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A combination of finite energy sum rule techniques and chiral perturbation tligBm) is used in order to
exploit recent ALEPH data on the non-strangesctor (V) and axial-vector ) spectral functions with respect
to an experimental determination of th®T quantityL 5. A constrained fit oﬂ?‘,'f\',')_A inverse momentsl (
<0) and positive spectral momentsx0) adjusts simultaneously;, and the nonperturbative power terms of
the operator product expansion. We give explicit formulas for theKirsd,1 andl = — 1 non-strange inverse
moment chiral sum rules to one-loop order generaliz&®T. Our final result read&’lO(Mp)z—(S.B

+0.19)x 10" 3, where the error includes experimental and theoretical uncertaifi@556-282198)07221-X]

PACS numbes): 11.55.Hx, 12.38.Lg, 12.39.Fe, 13.35.Dx

I. INTRODUCTION the two domains is provided by experimental datardrad-
ronic spectral functions published recently by the ALEPH
The nonperturbative features of strong interactions maké&ollaboration[6,7].

QCD a rich environment for theoretical investigations. At At the leading order ofPT, L, is directly linked to the
sufficiently high energies it is possible to parametrize thevector,vy, and axial-vectora;, spin-one spectral functions
nonperturbative effects by vacuum condensates, followingthe subscripts refer to the spihof the hadronic system
the rules of Wilson’s operator product expansi@PE) [1].  through the Das-Mathur-Okub®MO) sum rule[8]
The universal character of these condensates has been used 1 s 1
in the_ denyauo_n c_>f the so.—called Q_CD_spectraI sum rl_ﬂﬁs = f ds=[v4(s)—ay(s)]=—4Ly,. (1)
allowing, in principle, their determination from experiment. T Jo s
A particular role is played by the condensates which are . . : .
order parameters of the spontaneous breakdown of chirﬁS I stands the DMO sum rulél) is subject to chiral cor-
symmetry(SByS). The latter vanish at all orders of pertur- fections due to non-vanishing quark masg}sOn the other

bation theory and they control the high energy behavior o<a|\r/‘|‘§' tshﬁclentn%g;al Zﬁiwéﬁt:ﬁn?grtmitz?]mﬁ—flglt?s Zn:rfy
chiral correlation functions, such as the difference of vector " 7’ : Xper : lon op—a, IS aval

and axial vector current two-point functions. On the other2Pl€ aboveM; . This truncation introduces an error which
hand, at low energies, SB makes it possible to construct competes with the low-energy chiral corrections. Both types

an effective theory of QCD, the chiral perturbation theoryﬁ!c c;]orrectlons can bg sygtematlcally .|nc_|uded throtighhe f
(xPT) [3,4], which uses the Goldstone bosons as fundamen-Ig ~energy expansion I0v(So) and_ N INVETSe POWETS o
X T S, and (ii) the low-energy expansion in powers of quark

tal figlds and.prov.ides a systematic expansion of QCD Cor asses and of their logarithms.
relation functions in powers of momenta and quark masses.
All missing information is then parametrized by low-energy
coupling constants, which can be determined phenomeno-

logically in low-energy experiments involving pions and ka-  Using unitarity and analyticity, the spectral functions are
ons. The fundamental parameters describing chiral symmetrgonnected to the imaginary part of the two-point correlation
breaking, the running quark masses and the quark anti-quaflnctions,

condensateéqq) appear both in low-energgPT) and the

high energy OPE exparysion_. For this reason it is useful to HﬁVu(Q)EiJ d4xeiqx<0|-|-(uﬁ(x)uivj(O)T)|0>

combine the two expansions in order to get a truly systematic '

approach to the chiral sum rulgs]. In this paper the com-

bined approach is illustrated through a determination of the =(—g""9*+g*q")IIL(0%) +a#q"TI (0P),
Lo constant of the chiral Lagrangian, including high-energy 2
corrections coming from the OPE. The connection between — )
of_vector Ufj=V{j=a;y*q;) or axial-vector Uf=Af
=q;y*ysq;) color-singlet quark currents for time-like

Il. SPECTRAL MOMENTS
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gularities exist. Using the definitions adopted in R¢&7] Im(s)
together with Eq.(2), one identifies, for non-strange quark
currents,

Im 1% (s)=iv Jay(s), ImIIY (s)=ia (s)
ud,V/A 27 1A= ud,A 2. S0,
()

Due to the conserved vector current, there islad) contri-
bution to the vector spectral function, while the only contri-
bution toa, is assumed to be from the pion pole. It is con-
nected via PCAC to the pion decay constaat ,(s)
=47%f2 5(s—m?).

