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Distance-redshift relation in an isotropic inhomogeneous universe:
Spherically symmetric dust-shell universe

Norimasa Sugiura,* Ken-ichi Nakao,† and Tomohiro Harada‡

Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
~Received 26 May 1998; published 8 October 1998!

The relation between the angular diameter distance and redshift (dA-z relation! in a spherically symmetric
dust-shell universe is studied. This model has large inhomogeneities of matter distribution on small scales. We
have discovered that the relation agrees with that of an appropriate Friedmann-Lemaıˆtre ~FL! model if we set
a ‘‘homogeneous’’ expansion law and a ‘‘homogeneous’’ averaged density field. This will support the aver-
aging hypothesis that a universe looks like a FL model in spite of small-scale fluctuations of density field, if its
averaged density field is homogeneous on large scales.@S0556-2821~98!09320-5#

PACS number~s!: 98.80.Es, 04.30.Nk, 04.50.1h, 95.30.Sf
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I. INTRODUCTION

The standard big bang model is based on the assump
of the homogeneous and isotropic distribution of matter a
radiation. This assumption then leads to the Roberts
Walker ~RW! space-time geometry and the Friedman
Lemaı̂tre ~FL! universe model1 through the Einstein equa
tions. This model has succeeded in explaining vario
important observational facts: Hubble’s expansion law,
content of light elements and the isotropy of the cosmic
crowave background radiation~CMBR! @1#.

The CMBR conversely gives a strong observational ba
for the assumption of homogeneity and isotropy of our u
verse by its highly isotropic distribution together with th
Copernican principle. Indeed, the deviation of our unive
from a homogeneous and isotropic space is as small as 125

@2# at the stage of decoupling. Thus our universe is w
approximated by a FL model before this stage. On the o
hand, the present universe is highly inhomogeneous on s
scales; the density contrast is of the order of 1030 in the solar
system, 105 on galactic scales, and of the order of unity ev
on the scale of superclusters. We have to go beyond
models in considering such systems.

For a long time, we have regarded that a FL model i
large-scale ‘‘average’’ of a locally inhomogeneous unive
~averaging hypothesis!. Even though the observational da
are consistent with the picture that our universe is descri
well by a RW metric, we are not sure how to derive t
background FL model from the inhomogeneous universe
any averaging procedure, or how the non-linear inhomo
neities on small scales affect large-scale behavior of the
verse@3#. Although one can derive a background FL mod
from observations of the nearby galaxies with any rule

*Email address: sugiura@tap.scphys.kyoto-u.ac.jp
†Email address: nakao@tap.scphys.kyoto-u.ac.jp
‡Email address: harada@tap.scphys.kyoto-u.ac.jp
1We use the term ‘‘Robertson-Walker space-time’’ when we

cus on geometrical aspects of a homogeneous and isotropic m
and ‘‘Friedmann-Lemaıˆtre model’’ when we discuss its dynamic
and observable quantities.
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averaging one likes, it is uncertain whether this backgrou
FL model agrees with the FL model whose cosmologi
parameters were defined at the stage of decoupling. The
crepancies might appear, for example, in the estimate of
density of baryonic matter, the density parameter, the ag
our universe, and so on. These still remain a non-trivial qu
tion to which we have to give a clear answer.

A number of approaches have been made to study h
the small-scale inhomogeneities affect the global dynam
when averaged on larger scales@4–7#. The first work which
explicitly showed the existence of such an effect was p
formed by Futamase@4#. Assuming small deviation of the
space-time geometry from the RW one, Futamase c
structed an elegant formalism by the use of the po
Newtonian expansion and Isaacson’s prescription to take
account the back reaction of the small-scale inhomogene
on the global cosmic expansion. After his works, Buch
and Ehlers@5# studied this back reaction problem in th
framework of the Newtonian cosmology in which the corr
sponding background FL model is uniquely determin
through the spatial averaging of physical quantities with
any uncontrolled approximation. They showed that inhom
geneities do not influence the overall expansion in spati
compact models~the topology of its spatial section isT3) if
they are averaged over the whole space. In other cases
significance of inhomogeneities may depend on the cosm
ogy one adopts. Another interesting approach has been m
by Carfora and Piotrkowska@7#, in which three-dimensiona
geometry is deformed according to the Ricci-Hamiltoni
flow which they say would be equivalent to changing t
scale of averaging. They derive a homogeneous geom
which corresponds to a large-scale average of an inhom
neous universe, and discussed the effect of inhomogene
on the cosmological parameters.

In spite of these works, the effect of inhomogeneities
the cosmological parameters remains unclear; there are
apparent discrepancies in their statements. The reason s
to lie in the different definition of back reaction of inhomo
geneities@8#; its definition is ambiguous since they do n
treat observable quantities in these works. Thus, in orde
understand clearly the effects of inhomogeneities, it is n
essary to relate them with physical quantities which we c
give an unambiguous definition.

-
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Bildhauer @9# showed that the global cosmic expansi
rate is not isotropic if the back reaction of small-scale inh
mogeneities are taken into account and then investigate
observational effects on the CMBR. After this wor
Bildhauer and Futamase@10# discussed the possibility tha
the observed dipole anisotropy in the CMBR comes fr
this effect. These works are significant in the sense that
back reactions on the observable quantities were discus
but they did not consider the cases where we try to determ
the cosmological parameters by observing an inhomo
neous universe.

