
PHYSICAL REVIEW D, VOLUME 58, 096014
Finite energy chiral sum rules andt spectral functions
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A combination of finite energy sum rule techniques and chiral perturbation theory~xPT! is used in order to
exploit recent ALEPH data on the non-stranget vector (V) and axial-vector (A) spectral functions with respect
to an experimental determination of thexPT quantityL10. A constrained fit ofRt,V2A

(k,l ) inverse moments (l
,0) and positive spectral moments (l>0) adjusts simultaneouslyL10 and the nonperturbative power terms of
the operator product expansion. We give explicit formulas for the firstk50,1 andl 521 non-strange inverse
moment chiral sum rules to one-loop order generalizedxPT. Our final result readsL10

r (M r)52(5.13
60.19)31023, where the error includes experimental and theoretical uncertainties.@S0556-2821~98!07221-X#

PACS number~s!: 11.55.Hx, 12.38.Lg, 12.39.Fe, 13.35.Dx
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I. INTRODUCTION

The nonperturbative features of strong interactions m
QCD a rich environment for theoretical investigations.
sufficiently high energies it is possible to parametrize
nonperturbative effects by vacuum condensates, follow
the rules of Wilson’s operator product expansion~OPE! @1#.
The universal character of these condensates has been
in the derivation of the so-called QCD spectral sum rules@2#
allowing, in principle, their determination from experimen
A particular role is played by the condensates which
order parameters of the spontaneous breakdown of c
symmetry~SBxS!. The latter vanish at all orders of pertu
bation theory and they control the high energy behavior
chiral correlation functions, such as the difference of vec
and axial vector current two-point functions. On the oth
hand, at low energies, SBxS makes it possible to constru
an effective theory of QCD, the chiral perturbation theo
~xPT! @3,4#, which uses the Goldstone bosons as fundam
tal fields and provides a systematic expansion of QCD c
relation functions in powers of momenta and quark mas
All missing information is then parametrized by low-ener
coupling constants, which can be determined phenome
logically in low-energy experiments involving pions and k
ons. The fundamental parameters describing chiral symm
breaking, the running quark masses and the quark anti-q
condensateŝq̄q& appear both in low-energy~xPT! and the
high energy OPE expansion. For this reason it is usefu
combine the two expansions in order to get a truly system
approach to the chiral sum rules@5#. In this paper the com-
bined approach is illustrated through a determination of
L10 constant of the chiral Lagrangian, including high-ener
corrections coming from the OPE. The connection betw
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the two domains is provided by experimental data ont had-
ronic spectral functions published recently by the ALEP
Collaboration@6,7#.

At the leading order ofxPT, L10 is directly linked to the
vector,v1 , and axial-vector,a1 , spin-one spectral function
~the subscripts refer to the spinJ of the hadronic system!
through the Das-Mathur-Okubo~DMO! sum rule@8#

1

4p2 E
0

s0→`

ds
1

s
@v1~s!2a1~s!#.24L10. ~1!

As it stands the DMO sum rule~1! is subject to chiral cor-
rections due to non-vanishing quark masses@9#. On the other
hand, the integral has to be cut at some finite energys0

<M t
2 , since no experimental information onv12a1 is avail-

able aboveM t
2 . This truncation introduces an error whic

competes with the low-energy chiral corrections. Both typ
of corrections can be systematically included through~i! the
high-energy expansion inas(s0) and in inverse powers o
s0 , and ~ii ! the low-energy expansion in powers of qua
masses and of their logarithms.

II. SPECTRAL MOMENTS

Using unitarity and analyticity, the spectral functions a
connected to the imaginary part of the two-point correlat
functions,

P i j ,U
mn ~q![ i E d4xeiqx^0uT~Ui j

m~x!Ui j
n ~0!†!u0&

5~2gmnq21qmqn!P i j ,U
~1! ~q2!1qmqnP i j ,U

~0! ~q2!,

~2!

of vector (Ui j
m[Vi j

m5q̄ jg
mqi) or axial-vector (Ui j

m[Ai j
m

5q̄ jg
mg5qi) color-singlet quark currents for time-like

momentum-squaredq2.0. Lorentz decomposition is used t
separate the correlation function into itsJ51 andJ50 parts.
The correlation function~2! is analytic everywhere in the
complexs plane except on the positive real axis where s
©1998 The American Physical Society14-1
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gularities exist. Using the definitions adopted in Refs.@6,7#
together with Eq.~2!, one identifies, for non-strange qua
currents,

Im P ūd,V/A
~1!

~s!5
1

2p
v1 /a1~s!, Im P ūd,A

~0!
~s!5

1

2p
a0~s!.

~3!

Due to the conserved vector current, there is noJ50 contri-
bution to the vector spectral function, while the only cont
bution toa0 is assumed to be from the pion pole. It is co
nected via PCAC to the pion decay constant,a0,p(s)
54p2f p

2 d(s2mp
2 ).

