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New gauge-invariant formulation of the Chern-Simons gauge theory
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A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields
is considered. This formulation is consistent with the gauge fixed formulation. Furthermore, we find that
canonical~Noether! Poincare´ generators are not gauge invariant even on the constraints surface and do not
satisfy the~classical! Poincare´ algebra. It is the improved generators, constructed from the symmetric energy-
momentum tensor, which are~manifestly! gauge invariant and obey the classical Poincare´ algebra.
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Recently, a gauge invariant pertubative analysis us
Dirac’s dressed matter fields@1# has been of considerabl
interest in QED and QCD, especially in relation to the infr
red divergence and quark confinement problems@2#. In gen-
eral, there are two approaches in quantum field theory:
gauge invariant formulation~GIF! and the gauge fixed for
mulation ~GFF!. The latter is the conventional one, whe
one chooses a gauge; in the former, on the other hand,
does not fix the gauge, but works with gauge invariant qu
tities. However as for the formalism itself, it is not clear ho
the results in the GIF can be matched to the GFF e
though this matching is considered in several recent anal
@3#.

Furthermore, a similar gauge independent Hamilton
analysis@5# in the manner of Dirac@1,4# has been recently
considered for the Chern-Simons~CS! gauge theory with
matter fields@5#. Actually, after the CS gauge theory wa
invented, there arose several debates about the gauge d
dence of the spin and statistics transmutation phenomen
the charged matter fields, since the analysis was carried
with specific gauge fixing@6–8#. So, with the formulation
without gauge fixing, one can expect to resolve this deb
since one is not confined to a specific gauge. But the resu
the recent gauge independent analysis for this problem
Ref. @5# is questionable, since there is no room for spin tra
mutation. This is in sharp contrast to the well-known sp
transmutation of GFF@6–8#.

In this paper, we shall provide a new gauge invaria
Hamiltonian formulation which is consistent with GFF. B
introducing a physically plausible assumption, we find a n
set of equations for Dirac’s dressing functionck(x,y). Fur-
thermore, we provide, for the first time, a simple interpre
tion of how the dressingck(x,y) is related to the gauge fixing
and how GIF is matched to GFF. As a by-product, we fi
that canonical~Noether! Poincare´ generators are not gaug
invariant ‘‘even on the constraints surface’’ and do not s
isfy the ~classical! Poincare´ algebra. It is the improved gen
erators, constructed from the symmetric~Belinfante! energy-
momentum tensor@9#, which are ~manifestly! gauge
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invariant and obey the classical Poincare´ algebra. This effect
is essentially due to the CS term and is important for genu
spin transmutation in the relativistic CS gauge theory. F
thermore, the fact that only the symmetric energ
momentum tensor, not the canonical one, is meaningfu
consistent with Einstein’s theory of gravity. All results i
this paper are at the classical level, but not at the quan
level.

Our model is the Abelian CS gauge theory with mass
relativistic complex scalars@5,6#

L5
k

2
emnrAm]nAr1~Dmf!* ~Dmf!2m2f* f, ~1!

wheree01251, gmn5diag(1,21,21), andDm5]m1 iAm . L
is invariant up to the total divergence under the gauge tra
formationsf→exp@2iL#f, Am→Am1]mL, where L is a
well-behaved function such thatemnl]m]nL50. By using
the basic~equal time! brackets~called Faddeev-Jackiw~FJ!
brackets@10#!

$Ai~x!,Aj~y!%5
1

k
e i j d2~x2y!,

$f~x!,p~y!%5$f* ~x!,p* ~y!%5d2~x2y!, others vanish
~2!

with p5(D0f)* , p* 5D0f, there remains the constrain
T[J02kB'0 á la FJ, whereJ0 is the time component o
the conserved matter currentJm5 i @(Dmf)* f2f* Dmf#
and B5e i j ] iA

j is the magnetic field. Here, we note that
the FJ brackets method,T'0 is the only constraint and th
primary constraints of the Dirac brackets method,p0'0,
p i2(k/2)e i j A

j'0, need not be introduced.
Now in order to develop the manifestly gauge invaria

Hamiltonian formulation, we introduce the gauge invaria
matter and gauge fields

f̂~x![f~x!exp~ iW!, p̂~x![p~x!exp~2 iW!,

Am~x![Am~x!2]mW, ~3!
©1998 The American Physical Society02-1
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and their complex conjugates withW5*ck(x,z)Ak(z)d2z.
The Dirac dressing functionck(x,z) satisfies

]z
kck~x,z!52d2~x2z!. ~4!

