PHYSICAL REVIEW D, VOLUME 58, 096012

Hierarchical quark mass matrices

Andrija Rasn
High Energy Section, International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
(Received 7 April 1998; published 7 October 1998

| define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that
the leading rotations in the diagonalization matrix are a paie and(1,2) rotations. In addition to Fritzsch
structures, examples of such hierarchical structures include also matricdd \Bjitelements of the same order
or even much larger than tli&,2) elements. Such matrices can be obtained in the framework of a flavor theory.
To leading order, the values of the angle in {83 plane 6,3 and the angle in thél,2) plane 6;,) do not
depend on the order in which they are taken when diagonalizing. We find that any of the Cabibbo-Kobayashi-
Maskawa matrix parametrizations that consist of at leas{ b8 and ong(2,3) rotation may be suitable. In the
particular case when thg; diagonalization angles are sufficiently small compared to the pragusst;, two
special CKM parametrizations emerge: tRe;R,3R,, parametrization follows witts,; taken before thes;,
rotation, and vice versa for the,;R;,R,; parametrization| S0556-282(98)01119-9

PACS numbeis): 11.30.Hv, 12.15.Ff, 12.15.Hh

[. INTRODUCTION from hierarchical mass matrices. | will use some recently
obtained exact results about diagonalizing X33 matrices
A hierarchical structure of the Yukawa matrix is the most[12], in order to control the corrections involving small terms
widely used structure. It can follow, for example, from flavor [for example the rotation angles in t&3) plane,s;3]. The
theories with either Abelian or non-Abelian symmetries. Inbasic result is that any CKM parametrization that has at least
theories with Abelian symmetries the hierarchy is obtainecPne (2,3 rotation and oné1,2) rotation is practical. Which
by assigning different charges to different familjég Fami-  one of the parametrizations should be used will at the end
lies that have a larger charge will have a higher power of thélepend on the flavor theory, i.e. the explicit structure of the
flavor symmetry breaking parameter and thus will have arukawa matrices. If the theory has a prediction, e.g. if some
smaller Yukawa coupling. In theories with non-Abelian sym-©f the diagonalizing angles can be expressed in terms of
metries, the hierarchy in the couplings is a reflection of theduark masses, it might be obvious in one parametrization but
hierarchy in symmetry breaking scalg®. Hierarchies can Ot in another.

also be generated radiatively where the small numbers origi-m’gllpgéxu;?(gg)igr?hpele IS threogaif _Vthg” ?ggg%rlesa&rﬁ
nate in the loop factorf3]. General hierarchical structures, S P 12523 Product. Two par lzations

but only texture zeroes, have been studied befd:g,6]. emerge as winners: theRi,R;;R;,” parametrization[pro-

Another very popular structure, which we do not considerposed by Dimopoulos, Hall and Rabl3] (see also

) i [14,15,18); it was recently proposed as ‘“standard” by
here, is a democr_at_lc o] where the elements are all of Fritzsch and Xing17] and the ‘RyaR;,R,5" parametrization
order one and sufficiently close to each other so that only on

X X | X &he original Kobayashi-Maskawa parametrizatidri]). It
eigenvalue is large. Other structures may combine hierarchyji gepend on the underlying flavor theory that predicted the
and democracys,9]. N . hierarchical structures which one of these two parametriza-
In this paper | give a set of conditions that define the mostjons should be used. If one has precise predictions for the
general hierarchical matrix, with the condition that Ieading512 rotations in terms of quark masses one should use the first
rotations in the diagonalization matrix are a pairsef and  parametrization. Conversely, if one can predict more pre-
S,5 rotations. In what follows | will assume that there are NOcisely the sy, rotations in terms of the quark masses, one
large accidental cancellations between the up and down Mixshould use the second parametrization.
ing angles, so that the hierarchies in both up and down sec- | the next section we review some of the notation and
tors are of the same order or smaller than the correspondingsyits about diagonalizing quark mass matrices from refer-
observed quark masses and mixings. If the up and dowBnce[12]. In Sec. Ill, we define the hierarchical structures of
quark mass matrices are hierarchical, at least one of them, §,kawa matrices and list some illustrative examples. Inter-
not both, must fall into the above category. In addition to esting structures emerge beyond the more familiar Fritzsch
the well known Fritzgch structures, the hierarchy conditions,[ype ones. Then we turn to the question of which CKM pa-
permit structures which may have a larde3) element. rametrization is most practical to use for the hierarchical
Next, | discuss possible parametrizations of the Cabibbogtyctures. First, in Sec. IV we show that the valuesaf
Kobayashi-Maskawa(CKM) matrix [10,11] that emerge ands;,, do not depend on the order in which the rotations are
taken when diagonalizing the mass matrices. Using this re-
sult we compare various CKM parametrizations for hierar-
There may be a simpler up or down matrix, i.e. with mixings chical structures in Sec. V. We present examples of predic-
between only two generations, which is diagonalized with only onetions with particular CKM parametrizations and conclude in
rotation. Sec. VI.
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Il. DIAGONALIZING QUARK MASS MATRICES A, O 0 M1 A2 Ag3