In this paper, we investigate the relation between dista
and redshift in an inhomogeneous universe. As an inho
geneous model, we take a spherically symmetric dust-s
model, in which light rays travel from each dust shell towa
an observer at the center. We calculate angular diam
distance-redshift (dA-z) relation and compare it with that o
a FL model. Our main goal in this paper is to clarify th
condition under which the distance-redshift relation of
dust-shell universe behaves like that of a FL model. We
vestigate the behavior of the averaged density around
observer at the center when we gradually extend the a
aged region to the outer shells, and discuss the rela
among the behavior of the averaged density, the energy
sity of the FL model, and the observed distance-redshift
lation.

We note two interesting points of a dust-shell mod
First, its dynamics is exactly solved; it is not necessary
assume the existence of homogeneous background in o
to obtain the behavior of density fluctuations. Secondly
can treat a discrete mass distribution where the linear pe
bation theory is invalid, and can also treat a highly gene
relativistic situation where the scale of inhomogeneities
comparable to the horizon scale.

The organization of this paper is as follows. In the ne
section, we present basic equations for the dynamics
dust-shell universe, distance to the shells from the cen
and redshift of the shells measured by an observer at
center. We give our results and discussion ondA-z relation
and averaged density in Sec. III, followed by concludi
remarks in Sec. IV.

We follow the sign convention of the Riemann tensor a
the metric tensor in@11# and adopt the unit ofc51.

II. FORMULATION OF DUST-SHELL UNIVERSE

A. Equation of motion of dust-shell

We put a number of spherically symmetric shells who
centers are common atr 50 ~see Fig. 1!. The innermost shel
is called the first shell, the next one is called the second s
and so on. The region enclosed by the (i 21)th shell andi th
shell is called thei th region. Each shell is infinitesimally
thin, characterized by the surface stress-energy tensor w
is given by

Sab[ lim
e→0

E
2e

1e

Tabdx, ~2.1!
10350
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wherex is a Gaussian coordinate (x50 on the shell! in the
direction normal to the shell.

Since each region between the shells is vacuum,
space-time is described by the Schwarzschild geometry
the Birkhoff’s theorem. The line element in thei th region is
written in the form

dsi
252S 12

2Gmi

r Ddt21S 12
2Gmi

r D 21

dr21r 2dV2,

~2.2!

where the parametermi will be referred to as a gravitationa
mass (m150), anddV is the line element of a unit sphere

We first derive the expansion law of thei th shell follow-
ing @12–15#. Let na be a unit space-like vector normal to th
trajectory of the shell, and define the projection operatorha

b

[da
b2nanb. From the projected Einstein equation

Rabhc
ahd

b58pGS Tab2
1

2
gabTDhc

ahd
b , ~2.3!

one obtains

£nKcd1 3Rcd2KKcd58pGS Tabhc
ahd

b2
1

2
hcdTD ,

~2.4!

where £n is the Lie derivative alongna and 3Rcd is the
three-dimensional Ricci tensor on the timelike hypersurfa
generated by the motion of the shell. The extrinsic curvat
Kab is defined by Kab52 1

2 ha
chb

d£nhcd , and K5Ka
a , T

5Ta
a . Integration of Eq.~2.4! over an infinitesimal range

alongna yields

Kab
1 2Kab

2 58pGS Sab2
1

2
habSD , ~2.5!

where the suffix ‘‘1’’ denotes a quantity evaluated at th
outside of the shell and ‘‘2 ’’ at the inside. Using Eq.~2.5!
and the Gauss-Codazzi relation 2Gabn

anb52 3R1KabK
ab

2K2, one finds that the following relation holds for a dus
shell:

Sab~Kab
1 1Kab

2 !50. ~2.6!

Combining Eqs.~2.5! and ~2.6! and substituting the ex
pression of the metric and the stress-energy tensor, we ob

FIG. 1. Dust-shell universe.
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the following equation for the circumferential radiusr i ~the
‘‘expansion law’’ of the dust shell!:

S dri

dt D 2

5
2GM1~ i !

r i
1F S M 2~ i !

ms~ i ! D 2

21G1
G2ms

2~ i !

4r i
2

,

~2.7!

whereM 6 is defined by

M 1~ i ![
mi1mi 11

2
, ~2.8!

M 2~ i ![mi 112mi , ~2.9!

andt is the proper time of the shell. We have also introduc
the ‘‘baryonic’’ massms( i ) given byms( i )54psir i

2 where
si is the surface density of thei th shell;si52Sa

a( i ). It can
be shown that this baryonic mass is a constant of motion
the conservation law,Sa

b
;b50, where the semicolon denote

the three-dimensional covariant derivative on the traject
of the shell.

In this paper, we shall use a common proper timet for all
the shells. The relation betweent and the time coordinate,t,
in Schwarzschild space-time is obtained as follows. Fi
note that two Schwarzschild time coordinates are assigne
each shell: thei th shell has the timet (2) i measured in thei th
region andt (1) i measured in the (i 11)th region. Then, from
the normalization condition for the 4-velocity of a shell, w
obtain

dt~1 !i

dt
5S r i

r i22Gmi 11
D F12

2Gmi 11

r i
1S dri

dt D 2G1/2

,

~2.10!

dt~2 !i

dt
5S r i

r i22Gmi
D F12

2Gmi

r i
1S dri

dt D 2G1/2

. ~2.11!

The procedure to determine the initial points of each ti
coordinate is described later.