According to the method proposed by Le Diberder a
Pich @10#, it is possible to exploit the information from th
explicit shape of the spectral functions by calculating
called spectral moments, i.e., weighted integrals over
spectral functions. IfW(s) is an analytic function, by
Cauchy’s theorem, the imaginary part ofP i j ,V/A

(J) is propor-
tional to the discontinuity across the positive real axis:

E
0

s0
dsW~s!Im P i j ,V/A

~J! ~s!52
1

2i R
usu5s0

dsW~s!P i j ,V/A
~J! ~s!,

~4!

wheres0 is large enough for the OPE series to converge. T
authors of Ref.@10# choose forW(s) the functions

W~k,l !~s!5S 12
s

s0
D 21kS s

s0
D l

, ~5!

with k and l positive integers. The factor (12s/s0)k sup-
presses the integrand at the crossing of the positive real
where the validity of the OPE is questioned. Its counterp
(s/s0) l projects on higher energies. These moments w
09601
d

-
e

e

xis
rt
re

successfully applied in order to constrain nonperturbat
contributions to thet hadronic width,Rt , a procedure which
led to precise determinations ofas(M t

2) @7,11,12#.
The extension of the spectral moment analysis to nega

integer values ofl @‘‘inverse moment sum rules’’~IMSR!
@13## requires, due to the pole ats50, a modified contour of
integration in the complexs plane, as shown in Fig. 1. Thi
is wherexPT comes into play: along the small circle plac
at the production threshold,sth54Mp

2 , we can usexPT pre-
dictions for the two-point correlators.

Using the weight function~5! we adopt the following
definition of the moments:

FIG. 1. Integration contour around the circles ats5M t
2 and

s5sth .
ts.

calar

lements
Rt,V/A
~k,l ! [12puVudu2SEWE

smin

M t
2 ds

M t
2 S 12

s

M t
2D 21kS s

M t
2D lF S 112

s

M t
2D Im PV/A

~011!~s!2
2s

M t
2 Im PA

~0!~s!G , ~6!

wheresmin50 for the positive moments1 ( l>0) andsmin5sth , which is the continuum threshold, for the inverse momen
According to the relation~4!, Eq. ~6! reads

Rt,V/A
~k,l ! 56p i uVudu2SEW R

C

ds

M t
2 S 12

s

M t
2D 21kS s

M t
2D lF S 112

s

M t
2DPV/A

~011!~s!22
s

M t
2 PA

~0!~s!G , ~7!

whereC5C11C2 for the inverse moments andC5C1 for the positive moments~see Fig. 1!.
Due to the cut of the integral~6! at M t

2 , nonperturbative physics parametrized by the short-distance OPE for s
operators@1,2,14# must be considered:

PV/A
~J! ~s!5 (

D50,2,4, . . .

1

~2s!D/2 (
dimO5D

CV/A
~J! ~s,m2!^OV/A~m2!&. ~8!

The parameterm separates the long-distance nonperturbative effects, absorbed into the vacuum expectation e
^OV/A(m2)&, from the short-distance effects which are included in the Wilson coefficientsCV/A(s,m2) @1#. We will assume the

1This is due to the pion pole which is at zero mass in the chiral limit.
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convergence of the OPE series at thet mass. This is justified in the light of the success of the analysis performed in Re@7#
~see Ref.@15# for details!. Using the formulas of Refs.@14# and @16# for the nonperturbative power expansion of t
correlators, one obtains for the (V2A) case

P ūd,V2A
~011!

~2s!52
as~s!

p2

m̂2~s!

s
2

16

7p2

m̂4~s!

s2 1S 8

3
as~s!1

59

3
as

2~s! D m̂^ūu1d̄d&
s2

28p2as~m2!F11S 119

24
2

1

2
L~s! Das~m2!G ^O 6

1~m2!&
s3 1

2p2

3
@314L~s!#as

2~m2!
^O 6

2~m2!&
s3 1

^O 8&
s4 , ~9!

P ūd,V2A
~0!

~2s!52
3

p2 F2as
21~s!251S 75

17
z~3!2

21373

2448Das~s!G m̂2~s!

s
24Ĉ~m2!

m̂2~m2!

s

2
1

7p2 F53

2
212as

21~s!G m̂4~s!

s2 22
m̂^ūu1d̄d&

s2 , ~10!
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with as(s)5as(s)/p, L(s)5 log(s/m2) and the dimension
D56 operators

O 6
1[ūgmg5Tadd̄gmg5Tau2ūgmTadd̄gmTau

O 6
2[ūgmd̄dgmu2ūgmg5dd̄gmg5u, ~11!

where the SU(3) generatorsTa are normalized so tha
tr(TaTb)5dab/2. We use the average massm̂[(mu
1md)/2 in the above equations, i.e., we assumeSU(2) sym-
metry. The constantĈ(m2) depends on the renormalizatio
procedure2 and should not affect physical observables. T
dimensionD50 contribution is of pure perturbative origi
and is degenerate in all orders of perturbation theory
vector and axial-vector currents. DimensionD52 mass
terms are calculated perturbatively to orderas

