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A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields
is considered. This formulation is consistent with the gauge fixed formulation. Furthermore, we find that
canonical(Noethej Poincafegenerators are not gauge invariant even on the constraints surface and do not
satisfy the(classical Poincarealgebra. It is the improved generators, constructed from the symmetric energy-
momentum tensor, which arémanifestly gauge invariant and obey the classical Poincatgebra.
[S0556-282198)50122-1

PACS numbgs): 11.10.Lm, 11.10.Ef, 11.15.q, 11.30—j

Recently, a gauge invariant pertubative analysis usingnvariant and obey the classical Poincatgebra. This effect
Dirac’'s dressed matter fieldd] has been of considerable is essentially due to the CS term and is important for genuine
interest in QED and QCD, especially in relation to the infra-spin transmutation in the relativistic CS gauge theory. Fur-
red divergence and quark confinement probl¢gjsin gen-  thermore, the fact that only the symmetric energy-
eral, there are two approaches in quantum field theory: thEnomentum tensor, not the canonical one, is meaningful is
gauge invariant formulatioiGIF) and the gauge fixed for- consistent with Einstein’s theory of gravity. All results in
mulation (GFF). The latter is the conventional one, where this paper are at the classical level, but not at the quantum
one chooses a gauge; in the former, on the other hand, ongvel.
does not fix the gauge, but works with gauge invariant quan- Our model is the Abelian CS gauge theory with massive
tities. However as for the formalism itself, it is not clear how relativistic complex scalargs, ]
the results in the GIF can be matched to the GFF even
though this matching is considered in several recent analyzes
[3].

Furthermore, a similar gauge independent Hamiltonian
analysis[5] in the manner of Dira¢1,4] has been recently wheree®?=1, 9,,=diag(l-1,-1), andD ,=4d,+iA,. L
considered for the Chern-Simor€S) gauge theory with s invariant up to the total divergence under the gauge trans-
matter fields[5]. Actually, after the CS gauge theory was formations ¢— exg —iA], A,—A,+d,A, whereA is a
invented, there arose several debates about the gauge dep@mil-behaved function such th&t’”"&ﬂa,,A=0. By using

dence of the spin and statistics transmutation phenomena f@fie basic(equal time brackets(called Faddeev-JackiGFJ)

the charged matter fields, since the analysis was carried obkackets 10])

with specific gauge fixind6—8]. So, with the formulation

without gauge fixing, one can expect to resolve this debate, _ , 1.,

since one is not confined to a specific gauge. But the result of IA(X),A ()} = —el 55 (x—y),

the recent gauge independent analysis for this problem in

Ref.[5] is questionable, since there is no room for spin trans- . @ .

mutation. This is in sharp contrast to the well-known spin {600, m(y)}=1* (%), 7" (y)} = 6°(x—y), others vanlgh

transmutation of GFIF6-8]. (2)
In this paper, we shall provide a new gauge invariant . . .

S . o ) : with 7= (Dy¢)*, m* =Dgy¢, there remains the constraint
Hamiltonian formulation which is consistent with GFF. By T=J,— kB~0 & la FJ, wherel, is the time component of

introducing a physically plausible assumption, we find a new, - . %
set of equations for Dirac’s dressing functiog(x,y). Fur- :]ned Igo—ns-(-a;\-/;dismtatéerrngurzreet%gellt[j(DHMeq:é (\?ve (rfotz;}ﬁ;t in
thermore, we provide, for the first time, a simple interpreta-the FJ_bfrllclclket method‘go is the dnl co1n traint and the
tion of how the dressing,(X,y) is related to the gauge fixing . S ~9 1S y stral

and how GIF is matched to GFF. As a by-product, we fingP"'Mmary consjtramts of the D|ra_c brackets methath~0,
that canonicalNoethey Poincaregenerators are not gauge Wi’_\l("/z.)eiiAdNOt' nged ?Ot tt)ﬁ mtrod_?cettlj. variant
invariant “even on the constraints surface” and do not sat- ow In order 1o develop the maniiestly gauge invarian
isfy the (classical Poincarealgebra. It is the improved gen- Hamiltonian formulatlon, we introduce the gauge invariant
erators, constructed from the symmefiBelinfante energy- matter and gauge fields

momentum tensor[9], which are (manifestly gauge

L= " AGA,+(D,8)* (DI G =g 6, (1)

