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In the gauge-fixing approach tohiral) lattice gauge theories, the action in thél)Jcase implicitly contains
afreeghost term, in accordance with the continuum Abelian theory. On the lattice there is no BRST symmetry
and, without fermions, the partition function is strictly positive. Recently, Neuberger pointed out, Phys. Rev. D
58, 057502(1998, that a different choice of the ghost term would lead to a BRST-invariant lattice model,
which is ill defined nonperturbatively. We show that such a lattice model is inconsistent already in perturbation
theory, and clearly different from the gauge-fixing approd&82556-282198)08719-7

PACS numbds): 11.15.Ha

A central difficulty in constructing chiral lattice gauge servable constructed out of the vector and fermion fields,
theories stems from the coupling between the fermions antlence it was dropped from the definition of th¢l)lattice
the longitudinal degrees of freedom of the lattice gauge fieldaction given in Refs[5-8] (for a concise formulation see
The physical reason for this coupling is the need to correctyRef. [8]). With the ghost action included, one can formulate
reproduce the contribution to the anomaly for each fermiorBecchi-Rouet-Stora-TyutitBRST) transformations, but the
species, in the background of smooth gauge fifldsHow- lattice action is not BRST invariant. Following Ré8], one
ever, for generic lattice gauge fields, thimomentum- @dds counterterms to the action in order to restore BRST
dependentcoupling is not small, and renders the fermion invariance in the continuum limit. In particular, the continu-
spectrum vectorlike instead of chiral in many proposals foroUS phase transition mentioned above corresponds to a van-
lattice chiral gauge theorid€]. ishing photon mass. _ _

Gauge fixing is a natural way to try to control the dynam-  Recently [12], Neuberger pointed out that a different
ics of the longitudinal degrees of freedof—5]. In the choice (_)f_ the ghost action exists, such that the sum of_ the
gauge-fixing approach one transcribes to the lattice a chirglauge-fixing term of Refd5-8] and the new ghost term is
gauge theory, whose action in the continuum already conBRST invariant. The () lattice model defined using that
tains Lorentz gauge-fixing and ghost terms. One then lookBRST invariant action is in fact ill defined. This is a conse-
for a continuum limit governed by renormalized perturbationduénce of a general “no-go” theoreft3], also due to Neu-
theory, requiring that this continuum limit indeed corre- berger, Whlch asserts that_the partition functlon_ |tself, as well
sponds to the target gauge-fixed chiral gauge theory. as (unnormal]zeai.expe.ctatlon values _of gauge—lnvarlant op-

In the U(1) case, strong evidence for the existence of thisErators, vanish identically in a lattice model with exact
continuum limit was found by us in a “reduced” model, BRST invariance. As a resulfhormalized expectathn val'—
where one restricts the () gauge field to the trivial orbit. U€S of gauge-lnvarlant operators always lead to ill-defined
[In the future we plan to investigate the model with fully €xpressions of the form “0/0. o ,
dynamical Ul) gauge fieldd. The continuum limit corre- We will first describe Neuberger's observation in detail,
sponds to a continuous phase transition between a norm@nd then explain why it is irrelevant for the gauge-fixing
broken phase and an exotic broken phase where, in additioAPProach. The BRST-invariant(l) model which was con-
rotation symmetry is broken by a vector condensak sidered in Ref[12] is defined by the path integral
Analytical and numerical evidence for the existence and con-
tinuity of the phase tran§ition is given in Re'(ﬁj]: Evi- Z:f DUDC Dc exp(— Serer(U:C,C)), (1)
dence that the correct chiral spectrum is obtained in the con-
tinuum limit is given in Refs[7,8]. As explained in Ref[9] . o
(which contains a less technical account of our wdile  Sgrey(U;C,C) = Syaugeint U) + Sgaugeik U) + Sghost U; €,C).

gauge-fixing approach does not contradict the Nielsen- (2
Ninomiya theorenj10,1] as reformulated for interacting lat-
tice theories in Ref[11]. This model contains vector and ghost fields, but no matter

The lattice action of the gauge-fixing approdéy. (14)  fields. The gauge-invariant term in the action represents the
below] includes afree ghost term in the (l) case, in accor- standard plaquette action, which in the classical continuum
dance with the target continuum Abelian theory. Evidently,limit reduces to; fd*x = ,,,F% . The gauge-fixing term has
this exactly decoupled ghost sector does not affect any olthe general form

0556-2821/98/5®)/0975044)/$15.00 58 097504-1 ©1998 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 58 097504

1 whereM is a constant chosen such thdt> —min{S,(U)}.
Sgaugefif U) = 2—§Z G(U)?, (3 Note that the range of the function&}(U) over the entire

X lattice configuration space is a bounded closed interval,
hence mifS,(U)} is necessarily finite. (In fact,
min{ S, (U)} =0 [5].) As a special case of Neuberger's theo-
rem, the partition functioril) vanishes if the functionglL0)
is used in its definition.