2 which suffices
for the light u,d, quarks. Possible 1/s contributions coming
from ultraviolet renormalons~see, e.g., Refs.@17,18#!, are
expected to vanish in theV2A difference, similar to what
happens for theD50 contribution, since they are of pertu
bative origin. The coefficient functions of the dimensionD
54 operators for vector and axial-vector currents have b
calculated to subleading order in Refs.@19,20#. Their
vacuum expectation values are expressed in terms of
scale invariant gluon and quark condensates. Since the
son coefficients of the gluon condensate are symmetric
vector and axial-vector currents, they vanish in the diff
ence. The expectation values of the dimensionD56 opera-
tors ~11! obey the inequalitieŝO 6

1(m2)&>0 and^O 6
2(m2)&

<0, which can be derived from first principles. The corr
sponding coefficient functions were calculated by the auth
of Ref. @21# in the chiral limit for which theJ50 contribu-
tion vanishes. For the dimensionD58 operators no such
calculations are available in the literature, and we will a

2We will assume a renormalization scheme that preserves c

symmetry, so thatĈ is the same for the vector and axial correlato
09601
e

r
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-
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sume that there is no logarithmics dependence in leading
orderas . Again, theJ50 contribution vanishes in the chira
limit.

As constraints on the nonperturbative phenomenolog
operators introduced in Eqs.~9! and ~10! from theory alone
are scarce, we will benefit from the information provided
the (V2A) spectral moments in order to determine the ma
nitude of the OPE power terms atM t

2 . We therefore perform
a combined fit of the IMSR~i.e., l 521! which determines
L10, and thel>0 moments which adjust the nonperturbati
contributions.

III. CHIRAL PERTURBATION THEORY

The non-strange correlators~2! have been calculated a
one-loop level@4,22# and, most recently, at two-loop leve
@23,24# in standardxPT. In this paper we stick to theO(p4)
one-loop order for the following two reasons:~i! the high
energy corrections are often more important than theO(p6)
chiral corrections~whose precise estimate has not yet be
fully completed@9#! and~ii ! it is important to proceed in the
combined analysis order by order in quark masses. On
other hand, we use the generalized version ofxPT ~GxPT!
@25#, which allows us to investigate the sensitivity of th
analysis to the variation of the quark condensate and of
quark mass ratior 5ms /m̂. The standardxPT assumes@26#

2m̂^q̄q&.2Fp
2 Mp

2 and r .2MK
2 /Mp

2 21'25.9, whereas
GxPT admits lower values of these two quantities@27,25#. It
is interesting to investigate whether the ALEPH spect
function data are precise enough to have any impact on
ongoing debate about the size of^q̄q&. Anyhow, the alter-
ations of the standardO(p4) results for non-strange correla
tors ~2! introduced by GxPT are marginal. They merely con
cern the symmetry breakingJ50 component of the spectra
functions and most of them are actually absorbed into
renormalization ofFp .

In order to make our analysis as independent of a part
lar truncation of thexPT series as possible, we proceed
two steps. First, one defines a phenomenological quan
al

.

4-3
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called L10
eff via the contribution of the small circleC2 ~see

Fig. 1! to the integral~7! of the chiral combinationV2A for
l 521. L10

eff is then determined in the combined fit of th
IMSR andl>0 moments. The result of this fit is independe
of the xPT renormalization scalemxPT. The latter is used in
the next step in order to relateL10

eff to the quark-mass inde
pendent, scale dependent constantL10

r (mxPT) and finally to
other observables~from p→eng data,^r 2&p!.

The isospin two-point correlators at one loop in GxPT
read

P ūd,V
~011!

~s!54MKK
r ~s!18Mpp

r ~s!24~L10
r 12H1

r !,
~12!

P ūd,V
~0!

~s!50, ~13!

P ūd,A
~011!

~s!52
2Fp

2

s2Mp
2 24~2H1

r 2L10
r !, ~14!

sP ūd,A
~0!

~s!52
2Fp

2 Mp
2

s2Mp
2 18m̂2~H2,222B3!. ~15!

The functionsM PP8
r (s) are loop integrals, defined, e.g.,

Ref. @22#. The superscriptr refers to renormalized quantities
which depend on the scalemxPT. The whole expressions ar
mxPT independent.H2,2 and B3 are found to be finite, in
agreement with@28#, and do not need renormalization.H1

r

09601
t

and H2,2 are coefficients of contact terms of the sourc
They are counterterms needed to renormalize the ultravi
divergences of the Green functions and do not appea
physical observables. Our aim is to determineL10: therefore
we will consider the difference between the vector and
axial-vector correlators for which the constantH1 disap-
pears. Correspondingly, as already pointed out, we will
need the perturbative expressions which are identical for v
tor and axial-vector cases. As for the constantH2,2 which
multiplies the term

^Dmx†Dmx&

of theL(2,2) chiral Lagrangian,3 it always appears in the sam
combination withĈ(m2), in such a way that the ambiguitie
cancel out. We thus define aĤ2,2, in which the constant
Ĉ(M t

2) is absorbed. What is new at this order with respec
SxPT is the appearance of the constantB3 which multiplies
the term

^U†DmxU†Dmx1H.c.&

of theL(2,2) Lagrangian. As can be seen from its form it
difficult to find a process in whichB3 would contribute di-
rectly. It will contribute to off-shell vertices involving Gold
stone bosons.

