IIl. Thethat in the flat FL model withH;=H g and zi=2 (i=30) (long
number of shells within the initial Hubble horizaty, is 2, 5, 10, dashed ling We see that the deviation among them amounts to
and 50 from top to bottom around the maximum. The total numbe@Pout 10%. To see the difference in the shape of the curve, we also
of shellsN; is taken to be 8l,,. We also mark the data by dots in Plotted a FL curve with a Hubble parameter changed by 16f6:
the casedly=2 and 5. We see that all the curves are quite similar; =Hsner’ 0.9 (short dashed line We see that the slope at higher
the deviation among the curves is at most about 10%. On the othdgdshifts is steeper in the dust-shell universe than in the FL model.
hand, it can be also seen that the slope at higher redshifts becomes
steeper as we decrease the number of shells. The dashed line shows
thed,-z relation in the flat FL. model with;=Hgy. The redshift  Thys we can write the present Hubble parametgin terms

of the initial hypersurface is identified with the redshift of the out- of the initial Hubble parameteti; and redshiftz; as
ermost shell for the cagd;=150, i.e.,z;=z (i=150). The devia-

tion between the flat FL model and the dust-shell universe with
Nt=150 amounts to about 2% around the maximum of the curve.
H3=H?(1+2z) 2. (3.12

multaneously. We have obtained a surprising result that all
the curves are quite similar even in the case when we put
only two shells within the initial horizon radius; the devia- Theda-z relation in the flat FL model is calculated once we
tion among the curves is at most about 10%. On the otheiix H; andz;, since the relation is determined solely Hy.
hand, it can be also seen that the slope at higher redshifts The dashed line in Fig. 2 shows tlig-z relation in the
becomes steeper as we decrease the number of shells. ~ flat FL model with H;=Hguey. The redshift of the initial

We compare thel,-z relation in the dust-shell universe hypersurface is identified with the redshift of the outermost
obtained above with that of a FL model. We here adopt &hell for the caseNt=3Ny=150, i.e.,z=2(i=150). The
spatially flat FL model, since the “curvature” term in the deviation of the dust-shell universe from the flat FL model
expansion law of a dust-she{P.15 vanishes. Moreover, with Nt= 150 amounts to about 2% around the maximum of
when Ny, is large, the “radiation” term is negligible com- the curve. We have confirmed that the deviation from the FL
pared to the first term. Thus, in this paper, we focus on thénodel becomes small as we incredég. For smallerNy,
cases with largeN,,(=10), and compare them with a spa- however, the redshift of the outermost shell becomes small,

tially flat FL model filled only with non-relativistic matter. resulting in a largeH, from the relation(3.12. We show in

The cases with smahl,(<10) will be mentioned later. Fig. 3 thed,-z relation in the dust-shell universe in the case
The Hubble equation in this flat FL model is of Ny=10 (solid line) and that in the flat FL model with
H;=Hgney andz;=2z (i =30) (long dashed ling In this case,
S\ 2 the deviation amounts to about 10%. Moreover, the differ-
H2= a :§ G (3.19) ence lies not only in the normalization Bify, but also in the
a 3 PR ' shape of the curve. To see this, we also plotted a FL curve

(short dashed linewith a Hubble parameter changed by
with pg ca™ 3. The relation between the redshift and the 10%: H;=0.9X Hg.;. Note that the change in the Hubble
scale factor in FL models is tz=a,/a where subscript parameter of the FL model only results in the change in the
“0” denotes a value when the observer receives the photomnormalization of the curve. We see that the slope at higher
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redshifts is steeper in the dust-shell universe than in the Fiter. The averaged density is defined by dividing the mass
model. It is also clear from Fig. 2 that this tendency becomesgontained within some radius by the 3-volume on the hyper-
strong as we decreadd, . surface up to that radius. We will study the behavior of the
Thus, we can say that for large,, the flat FL model averaged density when the radius to take the average is
approximates the dust-shell universe quite well, but as wegradually increased, and discuss its relation with the
decreasdNy, this fit becomes poorer. distance-redshift relation.
In the next subsection we discuss the reason for this be- First let us consider the 3-volume on the initial hypersur-
havior by studying the behavior of averaged density, and trface defined in the previous section. From E2.30, the
to reduce the deviation from FL models without increasingintrinsic metric of the initial hypersurface is given by
NH .