Following the notation of12], we denote the Yukawa 0 N, O |=RLRRM| N2 Nz Az

matrices as 0 0 X Nz Aps Aaz
u°h'Q+d°h‘Q. 1 X RysR1R15. ®)

Each of the matriceh"? is diagonalized by a biunitary We can rewrite the above equation
transformation

. A1 A2 Ag3 A O 0
m=S'hR. @ Nz N2 Agg R23R13R12= R23R13R12 0 X O
The matricesS andR diagonalize the following products of \M13 23 Aa3 0 0 7\3(9)
h:
m2=shh's, m2=R'h'hR. 3) Now, comparing the off diagonal elemer(®,3), (1,3) and

(1,2 on both sides we can find the rotation angles

The CKM matrix is given by N O W N W G

V=RUTRY, (4) Cos  (Ag=Az)(Ng— A1) =A%’
Let us neglect phases for the moménte will discuss S13 _ N 125231 N 13Co3 10
them later in the text. Then the mattikh is of the form Ciz  Ag—App (10
ASERRSERRSE S12 A 12C23~ N 1353
h'h={ A2 Az Nz, ) Ciz  (N2=N19)Caat (N 15523+ N 15C29)S13’

A A A .
13 fe e wheres;; =sin ¢; andc;;=cos 6.
where we assume all the elements to be non-negdiiee
any negative signs are absorbed with the phases which are Ill. HHERARCHICAL STRUCTURES OF YUKAWA
discussed latgr Since this matrix is Hermitian, the eigenval- MATRICES
ues\; are real and non-negative. They can be found as the

solution of the cubic equation i: In this paper | will define dierarchical Yukawa matrias

any Yukawa matrix that has a hierarchy in the elements with
the following conditions:

There is a hierarchy in the eigenvalueg<\,<\;. The
=AM h2oF N ighgzt Aoohas cubic equation i_m with coe_fficients in terms of the eigen-
values reduces in the leading order to

de(hTh_)\l): _)\3+ )\2()\11+ )\22+ )\33)

— N5~ M= M)+ AN ook 33— A 3)
—N1a(N oA 33— N3N 23)
+N13(N 1M 23— N 13N 29) =0. (6)

(M =N)(A2=N)(A3—N)
~—=N3HN2N3—MAoA3+ A NA3=0. (11)

) o o The hierarchy is such that the largest element4s. In
The diagonalizing matriR is a product of three plane gqgition the second eigenvalue is to the leading order given
rotations. It is completely arbitrary which three rotations wWej, terms of the closest neighbors of the largest element, that
pick; the only requirement is that two successive rotationgg X is given in terms of\,, and\,s. Comparing the cubic
are not in the same plane, since they can be trivially COMaquations(6) and (11) we see
bined into one rotation.
We can write the three rotation angles in terms of the

N3~N\33,
eigenvalues\; and matrix elements;;. Let us show the U
procedure for a choice of rotations 5
Ny Agp o2
R=Ry3R13R15. (7) 2= 227
From Eq.(3) NN A2 NisNihoe— 2N ioh09)
(12
2A complete diagonalization of the general case with complex
phases was given i12]. This is achieved with the following conditions:
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(h1)
(h2)

N33
(Ag2= N34\ 30)

>all other \j;;

>}\111)\12!)\§J)\33' (13)