Here, we note that there are infinitely many solutions ofck
which satisfy~4! and the gauge invariance of fields in E
~3! should be understood on each solution hypersurfa
but not on the entire solution space. Furthermore, it sho
be noted that at the quantum level, due to the comm
tation relation @Ai

op(y),f̂op(x)#5(\/k)f̂op(x)e ikck(x,y),
the gauge invariant operatorf̂op(x) creates one charge
„@J0(y),f̂op(x)#5d(x2y)f̂op(x)… particle together with the
gauge varying vector fieldai(y)5(\/k)e ikck(x,y), as well
as the gauge invariant point magnetic fieldb(y)(5e i j ] ia

j )
5(1/k)d2(y2x). @This situation is in contrast to the QED
case wheref̂op(x) creates the gauge invariant~physical!
electron together with only the gauge invariant electric fi
@1,2#.# Now, returning to the classical level, with Eq.~3!, the
Poincare´ generators which being~manifestly! gauge invari-
ant and satisfying the Poincare´ algebra become

Ps
05E d2x@ up̂u21uD if̂u21m2uf̂u2#,

Ps
i 5E d2x@p̂D if̂1~D if̂ !* p̂* #,

Ms
125E d2xe i j x

i@p̂D j f̂1~D j f̂ !* p̂* #,

Ms
0i5x0Ps

i 2E d2xxi@ up̂u21uD j f̂u21m2uf̂u2#, ~5!

which are expressed only by the gauge invariant fields
Di[] i1 iAi . These areimprovedgenerators following the
terminology of Callanet al. @11# constructed from the sym
metric ~Belinfante! energy-momentum tensor@9#. Note that
as far as we are interested in the dynamics of the physic
relevant fields of Eq.~3!, there are no additional terms pro
portional to constraints in the Poincare´ generators of Eq.~5!
@4,5#. Next, let us consider the transformations generated
Poincare´ generators~5! for the gauge invariant quantities o
Eq. ~3!. First of all, we consider the spatial translatio
generated by $f̂(x),Ps

j %5] j f̂(x)2 i f̂(x)*d2z„]z
j ck(x,z)

1]x
j ck(x,z)…Ak(z), where we have dropped the term

*d2z]z
i @ck(x,z)Ak(z)# and *d2z]z

k@ck(x,z)Aj (z)#, which
vanish for sufficiently rapidly decreasing integrand. Th
shows the translational anomaly~following the terminology
of Hagenet al. @6–8#, ‘‘anomaly’’ means an unconventiona
contribution!. However, we assume that this anomaly sho
not appear in order thatf̂ responds conventionally to trans
lations. This assumption is motivated by the fact that us
local fields have no translational anomaly, regardless of t
spin or other properties. With this assumption, we obtain
condition thatck(x,z) be translationally invariant]z

i ck(x,z)
52]x

i ck(x,z), i.e., ck(x,z)5ck(x2z). Furthermore, this
condition also guarantees the correct spatial translation
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for all other gauge invariant fields in Eq.~3!: $Fa(x),Ps
j %

5] jFa(x), Fa5(Am ,f̂,f̂* ).
By applying similar assumption to the time translatio

we obtain $Fa(x),Ps
0%5]0Fa(x) and using *d2z]z

k@ck(x
2z)A0(z)#50, we further obtain the condition thatc(x
2z) be time independent. However, for the rotation and L
entz boost, the anomaly is present, since in that case it
resents the spin or other properties ofFa . The bracket with
the Lorentz generator is expressed as

$Fa~x!,Ms
mn%5xm]nFa~x!2xn]mFa~x!1Sab

mnFb~x!