The IMSR’s corresponding tol 521 andk50,1 read
1

uVudu2SEW
Rt,V2A

~0,21!5296p2L10
eff124p2

Fp
2 Mp

2

M t
4 1

144

M t
2 m̂2~M t

2!F 1

as~M t
2!

2
23

8
1S p2

12
2

36061

4896
1

75

34
z~3! Das~M t

2!G
1

96

M t
4 p2m̂^d̄d1ūu&F11as~M t

2!1
17

2
as

2~M t
2!G2

576

7M t
4 m̂4~M t

2!F 1

as~M t
2!

2
29

24G2
192p4

M t
6 as~m2!

3F11S 103

24
2

L~M t
2!

2 Das~m2!G^O 6
1~m2!&1

400p4

3M t
6 as

2~m2!S 11
12

25
L~M t

2! D ^O 6
2~m2!&, ~16!

1

uVudu2SEW
Rt,V2A

~1,21!5296p2L10
eff224p2S Fp

2

M t
2 23

Fp
2 Mp

2

M t
4 1

Fp
2 Mp

4

M t
6 D 1

144

M t
2 m̂2~M t

2!F 1

as~M t
2!

2
71

24

1S p2

12
2

39461

4896
1

75

34
z~3! Das~M t

2!G1
144

M t
4 p2m̂^d̄d1ūu&F11

2

3
as~M t

2!1
43

6
as

2~M t
2!G

2
864

7M t
4 m̂4~M t

2!F 1

as~M t
2!

2
2

3G2
480p4

M t
6 as~m2!F11S 581

120
2

L~M t
2!

2 Das~m2!G^O 6
1~m2!&

1
472p4

3M t
6 as

2~m2!S 11
60

59
L~M t

2! D ^O 6
2~m2!&124p2 ^O8&

M t
8 . ~17!

3L(n,m) collects terms in the chiral Lagrangian withn covariant derivatives andm powers of quark masses. In the same notation theH1

constant introduced by Gasser and Leutwyler@22# would becomeH4,0.
4-4
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Notice that in theD52 contribution we have not taken int
account theas

2 term, which is known for the transversal co
relator ~9!, but not for the scalar correlator~10!. The contri-
bution of the latter to the contour integral is non-zero for t
inverse moments, unlike for the positive ones. We have
fined

28L10
eff5 lim

s→0
H S 11

2s

M t
2DP ūd,V2A

~011!
~s!2

2s

M t
2 P ūd,V2A

~0!
~s!

2
2Fp

2

s2Mp
2 24

Fp
2

M t
2 J 18

m̂2~M t
2!

M t
2 Ĉ~M t

2!, ~18!

which is proportional to the contribution of the small circ
C2 to the integral~7!, with the pion pole subtracted. Thi
quantity is a well defined observable, the ambiguity in t
two-point function being absorbed by the constantĈ. In the
particular case of the one-loop GxPT calculation, its expan
sion reads

L10
eff5L10

r ~mxPT!1
1

128p2 S log
Mp

2

mxPT
2 11D

1
1

384p2 log
MK

2

Mp
2 1

2m̂2

M t
2 ~2B32Ĥ2,2!, ~19!

which is independent ofmxPT. Unless stated otherwise a
condensates, quark masses andxPT constants in the abov
expressions are evaluated at QCD renormalization s
mQCD5M t , while the product of the light quark mass an
the scalar quark operator,m̂^d̄d1ūu&, is scale invariant.
Taking the difference of Eqs.~16! and ~17! and subtracting
the contribution from the pion pole recovers the express
for Rt,V2A5Rt,V2A

(0,0) given in@14#. Due to the strong intrinsic
correlations of 98% between the IMSR’s defined above o
one IMSR is used as input to the combined fit. We find
convenient to use the momentk51, l 521 @Eq. ~17!# be-
cause its experimental value is known with a 30% be
precision which is due to the additional (12s/M t

2) suppres-
sion of the less accurate high energy tail of the (V2A) spec-
tral function.