The (1,3 rotation needed to diagonalize such a matrix is
much smaller than thél,2) and(2,3) rotations. This require-
ment follows from the observed CKM values, assuming
there are no accidental cancellations between(1h® rota-
tions coming from diagonalizing up and down sector. Look-
ing at the exact resultd0), for s;3<s,5 the condition is

(h3)  Na>Ngs. (14)
Finally, for s;3<s,, we need
(h4)  N13=Ny5Sp3 OF
(N3N 1253 and A= A5y g5 OF
[(N12>N13h 22/ N33 @and Njp>Ngaho3/N33)]). 5

Notice that the conditionth4) for a sufficiently small\,,
does not further constrain the elemang (see examples Il
and IV below. The angles are now to leading approximation

Soz A3

Cxz A3

S13_ M1sSpzt Mg

C13 A3

S12 N2~ MisSas

v (16)

Ci2

Conditions (h1)—(h4) define the hierarchical structures.
Notice that these are the conditions on elements’af not
on h.® Conditions can be worked out for the elementshof
itself. Here we just give the mass eigenvalues= \\; in
terms ofh;;

3An example of a Yukawa matrik with a somewhat unusual
structure, but for whict'h still satisfies conditiongh1)—(h4) was
given in[18]
C1 by
b,
b; as
Babu for bringing this example to

a

h=| C; ap

: 17

C3
with a;>b;>c,. | thank K. S.
my attention.
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Mz~ hgs,

_ hashs,
ms

My~ Na2

_ hizhog _ h13(h31h2—h3ih3y) —hgihyohog
mo myms '

my=~|Nq;

(18)

In what follows we will only need the actual conditions
(h1)—(h4).

Let us now show five illustrative examples of hierarchical
structures, which have certain relations between diagonaliz-
ing angles and quark masses. For simplicity | assume that the
structures are themselves Hermitian in the first four examples
so that conditiongh1)—(h4) apply to elements of itself*

The fifth example is an asymmetric matrix.

Example [19]:

0 Ay O
h=| A2 0 Ay, (19
0 Azz Mg

where the hierarchy conditiongl)—(h4) mean \zz> N3
>N5d 3> N o

To leading order the eigenvalues and mixing angles are
Ns=Naz, Ao=A3fhs, Ai=AiJNp, Spy=has/hs, Siz
~N\15553/ g ands;;~\1,/\,.°> We get the predictive rela-

tions
N2
Sp37~ )\—3
N1
S17~ )\—2
Ao Ay
S13~S8—~\/ - (20
13 23512>\3 Nahs
Example II:
0 Np O
h=| N2 A Nog|, (21)
0 ANz Ags
where in addition | will assume
A= N33. (22

Then the hierarchy conditionghl)—(h4) give A33>N\oo,

“The only difference is that some eigenvalues may be negative,
which can be simply corrected by a sign redefinition of the fields.
SFor this case exact relations have been obtaind@0r21.

096012-3



ANDRIJA RASIN PHYSICAL REVIEW D 58 096012

To leading order the eigenvalues and mixing angles are To leading order the eigenvalues and mixing angles are
Na~Naz,  Ao~Nz,  ANi~ANJha, Sz~ haalhz, Siz o Az~Naz, Aa~A3dh3, Mi=AT/No=NgN3, SppmNgs/hs,

~N\ 15503/ N3 ands;»~\ 15/\,. Predictive relations are S13~N13/\3 andslzz)\'lzl)\z. Still the (1,_2) rotation is big-
ger than thg1,3) rotation, as in the previous examples.
A Predictive relations are
S127~ 7\_2’
N
Ny Sz~ )\—3
Sz~ )\—3

A1
Sk 227 Ny
S137 8255123~ VD | WL (23

3 2 \A3 N

1
The second relation follows because | assumgg=\ »3. 51879239127 V- (28)
A note about phases: in this example all phases cannotbe _ _ _

completely eliminated by redefinitions of the fields. One It is interesting to note that the matrices in examples IlI

phase will be included in the diagonalization mat(@ee for ~and IV can be obtained in a(®) flavor theory in a similar
example[22]. For general treatment of phases see for exinanner to Ref[16]. Before the flavor symmetry is broken

ample[23,12.) the only allowed term is\33 and it is of order one. Other
Example III: elements get generated from higher dimensional operators
when the flavor symmetry is broken down. Which of the
0 0 i elements get created depends now on the flavon content on

h= 0 0 Ay
N3z Aoz A33

(24) the theory. For example, one doublet can creatgwhen
U(2) is broken first to W1) and then\ ;3 andX ;, get created
with another doublet and an antisymmetric singlet when

Then the hierarchy conditionéhl)—(h4) imply X\ss>N\,s U(1) is broken to nothing at a lower scale.

