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More on lattice BRST invariance
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In the gauge-fixing approach to~chiral! lattice gauge theories, the action in the U~1! case implicitly contains
a freeghost term, in accordance with the continuum Abelian theory. On the lattice there is no BRST symmetry
and, without fermions, the partition function is strictly positive. Recently, Neuberger pointed out, Phys. Rev. D
58, 057502~1998!, that a different choice of the ghost term would lead to a BRST-invariant lattice model,
which is ill defined nonperturbatively. We show that such a lattice model is inconsistent already in perturbation
theory, and clearly different from the gauge-fixing approach.@S0556-2821~98!08719-0#

PACS number~s!: 11.15.Ha
e
an
ld

ct
io

n
fo

m

ir
o
ok
on
e-

hi
l,

ly

rm
tio

on

o

en
-

tly
o

ds,

te

ST
u-
van-

t
the

s
t
e-

ell
p-
ct

ed

il,
g

tter
the
um
A central difficulty in constructing chiral lattice gaug
theories stems from the coupling between the fermions
the longitudinal degrees of freedom of the lattice gauge fie
The physical reason for this coupling is the need to corre
reproduce the contribution to the anomaly for each ferm
species, in the background of smooth gauge fields@1#. How-
ever, for generic lattice gauge fields, this~momentum-
dependent! coupling is not small, and renders the fermio
spectrum vectorlike instead of chiral in many proposals
lattice chiral gauge theories@2#.

Gauge fixing is a natural way to try to control the dyna
ics of the longitudinal degrees of freedom@3–5#. In the
gauge-fixing approach one transcribes to the lattice a ch
gauge theory, whose action in the continuum already c
tains Lorentz gauge-fixing and ghost terms. One then lo
for a continuum limit governed by renormalized perturbati
theory, requiring that this continuum limit indeed corr
sponds to the target gauge-fixed chiral gauge theory.

In the U~1! case, strong evidence for the existence of t
continuum limit was found by us in a ‘‘reduced’’ mode
where one restricts the U~1! gauge field to the trivial orbit.
@In the future we plan to investigate the model with ful
dynamical U~1! gauge fields.# The continuum limit corre-
sponds to a continuous phase transition between a no
broken phase and an exotic broken phase where, in addi
rotation symmetry is broken by a vector condensate@4#.
Analytical and numerical evidence for the existence and c
tinuity of the phase transition is given in Refs.@6,7#. Evi-
dence that the correct chiral spectrum is obtained in the c
tinuum limit is given in Refs.@7,8#. As explained in Ref.@9#
~which contains a less technical account of our work! the
gauge-fixing approach does not contradict the Niels
Ninomiya theorem@10,1# as reformulated for interacting lat
tice theories in Ref.@11#.

The lattice action of the gauge-fixing approach@Eq. ~14!
below# includes afreeghost term in the U~1! case, in accor-
dance with the target continuum Abelian theory. Eviden
this exactly decoupled ghost sector does not affect any
0556-2821/98/58~9!/097504~4!/$15.00 58 0975
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servable constructed out of the vector and fermion fiel
hence it was dropped from the definition of the U~1! lattice
action given in Refs.@5–8# ~for a concise formulation see
Ref. @8#!. With the ghost action included, one can formula
Becchi-Rouet-Stora-Tyutin~BRST! transformations, but the
lattice action is not BRST invariant. Following Ref.@3#, one
adds counterterms to the action in order to restore BR
invariance in the continuum limit. In particular, the contin
ous phase transition mentioned above corresponds to a
ishing photon mass.

Recently @12#, Neuberger pointed out that a differen
choice of the ghost action exists, such that the sum of
gauge-fixing term of Refs.@5–8# and the new ghost term i
BRST invariant. The U~1! lattice model defined using tha
BRST invariant action is in fact ill defined. This is a cons
quence of a general ‘‘no-go’’ theorem@13#, also due to Neu-
berger, which asserts that the partition function itself, as w
as ~unnormalized! expectation values of gauge-invariant o
erators, vanish identically in a lattice model with exa
BRST invariance. As a result,~normalized! expectation val-
ues of gauge-invariant operators always lead to ill-defin
expressions of the form ‘‘0/0.’’

We will first describe Neuberger’s observation in deta
and then explain why it is irrelevant for the gauge-fixin
approach. The BRST-invariant U~1! model which was con-
sidered in Ref.@12# is defined by the path integral

Z5E DUDc̄Dc exp„2SBRST~U; c̄,c!…, ~1!

SBRST~U; c̄,c!5Sgaugeinv~U !1Sgaugefix~U !1Sghost~U; c̄,c!.
~2!