According to the method proposed by Le Diberder and
Pich[10], it is possible to exploit the information from the
explicit shape of the spectral functions by calculating so-
called spectral moments, i.e., weighted integrals over the
spectral functions. IfW(s) is an analytic function, by

, H . J .
Cauchy’s theorem, the imaginary part Hﬁj \ia is propor- FIG. 1. Integration contour around the circles satM? and
tional to the discontinuity across the positive real axis: S=Sy.

Re(s)

S,
f 0dsV\(s)Im Hff,)V,A(s)=—% dsWS)IT{?\a(s),  successfully applied in order to constrain nonperturbative
0 ' Jlsl=so @) contributions to the- hadronic widthR ., a procedure which
led to precise determinations ef(M?2) [7,11,13.
wheres, is large enough for the OPE series to converge. The The extension of the spectral moment analysis to negative

authors of Ref[10] choose foW(s) the functions integer values of [“inverse moment sum rules{IMSR)
2tk | [13]] requires, due to the pole a0, a modified contour of
Wk (s) = ( 1— _) (_) (5) integration in the compleg plane, as shown in Fig. 1. This
So So/ is wherexPT comes into play: along the small circle placed

. o at the production threshold,,=4M?2 , we can usePT pre-
with k and| positive integers. The factor {4s/sy)* sup- fgctionz for the two-point cg]rrelatc;Trs. a=ip

presses the integrand at the crossing of the positive real ax X . : .
where the validity of the OPE is questioned. Its counterpart Using the weight function(5) we adopt the following

(s/s)' projects on higher energies. These moments werd€finition of the moments:

S

1+2M_§ ) (6)

2s
)Im MY Y (s)— E Im IIY(s)

T

w2 ds s |2tk g \!
R(rl,(\'/l/)A5127T|Vud|ZSEWf TM_§<1_M_5) M_i

Smin

wheres,=0 for the positive momentg(|=0) andsy,=S», Which is the continuum threshold, for the inverse moments.
According to the relatiori4), Eq. (6) reads

: )

S S
1+2M—E)H§2;1>(s)—2WH§8>(s)

(K1) - 2 ds s |2 s\
Ry 7a=671|Vyd “Sew VL 1—M—§ M2

T

whereC=C;+ C, for the inverse moments ar@d=C; for the positive momentésee Fig. L
Due to the cut of the integralp) at Mf, nonperturbative physics parametrized by the short-distance OPE for scalar
operatord1,2,14 must be considered:

1

A= 2 g2 42 o CUAS K (Oun(u?). (8)

The parameteruw separates the long-distance nonperturbative effects, absorbed into the vacuum expectation elements
(Oya(1?)), from the short-distance effects which are included in the Wilson coefficpigs, #2) [1]. We will assume the

This is due to the pion pole which is at zero mass in the chiral limit.
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convergence of the OPE series at theass. This is justified in the light of the success of the analysis performed if7Ref.
(see Ref.[15] for detailg. Using the formulas of Refd.14] and [16] for the nonperturbative power expansion of the
correlators, one obtains for th&/ - A) case

ag(s) m4s) 16 m*(s) (8 59 m{uu+dd
9= = 222 T2 5 T+ Saor Satte)) M
119 1 Oxu?) 22 O%(u?) (O
—8mlay(u?)| 1+ ﬁ—EL(S))aS(Mz)} (Oslp?)) GSéL >+T7T[3+4L(5)]a§(,u2)< Gsf >+<S48>, 9)
0) B . 75 2137 mA(s) ., m¥(u?)
gy a(78)== 2|28, (8) =5+ | 154(3) ~ 5 7glas(s) | —— —4C(u") ——
1 [53 - m*(s) _m(uu+dd
—ﬁ[7—12asl(s)} -2 P 3 (10

with ag(s)=ag(s)/m, L(s)=log(dux?) and the dimension sume that there is no logarithm& dependence in leading

D=6 operators orderag. Again, theJ=0 contribution vanishes in the chiral
limit.
Oe=uy,ysTaddy ysT2u—uy,Toddy*T?u As constraints on the nonperturbative phenomenological

operators introduced in Eq&) and(10) from theory alone
are scarce, we will benefit from the information provided by

, — — _ _
Og=uy,ddy“u—uy,ysddy*ysu, (1D the (v—A) spectral moments in order to determine the mag-

a ] nitude of the OPE power terms Mf. We therefore perform

where the SU(3) generatorsT® are normalized so that 5 combined fit of the IMSRi.e., | = — 1) which determines

tr(T2T®) = 5%%2. We use the average mas®=(m, L,0, and thd =0 moments which adjust the nonperturbative
+my)/2 in the above equations, i.e., we assudté(2) sym-  contributions.