B. The solution and initial condition

In order to specify a dust-shell universe, we have to
the parameters in Eq.~2.7! and the initial hypersurface. W
first rewrite Eq. ~2.7! in the form corresponding to th
Hubble equation of FL models. We denote the initial circu
ferential radius of thei th shell byxi , i.e.,

r i5xi on initial hypersurface. ~2.12!

We definer i by

M 1~ i ![
4

3
pr ixi

3 , ~2.13!

andki by

S M 2~ i !

ms~ i ! D 2

[12kixi
2 . ~2.14!
10350
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Then the expansion law of the dust-shell is written as

S 1

r i

dr i

dt D 2

5
8

3
pGr i S xi

r i
D 3

2ki S xi

r i
D 2

1
G2ms

2~ i !

4r i
4

.

~2.15!

We see that the first term behaves like a non-relativistic m
ter term in the Hubble equation of FL models, the seco
and the third like a curvature and a radiation source te
From this point of view,r i andki play roles of the ‘‘energy
density’’ and the ‘‘curvature,’’ respectively. The radiation
like term might be regarded as the effect of the binding
ergy of the shell@14#. Further, it is worthwhile to note tha
this radiation-like term is consistent with Futamase’s res
about the effect of the small-scale inhomogeneities on
global cosmic expansion@4#. Seeing this, one may expec
that the inhomogeneities tend to make the Hubble param
larger compared with a homogeneous universe which has
same ‘‘energy density’’ of non-relativistic matter. Howeve
this radiation-like term does not necessarily imply the larg
Hubble parameter. In order to see the effect of this term
the Hubble parameter, we need to investigate the dista
redshift relation by solving the null geodesic equations a
compare the result in the inhomogeneous space-time and
of the FL model. Such an analysis will be performed in t
following sections.

A dust-shell universe is specified if we set the parame
contained in Eq.~2.15!, i.e., r i , ki , xi , and an initial hy-
persurface. When we increase the number of the shell
infinity with r i andki being finite and independent ofi ~we
will mention this limit as ‘‘largeN limit’’ !, the dust-shell
universe approaches a FL model if we take an appropr
initial hypersurface, as we will see in Sec. III. Then the p
rametersr i andki agree with the ordinary energy density an
curvature in the Hubble equation.

We take

ki50 ~2.16!

for all i in the remaining sections. This means that the
crease in the gravitational massmi is equal to the baryonic
mass of the shell. In other words, the kinetic energy of
shell balances with the potential energy, and hence the t
energy becomes equal to the rest mass. This is also the
plest case which approaches a flat FL model in the largN
limit. Choice of the other parameters and the initial hyp
surface will be discussed in Sec. III.

For notational convenience, we shall introduce the follo
ing quantities:

m i[2Gmi , n i[
1

2
Gms~ i ! and s i[2GM1~ i !.

~2.17!

From Eqs.~2.8! and ~2.9!, the following relations hold:

m i5s i22n i , ~2.18!

m i 115s i12n i . ~2.19!
4-3
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Then the equation for the circumferential radius,r i , of the
i th shell is written in the form

dri

dt
5

1

r i
As i r i1n i

2, ~2.20!

where we have assumed that each shell initially expan
From Eqs.~2.10! and~2.11!, the equations for the Schwarz
child time coordinates,t (6) i , are obtained as

dt~6 !i

dt
5

r i7n i

r i2s i72n i
. ~2.21!

Thus, from Eqs.~2.20! and ~2.21!, the equations for the re
lations betweent (6) i and r i are given by

dt~6 !i

dr i
5

r i~r i7n i !

~r i2s i72n i !As i r i1n i
2

. ~2.22!

The above equations can be integrated easily to give
solution for r i.s i62n i in the form

t ~6 !i~r i !5~s i62n i !ln
As i r i1n i

22~s i6n i !

As i r i1n i
21~s i6n i !

1T~6 !i~r i !1T~6 !i , ~2.23!

where

T~6 !i~r i !5
2

3s i
2 ~s i r i13s i

263n is i22n i
2!As i r i1n i

2,

~2.24!

andT(6) i ’s are integration constants.
There is a coordinate singularity on the Killing horizo

t (6) i becomes infinite onr i5s i62n i . For further calcula-
tion the null coordinate is convenient, since we are interes
in the null geodesics in this space-time. Hence, we s
adopt the Kruscal null coordinate which has no coordin
singularity. Outside the horizon in thei th region,r .m i , the
Kruscal null coordinate is given by

U[22A2m i~r 2m i !
1/2expS 2

t2r

2m i
D , ~2.25!

V[12A2m i~r 2m i !
1/2expS 1

t1r

2m i
D , ~2.26!

whereU andV correspond to the retarded time and the a
vanced time. Using these Kruscal coordinates, the line
ment in thei th region is expressed as

dsi
252

m i

2r
expS 2

r

m i
DdUdV1r 2dV2. ~2.27!

Similarly to the Schwarzschild time coordinate, two pa
of Kruscal null coordinates,U (6) i andV(6) i , are assigned to
each shell. Using Eq.~2.23!, we obtain the Kruscal null co
ordinates labeling thei th shell in the form
10350
s.

e

d
ll
e

-
e-

U ~6 !i~r i !522A2A16
2n i

s i
~As i r i1n i

21s i6n i !

3expS r i2T~6 !i2T~6 !i

2~s i62n i !
D , ~2.28!

V~6 !i~r i !512A2A16
2n i

s i
~As i r i1n i

22s i7n i !

3expS r i1T~6 !i1T~6 !i

2~s i62n i !
D . ~2.29!

