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On lattice computations of K¥ — 7+ #° decay atmy=2m .
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We use one-loop chiral perturbation theory to compare potential lattice computations Kf ther ™ 7°
decay amplitude amn, =2m_ with the experimental value. We find that the combined one-loop effect due to
this unphysical pion to kaon mass ratio and typical finite volume effects is still of order minus 20—30%, and
appears to dominate the effects from quenching.
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PACS numbdps): 13.25.Es, 12.38.Gc, 12.39.Fe

I. INTRODUCTION whereQ, is theAS=1, Al =3/2 part of the weak effective
Hamiltonian[5]. Equation(2.2) shows the dominant term for
Recently, we have used chiral perturbation the@gPT) large time separations, from which the desiiéd-decay
to one loop in order to investigate three systematic effectsnatrix element 7" 7% 0,|K*) can be extracted. This ma-
which affect lattice computations of the weak matrix elementrix element represents the decay process, confined to a finite
for K*— 7" 70 decay: quenching, finite-volume effects, and lattice volume(we will restrict ourselves to a cubic volume
the use of unphysical values of the quark masses and pionith linear dimensiorL. and periodic boundary conditions
external moment@l] (to which we will refer as). (For an  in which a kaon, at rest, decays into a state consisting of two
extension to the partially quenched case, see Ré¢ffor a  pions at rest with the lowest enerdss,, [6]. The case for
recent lattice computation, s¢8]; for other references, see whichmy=2m, is of special interest, since, in that case, the
I.) We considered the case of a lattice computatextrapo-  matrix element corresponds to an energy-conserving process
lated to the continuum limjitwith three degenerate light (in the infinite-volume limi}, in contrast to, for instance, the
quarks, and final-state pions at rest. This is unphysical bemass-degenerate casa=m,) in which energy is injected
cause S(B) flavor is broken in the real world and becausethrough the weak operat@®,.
this choice of external momenta does not conserve energy. The aim of this paper is to compare real-world physical
Here, we extend our results to the casg=2m,, con-  quantities with those obtained from a hypothetical lattice
sidering both the quenched and unquenched theories. Thiomputation in full or quenched QCD withy=2m,., using
choice of masses conserves energy when all external mesoGhPT. Here, we will refer to the choica,=2m_, as “lat-
are at rest, and, since in reality~3.6m_, it is closer to tice masses.” Also, we will only consider the case with un-
the real-world meson masses. One might therefore expect thgoken isospinm,=my#m;.
systematic errors for this choice of masses to be smaller than
in the energy-nonconserving case with degenerate masses. Ill. ANALYTIC RESULTS FOR my=2m,,
The choicemy=2m, was also advertized in Ref4], FROM ONE-LOOP ChPT
where it is used as one of the ingredients in an improvement
program for lattice computations of nonleptonic kaon decays To O(p?) in (quenchefiChPT, the one-loop diagranta)
with Wilson fermions. to (d) of Fig. 1 in |, along with the relevant wave-function
Here, we restrict ourselves to a summary of our resultsienormalizations, as well as the tree-level contributions of
and a brief discussion of differences withfor other details O(p*) weak operator§7], have to be evaluated in order to
we refer to the extensive explanations contained in |. Wepbtain theK *-decay matrix element. In I, where the mass-
also discuss similar systematic effects By. The notation degenerate case was considered, special care was taken to

is the same as that of I. accommodate the kinematic situation in which energy is not
conserved. In contrast, fony=2m_ and in infinite volume,
Il. LATTICE METHOD standard Feynman diagram techniques can be used. In a fi-

_ _ _ nite volume, it was shown in | thatpower-likg finite-
On the lattice, usually operators with zero spatial momenyolume corrections come exclusively from diagral) of
tum, O(t) ==;0(x,t), are used. FOK"— 7+ 7% decay on  Fig. 1, in which the final-state pions from the weak decay of

the lattice, one computes the time-correlation function the kaon rescatter. We have derived the finite-volume correc-
. 0 B tions for mg#m_, and, in particular, fomc=2m_ in the
C(tz,t1)5<o|ﬂ' (t2)7T (t2)04(t1)K (0)|0> (21) same way.