The gauge-fixing approach evades this inconsistency by
not having BRST symmetry on the lattice. In the absence of
_ _ fermions, the Boltzmann weight of the gauge-fixing ap-

SghostU;C,C) = E cxy(U)cy, (4) proach in the 1) case is strictly positivésee belowy, which
Xy implies that the “0/0” problem does not occur. Moreover,
_ ) i we wish to demonstrate thperturbativeconsistency already
Where<_: andc are ghost and antighost fields. The ghost op-gycludes the ghost action constructed in R&].
erator Is Perturbation theory is an expansion around a classical
vacuum, i.e., a translationally invariant global minimum of
Qxy(U):E 5§;_\(U) Ayiu (5) Sgaugefit U) on _the trivial or_bit. We _consider_ i_n the foIIovying
w a gauge conditiorj,(U) with a strictly positive range, i.e.,
G,(U)>0 and which is translationally covariant, i.e.,
where Ay*ﬂ is the forward lattice derivative, defined as Gy(Uy,)=Gx—,(Uy_, ). An example is the gauge condition
A:#fz fys,—fx for any functionf,. The model in Eq(1) (10). We will prove now that for such a gauge condition the
has an exact BRST invariance if the sagj€éU) enters both  Faddeev-Popov operator is identically zero, i(@,,=0, on
the gauge-fixing and ghost terms. As mentioned above, ia classical vacuum.
this case it was proved by Neuberger that the partition func- The proof is very simple. Letl9, =exp(gA2,)=U°, be a
tion (1) itself, as well agunnormalizedi expectation values translationally invariant saddle point &,,gei{U). Then
of gauge invariant operators, vanigts].
In Ref. [12] Neuberger showed that a BRST invariant

where¢>0 is the gauge-fixing parametef,(U), which we
will call the gauge condition, is a real local functional of the
lattice link variabledJ,,, = exp(gA,,), which is continuously
differentiable over thécompact space of W1) lattice gauge-
field configurations. The general form of the ghost term is

2
action exists whose gauge-fixing tef@) coincides with the 0 0r_ 1 8G +
one defined in Ref$5-8] up to a trivial constantM where G U ) (V)= 22 SA,, U:UOAVV_O' (1)
V is the lattice volume. The gauge-fixing term advocated in r

Refs.[5—8] has the form
The first equality follows from Eq(5). The second eq(l;lality
L _~ _ 2 follows because, by Eq3), a translationally invariant; is
Sgaugent U) =« %z Hxy(U)HyAU) 2 B a saddle point 08,,,qer{U) if and only if it is a saddle point
of gﬁ(U) for anyx. Notice now than(Uﬁ)vﬁO by assump-
~_ 1 g tion. Dividing both sides of Eq(11) by G«(U%), we obtain
" 2gg7 © 0,,wW9=o0.
The conclusion is that perturbation theory is undefined if
where G,.(U) is a strictly positive functional, since the tree-level
1 ghost operatoQ(Ug) vanishes identically. We note that the
_= . 2 gauge condition, Eq10), is completely determined by the
BX(U)_4§ (Vi jau Vi)™ @ requirement that the gauge-fixing term, E@), of the
BRST-invariant action should coincideip to the constant
Vyi,=ImU,, =sin(gA,,), (8) VM) with S;augeﬁ(U). Hence, this also proves that
S;augeﬁ)(U) cannot be the gauge-fixing term of any BRST
and Oy (U)=2 (x4 ,yUxut 5x7;,yU§M)—85x,y is the invariant action that has the correct classical continuum
covariant nearest-neighbor lattice Laplacian. In the classicdimit. (Recall that, for the Lorentz gauge, the quadratic part
continuum limit Sg,4er{U) reduces to the Lorentz gauge- of the continuum ghost action isCl ¢, and not zero, in
fixing action, (1/Z)/d*x(Z,d,A,)?. The other properties Abelian as well as in non-Abelian theorigs.
of Saugen{U) are summarized later in this paper. Now, one  As was shown in Ref[14], if one is interestednly in
can write perturbation theory, one can employ the BRST construction
just as in the continuum. Of course, one has to make sure

1 that the gauge-fixing and ghost terms both have the correct
Sléaugeﬂiu): 2_52;‘ SdU). ©) classicalgcor%[inuumglimit. Ign view of the above result, this
implies that one must use &andefinite-signfunctional for
The BRST invariant action is defined by pickift2] Gx(U). We conclude this section with an example of this.
Consider the lattice discretizatigfl "*§U) of the Lorentz
G, (U)=S(U)+M, (10 gauge conditior® ,d,A,,, with
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L nai 1 - lation functions agree with the continuum ones in the con-
Gy U) ==, ALV, (12)  tinuum limit already. As we already mentioned in the intro-
9u duction, the decoupled ghost sector cancels out from the

_ . . I expectation value of any operator constructed from the gauge
where A, , designates the backward lattice derivative, a”d(and/or matter fields, hence it was dropped in Ref§—g].