metry. The constant(x?) depends on the renormalization
proceduré and should not affect physical observables. The
dimensionD=0 contribution is of pure perturbative origin
and is degenerate in all orders of perturbation theory for The non-strange correlatof8) have been calculated at
vector and axial-vector currents. Dimensidh=2 mass one-loop level[4,22] and, most recently, at two-loop level
terms are calculated perturbatively to ordérwhich suffices  [23,24 in standardyPT. In this paper we stick to th@(p?)

for the lightu,d, quarks. Possible &/contributions coming one-loop order for the following two reason@) the high
from ultraviolet renormalongsee, e.g., Refd17,18)), are  energy corrections are often more important thanQge®)
expected to vanish in thg—A difference, similar to what chiral correctiongwhose precise estimate has not yet been
happens for th® =0 contribution, since they are of pertur- fully completed[9]) and(ii) it is important to proceed in the
bative origin. The coefficient functions of the dimensibn combined analysis order by order in quark masses. On the
=4 operators for vector and axial-vector currents have beenther hand, we use the generalized versiory®T (GxPT)
calculated to subleading order in Reff19,20. Their [25], which allows us to investigate the sensitivity of the
vacuum expectation values are expressed in terms of thanalysis to the variation of the quark condensate and of the
scale invariant gluon and quark condensates. Since the Wikuark mass ratio =mg/m. The standargyPT assume§26]

son coeff|C|en§s of the gluon condensate are symmetric f m(qq)=—F2M2 and r=2M2/M2—1~25.9, whereas
vector and axial-vector currents, they vanish in the differ- (. T

ence. The expectation values OI thf dimeninmezopgra- is interesting to investigate whether the ALEPH spectral
tors (11) obey the inequalitiesOg(u))=0 and(Os(1%))  fynction data are precise enough to have any impact on the

=<0, which can be derived from first principles. The corre- , =
sponding coefficient functions were calculated by the author@h90'N9 debate about the size @fg). Anyhow, the alter-

of Ref.[21] in the chiral limit for which theJ=0 contribu- ations of the standar@(p*) results for non-strange correla-

tion vanishes. For the dimensidd=8 operators no such tors (2) introduced by G‘/PT are marginal. They merely con-
. . . : . cern the symmetry breaking=0 component of the spectral
calculations are available in the literature, and we will as- . :
functions and most of them are actually absorbed into the
renormalization of~ ..
In order to make our analysis as independent of a particu-
2We will assume a renormalization scheme that preserves chirdhr truncation of theyPT series as possible, we proceed in

symmetry, so tha€ is the same for the vector and axial correlators. two steps. First, one defines a phenomenological quantity

Ill. CHIRAL PERTURBATION THEORY

GxPT admits lower values of these two quantitigg,25. It
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called L§Y via the contribution of the small circl€, (see ~and H,, are coefficients of contact terms of the sources.
Fig. 1) to the integral7) of the chiral combinatiov—A for ~ They are counterterms needed to renormalize the ultraviolet
|=—1. LS is then determined in the combined fit of the d|vergences of the Green funphons and plo _”Ot appear In
IMSR andl=0 moments. The result of this fit is independent Physical observables. Our aim is to determing: therefore
of the xPT renormalization scalg 7. The latter is used in Ve will consider the difference between the vector and the
the next step in order to relat@gxto the quark-mass inde- axial-vector correlz_itors for which the_constalrlti dlsap-
ndent | ndent con nd finallv t pears. Correspondmgly, as allready pomted put, we will not
pendent, scale dependent constafi(,7) and finally to need the perturbative expressions which are identical for vec-

other observable§rom m—evy data,(r)é)ﬁ). . :
The isospin two-point correlators at one loop i3I tor a_ln(_j axial-vector cases. As for the consthiyt, which
multiplies the term

read
I (5) =AM (5)+ 8M', () — 4(Lig 2HY), (Pux'DY)
(12
of the L, ,) chiral Lagrangiari,it always appears in the same
H%V(S):O' (13 combination withC(x?), in such a way that the ambiguities
) cancel out. We thus define I%lzvz, in which the constant
2F CIM2Y i i i i
H%+Al)(s)= - —4(2H, - L), (14) C(M T)_ is absorbed. What is new at this ordgr with rt_es_pect to
: s—Mz SYPT is the appearance of the constBgtwhich multiplies
the term
2np2
0 —_ T mTm g2 _
Sy a(9)== 5"z T8M(Hz,~2By). (19 (U'D xU'D x+H.c)

The functionsM,,(s) are loop integrals, defined, e.g., in of the L 2.2 Lagrangian. As can be seen from its form it is
Ref.[22]. The superscript refers to renormalized quantities, difficult to find a process in whiclB; would contribute di-
which depend on the scale,pr. The whole expressions are rectly. It will contribute to off-shell vertices involving Gold-
u,pr independentH,, and B; are found to be finite, in  stone bosons.

agreement witf 28], and do not need renormalizatioH.; The IMSR'’s corresponding tb=—1 andk=0,1 read