IV. THEORETICAL PARAMETERS AND
UNCERTAINTIES

When fitting the theoretical prediction of theRt,V2A
(k,l ) mo-

ments to data, theoretical as well as experimental uncert
ties and the correlations of these between the (k,l ) moments
must be considered. The masses of the light quarks are
rametrized using the mass ratior 5ms /m̂ of which the cen-
tral value is set to the SxPT value of 26. A lower limit is
found at r>r limit52(MK /Mp)21'6.1 ~while r limit'8.2
when including higher orders@29#! which determines the
range

8,r ,`.
09601
e-

e

le

n

y
t

r

in-

a-

The average light quark mass is then obtained viam̂
5ms /r where we use for the strange quark massms(M t)
5172 MeV/c2 @30#. This parametrization makes it possib
to use the theoretical correlation betweenm̂ and the quark
condensate, which to leading order in quark masses is g
by the generalized Gell-Mann–Oakes–Renner relat
@27,25#:

m̂^ūu1d̄d&.2Fp
2 Mp

2 ~r 2r 1!~r 1r 112!

r 221
, ~20!

wherer 1.2(MK /Mp)21. For the standard valuer 525.9,
Eq. ~20! becomes the usual PCAC~partial conservation of
axial vector current! relation m̂^ūu1d̄d&52Fp

2 Mp
2 . Cor-

rections to Eq.~20! are expected to be small in the who
range ofr so that we assume a relative uncertainty of 10
We will comment in Sec. VI on the sensitivity of the da
with respect to ther ratio. Theoretical uncertainties are in
troduced from the strong coupling constant where, in or
to be uncorrelated to thet data used in this analysis, we re
on the result from the global electroweak fit found recen
to be @31,32#

as~MZ
2!50.119860.0031.

Uncertainties from the OPE separation scalem are evalu-
ated by varyingm from 1.3 GeV to 2.3 GeV, while in the fit
we choosem5M t so that the logarithmic scale dependen
of the dimensionD56 terms vanishes after the contour i
tegration. Additional small uncertainties stem from the pi
decay constant,Fp5(92.460.2) MeV, taken from Ref.@33#
and the overall correction factor for electroweak radiatio
SEW51.0194, obtained in Ref.@34#, with an estimated error
of DSEW50.0040 according to Ref.@35#.

An overview of the associated uncertainties in the th
retical prediction of the moments is given in Table I. Th
moment errors from theas uncertainty depend on the centr
input values of the nonperturbative operators. The numb
given in the fourth line of Table I correspond to the fit va
ues, Eqs.~25!, ~26!, which have been obtained in an iterativ
procedure.

V. SPECTRAL FUNCTIONS FROM HADRONIC t
DECAYS

The ALEPH Collaboration measured the inclusive inva
ant mass-squared spectra of vector and axial-vector hadr
t decays and provided the corresponding bin-to-bin cov
ance matrices@6,7#. The mass distributions naturally conta
the kinematic factor of Eq.~6! so that the measured spectr
moments read

Rt,V2A
~k,l ! 5E

0

M t
2

dsS 12
s

M t
2D kS s

M t
2D lFBV

dNV

NVds

2BA

dNA

NAdsG 1

Be
, ~21!
4-5
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TABLE I. Measured spectral moments of vector (V) minus axial-vector (A) using t data only~ALEPH! and usingt1e1e2 data
(ALEPH1NA7). The quoted errors account for the total experimental uncertainties including statistical and systematic effects as w
theoretical uncertainties according to Sec. IV. The last line gives the fitted theoretical moments using the parameters given in Eqs.~24!–~26!.

(k,l )→ (1,21) ~0,0! ~1,0! ~1,1! ~1,2! ~1,3!

Rt,V2A
(k,l ) ~ALEPH! 5.16 0.055 0.038 0.047 20.0164 20.0126

DexpRt,V2A
(k,l) 0.09 0.031 0.017 0.006 0.0035 0.0023

Rt,V2A
(k,l ) (ALEPH1NA7) 5.13 0.055 0.037 0.047 20.0164 20.0126

DexpRt,V2A
(k,l) 0.08 0.031 0.017 0.006 0.0035 0.0023

D theoRt,V2A
(k,l ) (Dr ) 0.12 0.003 0.003 0.001 0.0003 ,0.0001

D theoRt,V2A
(k,l ) (Das) 0.02 0.009 0.009 0.002 0.0029 0.0001

D theoRt,V2A
(k,l ) (DSEW) 0.02 ,0.001 ,0.001 ,0.001 0.0001 ,0.0001

D theoRt,V2A
(k,l ) (DmOPE) ,0.01 0.005 0.005 0.002 0.0018 ,0.0001

D theoRt,V2A
(k,l ) (D^q̄q&) ,0.01 ,0.001 ,0.001 ,0.001 ,0.0001 ,0.0001

D theoRt,V2A
(k,l ) (DFp) ,0.01 ,0.001 ,0.001 ,0.001 ,0.0001 ,0.0001

Rt,V2A
(k,l ) ~Theory fitted! 5.13 0.061 0.032 0.053 20.0148 20.0098
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with the normalized invariant mass-squared spec
(1/NV/A)(dNV/A /ds) of vector and axial-vector final state
the electronic branching ratio~using universality! @33,7#,
Be5(17.79460.045)%, and the inclusive branching rati
@7#, BV5(31.5860.29)%,BA5(30.5660.30)%, as well as
their difference,BV2A5(1.0260.58)%. Due to anticorrela
tions between vector and axial-vector final states, espec
for the KK̄p modes where the vector and axial-vector pa
are unknown, the error of the difference is larger than
quadratic sum of the errors onV andA. Figure 2 shows the
(V2A) mass-squared distribution, which is the integrand
Eq. ~21! for zero moments,k5 l 50. With increasing masse
it is dominated by ther (V), a1 (A) and ther~1450!, vp
(V) resonance contributions which create the oscillating
havior. Tables I and II give the experimental values and
certainties for the IMSRRt,V2A and thek51, l 50, . . . ,3