()= () expiW), F(x)=m(x)exp —iW),
*Electronic address: mipark@physics.sogang.ac.kr A (X)=A,(X)—3d,W, 3
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and their complex conjugates witW=[c,(x,2)A"(2)d’z.  for all other gauge invariant fields in EG3): {Z,(x),Py

The Dirac dressing function,(x,z) satisfies =3 F(x), fa:(Aw%@*)-

4) By applying similar assumption to the time translation,
we obtain {F,(x),P2=d°F,(x) and using [d?zo¥ c,(x

Here, we note that there are infinitely many solutionspf —2)A%2)]=0, we further obtain the condition that(x

which satisfy(4) and the gauge invariance of fields in Eq. —2) be time independent. However, for the rotation and Lor-

(3) should be understood on each solution hypersurfacegntz boost, the anomaly is present, since in that case it rep-

but not on the entire solution space. Furthermore, it shouldesents the spin or other properties/f. The bracket with

be noted that at the quantum level, due to the commuthe Lorentz generator is expressed as

de(x,2)=— 84 (x—2).

tation relatl-on [Alop(y) ' ¢Op(x)] = (h/K) ¢Op(x) Eika(X,y), {]:a(x) , M /SLV}: XM&V]‘-O((X) _ Xvo—,,u.]:a(x) + EIZE-FB(X)

the gauge invariant operatap,,(x) creates one charged

([Jo(Y), Pop(X) 1= 8(x—y) dop(X)) particle together with the +QL7(X),

gauge varying vector field'(y) = (%/«) € Cu(X,y), as well ~

as the gauge invariant point magnetic fidlty) (= €;;5,a’) QZV(XF —IE*(X) p(X),

=(1/k) 6*(y—x). [This situation is in contrast to the QED

case whered,,(x) creates the gauge invariafphysica) Q’;:(x)ziE“"(x)&*(x),

electron together with only the gauge invariant electric field

[1,2].] Now, returning to the classical level, with E@), the QA (X)=dgEH"(X), (6)

Poincaregenerators which beingmanifestly gauge invari- b

ant and satisfying the Poincaatégebra become where E#¥=—E", Elz(x):GibxiAJ(X)_l—(l/K)fdzzszk
(x—2)J0(2), E%(x) = —xA%(X) — (1/x) [ A2z €,;Ci(X

pg:f d?X[| 72+ | D' |2+ m?| $|2], —2)J'(z). The anomalous terrf2“” is gauge invariant. At

first, it seems odd that the gauge invariant quantities do have

the anomaly, but as will be clear later, these quantities are
piszj d2X[ 7D p+ (D' d)* 7], nothing, but the Hagen'’s rotational anomaly term and other
gauge restoring terms in GFF. Before establishing this, it is
interesting to note thatl,, can be reexpressed completely by
M§2=f deGini[%ngbﬂDj&)*%*]’ the 0matter currents a32 Ai(X)%—(lll_()deZ.Eika(X
—2)3°%(2), Ay(x)=—(1/k)[d*zeyjc(Xx—2)I(2) using the
constraintT~0 and the Euler-Lagrange equation of Et),
. . . N ~ j — 0k H : i
MOI:XOPI_J’ d2xx[ | 7|2+ |Di |2+ m? |21, 5 € =F, respectlve_ly. These solutlo'ns are S|m!lar to_ the
s s L7 +Diel |91°] © Coulomb gauge solutiof6] and hence imply the similarity
, , , i of GIF to GFF with the Coulomb gauge. However it should
which are expressed only by the gauge invariant fields anfle hoteq that the Lorentz anomaly does not occur in the
Di=0;+iA;. These aramprovedgenerators following the  5nsformation of the currerd, even though4,,, which is
terminology of Callaret al. [11] constructed from the sym- expressed by* as given above, does have the anomaly.