Vv, is defined in Eq.(8). One expects that the equation [The (1) continuum action is BRST invariant also with

3 ,A,,[sin@A,~ A, 6)]=gu, can be solved for sufficiently massive photon and ghost fields, provided their masses are
smallA, andv. Therefore the range cg,L('”a“’f”(U) contains  equal (see for instance, Ref15]). On the lattice, one can

an open neighborhood of zero and;"™§U) is an impose the BRST identities of the massive theory in the
indefinite-sign functional. Equatiofil) is now fulfilled on a  continuum limit, sending.— 0 in the end. Yet another pos-

furthermore the gauge-fixing actioﬁ which case it is strictly speaking more appropriate to talk

about recovering Ward identities rather than BRST invari-
_ 1 _ ance in the continuum limik.
s;g‘jgg‘;w):z—}) (G2 U))?, (13 The gauge-fixing action densitgf. Eq. (9)) can be writ-
&% ten as S(U)=SPU)+5@ W), where SP()
and the Faddeev-Popov operator have the correct classiczl(gbn.awe(u))_z’ cf. Eq.(;Z}. Thus,SE})(U). correspondszto
continuum limit, G-"*Y{U) is a consistent gauge condition the naive lattice transcription of the continuur (9,A,,)
at the level of perturbation theory. dlscqssed 'prevllously. Whlle perturbat[on theory is self-
Now we discuss the gauge-fixing approach in some mor&on_&ster_ﬂ in this case, .'t may b_e unreliable in V'eW.Of the

detail. Specifically, we will consider the lattice transcription proliferation of lattice G”bOY,Cop;‘;‘iﬁ of thid, = 1 classical
of a Lorentz gauge-fixed (1) theory, where the continuum Vacuum for the gaugeﬁgi?glltlc@t' V), each of whichis
theory consists of free photons only. Due to the presence ¢t 9lobal minimum ofSg; gen(U) [4] (see also Ref.16)). In
a quadratic covariant gauge-fixing term we expect to get alParticular, the existence of the continuous phase transition
four polarizations as free, uncoupled states in the continuur¥here we want to take the continuum limit aspriori not
limit of the lattice model[We emphasize that the question guaranteed. This is remedied by the additiongf(U).
here is not the practicality of working with a gauge-fixed The latter contains only irrelevant operators, and has a
U(1) lattice theory, but, rather, its existentéhe lattice  unique absolute minimum &1, ,=1. (That irrelevant terms

model is now defined by the action can have a profound effect on the continuum limit should not
come as a surprise, as the example of the Wilson term for
S(U;€,C) = SyaugeinkU) + SIéaugefi)(U)+ Sléhos(C’c) lattice Wilson fermions showsWe now summarize the key

properties of the actioS(U;Ec), Eq. (14).
+ ScounterternQU ) . (14) J— . i i .
(1) S(U;c,c) is not invariant under BRST transformations.

The gauge-invariant term is again the plaquette actionMoreover, there does not exist a BRST invariant lattice ac-
S'éaugeﬁ)(u) is the lattice discretization of the Lorentz gauge- tion with the correct classical continuum limit, whose gauge-
fixing action introduced in Eq6). The free ghost action is  fixing term coincides Wiﬂ’Sgaugeﬁ)(U).

2 S'g'augeﬂgu) has a unique absolute minimum @, =1

Stosl €)= 2 Cf = Oyyt+ 2 Sy lcy (15) _
ghos T o v (3) S(U;c,c) has the correct classical continuum limit.

where for definiteness we have chodgp, as the nearest- The second property ensures that the Euclidean functional
y

neighbor free lattice Laplacian. We have added an infinitesiltegration is dominated by the unique global maximum of
mal mass term (& x2<1) to avoid the trivial finite-volume the BoItzmann weight. The.thlrd property |mpI|§as that kinetic
zero mode. One can safely get=0 after the infinite volume terms exist for all polarizations of the gauge field as well as
limit is taken. (Alternatively, one could, e.g., choose antipe- the ghost fields. Therefore, perturbation theory is well-

riodic boundary conditionslt is evident from Egs(14) and defined and renormalizable. This is at _the heart of the good
(15) that the Boltzmann weight of the gauge-fixing approach@dreement between one-loop perturbation theory and nonper-
is strictly positive in the (1) case. turbative numerical results found in the reduced m¢@ed].