FIG. 2. Vector minus axial-vector (V2A) invariant mass-
squared distribution measured by ALEPH@7#.
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moments as well as their correlations which are compu
analytically from the contraction of the derivatives of th
moments with the covariance matrices of the respective n
malized invariant mass-squared spectra.

Based on isospin invariance, the conserved vector cur
~CVC! hypothesis relates vector hadronict spectral func-
tions to isovector cross section measurements of the reac
e1e2→hadrons. There exist precise data on the low ene
time-like pion form factor-squareduFp(s)u2 measured by the
NA7 Collaboration@36#. Using the CVC relation

v1,p2p0~s!5
1

12 S 12
4Mp

2

s D 3/2

uFp
I 51~s!u2, ~22!

one can include the additional data in order to improve
precision of the moments~21!, in particular for the IMSR in
which the low-energy region is emphasized. Figure 3 sho
the vector spectral function fromt data~three bins! together
with the NA7 measurements for energy-squareds
<0.2 GeV2. In addition, we give the result when fitting bot
data sets using the parametrization

Fp~s!511
1

6
^r 2&ps1As21Bs3, ~23!

for the pion form factor. Here, the pion charge radiu
squared,̂ r 2&p5(0.43960.008) fm2, is taken from an analy-

TABLE II. Sum of experimental and theoretical correlation
between the momentsRt,V2A

(k,l ) .

(k,l ) (1,21) ~0,0! ~1,0! ~1,1! ~1,2! ~1,3!

(1,21) 1 0.46 0.61 0.40 0.26 0.13
~0,0! - 1 0.89 0.97 0.84 0.80
~1,0! - - 1 0.88 0.74 0.45
~1,1! - - - 1 0.89 0.78
~1,2! - - - - 1 0.76
4-6
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sis of space-like data@37#. We stress that the form~23!,
which does not correspond to the actual analytic behavio
the form factor at low energy, is merely used as a parame
zation of experimental data. We obtain the fit resultsA5
2(7.561.1) GeV24 and B5(62.566.4) GeV24 with x2

50.6 for 5 degrees of freedom. The correlation betweenA
andB is absorbed in the diagonal errors given, so that b
quantities can be handled as being uncorrelated. Repla
for the above energy interval 4Mp

2 <s<0.2 GeV2 the puret
data by a combination oft ande1e2 data represented by th
analytical expressions~22! and ~23!, we obtain the results
given in the third and fourth line of Table I. A small im
provement in precision of 11% is observed for the IMSR

The spectral information is used to fit simultaneously
low-energy quantityL10

eff and the nonperturbative phenom
enological operators. For dimensionD56 we will neglect
the contribution ofO 6

2, which is suppressed byas
2 and, fur-

thermore, is suppressed relatively toO 6
1 in the largeNc limit.

Therefore we will simply keepO65O 6
1(M t

2) and theO8

operator of dimensionD58.

VI. RESULTS OF THE FIT

The fit minimizes thex2 of the differences between mea
sured and fitted quantities contracted with the inverse of
sum of the experimental and theoretical covariance matr
taken from Table II. The results of the fit are, forL10

eff ,

L10
eff52~6.3660.09exp60.14theo60.07fit60.06OPE!31023,

~24!

and, for the nonperturbative operators,

^O6&5~5.060.5exp60.4theo60.2fit61.1OPE!31024 GeV6,

~25!

^O8&5~8.761.0exp60.1theo60.6fit62.1OPE!31023 GeV8,

~26!

with a x2 of 2.5 for 3 degree of freedom. The errors a
separated in experimental~first number! and theoretical~sec-
ond number! parts, and a fit uncertainty~third number! is

FIG. 3. Low energy vector spectral functions fromt decays and,
via CVC, frome1e2→p1p2 data measured by NA7@36#.
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added. The latter is due to a well known bias when fitti
quantities for which correlations are due to normalizati
uncertainties@38# ~here thet branching ratios! leading sys-
tematically to lower values in terms of the normalization
the fitted parametrization. The errors quoted account for
differences between fully correlated and uncorrelated resu
Notice that the theoretical error forL10

eff comes mostly from
the uncertainty in the quark mass ratior ~sixth line of Table
I!, which we generously allowed to range in the whole int
val 8,r ,`. If one believes, for instance, the standard p
ture of chiral symmetry breaking (r;25), this error would
be negligible, as is clear from Fig. 4. In this case the th
retical error in Eq.~24! should be reduced to60.03theo. The
authors of Ref.@7# observed a variation of the results on th
nonperturbative operators depending on the weighting of
t spectral functions used in the actual fit. These variatio
stem from deviations between data and the OPE approac
the runningRt,V/A(s0<M t