The weak decay operat@, does not couple directly to
0 0 -
(0|77 (0)m2(0)| " °)(K"|K™(0)[0) the singlet mesomy,. However, form,=my#mg, mixing
(70 m T mOWKF|KT) between g and 7, occurs. As a result, they two-point
_ i) - function inherents the “double pole” of the quenched theory
+,0 + Ep(to—ty) a— Mkt . A
X (" O4(0)|K™)e Fenttzm e, [8], introducing dependence on the parametérand o
(2.20  throughy loops[6=m3/(24mw?f2), with m, the singlet part

—
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of the ' masg, which is not present in the mass—degenerate+Bm,,mK+Cnﬁ)/(47rfq)2. In the mass-degenerate limit, this

case. It turns out that these contributions are fifitdepen-  leaves a dependence on the linear combinafionB+ C;

dent of the cutoff, and, therefore, unambiguously predictedwhereas form¢=2m,_, the linear combination i$\+ 2B

in quenched ChPT. +4C. In Eq.(3.1), we have seA+2B+4C=0. Needless to
The one-loop result for the unquenched case follows disay, for a comparison of comple®@(p*) results between

rectly from Eqs.(43),(44) [re-expressing the 1] in terms of  different masses, information will be needed about the values

the bare decay constahtusing Eq.(7) of I] by substituting  of the coefficientsA, B andC.

mx=2m_.. In the quenched cag®hich in| was only con-

sidered formy=m_.), we obtain formx=2m_, ignoring the

contributions fromO(p*) operators, V. COMPARISONS

In this section, we will compare a hypothetical lattice

Ty |K+>q_9 g7m2 N m2 cclmput?ti%n, in a finite volume anq with, =2m_, of the
NTER (4mfy)? K™ — 7" " matrix element and with the real world. We

q will denote the lattice meson masses iy |, andm,, |,y

mi 1 =3 Mg jat» and the real-world masses by, andmy, with
—2log 7 + okt 7 G(m,L) m,=136 MeV andmy =496 MeV. We will usef , =",
Aq =132 MeV (f, will only appear in one-loop corrections

2 The mass of they is always determined from the tree-level

+6Cst acaﬁ : 3D relationm?=3mg—3m’
a Little is known about the values @(p*)-operator coef-
with ficients. Therefore, as in I, we will ignore contributions from
O(p*) operators, and use the values 770 MeV and 1 GeV for
7 1 1 V3 the cutoffsA and A of the full and quenched theories, re-
Ck= 75109 4+ 5109 7— 5 V3 arctanc-, spectively, and take the spread as an indication of the uncer-

tainty from the lack of information about th@(p*) con-
5 17 stants. In subsection IV A, we will consider the case of a
C;=— g~ 2log 4+ 5 log 7, full-QCD lattice computation, and in subsection IV B the
quenched case.

14 431 2 V3
Co= g T2log 4= 55gl0g 7— — i arctang-, A. Full QCD at mg=2m,,
(3.2 In the full theory, theK ™ — 7" 7° matrix element for the
real world (subscriptphyg and on the latticésubscriptiatt)
and can be related to one loop using Ed@d3), (44), (7) of |
5 (which was derived for arbitraryjng andm_,). For the real
(X)= 17;(827+ 12: _ (3.3  Wworld, one evaluates the result forr ™ 7% 0,/K™) at the

physical values ofng andm_; whereas on the lattice, one

. o choosesn,, |41 = % Mk jart and thereforen®=5mz ,.../4. We
The super/subscrigt denotes quenched quantitidg:is the .- lat 2 K latt K K.latt

bare decay constant of the quenched theory, etc. The f|rst

factor of Eq.(3.1) is the tree-level result; the factor in square 4 m2—m?2

brackets gives the one-loop correction factor. (m* 7r°|O4|K+>phys 3 2—(77 7004 Kt
Before substitutingng =2m,, in order to obtain Eq(3.1), M, latt @.)

one finds nonanalytic contributions coming from poles at :

m2, mz and 2nz—m?2 (which is the mass of a pures

meson. These nonanalytic contributions have the valces
cs andc, after substitutingny=2m_.. The reason that we

where the superscrigt denotes the full theory, and where

do not display the more general result here is that it is dif- - 5 1+ Upnys .
ferent depending on whether energy is conserved, or all ex- 1+ Ut (Mg a4t 1)) G(M anl/2)
ternal mesons are at rest. Onlyrag=2m,_ do both more (4.2

general expressions agree with each other.