1Va
mn~x!,

V
f̂

mn
~x!52 iJmn~x!f̂~x!,

V
f̂*
mn

~x!5 iJmn~x!f̂* ~x!,

VAb

mn~x!5]bJmn~x!, ~6!

where Jmn52Jnm, J12(x)5e i j xiA j (x)1(1/k)*d2zzkck
(x2z)J0(z), J0i(x)52xiA 0(x)2(1/k)*d2zziek jck(x
2z)Jj (z). The anomalous termVa

mn is gauge invariant. At
first, it seems odd that the gauge invariant quantities do h
the anomaly, but as will be clear later, these quantities
nothing, but the Hagen’s rotational anomaly term and ot
gauge restoring terms in GFF. Before establishing this, i
interesting to note thatAm can be reexpressed completely b
the matter currents as Ai(x)'2(1/k)*d2ze ikck(x
2z)J0(z), A0(x)52(1/k)*d2zek jck(x2z)Jj (z) using the
constraintT'0 and the Euler-Lagrange equation of Eq.~1!,
ek jJ

j5F0k, respectively. These solutions are similar to t
Coulomb gauge solution@6# and hence imply the similarity
of GIF to GFF with the Coulomb gauge. However it shou
be noted that the Lorentz anomaly does not occur in
transformation of the currentJm, even thoughAm , which is
expressed byJm as given above, does have the anomaly.

Now, let us consider the basic brackets between the ga
invariant fields

$Ai~x!,Aj~y!%5
1

k
@e i j d

2~x2y!1j i j ~x2y!

1] i
x] j

yD~x2y!#,

$f̂~x!,f̂~y!%52f̂~x!f̂~y!
1

k
D~x2y!,

$f̂~x!,f̂* ~y!%52f̂~x!f̂* ~y!
1

k
D~x2y!,

$Ai~x!,f̂~y!%52
i

k
f̂~y!@e ikck~y2x!1] i

xD~x2y!#.

~7!

Here D(x2y)5*d2zek jck(x2z)cj (y2z) and j i j (x2y)
5e ik] j

yck(y2x)1ek j] i
xck(x2y). These results, togethe

with the fact that corresponding quantum operatorf̂op(x)
2-2
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creates the charged scalar particle together with the p

magnetic flux at the pointx, seem to show resemblance off̂
to theanyon field@12#, but it is found that this is not the cas
@6,13#.

Next, we consider how the gauge invariant results
matched to gauge fixed results. Actually, this is connec
with the gauge independence of the Poincare´ algebra. The
master formula for the matching is, as can be easily prov

$La ,Lb%'$La ,Lb%DG
. ~8!

HereLa is any gauge invariant quantity, where bracket w
the first class constraintsT of Eq. ~4! vanishes,$La ,T%'0.
The left-hand side of the formula~8! is the basic bracket o
La’s. The right-hand side of Eq.~8! is the Dirac bracket with
gauge fixing functionG50, detu$G,T%uÞ0. Moreover, in the
latter case, sinceG50 can be strongly implemented,La can
be replaced byLauG that represents the projection ofLa onto
the surfaceG50. ~This formula is implicit already in the
recently developed Batalin-Fradkin-Tyutin formalism@14#.!
Moreover, the left-hand side is gauge independent by c
struction, sinceLa’s and the the basic bracket algebra~2! are
introduced gauge independently. On the other hand,
Dirac bracket@4# depends explicitly on the chosen gaugeG
in general. But there is one exceptional case, i.e., when
Dirac bracket is considered for the gauge invariant qua
ties. Our master formula~8! explicitly show this exceptiona
case: The Dirac bracket for the gauge invariant quantitiesLa
or their projectionLauG on the surfaceG50 are still gauge
invariant and equal to the basic bracket for the correspond
quantities. Another important thing for the matching is
know how the defining equation~4! for ck(x2y) is modified
in GFF. By consideringf̂ in a specific gauge and the re
sidual gauge transformation off andAi , one can find modi-
fied ~but still makef̂ be gauge invariant! equation forck(x
2y). We provide here three typical cases:~a! Coulomb
gauge (] iAi'0): *d2zcj (x2z)Aj (z)50, ~b! Axial gauge
(A1'0): ]z