As expected,U (6) i andV(6) i are finite onr i5s i62n i and
are well defined also forr i,s i62n i . When s i62n i is
larger thanr i , bothU (6) i andV(6) i are negative. This mean
that the i th shell with r i,s i62n i is located in the white
hole part of the Schwarzschild space-time. This situation
curs for the shells beyond the horizon scale.

The determination of the integration constantsT(6) i cor-
responds to the choice of the initial hypersurface. The p
cedure to construct the initial hypersurface we adopt is su
marized as follows; first, we choose a unit spacelike vec
l a which is directed outward in the ordinary sense with
spect tor . Taking this vector as a starting tangential vect
we extend a spacelike geodesic curve until it reaches
second shell. This spacelike geodesic curve defines the
multaneous hypersurface in the region between the first s
and the second shell. Next we extend from this intersec
towards the third shell another spacelike geodesic wh
starts from another spacelike vector at the second shell.
second spacelike geodesic generates a spacelike hypersu
in this region. Repeating this process, we complete the wh
initial hypersurface.

From the above procedure, the integration constant of
~2.23! is determined as follows. In thei th region, the tangen
vector of the spacelike geodesic is written as

l t5Ei S 12
m i

r D 21

and l r5A11Ei
22

m i

r
, ~2.30!

and the other components vanish, whereEi is an integration
constant associated with the geodesic equation and wil
determined by the condition which we will see in the ne
section. From Eq.~2.30!, the equation for the trajectory o
the spacelike geodesic in the (t,r ) plane is given by

dt

dr
5

Eir
3/2

~r 2m i !A~11Ei
2!r 2m i

. ~2.31!

Integrating the above equation, we obtain

t5Fi~r !1Di , ~2.32!

where
4-4
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DISTANCE-REDSHIFT RELATION IN AN ISOTROPIC . . . PHYSICAL REVIEW D58 103504
Fi~r !5
EiArA~11Ei

2!r 2m i

11Ei
2

1m i lnS A~11Ei
2!r 2m i2EiAr

A~11Ei
2!r 2m i1EiAr

D
1

Ei~312Ei
2!m i ln„A~11Ei

2!r 2m i1A~11Ei
2!r …

~11Ei
2!3/2

,

~2.33!

and Di is an integration constant. Initially, we sett (1) i
5t (2) i and t (6)150. Then, since t (2) i 215Fi 21(xi 21)
1Di 21 and t (1) i 215Fi(xi 21)1Di , we find

Di5Di 211Fi 21~xi 21!2Fi~xi 21!, ~2.34!

and D152F1(x1). From the above recurrent relation, w
obtain

Di52Fi~xi 21!1(
j 52

i 21

@F j~xj !2F j~xj 21!#. ~2.35!

Using these relations, we obtain the integration consta
T(6) i , for i>2 as

T~6 !i5(
j 52

i

@F j~xj !2F j~xj 21!#2~s i62n i !

3 ln
As ixi1n i

22~s i6n i !

As ixi1n i
21~s i6n i !

2T~6 !i~xi !, ~2.36!

and for i 51 as

T~6 !152~s162n1!ln
As1x11n1

22~s16n1!

As1x11n1
21~s16n1!

2T~6 !1~x1!.

~2.37!

C. Redshift and diameter distance

We consider a light ray which is emitted from each sh
toward an observer at the center. The light ray goes alon
future directed ingoing radial null geodesic, where ‘‘ing
ing’’ refers to the direction from a shell toward shells label
by a smaller number.

An ingoing radial null geodesic is specified by a const
V in the Kruscal null coordinate. The circumferential radi
of the i th shell when it intersects the null geodesic is deno
by Ri . The outermost shell considered here is labeled byM .
Then RM5xM and hence in the M th region, V
5V(2)M(xM) is satisfied along the null geodesic. Thus,
the (M21)th shell, the following relation holds

V~1 !M21~RM21!5V~2 !M~xM !. ~2.38!
10350
s,

l
a

t

d

This equation determinesRM21 . We obtain the circumferen
tial radii of all the shells at the intersection with the nu
geodesic by the same procedure, i.e., by solving the follo
ing recurrent relation:

V~1 !i~Ri !5V~2 !i 11~Ri 11!. ~2.39!

We can determineRi from the givenRi 11 through this equa-
tion.

In order to derive the expression of redshift, we first wr
down the components of the null geodesic tangent in thei th
region,km( i ), which is given in the Kruscal null coordinat
as

kU~ i !5
2r

m i
expS r

m i
Dv i , ~2.40!

and the other components vanish, wherev i is an integration
constant associated with the geodesic equation. We req
that the observed frequency of the photon at each she
uniquely determined. The observed frequency,vob( i ), at the
i th shell is given by

vob~ i !52km~ i !u~1 !
m ~ i !5

1

2
v i

dV~1 !i

dt
, ~2.41!

vob~ i 11!52km~ i !u~2 !
m ~ i 11!5

1

2
v i

dV~2 !i 11

dt
,

~2.42!

where

dV~6 !i

dt
5

A2~As iRi1n i
27n i !

As i
262n is i

3expS Ri1T~6 !i~Ri !1T~6 !i

2~s i62n i !
D . ~2.43!

Equations~2.41! and~2.42! give the relation betweenvob( i )
andvob( i 21), for i>2, as

vob~ i !5 f ~ i !vob~ i 21!, ~2.44!

where

f ~ i ![
dV~2 !i /dt

dV~1 !i 21 /dt
. ~2.45!