This model contains vector and ghost fields, but no ma
fields. The gauge-invariant term in the action represents
standard plaquette action, which in the classical continu
limit reduces to1

4 *d4x (mnFmn
2 . The gauge-fixing term has

the general form
©1998 The American Physical Society04-1
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Sgaugefix~U !5
1

2j(x
Gx~U !2, ~3!

wherej.0 is the gauge-fixing parameter.Gx(U), which we
will call the gauge condition, is a real local functional of th
lattice link variablesUxm5exp(igAxm), which is continuously
differentiable over the~compact! space of U~1! lattice gauge-
field configurations. The general form of the ghost term i

Sghost~U; c̄,c!5(
xy

c̄xVxy~U !cy , ~4!

wherec and c̄ are ghost and antighost fields. The ghost o
erator is

Vxy~U !5(
m

dGx~U !

dAym
Dym

1 , ~5!

where Dym
1 is the forward lattice derivative, defined a

Dxm
1 f 5 f x1m̂2 f x for any functionf x . The model in Eq.~1!

has an exact BRST invariance if the sameGx(U) enters both
the gauge-fixing and ghost terms. As mentioned above
this case it was proved by Neuberger that the partition fu
tion ~1! itself, as well as~unnormalized! expectation values
of gauge invariant operators, vanish@13#.

In Ref. @12# Neuberger showed that a BRST invaria
action exists whose gauge-fixing term~3! coincides with the
one defined in Refs.@5–8# up to a trivial constantVM where
V is the lattice volume. The gauge-fixing term advocated
Refs.@5–8# has the form

Sgaugefix
L ~U !5k̃H(

xyz
hxy~U !hyz~U !2(

x
Bx

2~U !J ,

k̃5
1

2jg2 , ~6!

where

Bx~U !5
1

4(m ~Vx2m̂,m1Vxm!2, ~7!

Vxm5Im Uxm5sin~gAxm!, ~8!

and hxy(U)5(m(dx1m̂,yUxm1dx2m̂,yUym
† )28dx,y is the

covariant nearest-neighbor lattice Laplacian. In the class
continuum limit Sgaugefix

L (U) reduces to the Lorentz gauge
fixing action, (1/2j)*d4x((m]mAm)2. The other properties
of Sgaugefix

L (U) are summarized later in this paper. Now, o
can write

Sgaugefix
L ~U !5

1

2j(x
Sx~U !. ~9!

The BRST invariant action is defined by picking@12#

Gx~U !5ASx~U !1M , ~10!
09750
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whereM is a constant chosen such thatM.2min$Sx(U)%.
Note that the range of the functionalSx(U) over the entire
lattice configuration space is a bounded closed inter
hence min$Sx(U)% is necessarily finite. „In fact,
min$Sx(U)%50 @5#.… As a special case of Neuberger’s the
rem, the partition function~1! vanishes if the functional~10!
is used in its definition.

The gauge-fixing approach evades this inconsistency
not having BRST symmetry on the lattice. In the absence
fermions, the Boltzmann weight of the gauge-fixing a
proach in the U~1! case is strictly positive~see below!, which
implies that the ‘‘0/0’’ problem does not occur. Moreove
we wish to demonstrate thatperturbativeconsistency already
excludes the ghost action constructed in Ref.@12#.

Perturbation theory is an expansion around a class
vacuum, i.e., a translationally invariant global minimum
Sgaugefix(U) on the trivial orbit. We consider in the following
a gauge conditionGx(U) with a strictly positive range, i.e.
Gx(U).0 and which is translationally covariant, i.e
Gx(Uym)5Gx2z(Uy2z,m). An example is the gauge conditio
~10!. We will prove now that for such a gauge condition th
Faddeev-Popov operator is identically zero, i.e.,Vxy50, on
a classical vacuum.

The proof is very simple. LetUzm
0 5exp(igAzm

0 )5Um
0 be a

translationally invariant saddle point ofSgaugefix(U). Then

Gx~Um
0 !Vxy~Um

0 !5
1

2(n

dG x
2

dAyn
U

U5U
m
0
Dyn

1 50. ~11!

The first equality follows from Eq.~5!. The second equality
follows because, by Eq.~3!, a translationally invariantUm

0 is
a saddle point ofSgaugefix(U) if and only if it is a saddle point
of G x

2(U) for anyx. Notice now thatGx(Um
0 )Þ0 by assump-

tion. Dividing both sides of Eq.~11! by Gx(Um
0 ), we obtain

Vxy(Um
0 )50.

The conclusion is that perturbation theory is undefined
Gx(U) is a strictly positive functional, since the tree-lev
ghost operatorV(Um

0 ) vanishes identically. We note that th
gauge condition, Eq.~10!, is completely determined by th
requirement that the gauge-fixing term, Eq.~3!, of the
BRST-invariant action should coincide~up to the constant
VM ) with Sgaugefix

L (U). Hence, this also proves tha
Sgaugefix

L (U) cannot be the gauge-fixing term of any BRS
invariant action that has the correct classical continu
limit. ~Recall that, for the Lorentz gauge, the quadratic p
of the continuum ghost action isc̄ h c, and not zero, in
Abelian as well as in non-Abelian theories.!