r
C. Behavior of averaged density d/?zmdrzﬂ— r2dQ?2. (3.13
+EO)r — u;

We usually regard a FL model as a large-scale “average” ! Hi
of a locally inhomogeneous universe. We will study the re-
lation between the results obtained in the previous sectiok/sing the above line element, we obtain the spatial volume,
and an “averaged” density of the dust-shell universe. WeVol(i), of theith region {>1) on the initial slice in the

consider an averaged density around the observer at the cefiorm

5/2

T r
VoI(i)=4wf —————dr
ricaV(I+EDr—
[5/2 5r32,,. 5\/F,U«2 i
— 4| JA+EDr — 1 L N : (314
3(1+E?) 121+E?? 8(1+E?)3® )
Smu} VA+ED)r— wi+ (1+ED)r,
+ . 7/2'” . . (3.1
2(1+E?) VA+E?) 1 — i+ V(A+EDr_,
|
Fori=1, Vol(1) is equal to 4rr§/3. The reason is explained as follows. The voluie between

Using this volume, we define the averaged deng{iy as i andr;.;=r;+Ar is expanded in terms afr as
follows. We sum the baryonic masses up to the 1)th oA A
shell and half of theth shell, and divided the sum by the \,_,4 f - Yr2dr=a f’i e r2dr
3-volume inside théth shell: 7, W i i}

fi

ri+Ar
p)={myi)2+ > ms(j)]/Z Vol(k). —47Tf 1"(ri) {17 (r)} ~2(r—rprédr+.--., (3.17)
jsi—1 k=i i

rI
(3.19 - .
wherel" =dI"/dr. Substituting the expression bf we can

It seems natural to take this sum of masses in averagingXPandV in terms of 1N, to find
since the motion of théth shell is approximately determined
by the sum of the gravitational mass inside the shelich
agrees with the sum of baryonic masses up toX)th shell

and half of its baryonic mass; the numerator in the above
definition is the same witM , (i) which appears in the first we see that the volume becomes larger than that of a homo-
term in the expansion lau2.7). We plotted in Fig. 4 the geneous model. This effect is significant especially when
averaged density(i) for the model described in the previ- >N, i.e., beyond the horizon scale, which explains the be-

V=4mr2Ar (3.18

1+1 ! +
2Nz

ous section. As expecteg(i) is almost constant near,, havior of the averaged density at larige Fig. 4. From this
which may explain the reason the deviationdgfz relation  figure, one may think we can reduce the deviation from the
in the dust-shell models from the FL curves is small. FL model by adjusting the expansion law so that the aver-

However, the averaged density becomes slightly smalleaged density is a constant value. We plotteddhe relation
at the outside region tham,. defined by the expansion law. in this case(model B and the corresponding FL curve for
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FIG. 5. Angular diameter distance-redshift relation in the dust-
shell universe for model B in the case Nf;=10 (solid line) and
that in the flat FL model wittH;=Hg,e, andz;=z (i=30) (long
dashed ling For comparison, we also showed the curve in the
dust-shell universe for model fshort dashed line We see that the
difference in the normalization between the dust-shell universe and
the FL model is reduced, but the difference in the shape of the curve
'Hsenot reduced compared with Fig. 3.

FIG. 4. Averaged density normalized byp, in the casesN
=2, 5, 10, and 50 for model A. We connect the data by solid lines
We also mark the data by dots in the caBlgs=2 and 5. The curve
which is smaller at largé corresponds to the curve with smaller
Ny . We see that the averaged dengity) is almost constant near
pe, especially for small, which may explain that the deviation of
da-z relation in the dust-shell models from the FL curves is small.
One also notices that the averaged density becomes smaller at t
outside region tham.. The interpretation of this behavior is dis-

cussed in the text. Here we check whether the assumption of constant inter-

val Ax=ry/Ny is essential or not. We try some patterns of
the initial circumferential radius of the shellg, for in-
Ny=10 in Fig. 5(the solid line and the long dashed ljne stance,
We adjustp; in the expansion law iteratively so that the

relation Xi+1=x;+hxa', (3.2)
3 whereh anda are some positive constants aae 1. When
p(i)= %the“ (3.19 a>1(<1l1), the distribution of shells becomes sparser