For the first region, a direct calculation leads to

vob~1!5
vob~0!

R1
~R11n11As1R11n1

2![ f ~1!vob~0!,

~2.46!

wherevob(0) is the frequency of the light ray observed b
an observer rest at the originr 50. Thus, using the above
4-5
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SUGIURA, NAKAO, AND HARADA PHYSICAL REVIEW D 58 103504
relations, we obtain the redshift of the light ray emitted fro
the i th shell toward the observer rest atr 50 in the form

11z~ i !5
vob~ i !

vob~0!
5)

j 51

i

f ~ j !. ~2.47!

Our next task is to find the angular diameter-distancedA .
The definition ofdA is

dA[
D

u
~2.48!

whereD is the physical length of the source perpendicular
the line of sight, andu is the observed angular size. Since t
space we are considering is spherically symmetric, the di
eter distance from the observer at the center to thei th shell
agrees with the circumferential radiusRi when the null geo-
desic intersects it;

dA~ i !5Ri . ~2.49!

We calculate thedA-z relation in the dust-shell univers
using the relations~2.39!, ~2.47! and ~2.49!.

III. RESULTS AND DISCUSSION

A. Setting the parameters of dust-shell model

As mentioned in the previous section, the choice of
parameters and the initial hypersurface determines the
havior of a dust-shell universe. Since we are interested
cases which have a FL limit, we set the parameters so
they approach a FL model in the largeN limit.

For most cases described below, we set the mass dist
tion of shells as

r i5rc ~ independent ofi !, ~3.1!

at the initial slice. This is not unique, but the simplest ca
which goes to a FL model in the largeN limit. Using rc , we
defineHshell and r H by

Hshell
2 [r H

22[
8pG

3
rc . ~3.2!

In terms of FL models,Hshell andr H may be regarded as th
‘‘Hubble constant’’ and ‘‘Hubble horizon radius.’’ However
we cannot say anything at this stage about what relation
have with the Hubble constant and horizon scale of FL m
els.

For xi , we put

xi~t init!5 iDx ~3.3!

with a constant intervalDx
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Dx[
r H

NH
~3.4!

whereNH is some positive integer. Here note thatxNH
5r H

and the following relation holds

2GM1~NH!

xNH

51. ~3.5!

Hencer H corresponds to the ‘‘mean Schwarzschild radiu
of the NHth and (NH11)th regions.

Before we proceed, we estimate the magnitude of
radiation-like term in equation~2.15!. From Eqs.~2.13! and
~2.8! with m150, we find

Gm2n215
1

NH
3 ~n21!2~4n21!r H , ~3.6!

Gm2n5
1

NH
3

n2~4n23!r H , ~3.7!

wheren is a positive integer. From Eqs.~2.16!, ~2.14!, and
~2.9!, we findms( i )5mi 112mi and obtain

Gms~2n21!5
6n226n11

NH
3

r H , ~3.8!

Gms~2n!5
6n2

NH
3

r H . ~3.9!

Thus, when we consider a largeN limit with fixing xi

5r H( i /NH), the baryonic massGms( i )5O(NH
21) is re-

garded as a small quantity, compared withGM1( i ) and
Gmi . That is, the radiation-like term is of orderNH

22 of the
first term and can be neglected whenNH is large.

B. Distance-redshift relation in ‘‘orthogonal’’ model

As described in the previous section, the choice ofEi
corresponds to choice of initial hypersurface. In a FL mod
the simultaneous hypersurface is orthogonal to the trajec
of matter. Thus, we try choosingEi so that the vectorl a is
orthogonal to the trajectory of each shell~we will refer to
this choice as ‘‘model A’’!. From the conditionl au(1)

a ( i
21)50 at r 5r i 21 , we obtain

Ei5
1

r i 21
As i 21r i 211n i 21

2 . ~3.10!

In Fig. 2 we plot the angular diameter distance as a fu
tion of redshift of each shell for variousNH with a common
Hshell in the case of model A. The total number of shellsNT
is taken to be 3NH . We emit a photon toward the cente
from each shell so that every photon reaches the cente
4-6
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multaneously. We have obtained a surprising result that
the curves are quite similar even in the case when we
only two shells within the initial horizon radius; the devi
tion among the curves is at most about 10%. On the o
hand, it can be also seen that the slope at higher reds
becomes steeper as we decrease the number of shells.

We compare thedA-z relation in the dust-shell univers
obtained above with that of a FL model. We here adop
spatially flat FL model, since the ‘‘curvature’’ term in th
expansion law of a dust-shell~2.15! vanishes. Moreover
when NH is large, the ‘‘radiation’’ term is negligible com
pared to the first term. Thus, in this paper, we focus on
cases with largeNH(>10), and compare them with a sp
tially flat FL model filled only with non-relativistic matter
The cases with smallNH(,10) will be mentioned later.