1 F2MZ 144
WA= = 96w L g+ 24m? —Fa 4+ 1 MAMY)

1 23 [(«#? 36061 75
|V |ZS RT,V—A:
ud EW

aM?) 8 |12 as96 " 32t

as(MEﬁ

T T

9% . Tae Tl 1 V2 17 22 a2 1 29| 192+* )
M_‘;W m(dd+uu)| 1+ay(M?7)+ 7 as(M?) 7Mim( 7) aM?) 24 M—iaS(’u)
103 L(M?) ol i1 o A00Tt 12
{ +<ﬂ— 2 as(u) [(Op(n))+ BME as(u?) 1+E—)L(MT) (O5(1), (16)
1 F2  F2M2 F2M*\ 144 71
- (1,71):_ 2y eff _ 20 T TW T T A2 2 __-
|Vud|ZSEWRT‘V7A 9677 LlO 24’77' (Mf_ 3 Mi M?_ Mf_ m (MT) as(Mf_) 24
m? 39461 75 oyl | 1944 om0 2 e 435
1z er@(( ) |as(M?) WW m(dd+uu) +§as( T)+gas( 7

864 .. 1 2] 480" 581 L(M?2)

— oyd MH(M?) as(Mz)—g}—Wast){H 20 32 )asw)}w%wz»

47274 60 O
+3—Nf}a§w2>(1+@L<ME>)<02<MZ>>+24772<M—%>. (17)

3£(n'm) collects terms in the chiral Lagrangian withcovariant derivatives anoth powers of quark masses. In the same notationthe
constant introduced by Gasser and LeutwyR2] would becomeH , o.
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Notice that in theD =2 contribution we have not taken into The average light quark mass is then obtained fia
account themg term, which is known for the transversal cor- =mg/r where we use for the strange quark masgM ;)
relator (9), but not for the scalar correlat¢t0). The contri- =172 MeV/c? [30]. This parametrization makes it possible
bution of the latter to the contour integral is non-zero for thetg use the theoretical correlation betwemnand the quark
inverse moments, unlike for the positive ones. We have decondensate, which to leading order in quark masses is given

fined by the generalized Gell-Mann—Oakes—Renner relation
[27,25:
s 2s
T (0+1) (0)
—8Lp=lim1 | 1+ M2 g voa(®)— MZHud,V—A(S) A 2i g2 (T T)(r+ry+2)
s=0 T 7 m(uu+dd)=—-FZM2 7] , (20

wherer,;=2(My /M ) —1. For the standard value=25.9,
Eqg. (20) becomes the usual PCA@artial conservation of

which is proportional to the contribution of the small circle axial vector currentrelation m(uu+dd)=— Ff,l\/lf, Cor-
C, to the integral(7), with the pion pole subtracted. This rections to Eq(20) are expected to be small in the whole
quantity is a well defined observable, the ambiguity in therange ofr so that we assume a relative uncertainty of 10%.

two-point function being absorbed by the const@ntin the =~ W€ will comment in Sec. VI on the sensitivity of the data

particular case of the one-loopy8T calculation, its expan- With respect to the ratio. Theoretical uncertainties are in-
sion reads troduced from the strong coupling constant where, in order

to be uncorrelated to thedata used in this analysis, we rely
on the result from the global electroweak fit found recently
to be[31,32

2F2 F2 ’ m2(M?2)
+8

_ _ o T ~ 2
vz wz - CMD, 19

2

1
eff r T
LlO LlO( lu’)(PT) 12877'2 ( |Og )Z(PT 1

1 M2 2Ry ) as(M%)=0.11980.0031.
+WIOQW+W(ZBB_HZ’2)’ (19

G T Uncertainties from the OPE separation scalare evalu-

ated by varyingu from 1.3 GeV to 2.3 GeV, while in the fit

which is independent oft\pr. Unless stated otherwise all e chooseu=M , so that the logarithmic scale dependence
condensates, quark masses gl constants in the above of the dimensiorD=6 terms vanishes after the contour in-
expressions are evaluated at QCD renormalization scal@gration. Additional small uncertainties stem from the pion
#qco=M;, while the product of the light quark mass and decay constanf ,=(92.4+0.2) MeV, taken from Ref33]
the scalar quark operatom(dd+uu), is scale invariant. and the overall correction factor for electroweak radiation,
Taking the difference of Eq$16) and(17) and subtracting Sg,=1.0194, obtained in Ref34], with an estimated error
the contribution from the pion pole recovers the expressiof A Sg,,=0.0040 according to Ref35].
for R, y_a= R(Tf’\',ol A given in[14]. Due to the strong intrinsic An overview of the associated uncertainties in the theo-
correlations of 98% between the IMSR’s defined above onlyetical prediction of the moments is given in Table |. The
one IMSR is used as input to the combined fit. We find itmoment errors from theg uncertainty depend on the central
convenient to use the momekt=1, |=—1 [Eq. (17)] be- input values of the nonperturbative operators. The numbers
cause its experimental value is known with a 30% bettegiven in the fourth line of Table | correspond to the fit val-
precision which is due to the additional £/M?) suppres-  ues, Eqs(25), (26), which have been obtained in an iterative
sion of the less accurate high energy tail of the<(A) spec- ~ procedure.
tral function.