metric (Belinfantg energy-momentum tens¢g]. Note that Now, let us consider the basic brackets between the gauge
as far as we are interested in the dynamics of the physically,, +iiant fields

relevant fields of Eq(3), there are no additional terms pro-

portional to constraints in the Poincagenerators of Eq(5) 1

[4,5]. Next, let us consider the transformations generated by {Ai(X),.Aj(y)}= ;[eij (X—y)+&j(x—y)
Poincaregeneratorg5) for the gauge invariant quantities of

Eq. (3). First of all, we consider the spatial translation +a Y A(x=y)],
generated by {h(x),PL}= 3 $(x) —i p(x) [d*2(Fci(x,2) .
+¢9§(ck(x,z))Ak(z), where we have dropped the terms 2 ” T S _
[d%zd[ci(x,2)A%(Z)] and [d?zdc(x,2)Al(2)], which {600, ¢y} == ) $(y) LAY,

vanish for sufficiently rapidly decreasing integrand. This

shows the translational anomalfpllowing the terminology - ~ a1

of Hagenet al.[6—8], “anomaly” means an unconventional {6, 6*(V)}=—d(x)¢ (y);A(x—y),
contributior). However, we assume that this anomaly should

not appear in order thap responds conventionally to trans- N _ i . <

lations. This assumption is motivated by the fact that usual (A, ()} =~ ® d(Y)lewcu(y=Xx)+GAKX=Y)].
local fields have no translational anomaly, regardless of their 7
spin or other properties. With this assumption, we obtain the -

condition thatc,(x,z) be translationally invariang,c,(x,z) ~ Here A(x—y)=/d ze ley(x=2)ci(y—2) and &;(x—y)
= —d\c(x.2), i.e., c(x2)=Ccx—2). Furthermore, this = €ikd/C(y—X)+eqdic(x—y). These results, together
condition also guarantees the correct spatial translation lawith the fact that corresponding quantum operadgy,(x)
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creates the charged scalar particle together with the point " 1

magnetic flux at the point, seem to show resemblance @f EH0= 27k '

to theanyon field 12], but it is found that this is not the case

[6,13].

(x—2)'(x—2)
x—2*

. 1
Next, we consider how the gauge invariant results are 20 (x)= 5 fdzz
matched to gauge fixed results. Actually, this is connected T

with the gauge independence of the Poincalgebra. The

— (A2 s , .
master formula for the matching is, as can be easily provedVhere Q=[d“zJ, [16]. This is exactly Hagen's rotational
anomaly and Coulomb gauge restoring term in the Lorentz

transformation, respectively6]. Furthermore, the basic
brackets defined in Eq.7) is found to be the usual Dirac
L,,L,t={L,,L . 8 . .
{La:Lot~{La Lo, ®  prackets in the Coulomb gauge by notingx—y)=0 and
gij(x—y_)=—eij52(x—y) in this case.[Upon usingc!(x

HerelL , is any gauge invariant quantity, where bracket With_Z):a]Z(l/ZWNr]'X_Z| and performing the integration by

a 1 . ~A

the first class constrainfb of Eg. (4) vanishes{L,,T}~0. parts, we obfainA(x—y)= _(1/277)%%%(100* InR=0,