The finite-volume correction[term proportional to is the one-loop correction to the tree-level “conversion fac-
G(m,L) in Eq. (3.1)] has the same form in the full and tor” 4(mg—mZ2)/(3mg ..) (U denotes the one-loop correc-
qguenched theories, since it comes only from the pion-pionion term|[cf. Eq (87) of I] in infinite volume, i.e., withG
rescattering diagram, which has no internal quark loops=0). We will restrict ourselves to the case where the lattice
Note that the functiorG(x) is different from the one that kaon mass is the same as the physical kaon mass, i.e.,
appears in the mass-degenerate case, cf(&.in I. Mk jatt= My , Which will presumably be accessible in future

Formyg#m, , O(p*) weak operators lead to contributions lattice computations. It is straightforward to consider other
to the one-loop correction factor of the formAl(nW examples.
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TABLE I. The factorX for different values oimgL and differ- TABLE II. The factorY for different values oL and differ-
ent combinations of values of the cutdff[ super/subscriptél) and ent combinations of values of the cutofts and A, [super/
(0.77 denote cutoff used in the numerator/denominator of Eq.subscripts(1) and (0.77 denote cutoff used in the numerator/

(4.2)]. denominator of Eq(4.7)].
mL X X{o.7p Xion X" YE Yen  Yonm o YR”
6 0.71 0.72 0.80 0.64 mgL=6 0.71 0.69 0.76 0.65
8 0.74 0.77 0.85 0.67 mxL=8 0.75 0.73 0.81 0.68
0 0.82 0.86 0.95 0.74 o volume 0.83 0.81 0.89 0.75

The tree-level conversion factor is unambigug@k and,
for our example, equal to 1.23. We will therefore concentrat
on the one-loop factorX. From Eq. (87) of I, Uppys 9i a9
=0.0888 and-0.0146 forA=1 GeV and 770 MeV, respec- -z
tively (we will ignore the imaginary part of the matrix ele- \/if[;‘
ment, since it does not contribute to the magnitude of the
amplitude to ordemp®). For Mk jatt=Mk, We obtainU
=0.328 and 0.147 forA=1 GeV and 770 MeV, respec- with
tively. ,

On the lattice, wherL is such thatmgL=6 or 8, the My latt (_2 o MK latt
relative one-loop contribution from the finite volume correc- AZ
tion [mﬁ/4(4wfﬂ)2]G(mKL/2) is 0.215 or 0.134, respec- d
tively. Since, as explained before, we have omittiéterent
linear combinations oD (p*) coefficients in the real-world
and lattice cases, respectively, we will vary the values of the
cutoff in Uypys and U, independently. In analogy with Eq.(4.1), we relate the real-wc_JrIclK+

We list in Table | the values of for four combinations of ~decay matrix element to that of the quenched lattice theory,
the values 1 GeV or 770 MeV for the cutoff, and for volumesobtaining
such thatmgL=6, mgL=8 and mxL=0o. We take the 3
spread of the factoK due to changes in the values of the .+ 700K ), _y &z 5)
cutoff as a systematic error, which, from Table I, is around pys " ad, | f

e<77+ 71'O|O4| K+>ﬁnphys

2
My jatt

2
K,latt
1+U|qatt+ 4(477?01) G(mK,IattL/Z))a

(4.9

+0.6820)

2
Mg Jatt

+0.069%+ O.OGO&W.

4.9

15-20%. 5 9
The one-loop expression f&j in the full theory is given ><L—1 Mk~ mw<w+770|o K+
by Eq. (36) of I. For physical masse8;P"YB'=1.72 or 3 M jar 4 latt:
1.42 for A=1 GeV or 770 MeV, respectively; whereas for (4.6
M jatt=2My 1a=Mk, BR'2/B=1.73 or 1.44, for the '
same values of the cutoff. If we compare at the same value afhere
the cutoff, we see that the real-world and lattice values differ
by about 1%, in contrast to thik*-decay matrix element. y= 1+Upnys
However, if we compare at different values of the cutoff, 1+ Uf‘an+[m§,|an/4(477fq)2] G(mg jal/2)
again as an estimate of the error introduced by ignoring (4.7
O(p*) coefficients, we see that the real-world and lattice, ) ) )
values may differ by as much as 20%. is again the one-loop correction to the tree-level conversion
Following I, we can examine the ratio factor. _ _
Again, we will restrict ourselves to the casBy ja
R:[fK<7T+770|04|K+>/<K0|o'||<0>]|fatt, 4.3 =2m, =Mk, and takef,=f_. First, we estimate the