2) in the vector and axial-vecto
channels~visualized in Fig. 17 of Ref.@7#! and from the
correlation between the fitted dimensionD56 and D58
operators. They have been found to be larger than the th
retical and experimental uncertainties. We repeat this st
here in order to estimate the corresponding systematic un
tainties for the fitted quantities. The last numbers in E
~24!–~26!, denoted as ‘‘OPE’’ errors, give the deviation
found. They are small forL10

eff and dominant for the nonper
turbative operators.

Table III gives the correlations between the fitted para
eters which are found to be small. Nevertheless, the inter
tation of the parameter errors given in Eqs.~24!–~26! as
individual errors must be done with care in the presence
non-vanishing correlations. The results can reliably be u
when applying the whole expansion~8! which yields Eqs.
~16! and ~17!.

ExpressingL10
eff of Eq. ~24! by means of Eq.~19! at the

xPT renormalization scalemxPT5770 MeV, we obtain

FIG. 4. Theoretical prediction of the IMSR momentRt,V2A
(1,21) ,

usingL10
eff526.3631023 as fixed input value, versus the mass ra

r . The theoretical uncertainty stems mainly from the error
as(M t

2). The dashed band shows the (V2A) data from hadronict
decays~including low energye1e2 vector cross sections! within
experimental errors.
4-7
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L10
r ~M r!52~5.1360.19!31023. ~27!

The same central value, with smaller error,

L10
r ~M r!52~5.1360.13!31023, ~28!

would result if one excludes the regionr ,15 ~see Fig. 4!,
for the quark mass ratio. Note that the quoted errors in E
~27!, ~28! do not take into account uncertainties from high
order chiral corrections in Eq.~19!. In deriving the above
value the term 2m̂2(2B32Ĥ2,2) in Eq. ~19! has been ne-
glected. Naive dimensional analysis estimates@39# give for
the low-energy constantsB3 andH2,2 an order of magnitude
of 1022, leading to a contribution which is negligible com
pared to the theoretical error in Eq.~24!. Previous estimates
of the same constant were based on resonance saturatio
sumptions@40# and on an evaluation of the DMO sum ru
~1! @41#, leading, respectively, toL10

r (M r)526.031023

and L10
r (M r)524.331023. Our result ~27! represents an

improvement of these estimates. Alternative determinati
rely on the analysis ofp→eng decays and̂r 2&p . The one-
loop value ofL10 extracted in this way is reported in Re
@42#,

L10
r ~M r!5~25.560.7!31023. ~29!

Two-loop calculations of bothp→eng @43# and, more re-
cently, pion form factors@44#, have been completed. Thes
analyses were carried out in the SU~2!3SU~2! formalism,
thus determining the SU~2! constant l 5 , instead ofL10,
which is the corresponding one for SU~3!. Since the corre-
spondence between the two sets of constants is only kn
at one-loop level@22#, we can rewrite our result forL10 as

l̄ 5513.0860.36, ~30!

and compare it to the two loop valuel̄ 5513.060.9 found in
Ref. @44#. This means that the constantl 5 extracted fromp
→eng approaches, at two-loop level, our one-loop value
Eq. ~30!, extracted fromt decays. Using the result of Ref
@23, 24# one could find the relation betweenL10

r and L10
eff

defined in Eq.~18! at two-loop level. However, as alread
pointed out in Ref.@9#, one is faced with the appearance
O(p6) constants, whose contribution toL10

eff can hardly be
disentangled fromL10

r .
The total, purely nonperturbative contribution toRt,V2A

found in the fit, taking into account the correlations betwe
the operators, amounts to

Rt,V2A50.06160.014, ~31!

TABLE III. Correlations between the fitted parameters~24!–
~26!.

L10 ^O6& ^O8&

L10 1 20.26 0.05
^O6& - 1 0.14
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compared to the measurementRt,V2A50.05560.031. The
reduced error of the theoretical fit to data compared to
measurement stems from the additional information used
the fit which is obtained from the shape of the spectral fu
tions and the OPE constraint. The result~31! is in good
agreement with the value ofRt,V2Rt,A50.068 found in Ref.
@7#. This is a non-trivial result keeping in mind the logarith
mic s dependence of the dimensionD56 Wilson coeffi-
cients used in this analysis compared to the vacuum sat
tion hypothesis adopted in Ref.@7#. In addition, in Ref.@7#,
vector and axial-vector were not combined in a simultane
fit. The smaller systematic error on the nonperturbative p
which is found in this analysis, in particular the reduc
uncertainty from the explicit dependence of the mome
employed, is due to the reduced correlation between the
tedD56 andD58 operators~see Table III!. The dimension
D56 contribution toRt,V2A corresponding to our fit resul
Eq. ~25! amounts toRt,V2A