The Hubble equation in this flat FL model is

H2[S ȧ

a
D 2

5
8

3
pGrFL ~3.11!

with rFL}a23. The relation between the redshift and t
scale factor in FL models is 11z5a0 /a where subscript
‘‘0’’ denotes a value when the observer receives the pho

FIG. 2. Angular diameter distance-redshift relation in dust-sh
universe for model A. Data points are connected by solid lines.
definition of the models is summarized at the end of Sec. III. T
number of shells within the initial Hubble horizonNH is 2, 5, 10,
and 50 from top to bottom around the maximum. The total num
of shellsNT is taken to be 3NH . We also mark the data by dots i
the casesNH52 and 5. We see that all the curves are quite simi
the deviation among the curves is at most about 10%. On the o
hand, it can be also seen that the slope at higher redshifts bec
steeper as we decrease the number of shells. The dashed line
thedA-z relation in the flat FL model withH i5Hshell. The redshift
of the initial hypersurface is identified with the redshift of the ou
ermost shell for the caseNT5150, i.e.,zi5z ( i 5150). The devia-
tion between the flat FL model and the dust-shell universe w
NT5150 amounts to about 2% around the maximum of the cu
10350
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Thus we can write the present Hubble parameterH0 in terms
of the initial Hubble parameterH i and redshiftzi as

H0
25H i

2~11zi!
23. ~3.12!

The dA-z relation in the flat FL model is calculated once w
fix H i andzi , since the relation is determined solely byH0 .

The dashed line in Fig. 2 shows thedA-z relation in the
flat FL model with H i5Hshell. The redshift of the initial
hypersurface is identified with the redshift of the outerm
shell for the caseNT53NH5150, i.e.,zi5z( i 5150). The
deviation of the dust-shell universe from the flat FL mod
with NT5150 amounts to about 2% around the maximum
the curve. We have confirmed that the deviation from the
model becomes small as we increaseNH . For smallerNH ,
however, the redshift of the outermost shell becomes sm
resulting in a largerH0 from the relation~3.12!. We show in
Fig. 3 thedA-z relation in the dust-shell universe in the ca
of NH510 ~solid line! and that in the flat FL model with
H i5Hshell andzi5z ( i 530) ~long dashed line!. In this case,
the deviation amounts to about 10%. Moreover, the diff
ence lies not only in the normalization ofH0 , but also in the
shape of the curve. To see this, we also plotted a FL cu
~short dashed line! with a Hubble parameter changed b
10%: H i50.93Hshell. Note that the change in the Hubb
parameter of the FL model only results in the change in
normalization of the curve. We see that the slope at hig

ll
e
e

r

;
er
es
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h
.

FIG. 3. Angular diameter distance-redshift relation in the du
shell universe for model A in the case ofNH510 ~solid line! and
that in the flat FL model withH i5Hshell and zi5z ( i 530) ~long
dashed line!. We see that the deviation among them amounts
about 10%. To see the difference in the shape of the curve, we
plotted a FL curve with a Hubble parameter changed by 10%:H i

5Hshell30.9 ~short dashed line!. We see that the slope at highe
redshifts is steeper in the dust-shell universe than in the FL mo
4-7
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redshifts is steeper in the dust-shell universe than in the
model. It is also clear from Fig. 2 that this tendency becom
strong as we decreaseNH .

Thus, we can say that for largeNH , the flat FL model
approximates the dust-shell universe quite well, but as
decreaseNH , this fit becomes poorer.

In the next subsection we discuss the reason for this
havior by studying the behavior of averaged density, and
to reduce the deviation from FL models without increas
NH .

C. Behavior of averaged density

We usually regard a FL model as a large-scale ‘‘averag
of a locally inhomogeneous universe. We will study the
lation between the results obtained in the previous sec
and an ‘‘averaged’’ density of the dust-shell universe. W
consider an averaged density around the observer at the
e

in
d
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t
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ll
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ter. The averaged density is defined by dividing the m
contained within some radius by the 3-volume on the hyp
surface up to that radius. We will study the behavior of t
averaged density when the radius to take the averag
gradually increased, and discuss its relation with
distance-redshift relation.

First let us consider the 3-volume on the initial hypers
face defined in the previous section. From Eq.~2.30!, the
intrinsic metric of the initial hypersurface is given by

dl i
25

r

~11Ei
2!r 2m i

dr21r 2dV2. ~3.13!

Using the above line element, we obtain the spatial volum
Vol( i ), of the i th region (i .1) on the initial slice in the
form
Vol~ i !54pE
r i 21

r i r 5/2

A~11Ei
2!r 2m i

dr

54pFA~11Ei
2!r 2m iS r 5/2

3~11Ei
2!

1
5r 3/2m i

12~11Ei
2!2

1
5Arm i

2

8~11Ei
2!3D G

r i 21

r i

~3.14!

1
5pm i

3

2~11Ei
2!7/2

lnS A~11Ei
2!r i2m i1A~11Ei

2!r i

A~11Ei
2!r i 212m i1A~11Ei

2!r i 21

D . ~3.15!
mo-
n
be-

the
er-

r

For i 51, Vol(1) is equal to 4pr 1
3/3.

Using this volume, we define the averaged densityr̄( i ) as
follows. We sum the baryonic masses up to the (i 21)th
shell and half of thei th shell, and divided the sum by th
3-volume inside thei th shell:

r̄~ i ![H ms~ i !/21 (
j < i 21

ms~ j !J Y (
k< i

Vol~k!.

~3.16!

It seems natural to take this sum of masses in averag
since the motion of thei th shell is approximately determine
by the sum of the gravitational mass inside the shell@which
agrees with the sum of baryonic masses up to (i 21)th shell#
and half of its baryonic mass; the numerator in the ab
definition is the same withM 1( i ) which appears in the firs
term in the expansion law~2.7!. We plotted in Fig. 4 the
averaged densityr̄( i ) for the model described in the prev
ous section. As expected,r̄( i ) is almost constant nearrc ,
which may explain the reason the deviation ofdA-z relation
in the dust-shell models from the FL curves is small.