V. SPECTRAL FUNCTIONS FROM HADRONIC 7

IV. THEORETICAL PARAMETERS AND DECAYS

UNCERTAINTIES The ALEPH Collaboration measured the inclusive invari-

When fitting the theoretical prediction of th)) , mo- ~ ant mass-squared spectra of vector and axial-vector hadronic
ments to data, theoretical as well as experimental uncertairf- décays and provided the corresponding bin-to-bin covari-
ties and the correlations of these between thé)(moments ~ ance matrice§6,7]. The mass distributions naturally contain
must be considered. The masses of the light quarks are pH1€ kinematic factor of Eq6) so that the measured spectral

rametrized using the mass ratie-ms/m of which the cen- moments read
tral value is set to the T value of 26. A lower limit is

k |
found at r=r;=2(My/M_)—1~6.1 (while r~8.2 R(D :f“"f -2V 2 s dNy
when including higher orderf29]) which determines the VoA o ds M2/ \M2] | ZVNyds
range
dNaT 1 o
8<r<o, "Nads| B’

096014-5



M. DAVIER, A. HOCKER, L. GIRLANDA, AND J. STERN PHYSICAL REVIEW D58 096014

TABLE |. Measured spectral moments of vectdr)(minus axial-vector A) using 7 data only (ALEPH) and usingr+e*e™ data
(ALEPH+NA7). The quoted errors account for the total experimental uncertainties including statistical and systematic effects as well as the
theoretical uncertainties according to Sec. IV. The last line gives the fitted theoretical moments using the parameters giv@4)in(Z6js.

(k,1)— (1,-1) 0,0 (1,0 (1, 12 13
R/ o (ALEPH) 5.16 0.055 0.038 0.047 —0.0164 —0.0126
ASRKD 0.09 0.031 0.017 0.006 0.0035 0.0023
R o (ALEPH+NAT) 5.13 0.055 0.037 0.047 —0.0164 ~0.0126
ASRKD 0.08 0.031 0.017 0.006 0.0035 0.0023
AeRI) | (Ar) 0.12 0.003 0.003 0.001 0.0003 <0.0001
AeRED  (Aay) 0.02 0.009 0.009 0.002 0.0029 0.0001
ANeRED  (ASew) 0.02 <0.001 <0.001 <0.001 0.0001 <0.0001
ATeRKD | (Apope) <0.01 0.005 0.005 0.002 0.0018 <0.0001
AteRKD | (A(qq)) <0.01 <0.001 <0.001 <0.001 <0.0001 <0.0001
AeRK) | (AF,) <0.01 <0.001 <0.001 <0.001 <0.0001 <0.0001
R)) » (Theory fitted 5.13 0.061 0.032 0.053 -0.0148 —0.0098

with the normalized invariant mass-squared spectranoments as well as their correlations which are computed
(1/Ny,) (dNy,a/ds) of vector and axial-vector final states, analytically from the contraction of the derivatives of the
the electronic branching ratidusing universality [33,7), moments with the covariance matrices of the respective nor-
B.=(17.794+0.045)%, and the inclusive branching ratios malized invariant mass-squared spectra.

[7], By=(31.58+0.29)%, B,=(30.56+0.30)%, as well as Based on isospin invariance, the conserved vector current
their difference B, _,=(1.02+0.58)%. Due to anticorrela- (CVC) hypothesis relates vector hadronicspectral func-
tions between vector and axial-vector final states, especiallifons to isovector cross section measurements of the reaction

for the KK modes where the vector and axial-vector parts€’ € —hadrons. There exist precise data on the low energy,
are unknown, the error of the difference is larger than theime-like pion form factor-squarei ,(s)|* measured by the
quadratic sum of the errors dhandA. Figure 2 shows the NA7 Collaboration[36]. Using the CVC relation

(V—A) mass-squared distribution, which is the integrand of

Eq. (21) for zero momentsk=1=0. With increasing masses 1

it is dominated by the (V), a; (A) and thep(1450, wr V1m70(S)= 75| 17 —5
(V) resonance contributions which create the oscillating be-

havior. Tables | and Il give the experimental values and un- : o ; :
L one can include the additional data in order to improve the
certainties for the IMSRR,\_, and thek=1,1=0,...,3 b

precision of the moment1), in particular for the IMSR in
which the low-energy region is emphasized. Figure 3 shows