The left-hand side of the formul) is the basic bracket of Whgre the integration is evalgated on a c!rcle with infinite
L,’s. The right-hand side of EG8) is the Dirac bracket with radiusR, polar angles, and their correspondin@rthogonal
gauge fixing function"=0, def{I',T}|+#0. Moreover, in the unit vectorsf,o. Moreover, using the antisymmetry (x
latter case, sincE=0 can be strongly implementetl, can ~ —2)=—c!(z—x) and Eq.(4), the expression fog;; given

be replaced by .| that represents the projection lof onto above can be verifiefThis implies that the gauge invariant
the surfacel’=0. (This formula is implicit already in the operator ¢,, satisfies the boson commutation relation,
recently developed Batalin-Fradkin-Tyutin formaligi].) [cAﬁOP(x),(}op(y)]:O in this case. Here, we note the special
Moreover, the left-hand side is gauge independent by conimportance of the Coulomb gauge in that the original fields
struction, since_,’s and the the basic bracket algeligaare  ¢,¢*,A, themselves are already gauge invariant fields such
introduced gauge independently. On the other hand, ththat they already have the full anomaly structures of @g.
Dirac brackef4] depends explicitly on the chosen gauge Furthermore, this gauge is the simplest one to obtain the
in general. But there is one exceptional case, i.e., when thahomalous spin of the original matter fiefelas =** of Eq.
Dirac bracket is considered for the gauge invariant quanti{9), since this does not have other gauge restoring terms as in
ties. Our master formulé8) explicitly show this exceptional the rotationally nonsymmetric gauge. This is made clear by
case: The Dirac bracket for the gauge invariant quantities noting the relation[5,6] M&?~M*— («/2)fd?zd*(Z*A'A

or their projectionL | on the surfacd’=0 are still gauge —Z'A'A¥), WhereMg2 is the canonical angular momentum
invariant and equal to the basic bracket for the corresponding

€1 (2), €)

guantities. Another important thing for the matching is to 1 - .

know how the defining equatio) for c,(x—Yy) is modified M¢ :f d*zZ{ ey Z[ 7 P+ (3 p)* 7* ]
in GFF. By consideringp in a specific gauge and the re- ol kK ok
sidual gauge transformation @fandA, , one can find modi- —kZA(IA) + (kl2)d(Z A A}

fied (but still make¢ be gauge invariaihtequation forc,(x

—y). We provide here three typical cases) Coulomb The surface terms iM >~ M:* andM¢?, which are gauge
gauge ¢'A;~0): fdzzcj(x—z)Ai(z)ZO, (b) Axial gauge invariant for the rapidly decreasing gauge transformation
(A;=~0): d%c,(x—2)=—8%(x—2), (c) Weyl gauge @, function /} give the gauge independent spin terms *
~0): dicj(x—2)=—8%(x—2). These results are generally (1/47x)Q ”12[6‘8] (unconventional and “0” (conven-

valid for any other gauge theories when they are formulatediona) in Mg, respectively[Explicit manipulations of the

by our gauge invariant formulation. Note that these result§auge independence of the unconventional term have been
are different from recent claims of Ref®,3] except in the ~€stablished only for limited class of gaudés-8]. But these
case of Coulomb gaugEl5]. Moreover, the Weyl gauge results are _gene_rallzed to the case of ger_1era| gauges due to
does not modify the equation far, from Eq. (4). Then, the gauge invariance of the terjrErom vyhlch the anoma-
using these relations and E¢g), we could consider the lous spinQ/27 k of Eq. (9) for the matter field is readily seen
gauge fixed results directly from GIF. However, as can be© follow for general gaugefl7]. On the other hand, the
observed in these examples, gauge fixings restrict the sol§econd term oMg?, which vanishes only in the Coulomb
tion space in general. Therefore, all the quantities which apgauge, gives for the general gauges the gauge restoring con-
pear in Eq.(6) are gauge invariant for each solution hyper- tribution to the rotation transformation for the matter field.
surface which is selected by gauge fixing, but their Before completing our analysis, we note that the canoni-
functional form may be different depending on the gaugescal (Noethey Poincaregenerators cannot be considered as
Here we show the case of Coulomb gauge, which is found tghe physical ones, since the canonical boost generaddts