As was shown in Ref.@14#, if one is interestedonly in
perturbation theory, one can employ the BRST construct
just as in the continuum. Of course, one has to make s
that the gauge-fixing and ghost terms both have the cor
classical continuum limit. In view of the above result, th
implies that one must use anindefinite-signfunctional for
Gx(U). We conclude this section with an example of th
Consider the lattice discretizationG x

L,naive(U) of the Lorentz
gauge condition(m]mAm , with
4-2
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G x
L,naive~U !5

1

g(m Dxm
2 Vm , ~12!

where Dxm
2 designates the backward lattice derivative, a

Vm is defined in Eq.~8!. One expects that the equatio
(mDxm

2 @sin(gAm2Dm
1u)#5gvx can be solved for sufficiently

small Am andv. Therefore the range ofG x
L,naive(U) contains

an open neighborhood of zero andG x
L,naive(U) is an

indefinite-sign functional. Equation~11! is now fulfilled on a
classical vacuum becauseG x

L,naive(Um
0 )50 for all x. Since

furthermore the gauge-fixing action

Sgaugefix
L,naive ~U !5

1

2j(x
„G x

L,naive~U !…2, ~13!

and the Faddeev-Popov operator have the correct clas
continuum limit,G x

L,naive(U) is a consistent gauge conditio
at the level of perturbation theory.

Now we discuss the gauge-fixing approach in some m
detail. Specifically, we will consider the lattice transcriptio
of a Lorentz gauge-fixed U~1! theory, where the continuum
theory consists of free photons only. Due to the presenc
a quadratic covariant gauge-fixing term we expect to get
four polarizations as free, uncoupled states in the continu
limit of the lattice model.@We emphasize that the questio
here is not the practicality of working with a gauge-fixe
U~1! lattice theory, but, rather, its existence.# The lattice
model is now defined by the action

S~U; c̄,c!5Sgaugeinv~U !1Sgaugefix
L ~U !1Sghost

L ~ c̄,c!

1Scounterterm~U !. ~14!

The gauge-invariant term is again the plaquette act
Sgaugefix

L (U) is the lattice discretization of the Lorentz gaug
fixing action introduced in Eq.~6!. The free ghost action is

Sghost
L ~ c̄,c!5(

xy
c̄x$2hxy1m2 dxy%cy , ~15!

where for definiteness we have chosenhxy as the nearest
neighbor free lattice Laplacian. We have added an infinite
mal mass term (0,m2!1) to avoid the trivial finite-volume
zero mode. One can safely setm50 after the infinite volume
limit is taken.~Alternatively, one could, e.g., choose antip
riodic boundary conditions.! It is evident from Eqs.~14! and
~15! that the Boltzmann weight of the gauge-fixing approa
is strictly positive in the U~1! case.

Given the U~1! action ~14!, one can formulate lattice
BRST transformations, but obviously,S(U; c̄,c) is not
BRST invariant. Following the procedure proposed and o
lined in Ref. @3# ~see in particular Sec. 6 of the last pape!,
one adds counterterms to the action, in order to restore BR
invariance in the continuum limit. In perturbation theory, th
means that the continuum limit of any correlation functi
should obey the relevantcontinuumBRST identity. Because
the ghosts are free, it is possible to impose BRST invaria
without ghost counterterms, since all connected ghost co
09750
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lation functions agree with the continuum ones in the co
tinuum limit already. As we already mentioned in the intr
duction, the decoupled ghost sector cancels out from
expectation value of any operator constructed from the ga
~and/or matter! fields, hence it was dropped in Refs.@5–8#.
@The U~1! continuum action is BRST invariant also wit
massive photon and ghost fields, provided their masses
equal ~see for instance, Ref.@15#!. On the lattice, one can
impose the BRST identities of the massive theory in
continuum limit, sendingm→0 in the end. Yet another pos
sibility is to use the actionwithout the free ghost term, in
which case it is strictly speaking more appropriate to t
about recovering Ward identities rather than BRST inva
ance in the continuum limit.#

The gauge-fixing action density~cf. Eq. ~9!! can be writ-
ten as Sx(U)5S x

(1)(U)1S x
(2)(U), where S x

(1)(U)
5„G x

L,naive(U)…2, cf. Eq. ~12!. Thus,S x
(1)(U) corresponds to

the naive lattice transcription of the continuum ((m]mAm)2

discussed previously. While perturbation theory is se
consistent in this case, it may be unreliable in view of t
proliferation of lattice Gribov copies of theUxm51 classical
vacuum for the gauge conditionG x

L,naive(U), each of which is
a global minimum ofSgaugefix

L,naive (U) @4# ~see also Ref.@16#!. In
particular, the existence of the continuous phase transi
where we want to take the continuum limit isa priori not
guaranteed. This is remedied by the addition ofS x

(2)(U).
The latter contains only irrelevant operators, and has
unique absolute minimum atUxm51. ~That irrelevant terms
can have a profound effect on the continuum limit should
come as a surprise, as the example of the Wilson term
lattice Wilson fermions shows.! We now summarize the key
properties of the actionS(U; c̄,c), Eq. ~14!.