2
T

3/2
IFi-Ys)2 (22

g L the vector spectral function fromdata(three bing together
N; i + ] with the NA7 measurements for energy-squared
%“' 4L . T = (V,A) v, (ALEPH data) ] <0.2 Ge\~. In addition, we giye t_he result when fitting both
r + ] data sets using the parametrization
L . 1
R ] F.(s)=1+ g(rz)ws+Asz+ Bs?, (23
+ ]
2+ ]
[ . ] for the pion form factor. Here, the pion charge radius-
o ] squared(r?),=(0.439+0.008) fn?, is taken from an analy-
L . ]
ro- . 1 TABLE Il. Sum of experimental and theoretical correlations
o R I ] between the momen®¥;)) , .
: ] &) @ ) 00 @0 @) @12 (13
'1__|||.I....I.’T’.‘.I.|..|....I.||.t|-|.. (1,-1) 1 046 061 040 026 0.13
0 0.5 1 15 2 25 3 35 0,0 - 1 0.89 0.97 0.84 0.80
e s (GevD) (1,0 - - 1 0.88 074 045
1,9 - - - 1 0.89 0.78
FIG. 2. Vector minus axial-vectorM—A) invariant mass- (1,2 - - - - 1 0.76

squared distribution measured by ALEFH.
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- 0.1 ————————————————————x e ST
> H L > [
[ ® NA7 ] e I E ZZz2 ALEPH (+ NA7) Data (exp. errors)
r 7 L Theor: prediction (theor. errors, AL,;=0) |
[ =/ Fitted form factor / i sal 1
0.06 T
i / ] 520
0.04 o’ 0
: 2 | |
0.02 i
i < 48 [bpe by
L 4 ] + it L SYPT i
1 PRI I T I T Y . N A S A N ST N S B B AR
0008 0.1 012 014 016 0.8 0.2 5 10 15 20 25 30 35 40 45 0
s (GeV?) r=m/m
FIG. 3. Low energy vector spectral functions frardecays and, FIG. 4. Theoretical prediction of the IMSR momeR{y, A,
via CVC, frome"e —#* 7~ data measured by NAB6E]. using L‘{‘g=—6.3®< 103 as fixed input value, versus the mass ratio

r. The theoretical uncertainty stems mainly from the error on
sis of space-like datf37]. We stress that the forn23),  @s(M?). The dashed band shows théA) data from hadronie-
which does not correspond to the actual analytic behavior offecays(including low energye”e™ vector cross sectionswithin
the form factor at low energy, is merely used as a parametri€xperimental errors.
zation of experimental data. We obtain the fit resits
—(7.5x1.1) GeV* and B=(62.5+6.4) GeV* with x* added. The latter is due to a well known bias when fitting
=0.6 for 5 degrees of freedom. The correlation betwden quantities for which correlations are due to normalization
andB is absorbed in the diagonal errors given, so that bothncertaintied38] (here ther branching ratiosleading sys-
quantities can be handled as being uncorrelated. Replacifigmatically to lower values in terms of the normalization of
for the above energy intervalMZ<s<0.2 GeV the purer  the fitted parametrization. The errors quoted account for the
data by a combination afande”e” data represented by the differences between fully correlated and uncorrelated results.
analytical expressione22) and (23), we obtain the results  Noice that the theoretical error far comes mostly from

given in t?? third .aﬂd fofu;t:}:o/llr}e Ot]; Tablz lf Aﬂfmla,\‘l:s'g' the uncertainty in the quark mass ratidsixth line of Table
provement in precision o o IS observed for the " 1), which we generously allowed to range in the whole inter-

The spectral information is used to fit simultaneously the

™ . val 8<r <. If one believes, for instance, the standard pic-
low-energy quantitylL;, and the nonperturbative phenom- . ) )
) . : X ture of chiral symmetry breaking ¢-25), this error would
enological operators. For dimensi@h=6 we will neglect

the contribution of®2. which is suppressed hy§ and. fur- be negligible, as is clear from Fig. 4. In this case the theo-

. . . - retical error in Eq(24) should be reduced tar 0.03;,¢,- The
thermore, is suppres_sed relatlvelm '? thez largeN; limit. authors of Ref[7] observed a variation of the results on the
Therefore we will simply keepDg=035(M?) and theOg

. . nonperturbative operators depending on the weighting of the
operator of dimensiol =8. 7 spectral functions used in the actual fit. These variations
stem from deviations between data and the OPE approach for
the runningRTYV,A(sost) in the vector and axial-vector