importance of the- and a-dependent terms i, , cf. Eq.
which is independent of th®(p?)-operator coefficientr,;. (4.5). The & anda-independent part dfi%,,, is equal to 0.69
The tree-level value for the above ratio i$/&2. At one 544 0.59 forAq=1GeV andA,=770 MeV, respectively.
loop, we find, for M ja=2M; jae=Mk, corrections of  The yalue forsis estimated to be less than around [La].
—53%, —61% and—74% for A=1GeV andm,L=6, 8 s only poorly known, but is unlikely to be larger than one
and =, respectively(for A=770 MeV, the corrections are iy magnitude[10]. Therefore, the total contribution of th®
—29%, —37% and—50%). and a terms is less than about ten percent of #heand
a-independent contribution. We will omit th@and « terms
B. Quenched QCD atmy=2m, in Table II. Table Il gives the values of for the four com-
We now compare real-world quantities and guantities adinations of the values 1 GeV or 770 MeV for the cutoffs,
would be obtained from a quenched lattice computation withand for volumes such thahcL =6, mxL=8 andmgL =o°.
mx=2m_. We get, from Eq(3.1), These values off deviate substantially from the tree-level

097503-3



BRIEF REPORTS

valueY=1, like in the examples witimy=m_, considered in
I. We see that the spread in the values of the fa¥tes 15%
or less.

For the quenched one-loop expressionBaqr, we refer to
Eq. (37) of I. For My ja¢t=2M ja1t= Mk,

B lat 0.691+0.05Qr, Ay=1GeV,

— e =1-0.145+
B 0 0.358+0.085%, Ay=770 MeV.
(4.8)
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K™ — 7" 7% amplitude withmy, =2m,. and the experimental
value, for unquenched and quenched QCD, respectively.
These ratios give an estimate of the systematic effect due to
finite volume, unphysical quark masses, and quench¥fjg (
for this matrix element(The tree-level conversion factor
corrects only for unphysical masseBor more discussion on
the reliability of such estimates, and other systematic errors,
see .
In Tables | and II, we give numerical examples, illustrat-

ing these results for a lattice kaon mass equal to the experi-

The 6 anda terms are again relatively small. If we compare mental value m¢=496 MeV. The four different values on
with the values oBP"YYB (see previous subsectibwe  each line represent four combinations of cutoffs we chose in
see that again real-world and quenched lattice values diffegvaluating the ratioX andY, and we take the spread as an
only by a few percent if we compare at the same value of théndication of the uncertainties introduced by the lack of in-
cutoffs. At different values of the cutoffs, they may again formation onO(p*) constants. We should emphasize that

differ by as much as 20%.
In the quenched case, the rafdefined in Eq.(4.3) is,
for My jate=2Mz ja=mg andf="f_,

(fK(W*WOIO‘;IK*))q

Rq= —
(K°|O"[K®)

latt

9i
=——| 140.0565+0.02245(myL/2)
8v2

—0.380-0.058&, Aq= 1GeV
4.9

—0.140-0.09%, A4=770 MeV, .

ChPT does not give us any information about the ratio
(ayrf )/ (adf3) in Eq. (4.6).

From the Tables, we conclude that even in the “more
physical” casemy=2m_, the one-loop systematic effect
may still be as large as minus 20—30%. Comparing Tables |
and Il, we see that quenching seems to have only a minor
effect. The large deviations from one of the ratidsand Y
are caused by the sensitivity of the matrix element to the
ratio m, /my and finite-volume effects.

This situation is different from that oBx . Here, if we
compare values dBy between the real world and the lattice
at the same value of the cutoff, the difference is only a few
percent, both quenched and unquenched. However, compar-
ing at different values, again in order to get an idea of the

We see that the quenched valuesfire closer to the tree- effect of theO(p*) constants, indicates that also here sys-
level value than the unquenched values, for the same choidematic effects can be as large as 20%.

of meson masses and volumes.

V. CONCLUSION

Our main results are the ratios and Y in Eqgs. (4.2
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