have a special meaning. In this case we find, usiix ~ ~Mg +(x/2)[d?zA%;Al are not gauge invariant due to the
—2)=—(1/27)(x—2)'/|x—z|? which solves the equation in last gauge variant term “even on the constraint surface” and
“(a)”, do not satisfy theclassical Poincarealgebra:
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, ok A mula(8), which allowed matching to the gauge fixed system.
(MY M~ — ;MY + Efnf d?zd'(€Z“A°A)), (C) We found and used the manner how the equation of the
dressing functioncy(x,z) are modified after gauge fixing.
Using this formulation, we have obtained a novel GIF, which
Q? is consistent with the conventional GFF: The former formu-
lation provides exactly the rotational anomaly of the latter.
K 2 [ D 2 kKL -Os-KAOAK Hence, in our formulation there is no inconsistency, as in the
T €ij 2 J dz §A0+A AT+ I(Z'AAT) |. previous gauge independent formulation of Ré&f]. As a
byproduct, we explicitly found that the anomalous spin of
10 the charged matter has a unique mearidlg This is due to

It is the improved generatof§), constructed from the sym- the unigueness of the Poincagenerators when constructed
metric energy-momentum tensor, which afmanifestly  from the symmetric energy-momentum tensor.

gauge invariant and obey the classical Poihca}gebra_ We would like to conclude with three additional com-
Hence, the improved generatd® have a unique meaning ments. First, in our formulation, there is no gauge noninvari-
consistently with Einstein’s theory of gravift8]. From this  ance problem of Poincargenerators on the physical states.
fact, it is seen that the anomalous spin of the relativisticThis is essentially due to absence of additional terms propor-
matter, which comes only from/léz, is not artificial, con- tional to constraints in the generators of Ef), in contrast
trary to recent claim of Graziano and Rofltg. Furthermore, to the old formulation of Dira¢1]. Second, the master for-
this uniqueness of anomalous spin is in contrast to thenula(8), which guarantees the classical Poincaseariance
anomalous statistics, which has only artificial meaning in thisof our CS gauge theory in all gauges, also works in all other
case. This is because we can obtain in any field thepti®ls gauge theories. Hence, as far as ¢laeige dependempera-

any arbitrary statistics by constructing gauge invariant ex-tor ordering problem does not occur, thaantumPoincare

otic operator of the form of Semenoff and its several varia-covariance for one gauge guarantees also the covariance for
tions [6]. In this sense the relativistic CS gauge theory doesy| other gauges. The gauge independent proof of quantum
not respect thepin-statisticgelation[12] in agreement with oy ariance has been an old issue in quantum field theory and
Hagen's resulf6,13]. Here, we add that the situation of non- o,y it is reduced to the solvability of the problem of the
relativistic CS gauge theory is not better than this relat|V|st|cgauge dependent operator ordering. Finally, it has been re-
case. This is because even though the ano_malou; stat|st|csc|§nt|y reported that canonical Poincaienerators in QED or
uniquely defined by removing the gauge figld this case  cp also do not satisfy the Poinéaalgebra. But it's origin

the gauge field is pure gauge due to point nature of thes gifferent from ourg2].

sources in nonrelativistic quantum field theptiie anoma-

lous spin has no unique meanifg 7]. One of us(M.-l. Park) would like to thank Professor R.
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hence, it is related anomalous temin Eq. (6) have different
functional form to Eq.(9) even though they are gauge invari-
ant on its own hypersurfacez 2= (1/x) [* .dy?Jo(x,y?),
E%%= (1K) [~ ..dy2 3 (x!y?), E®=0.

invariant fields in Eq.(3) are not gauge invariant under the [17] This is because the commutation relatidQ,(x)}=

residual gauge symmetrigs—e "¢, A,—A,+d,A with
x* andx® independent\ for “ (b)” and “ (c),” respectively.

—i ¢(x) is gauge independent in the general gauges
Jd?zK,,(x,2) A*(2)~0 with kernelK ,(x,2).

[16] In the Weyl gauge, the simplest solution ig=0, c,(X) [18] There may be other differently improved generators depending

= 5(x1) e(x?) with a step functiore(x). This corresponds to a
different solution hypersurface to the Coulomb gauge and
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on what gravity theory is chosen like as in REf1]. But we
do not consider this possibility in this paper.