However, the averaged density becomes slightly sma
at the outside region thanrc defined by the expansion law
g,

e

er

The reason is explained as follows. The volume,V, between
r i and r i 11[r i1Dr is expanded in terms ofDr as

V54pE
r i

r i1Dr

$ l r~r !%21r 2dr54pE
r i

r i1Dr

$ l r~r i !%
21r 2dr

24pE
r i

r i1Dr

l r~r i !8$ l
r~r i !%

22~r 2r i !r
2dr1••• , ~3.17!

wherel r85dlr /dr. Substituting the expression ofl r , we can
expandV in terms of 1/NH to find

V54pr i
2Dr S 11

1

2

i

NH
2

1••• D . ~3.18!

We see that the volume becomes larger than that of a ho
geneous model. This effect is significant especially whei
.NH , i.e., beyond the horizon scale, which explains the
havior of the averaged density at largei in Fig. 4. From this
figure, one may think we can reduce the deviation from
FL model by adjusting the expansion law so that the av
aged density is a constant value. We plotted thedA-z relation
in this case~model B! and the corresponding FL curve fo
4-8
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NH510 in Fig. 5 ~the solid line and the long dashed line!.
We adjustr i in the expansion law iteratively so that th
relation

r̄~ i !5
3

8p
Hshell

2 ~3.19!

is satisfied. As a result,r i is not homogeneous; it increase
asi increases~Fig. 6!. From Fig. 5, we see that the differenc
between the dust-shell universe and the FL model rem
the same as Fig. 3, although the averaged density is inde
constant.

D. Cases with homogeneous averaged density field

We can take an initial hypersurface in which bothr i and
r̄( i ) is homogeneous by requiring the relation

Vol~ i !5
4p

3
~r i

32r i 21
3 !. ~3.20!

We plot thedA-z relation of this model~model C! in Fig. 7.
Comparing with Fig. 2, we see that the difference among
curves is reduced. Figure 8 illustrates the good agreem
between thedA-z relations of the dust-shell model and a F
model for the caseNH510.

FIG. 4. Averaged densityr̄ normalized byrc in the casesNH

52, 5, 10, and 50 for model A. We connect the data by solid lin
We also mark the data by dots in the casesNH52 and 5. The curve
which is smaller at largei corresponds to the curve with smalle
NH . We see that the averaged densityr̄( i ) is almost constant nea
rc , especially for smalli , which may explain that the deviation o
dA-z relation in the dust-shell models from the FL curves is sm
One also notices that the averaged density becomes smaller a
outside region thanrc . The interpretation of this behavior is dis
cussed in the text.
10350
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Here we check whether the assumption of constant in
val Dx5r H /NH is essential or not. We try some patterns
the initial circumferential radius of the shellsxi , for in-
stance,

xi 115xi1h3ai , ~3.21!

whereh anda are some positive constants andaÞ1. When
a.1(,1), the distribution of shells becomes spars
~denser! for larger i . We have found that the results a
unchanged. We also try another pattern

x2n52n3Dx, ~3.22!

x2n115~2n11!3Dx1aDx, ~3.23!

with aÞ0. We plotted the result whenNH510, NT530, and
a50.05 ~model D! in Fig. 9.2 We can see that the deviatio
from the FL model remains small.

We can take another interesting choice; the expansion
is homogeneous~characterized byrc), and the averaged den
sity is also homogeneous, but each quantity differs;rc5ar̄
~model E!. This is realized by imposing a condition of th
form

2There is a maximum ina according toNT when we impose the
condition r̄( i )5r i5rc ; if we increaseNT , the maximum value
allowed fora becomes small. The value ofa adopted here is abou
the maximum value forNT53NH .

.

.
the

FIG. 5. Angular diameter distance-redshift relation in the du
shell universe for model B in the case ofNH510 ~solid line! and
that in the flat FL model withH i5Hshell and zi5z ( i 530) ~long
dashed line!. For comparison, we also showed the curve in t
dust-shell universe for model A~short dashed line!. We see that the
difference in the normalization between the dust-shell universe
the FL model is reduced, but the difference in the shape of the cu
is not reduced compared with Fig. 3.
4-9
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Vol~ i !5a
4p

3
~r i

32r i 21
3 !, ~3.24!

with aÞ1. In Fig. 10, we show the result in the caseNH
510 anda50.93~solid line!. The dashed lines are curves
a FL model. The upper one uses the original ‘‘Hubble co

FIG. 6. The averaged densityr̄ ~dashed line! and the paramete
r i ~solid line! which determines the expansion law of the shells
model B. We see thatr i increases asi increases, while the average
densityr̄ is indeed a constant.

FIG. 7. Angular diameter distance-redshift relation in dust-sh
universe for model C. The number of shells within the init
Hubble horizonNH is 2, 5, 10, and 50. The total number of she
NT is taken to be 3NH . Data points are connected by solid line
We also mark the data by dots in the casesNH52 and 5. Compar-
ing with Fig. 2, we see that the difference among the curve
reduced so that it is hard to distingush the curves forNH55, 10,
and 50.
10350
-

stant’’ @Eq. ~3.2!#, i.e.,H i5Hshell, and the lower one uses th
parameter changed by the same amount with the chang
the volume, i.e.,H i

25Hshell
2 3a21. We see that the shape o

the curve differs from a FL curve~compare with Fig. 8!. This
indicates that the averaged density should agree withrc
which determines the expansion law, in order for thedA-z
relation to behave like that of a FL model. It should be a

f

ll

is

FIG. 8. Angular diameter distance-redshift relation in the du
shell universe for model C in the case ofNH510 ~solid line! and
that in the flat FL model withH i5Hshell andzi5z ( i 530) ~dashed
line!. This illustrates the good agreement between thedA-z relations
of the dust-shell model and of a FL model for the caseNH510.