2c2(x2z)52d2(x2z), ~c! Weyl gauge (A0

'0): ]z
j cj (x2z)52d2(x2z). These results are general

valid for any other gauge theories when they are formula
by our gauge invariant formulation. Note that these res
are different from recent claims of Refs.@2,3# except in the
case of Coulomb gauge@15#. Moreover, the Weyl gauge
does not modify the equation forck from Eq. ~4!. Then,
using these relations and Eq.~8!, we could consider the
gauge fixed results directly from GIF. However, as can
observed in these examples, gauge fixings restrict the s
tion space in general. Therefore, all the quantities which
pear in Eq.~6! are gauge invariant for each solution hype
surface which is selected by gauge fixing, but th
functional form may be different depending on the gaug
Here we show the case of Coulomb gauge, which is foun
have a special meaning. In this case we find, usingcj (x
2z)52(1/2p)(x2z) j /ux2zu2 which solves the equation in
‘‘ ~a!’’,
10170
nt

e
d

d,

n-

e

he
i-

g

d
ts

e
lu-
-

r
s.
to

J12~x!5
1

2pk
Q,

J0i~x!5
1

2pk E d2z
~x2z! i~x2z!k

ux2zu2
e jkJj~z!, ~9!

where Q5*d2zJ0 @16#. This is exactly Hagen’s rotationa
anomaly and Coulomb gauge restoring term in the Lore
transformation, respectively@6#. Furthermore, the basic
brackets defined in Eq.~7! is found to be the usual Dirac
brackets in the Coulomb gauge by notingD(x2y)50 and
j i j (x2y)52e i j d

2(x2y) in this case.@Upon using cj (x
2z)5]z

j (1/2p)lnux2zu and performing the integration b

parts, we obtainD(x2y)52(1/2p)rS
R→`
1 duû• r̂ ln R50,

where the integration is evaluated on a circle with infin
radiusR, polar angleu, and their corresponding~orthogonal!
unit vectors r̂ ,û. Moreover, using the antisymmetrycj (x
2z)52cj (z2x) and Eq.~4!, the expression forj i j given
above can be verified.# This implies that the gauge invarian
operator f̂op satisfies the boson commutation relatio

@f̂op(x),f̂op(y)#50 in this case. Here, we note the spec
importance of the Coulomb gauge in that the original fie
f,f* ,Am themselves are already gauge invariant fields s
that they already have the full anomaly structures of Eq.~6!.
Furthermore, this gauge is the simplest one to obtain
anomalous spin of the original matter fieldf asJ12 of Eq.
~9!, since this does not have other gauge restoring terms a
the rotationally nonsymmetric gauge. This is made clear
noting the relation@5,6# Ms

12'Mc
122(k/2)*d2z]k(zkAlAl

2zlAlAk), whereMc
12 is the canonical angular momentum

Mc
125E d2z$e lkzl@p]kf1~]kf!* p* #

2kzlAl~]kAk!1~k/2!]k~zlAlAk!%.

The surface terms inMs
122Mc

12 and Mc
12, which are gauge

invariant for the rapidly decreasing gauge transformat
function L, give the gauge independent spin terms
(1/4pk)Q2’’ @6–8# ~unconventional! and ‘‘0’’ ~conven-
tional! in Ms

12, respectively.@Explicit manipulations of the
gauge independence of the unconventional term have b
established only for limited class of gauges@6–8#. But these
results are generalized to the case of general gauges d
the gauge invariance of the term.# From which the anoma-
lous spinQ/2pk of Eq. ~9! for the matter field is readily see
to follow for general gauges@17#. On the other hand, the
second term ofMc

12, which vanishes only in the Coulom
gauge, gives for the general gauges the gauge restoring
tribution to the rotation transformation for the matter field

Before completing our analysis, we note that the cano
cal ~Noether! Poincare´ generators cannot be considered
the physical ones, since the canonical boost generatorsMc

0i

'Ms
0i1(k/2)*d2zA0e i j A

j are not gauge invariant due to th
last gauge variant term ‘‘even on the constraint surface’’ a
do not satisfy the~classical! Poincare´ algebra:
2-3
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$Mc
0i ,Mc

12%'2e i j Mc
0 j1

k

2
e i j E d2z] l~eklz

kA0Aj !,

$Mc
0i ,Mc

0 j%'2e i j Mc
122e i j

1

4pk
Q2

1e i j

k

2 E d2zS 5

2
A0

21AkAk1]0~zkA0Ak! D .

~10!