Given the U1) action (14), one can formulate lattice As explained above, in order to recover BRST invariance,
. o — we have intr in Eq14) a finite number of counter-
BRST transformations, but obvioushy$(U;c,c) is not e have introduced d14) a finite number of counte

. ; X terms that correspond to all relevant and marginal operators
BRST invariant. Following the procedure proposed and out b 9 P

lined in Ref.[3] (see in particular Sec. 6 of the last paper which are allowed by the exact lattice symmetri8s The

. ; ly dimension-two counterterm is the photon mass term
one adds counterterms to the action, in order to restore BRS(?'n y P

invariance in the continuum limit. In perturbation theory, this

means that the continuum limit of any correlation function SmaséU) = _ZKXE ReU,, . (16)
should obey the relevarmbntinuumBRST identity. Because .

the ghosts are free, it is possible to impose BRST invarianc8o far, this is the only counterterm that we have studied in
without ghost counterterms, since all connected ghost corredetail [5—-8]. The mass counterterm is crucial because the
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continuum limit mentioned in the introduction correspondspriate to choose a free, decoupled, lattice ghost acftidote
to a vanishing photon mass. This is achieved by tunirig  that we could have chosen a ghost action for the Abelian
Eq. (16) to its critical value. A brief discussion of nonderiva- case which is not free on the latti¢eut only in the classical
tive dimension-four counterterms is given in R]. (Inthe  continuum limid, but there is no reason to do so, since there
future we plan to investigate the role of other counterterms ins no BRST invariance on the lattice anywhow, all prop-
more detail) . o . . _ erties of the gauge-fixing terii6) listed above generalize to
In conclusion unitarity and Lorentz invariance are consisthe non-Abelian cas€5]. But in the non-Abelian case we
tency requirements for the_c_ontlnuum limit of any Iat_t|ce must also include a ghost-gauge figteractionterm in the
gauge theory. In the gauge-fixing approach, the restoration Qfyice action[3,4], because this interaction is present in the
Lorentz invariance is expected to occur in a fairly standar arget gauge-fixed continuum theorjNote that a non-
fashion. As for unitarity, or exact decoupling of unphysical Abelian ghost actiora-la Eq. (5) will again not have the

tsritec?érgrt]ilrslunl]%y E%?;Chllr?vm?a?ctbyslrgrazgg? ?hzszézxg'r?grﬁs'@orrect classical continuum limit, and therefore will not be a
¥ ’ candidate for the lattice ghost actipn.

needed to restore BRST invariance are also needed for the In the non-Abelian case, the measure defined using the

restoration of Lorentz symmeti]. Faddeev-Popov determinafrather than its absolute value

For this program o succeed, BRST invariance needs n% 7]) is no longer positive. Therefore, a possibility that one

r]ecessarlly be presgnt at finite Iatyqe spacing. This opserv should worry about is that Neuberger’s theorem still applies
tion plays a key role in the gauge-fixing approach. In view of:

Neuberger's theorerfil3], not having BRST invariance is in the continuum limit: approximate cancellations associated

essential for the very existence of the lattice theory, andWlth smooth” continuum Gribov copies might take place,

hence, also for the existence of the continuous phase tranég—nd lead to the vanishing of the partition function in the

tion where one can make contact with the target gauge-fixe ontinuum limit, even if such cancellations do not occur at
continuum theory[In a chiral lattice gauge theory, BRST nite lattice spacing. Also th&elated, but separgtessue of

(or gaug® invariance is broken anyway by the fermion ac- enforcing BRST invariance nonperturbatively is highly non-

tion. Sometimes the hooe is expressed that this would btrivial. These questions have to be addressed before the
: ; P P \ auge-fixing approach can be successfully extended to non-
enough to avoid the consequences of Neuberger’s theore

We believe that one should first formulate gauge-fixed lattice belian theories.

theories without matter fields. If, before the introduction of We thank Jan Smit for constructive criticism. W.B. is

matter fields, a gauge-fixed lattice model is ill defined due tasupported by the Deutsche Forschungsgemeinschaft under

exact BRST invariance, we see little reason why the attempgrant Wo 389/3-2, M.G. by the U.S. Department of Energy

to incorporate chiral fermions should improve the situafion. and Y.S. by the U.S.-Israel Binational Science Foundation,
As discussed in this paper, in the Abelian case it is approand the Israel Academy of Science.
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