~1! S(U; c̄,c) is not invariant under BRST transformation
Moreover, there does not exist a BRST invariant lattice
tion with the correct classical continuum limit, whose gaug
fixing term coincides withSgaugefix

L (U).
~2! Sgaugefix

L (U) has a unique absolute minimum atUxm51
@5#.
~3! S(U; c̄,c) has the correct classical continuum limit.

The second property ensures that the Euclidean functio
integration is dominated by the unique global maximum
the Boltzmann weight. The third property implies that kine
terms exist for all polarizations of the gauge field as well
the ghost fields. Therefore, perturbation theory is we
defined and renormalizable. This is at the heart of the g
agreement between one-loop perturbation theory and non
turbative numerical results found in the reduced model@6,8#.

As explained above, in order to recover BRST invarian
we have introduced in Eq.~14! a finite number of counter-
terms that correspond to all relevant and marginal opera
which are allowed by the exact lattice symmetries@3#. The
only dimension-two counterterm is the photon mass term

Smass~U !522k(
xm

ReUxm . ~16!

So far, this is the only counterterm that we have studied
detail @5–8#. The mass counterterm is crucial because
4-3
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continuum limit mentioned in the introduction correspon
to a vanishing photon mass. This is achieved by tuningk in
Eq. ~16! to its critical value. A brief discussion of nonderiva
tive dimension-four counterterms is given in Ref.@5#. ~In the
future we plan to investigate the role of other counterterm
more detail.!

In conclusion unitarity and Lorentz invariance are cons
tency requirements for the continuum limit of any latti
gauge theory. In the gauge-fixing approach, the restoratio
Lorentz invariance is expected to occur in a fairly stand
fashion. As for unitarity, or exact decoupling of unphysic
states, this may be achieved by imposing BRST invarianc
the continuum limit. In fact, some of the counterterm
needed to restore BRST invariance are also needed fo
restoration of Lorentz symmetry@3#.

For this program to succeed, BRST invariance needs
necessarily be present at finite lattice spacing. This obse
tion plays a key role in the gauge-fixing approach. In view
Neuberger’s theorem@13#, not having BRST invariance is
essential for the very existence of the lattice theory, a
hence, also for the existence of the continuous phase tra
tion where one can make contact with the target gauge-fi
continuum theory.@In a chiral lattice gauge theory, BRST
~or gauge! invariance is broken anyway by the fermion a
tion. Sometimes the hope is expressed that this would
enough to avoid the consequences of Neuberger’s theo
We believe that one should first formulate gauge-fixed lat
theories without matter fields. If, before the introduction
matter fields, a gauge-fixed lattice model is ill defined due
exact BRST invariance, we see little reason why the atte
to incorporate chiral fermions should improve the situatio#

As discussed in this paper, in the Abelian case it is app
a,
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priate to choose a free, decoupled, lattice ghost action.@Note
that we could have chosen a ghost action for the Abe
case which is not free on the lattice~but only in the classical
continuum limit!, but there is no reason to do so, since the
is no BRST invariance on the lattice anyway.# Now, all prop-
erties of the gauge-fixing term~6! listed above generalize to
the non-Abelian case@5#. But in the non-Abelian case we
must also include a ghost-gauge fieldinteractionterm in the
lattice action@3,4#, because this interaction is present in t
target gauge-fixed continuum theory.@Note that a non-
Abelian ghost actionà-la Eq. ~5! will again not have the
correct classical continuum limit, and therefore will not be
candidate for the lattice ghost action.#

In the non-Abelian case, the measure defined using
Faddeev-Popov determinant~rather than its absolute valu
@17#! is no longer positive. Therefore, a possibility that o
should worry about is that Neuberger’s theorem still appl
in the continuum limit: approximate cancellations associa
with ‘‘smooth’’ continuum Gribov copies might take place
and lead to the vanishing of the partition function in t
continuum limit, even if such cancellations do not occur
finite lattice spacing. Also the~related, but separate! issue of
enforcing BRST invariance nonperturbatively is highly no
trivial. These questions have to be addressed before
gauge-fixing approach can be successfully extended to n
Abelian theories.
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