It is the improved generators~5!, constructed from the sym
metric energy-momentum tensor, which are~manifestly!
gauge invariant and obey the classical Poincare´ algebra.
Hence, the improved generators~5! have a unique meanin
consistently with Einstein’s theory of gravity@18#. From this
fact, it is seen that the anomalous spin of the relativis
matter, which comes only fromMs

12, is not artificial, con-
trary to recent claim of Graziano and Rothe@6#. Furthermore,
this uniqueness of anomalous spin is in contrast to
anomalous statistics, which has only artificial meaning in t
case. This is because we can obtain in any field theories@13#
any arbitrary statistics by constructing gauge invariant e
otic operator of the form of Semenoff and its several var
tions @6#. In this sense the relativistic CS gauge theory do
not respect thespin-statisticsrelation@12# in agreement with
Hagen’s result@6,13#. Here, we add that the situation of no
relativistic CS gauge theory is not better than this relativis
case. This is because even though the anomalous statist
uniquely defined by removing the gauge field~in this case
the gauge field is pure gauge due to point nature of
sources in nonrelativistic quantum field theory! the anoma-
lous spin has no unique meaning@6,7#.

In summary, we have considered a new GIF consis
with GFF. Our formalism is new in the following thre
points. ~A! We introduced the assumption that there be
translation transformation anomaly for gauge invariant qu
tities Fa . From this assumption, we obtained several n
conditions for the dressing functionck(x,z), which are cru-
cial in our development.~B! We introduced the master for
e
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mula ~8!, which allowed matching to the gauge fixed syste
~C! We found and used the manner how the equation of
dressing functionck(x,z) are modified after gauge fixing
Using this formulation, we have obtained a novel GIF, whi
is consistent with the conventional GFF: The former form
lation provides exactly the rotational anomaly of the latt
Hence, in our formulation there is no inconsistency, as in
previous gauge independent formulation of Ref.@5#. As a
byproduct, we explicitly found that the anomalous spin
the charged matter has a unique meaning@6#. This is due to
the uniqueness of the Poincare´ generators when constructe
from the symmetric energy-momentum tensor.

We would like to conclude with three additional com
ments. First, in our formulation, there is no gauge noninva
ance problem of Poincare´ generators on the physical state
This is essentially due to absence of additional terms prop
tional to constraints in the generators of Eq.~5!, in contrast
to the old formulation of Dirac@1#. Second, the master for
mula ~8!, which guarantees the classical Poincare´ covariance
of our CS gauge theory in all gauges, also works in all ot
gauge theories. Hence, as far as thegauge dependentopera-
tor ordering problem does not occur, thequantumPoincare´
covariance for one gauge guarantees also the covarianc
all other gauges. The gauge independent proof of quan
covariance has been an old issue in quantum field theory
now it is reduced to the solvability of the problem of th
gauge dependent operator ordering. Finally, it has been
cently reported that canonical Poincare´ generators in QED or
QCD also do not satisfy the Poincare´ algebra. But it’s origin
is different from ours@2#.
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@15# The authors of Refs.@2,3# considered*d2zcj (x2z)Aj (z)50
even ‘‘~b!’’ and ‘‘ ~c!’’ cases. But then, the manifestly gaug
invariant fields in Eq.~3! are not gauge invariant under th
residual gauge symmetriesf→e2 iLf, Am→Am1]mL with
x1 andx0 independentL for ‘‘ ~b!’’ and ‘‘ ~c!,’’ respectively.

@16# In the Weyl gauge, the simplest solution isc150, c2(x)
5d(x1)e(x2) with a step functione(x). This corresponds to a
different solution hypersurface to the Coulomb gauge a
10170
d

hence, it is related anomalous terms in Eq. ~6! have different
functional form to Eq.~9! even though they are gauge invar
ant on its own hypersurface:J125(1/k)*2`

` dy2J0(x1,y2),
J025(1/k)*2`

` dy2J1(x1,y2), J0150.
@17# This is because the commutation relation$Q,f(x)%5

2 i f(x) is gauge independent in the general gaug
*d2zKm(x,z)Am(z)'0 with kernelKm(x,z).

@18# There may be other differently improved generators depend
on what gravity theory is chosen like as in Ref.@11#. But we
do not consider this possibility in this paper.
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