(densey for largeri. We have found that the results are
unchanged. We also try another pattern

is satisfied. As a resulp; is not homogeneous; it increases

asi increasesFig. 6). From Fig. 5, we see that the difference Xon=2NnXAX, (3.22
between the dust-shell universe and the FL model remains
the same as Fig. 3, although the averaged density is indeed a Xont 1= (2N+1) X AXx+aAX, (3.23

constant.

with a# 0. We plotted the result whedy= 10, N;=30, and
a=0.05(model D in Fig. 92 We can see that the deviation
from the FL model remains small.

We can take another interesting choice; the expansion law
is homogeneoukharacterized by.), and the averaged den-
sity is also homogeneous, but each quantity differs:ap
(3.20 ]Emodel B. This is realized by imposing a condition of the

orm

D. Cases with homogeneous averaged density field

We can take an initial hypersurface in which bgthand
p(i) is homogeneous by requiring the relation

Vol<i>=4§(r?—r?_1>.

We plot thed,-z relation of this mode(model Q in Fig. 7.

Comparing with Fig. 2, we see that the difference among the ?There is a maximum im according toN; when we impose the
curves is reduced. Figure 8 illustrates the good agreemembndition p(i)=p;=p.; if we increaseN;, the maximum value
between thal,-z relations of the dust-shell model and a FL allowed fora becomes small. The value afadopted here is about
model for the cas®&=10. the maximum value foN;=3Ny.
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(o]

FIG. 8. Angular diameter distance-redshift relation in the dust-
shell universe for model C in the case Nf;= 10 (solid line) and

model liWe see that; increases asincreases, while the averaged h4t in the flat FL model WithH; = Hpep and z=z (i = 30) (dashed
densityp is indeed a constant.

Vol(i>=a4§(r?—r?_1>.

line). This illustrates the good agreement betweerdthe relations
of the dust-shell model and of a FL model for the chge=10.

(3.29

stant” [Eq.(3.2)], i.e.,H;=Hgpe, and the lower one uses the
parameter changed by the same amount with the change in

with a#1. In Fig. 10, we show the result in the cag  the volume, i.e.H?=H2 ,xa !. We see that the shape of

shel

=10 anda=0.93(solid line). The dashed lines are curves in the curve differs from a FL curve&ompare with Fig. 8 This
a FL model. The upper one uses the original “Hubble con-indicates that the averaged density should agree wijth

which determines the expansion law, in order for thez

S L A B S B relation to behave like that of a FL model. It should be also
: : 5 T T T T T T T T T
4 - 7 i i
- ] a b -
3 = L i
5 0 ] i i
- ] 3 - —
2 — <« I i
i ] S :
I i 2 —
1 . i
1 ] 1 -
O 1 1 1 | | | | | 1 1 1 :
0 2 4 i
. . z . . . O i 1 1 1 | | | | | 1 1 1 ]
FIG. 7. Angular diameter distance-redshift relation in dust-shell 0 o 4

universe for model C. The number of shells within the initial

Hubble horizonNy is 2, 5, 10, and 50. The total number of shells

N7 is taken to be Bl,;. Data points are connected by solid lines.  FIG. 9. Angular diameter distance-redshift relation in the dust-
We also mark the data by dots in the cabes=2 and 5. Compar- shell universe for model D in the case Wf;=10 (solid line and
ing with Fig. 2, we see that the difference among the curves ipointg and that in the flat FL model withH;=Hg, and z;=z
reduced so that it is hard to distingush the curvesNgr=5, 10, (i=30) (dashed ling We can see that the deviation from the FL

and 50.

model remains small.
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5 T T Model E: The averaged densipfi) and the parametgr,

are homogeneous, buyi(i)#p;. The d,-z relation of the
dust-shell universe shows mild deviation from the FL curve
(Fig. 10.