The fit minimizes they? of the differences between mea- channels(visualized in Fig. 17 of Ref[7]) and from the
sured and fitted quantities contracted with the inverse of theorrelation between the fitted dimensi@=6 and D=8
sum of the experimental and theoretical covariance matricegperators. They have been found to be larger than the theo-
taken from Table Il. The results of the fit are, fofg, retical and experimental uncertainties. We repeat this study
here in order to estimate the corresponding systematic uncer-
LST=—(6.36+ 0.09* 0.14pe5+ 0.07; = 0.06p) X 1073, tainties for the fitted quantities. The last numbers in Egs.
(24 (24)—(26), denoted as “OPE” errors, give the deviations
found. They are small fok i and dominant for the nonper-
turbative operators.
_ 4 Table Il gives the correlations between the fitted param-
(O6) = (5.0 0.8y 0.neq™ 0. 24+ 1. Iope) X 10~* Ge VP, eters which are found to be small. Nevertheless, the interpre-
(25 tation of the parameter errors given in Eq24)—(26) as
_ o+ -+ 0 A + —3 individual errors must be done with care in the presence of
(Og) = (87 1001 0-Tineo™ 0.6 2. Jope) X 10 GeVZ,G non-vanishing correlations. The results can reliably be used
(26) when applying the whole expansidB) which yields Egs.
with a x? of 2.5 for 3 degree of freedom. The errors are(16) and(17).
separated in experimentdirst numbey and theoreticalsec- ExpressingL‘iI)f of Eq. (24) by means of Eq(19) at the
ond number parts, and a fit uncertaintfthird numbey is ~ xPT renormalization scalg,pr=770 MeV, we obtain

VI. RESULTS OF THE FIT

and, for the nonperturbative operators,

096014-7
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TABLE lll. Correlations between the fitted parametél)—
(26).

I-10 (O(S) <08>
Lo 1 -0.26 0.05
(O6) - 1 0.14
Lig(M,)=—(5.13£0.19x 103, (27
The same central value, with smaller error,
Lig(M,)=—(5.13£0.13 x 10" 3, (29

would result if one excludes the regior<15 (see Fig. 4,

PHYSICAL REVIEW D58 096014

compared to the measuremeRf, _,=0.055-0.031. The
reduced error of the theoretical fit to data compared to the
measurement stems from the additional information used in
the fit which is obtained from the shape of the spectral func-
tions and the OPE constraint. The res(8tl) is in good
agreement with the value &, ,— R, ,=0.068 found in Ref.

[7]. This is a non-trivial result keeping in mind the logarith-
mic s dependence of the dimensidh=6 Wilson coeffi-
cients used in this analysis compared to the vacuum satura-
tion hypothesis adopted in Rdf7]. In addition, in Ref[7],
vector and axial-vector were not combined in a simultaneous
fit. The smaller systematic error on the nonperturbative parts
which is found in this analysis, in particular the reduced
uncertainty from the explicit dependence of the moments
employed, is due to the reduced correlation between the fit-

for the quark mass ratio. Note that the quoted errors in Eqd€dD =6 andD =8 operatorgsee Table I]. The dimension

(27), (28) do not take into account uncertainties from higher
order chiral corrections in Eq19). In deriving the above

value the term &?(2B;—H, ) in Eq. (19) has been ne-
glected. Naive dimensional analysis estimdt@g] give for
the low-energy constan&; andH, , an order of magnitude
of 1072, leading to a contribution which is negligible com-
pared to the theoretical error in E@4). Previous estimates
of the same constant were based on resonance saturation
sumptions[40] and on an evaluation of the DMO sum rule
(1) [41], leading, respectively, td.j(M,)=—6.0x10"3
and Lig(M,)=—4.3x10"%. Our result(27) represents an
improvement of these estimates. Alternative determination
rely on the analysis ofr—evy decays andr?),.. The one-
loop value ofL 4y extracted in this way is reported in Ref.
[42],

Lig(M,)=(—5.5+0.7)x 10" 2. (29
Two-loop calculations of bothr—evy [43] and, more re-
cently, pion form factorg44], have been completed. These
analyses were carried out in the @UXSU(2) formalism,
thus determining the S@) constantls, instead ofL4q,
which is the corresponding one for 8). Since the corre-

spondence between the two sets of constants is only knowi

at one-loop leve[22], we can rewrite our result fdr,, as
15=13.08+0.36, (30)

and compare it to the two loop vaIﬁgz 13.0+0.9 found in
Ref.[44]. This means that the constdagtextracted fromsr

—evy approaches, at two-loop level, our one-loop value of

Eq. (30), extracted fromr decays. Using the result of Refs.
[23, 24 one could find the relation betwedd,, and L
defined in Eq.(18) at two-loop level. However, as already
pointed out in Ref[9], one is faced with the appearance of
O(p®) constants, whose contribution to‘fg can hardly be
disentangled from.{,.