FIG. 9. Angular diameter distance-redshift relation in the du
shell universe for model D in the case ofNH510 ~solid line and
points! and that in the flat FL model withH i5Hshell and zi5z
( i 530) ~dashed line!. We can see that the deviation from the F
model remains small.
4-10
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noted that the FL curve with the changed Hubble param
is closer to the curve in dust-shell universe than the oth
This may indicate that the ‘‘observed’’ Hubble parameter
closer to the averaged densityr̄, rather thanrc which deter-
mines the expansion law.

E. Summary of models and conclusions

Here we summarize our results.
Model A: The initial hypersurface is orthogonal to ea

trajectory of shells and the expansion law is homogeneo
r i5rc . The dA-z relation of the dust-shell universe show
deviation from the FL curve, especially whenNH is small
~Figs. 2,3!. The averaged densityr̄ is not constant~Fig. 4!.

Model B: We adjustr i so thatr̄5rc is satisfied~Fig. 6!
on the same initial hypersurface as Model A. The deviat
from the FL curve is not reduced~Fig. 5!.

Model C: We choose the initial hypersurface so that
relation r̄( i )5r i5rc is satisfied. ThedA-z relation of the
dust-shell universe shows good agreement with the FL cu
~Figs. 7,8!.

Model D: The choice of the initial hypersurface is th
same as Model C, but the interval of the shells is not cons
@Eqs. ~3.22!,~3.23!#. The deviation ofdA-z relation of the
dust-shell universe from the FL curve remains small~Fig. 9!.

FIG. 10. Angular diameter distance-redshift relation in the du
shell universe for model E in the case ofNH510 ~solid line! and
that in the flat FL model withH i5Hshell and zi5z ( i 530) ~short
dashed line!. The long dashed line is the FL curve with the Hubb
parameter changed by the same amount with the change in
volume, i.e.,H i

25Hshell
2 3a21. Comparing with Fig. 8, we see tha

the shape of the curve differs from a FL curve. This indicates t
the averaged density should agree withrc which determines the
expansion law, in order for thedA-z relation to behave like that o
a FL model. Also note that the FL curve with the changed Hub
parameter~long dashed line! is closer to the curve in dust-she
universe than the other~short dashed line!. The interpretation of this
behavior is discussed in the text.
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Model E: The averaged densityr̄( i ) and the parameterr i

are homogeneous, butr̄( i )Þr i . The dA-z relation of the
dust-shell universe shows mild deviation from the FL cur
~Fig. 10!.

From these results, we conclude that thedA-z relation in a
dust-shell universe looks like a flat FL universe, when t
expansion law resembles the flat FL model, and the beha
of averaged density field is scale-independent when we
crease the scale of averaging, and the averaged de
agrees withrc . This statement seems to be valid even in t
cases with quite small number of the shells. However,
situation is not so simple. In smallNH cases, the radiation
like term in the expansion law cannot be neglected. One m
expect that a FL model with radiation term gives a bet
fitting to those cases, but we have found this does not w
This implies that we cannot tell the effect of homogeneit
just by studying the expansion law. We need more deta
study to this problem, which is left for our future work.

We also note that in spatially flat cases the gravitatio
mass and the baryonic mass coincide; whether we use
baryonic mass or gravitational mass in defining the avera
density, the result is the same. In cases where those ma
are different, we have to be careful in determining the av
aged density when we try to construct a FL model which
a dust-shell universe. In order to clarify which mass w
should use to construct a fitting FL model, we have to stu
non-zeroki cases, which will also be done in our futur
paper.

IV. SUMMARY

We have studied the behavior ofdA-z relation in a spheri-
cally symmetric dust-shell universe where the mass distri
tion is discrete. We have compared the relation of dust-s
universe with that of FL models, and discussed the relat
with the behavior of averaged density. We have seen that
dA-z relation observed at the center agrees well with tha
a flat FL model if the following conditions are satisfied:~i!
the expansion law of the circumferential radius of the she
resembles the Hubble equation of a spatially flat FL mod
~ii ! the behavior of averaged density around the observe
the center is scale-independent as we increase the sca
which we take the average, and~iii ! the averaged density
agrees with the energy density of the FL model. We ha
also seen that the choice of initial hypersurface relates
expansion law to the averaged density.

The effect of discreteness of mass distribution appear
the equation of motion of each dust-shell. This effect b
comes smaller as we increase the number density of s
We conclude the discreteness of matter distribution itsel
of no significance in this model in discussing the observ
quantities such asdA andz, as long as the expansion law an
the averaged density field is homogeneous in the sense
scribed above. This supports the averaging hypothesis th
universe is described by a FL model if the universe is hom
geneous when the density is averaged on some scale la
than the scale of the inhomogeneities.

We need, however, further discussion for the cases w
the number of shells is extremely small, and when the c
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vature term does not vanish. We also note that it will
interesting to study cases where the averaged density i
homogeneous or non-radial null rays travel, to see cos
logical lensing effects. These problems are left for our fut
work.
e
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