From these results, we conclude that thez relation in a
dust-shell universe looks like a flat FL universe, when the
expansion law resembles the flat FL model, and the behavior
of averaged density field is scale-independent when we in-
crease the scale of averaging, and the averaged density
agrees wittp.. This statement seems to be valid even in the
cases with quite small number of the shells. However, the
situation is not so simple. In small, cases, the radiation-
like term in the expansion law cannot be neglected. One may
expect that a FL model with radiation term gives a better
fitting to those cases, but we have found this does not work.
T This implies that we cannot tell the effect of homogeneities
0 just by studying the expansion law. We need more detailed
study to this problem, which is left for our future work.

We also note that in spatially flat cases the gravitational

FIG. 10. Angular diameter distance-redshift relation in the dustmass and the baryonic mass coincide; whether we use the
shell universe for model E in the case Mf;=10 (solid ling) and  baryonic mass or gravitational mass in defining the averaged
that in the flat FL model wittH;=Hgpe and z;=2z (i=30) (short  density, the result is the same. In cases where those masses
dashed |In§3 The Iong dashed line is the FL curve with the Hubble are different’ we have to be careful in determining the aver-
parameter changed by the same amount with the change in thgged density when we try to construct a FL model which fits
volume, i.e.Hf=HZ¢xa *. Comparing with Fig. 8, we see that 5 qust-shell universe. In order to clarify which mass we

the shape of the curve differs from a FL curve. This indicates thathould use to construct a fitting FL model, we have to study
the averaged density should agree withwhich determines the o - 00K cases, which will also be done in our future
expansion law, in order for theé,-z relation to behave like that of paper '

a FL model. Also note that the FL curve with the changed Hubble
parameter(long dashed lingis closer to the curve in dust-shell
universe than the othéshort dashed line The interpretation of this
behavior is discussed in the text.

o
N
'S
(]

IV. SUMMARY

We have studied the behavior @f-z relation in a spheri-
cally symmetric dust-shell universe where the mass distribu-
] tion is discrete. We have compared the relation of dust-shell
noted that the FL curve with the changed Hubble parameteiinjverse with that of FL models, and discussed the relation
is closer to the curve in dust-shell universe than the othefyith the behavior of averaged density. We have seen that the
This may indicate that the “observed” Hubble parameter isy .z relation observed at the center agrees well with that of
closer to the averaged densjy rather tharp. which deter- 3 flat FL model if the following conditions are satisfig()

mines the expansion law. the expansion law of the circumferential radius of the shells
resembles the Hubble equation of a spatially flat FL model,
E. Summary of models and conclusions (ii) the behavior of averaged density around the observer at
_ the center is scale-independent as we increase the scale on
Here we summarize our results. which we take the average, arfiii) the averaged density

Model A: The initial hypersurfacg is orthogonal to each agrees with the energy density of the FL model. We have
trajectory of shells and the expansion law is homogeneous;isg seen that the choice of initial hypersurface relates the
pi=pc- Theda-z relation of the dust-shell universe shows expansion law to the averaged density.
deviation from the FL curve, especially whédy is small The effect of discreteness of mass distribution appears in
(Figs. 2,3. The averaged densify is not constantFig. 4. the equation of motion of each dust-shell. This effect be-

Model B: We adjusip; so thatp=p. is satisfied(Fig. 6) comes smaller as we increase the number density of shell.
on the same initial hypersurface as Model A. The deviationVe conclude the discreteness of matter distribution itself is
from the FL curve is not reducedFig. 5). of no significance in this model in discussing the observed

Model C: We choose the initial hypersurface so that thequantities such ad, andz, as long as the expansion law and
relation p(i)=p;=p. is satisfied. Thed,-z relation of the the averaged density field is homogeneous in the sense de-
dust-shell universe shows good agreement with the FL curvecribed above. This supports the averaging hypothesis that a
(Figs. 7,8. universe is described by a FL model if the universe is homo-

Model D: The choice of the initial hypersurface is the geneous when the density is averaged on some scale larger
same as Model C, but the interval of the shells is not constarthan the scale of the inhomogeneities.

[Egs. (3.22,(3.23]. The deviation ofds-z relation of the We need, however, further discussion for the cases when
dust-shell universe from the FL curve remains srfaid. 9). the number of shells is extremely small, and when the cur-
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vature term does not vanish. We also note that it will be ACKNOWLEDGMENTS

interesting to study cases where the averaged density is in-
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