The total, purely nonperturbative contribution Ry _

D=6 contribution toR, \_ corresponding to our fit result
Eq. (25) amounts tR%,-%)=0.071+0.018, which is signifi-
cantly larger than what one obtains from the vacuum satura-
tion hypothesis [14], R{®-§=0.97x 256m°a(qq)?/M®
~0.012.

In addition to the test of the OPE by varying thie,|(
moments used to filtfl"{,f and the nonperturbative operators,
age perform fits for variable masses”sost [7] which
provides a direct test of the parameter stabilityMﬁ. In
order to perform such a study one has to replace alhsses
in Egs. (7), (17), and (21) by sy, while the latter must be
sorrected by the kinematical factor {Is/sg)?(1
+2s/sg)/sy. The scale invariance of the dimensi@n=6
operator for variables, is approximately conserved when
keeping the scale parametar=M in Egs. (9) and (17)
unchanged. The dimensidh=8 operator is assumed to be
scale invariant. Figure 4 shows the fitted observables as a
function of s,. The horizontal bands give the resultshaf

— ST T
= K ]
x -5 1
i o6p .
E 17
6.5E H
£ TR
S 8EF E
X |
o E 4
S 4F ]
S . __— _:
—~ VA e
5 E ]
% 10F *‘~
> ]
g sF 3
\oj’()— -
Bl [ BN B [ .
16 18 2 22 24 26 28 3 32

s, (GeVD)

found in the fit, taking into account the correlations between

the operators, amounts to

R,y_a=0.061+0.014, (31)

FIG. 5. Fit results fonLigf and the nonperturbative operators as a
function of the “rmass”s,. The bands depict the valué&)—(26)
within errors, obtained av?.
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within one standard deviation. All curves show a convergentvith respect to an experimental determination of T

behavior fors,—M?. Any deviation from the fitted values

for s,>M? should be covered by the “OPE” errors assigned ments,R%) 4,

to the resultg24)—(26).

quantityL ;5. The theoretical predictions of the spectral mo-
of the 7 hadronic width involve nonpertur-
bative elements of the operator product expansion when cal-

Since we use @PT formulas in this analysis we have cylating the contour integral ds|=M?2. In the case of

investigated the sensitivity of th&( A) rdata to a possible
constraint on the mass ratidtself. Clearly a combined fit of

¢ r and the nonperturbative operators must fail due to th
strong correlations of the input variables which reduce th
effective degrees of freedom of the fit. Thus, as a test, w
may use as input fok$h and the nonperturbative operators
the values(24)—(26) and assume them to be perfectly
known, e.g., from a precise second measurement. Figure

shows the theoretical prediction of th@nost sensitive
IMSR momentR%; " as a function off within the errors

from the other theoretical sources given in Table I, domi-

nated by the error org. Additionally shown as a horizontal

band are the ALEPH data within experimental errors. Wi
conclude that the current experimental precision of the no
strange data does not allow to constrain the light quar

masses, i.e., the mass ratioln the limit of zerou,d quark

massesi(— =) we obtainRy, *}=5.11 which is still within

the data band of one experimental and theoretical standal

deviation. The sensitivity om when employing thd =0
moments is even worse than with the IMSR.

VII. CONCLUSIONS

inverse spectral moments<€0), additionalyPT parameters
appear originating from a second contour integral at|the

e:4Mf, production threshold which subtracts the singularity
f the (s/Mf)*l inverse moment at=0. A constrained fit
%f 1<0 andI=0 spectral moments adjusts simultaneously

the parameter_‘fg, defined by Eq(18), and nonperturbative

%Le)wer operators of dimensio3=6 andD=28. We obtain
5= —(6.36+0.09+0.16)x 103, where the first error is of
experimental and the second of theoretical origin. The
present determination df‘ig is independent of any chiral
expansion; in particular, the value obtained here can be di-
rectly used in a two-loop analysis: it suffices to include

r?Ijigher order corrections in Eq19). Within the one-loop
IQ(PT the above result corresponds tqo(Mp)z—(S.lS

+0.19)x 103, in good agreement with the valig (M ,)
=—(5.5+0.7)x 10 2 extracted from the one-loop analyses
m—evy data and(r?),.. The recent extension of these
analyses to two-loop levelRefs. [43, 44]) even improves
this agreement. The compatibility of the two independent
determinations ofL,y provides a non-trivial test of chiral
symmetry underlyingyPT. The total nonperturbative predic-
tion toR, y_ found in the fit is in agreement with the values

This paper deals with a combination of finite energy sum-of the ALEPH ay(M?) analysis[7]. The stability of the fit

rule techniques and chiral perturbation thedgPT) low-

results is investigated in performing various fits forr “

energy expansion in order to exploit recent ALEPH data ormasses” smaller thaM .. Satisfactory convergence is ob-
the non-strange vector and axial-vector spectral functions served.
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