(D56)50.07160.018, which is signifi-
cantly larger than what one obtains from the vacuum satu
tion hypothesis @14#, Rt,V2A

(D56).0.973256p3as^q̄q&2/M t
6

'0.012.
In addition to the test of the OPE by varying the (k,l )

moments used to fitL10
eff and the nonperturbative operator

we perform fits for variable ‘‘t masses’’s0<M t
2 @7# which

provides a direct test of the parameter stability atM t
2 . In

order to perform such a study one has to replace allt masses
in Eqs. ~7!, ~17!, and ~21! by s0 , while the latter must be
corrected by the kinematical factor (12s/s0)2(1
12s/s0)/s0 . The scale invariance of the dimensionD56
operator for variables0 is approximately conserved whe
keeping the scale parameterm5M t in Eqs. ~9! and ~17!
unchanged. The dimensionD58 operator is assumed to b
scale invariant. Figure 4 shows the fitted observables a
function of s0 . The horizontal bands give the results atM t

2

FIG. 5. Fit results forL10
eff and the nonperturbative operators as

function of the ‘‘t mass’’s0 . The bands depict the values~24!–~26!
within errors, obtained atM t

2 .
4-8



en

ed

e

th
th
w
rs
ly
re

i
l

on
ar

da

m

o
s

o-
-
cal-

ity

sly

he
l
di-

de

s
e

nt
l
-
s

‘
-

FINITE ENERGY CHIRAL SUM RULES ANDt . . . PHYSICAL REVIEW D58 096014
within one standard deviation. All curves show a converg
behavior fors0→M t

2 . Any deviation from the fitted values
for s0.M t

2 should be covered by the ‘‘OPE’’ errors assign
to the results~24!–~26!.

Since we use GxPT formulas in this analysis we hav
investigated the sensitivity of the (V2A) t data to a possible
constraint on the mass ratior itself. Clearly a combined fit of
L10

eff , r and the nonperturbative operators must fail due to
strong correlations of the input variables which reduce
effective degrees of freedom of the fit. Thus, as a test,
may use as input forL10

eff and the nonperturbative operato
the values ~24!–~26! and assume them to be perfect
known, e.g., from a precise second measurement. Figu
shows the theoretical prediction of the~most sensitive!
IMSR momentRt,V2A

(1,21) as a function ofr within the errors
from the other theoretical sources given in Table I, dom
nated by the error onas . Additionally shown as a horizonta
band are the ALEPH data within experimental errors. W
conclude that the current experimental precision of the n
strange data does not allow to constrain the light qu
masses, i.e., the mass ratior . In the limit of zerou,d quark
masses (r→`) we obtainRt,V2A

(1,21)55.11 which is still within
the data band of one experimental and theoretical stan
deviation. The sensitivity onr when employing thel>0
moments is even worse than with the IMSR.

VII. CONCLUSIONS

This paper deals with a combination of finite energy su
rule techniques and chiral perturbation theory~xPT! low-
energy expansion in order to exploit recent ALEPH data
the non-stranget vector and axial-vector spectral function
l.
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with respect to an experimental determination of thexPT
quantityL10. The theoretical predictions of the spectral m
ments,Rt,V2A

(k,l ) , of the t hadronic width involve nonpertur
bative elements of the operator product expansion when
culating the contour integral atusu5M t

2 . In the case of
inverse spectral moments (l ,0), additionalxPT parameters
appear originating from a second contour integral at theusu
54Mp

2 production threshold which subtracts the singular
of the (s/M t

2)21 inverse moment ats50. A constrained fit
of l ,0 and l>0 spectral moments adjusts simultaneou
the parameterL10

eff , defined by Eq.~18!, and nonperturbative
power operators of dimensionsD56 andD58. We obtain
L10

eff52(6.3660.0960.16)31023, where the first error is of
experimental and the second of theoretical origin. T
present determination ofL10

eff is independent of any chira
expansion; in particular, the value obtained here can be
rectly used in a two-loop analysis: it suffices to inclu
higher order corrections in Eq.~19!. Within the one-loop
xPT the above result corresponds toL10

r (M r)52(5.13
60.19)31023, in good agreement with the valueL10

r (M r)
52(5.560.7)31023 extracted from the one-loop analyse
of p→eng data and̂ r 2&p . The recent extension of thes
analyses to two-loop level~Refs. @43, 44#! even improves
this agreement. The compatibility of the two independe
determinations ofL10 provides a non-trivial test of chira
symmetry underlyingxPT. The total nonperturbative predic
tion to Rt,V2A found in the fit is in agreement with the value
of the ALEPH as(M t

2) analysis@7#. The stability of the fit
results is investigated in performing various fits for ‘t
masses’’ smaller thanM t . Satisfactory convergence is ob
served.
s.
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