>\ 3. The structure in this example appeard24,25,28. Example V[27]:
A similar structure appears ifb], with a nonzerax,,, but

small (of the order Of)\ggl)\gg,), so that the results and pre- 0 ¢ 0
dictions are same as here. h=|c 0 b, (29
To leading order the eigenvalues and mixing angles are 0 b a

Ns=Na3, A2~A3d\s, A1=0, S;3~Np3/h3, S13=N1alhs
ands;z~ —\y3/hgs. Itis interesting that here even though with as>b,b’ and pb'/a)>c,c’. This is an asymmetric
the structure has@,3) element, but vanishindl,2) element,  mairix and we must diagonalize’h. To leading order the

still the (1,2) rotation is bigger than thél,3) rotation, as in eigenvalues oh and mixing angles are
the previous examples.

Predictive relations are Ma= \/}\—3%3.,
N2
Sy~ —, ’
N bb
3 my= \/7\—2~ a
S13~S23512- (25
Example IV: my= VA~ i
mo
0 Mo A3
h={ M2 0 Xgsl, (26) Sym
Az Aoz Agz3 a
where in addition | will assume c'b
8137 57
Nqghos
o= (27)
33 C’
. . . . S~ — bb’\’ (30)
that is \ 15 still smallerthen\ 3. The hierarchy conditions bo-
(h1)—(h4) imply N335 A 55> A 13 andA 34/ N 33> N 1,. A similar

structure appears ifR4] with various relative sizes of 3
andX 5. with one relation
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HIERARCHICAL QUARK MASS MATRICES

IV. IS IT IMPORTANT TO DO THE

m3
S12~ ~ S13523, 7 - (31
>

(2,3 ROTATION

BEFORE THE (1,2 ROTATION?

As we saw in the previous section, diagonalization of hi-

erarchical structures is done to leading order with dglyB)
and (1,2 rotations with the diagonalizing matri¥)

It is interesting, if not surprising, that diagonalization of the

R~ R23R12. (32)

PHYSICAL REVIEW D58 096012

some time ag$32] that there are essentially twelve different
parametrization$§12,33, which correspond to various ways
of combining the three rotation angles in a particular param-
etrization. For each of the combinations there is a continuum
of possibilities, depending on positioning of the one non-
trivial CP violating phase in the parametrization.

Physics of the standard model clearly does not depend on
which parametrization we use. However, if one goes beyond
the standard model, it might turn out more practical to use a
certain parametrization. In such a parametrization a particu-
lar prediction, such as a relation between CKM elements and
guark masses, may be more transparent.

As was shown if12], it is always possible to get any of

hierarchical structures can be done to leading order in théhe 12 possible parametrizations of the CKM matrix from

reverse order of rotations, that is first tffig2) rotation, and

any parametrizations of the unitary matrices that diagonalize

then the(2,3) rotation. To show this let us consider the exactup and down quark masses. However, such procedure may
results for the diagonalizing unitary transformation

R=R2R13Rz3. (33

be quite complicated, and, in the process, possible relations
between quark masses and CKM matrix elements may be
lost. Only a clever choice of a particular parametrization may
reveal clearly such predictions, and we discuss which one

For this choice of rotations one can obtain the exact resultghould be used in the case of hierarchical structures
for diagonalizing angles similar to the case discussed in Sec. We defined hierarchical structures in the previous éections

S12_

(A3g3=N1)N1o— N3k o

Ciz (Agz— A1) (Agp—Ng)— A3’

S13_ M1 AosSio

Ci3

S23

Cos (Nag—N2)Cigt (N1Cipt NpsS12)S13”

Ngz—Ag

N 13512 NosCao

(34

For hierarchical Yukawa structures, conditioftsl)—(h4)

give

A23
Nio—Ni3—
S 127 Mgy
C12 Aog
27 T
N33

S13_ Mz~ AasSio

C13 A33

Soz  Ao3

i P} 35
Coz A3 39

as the ones in which the diagonalizing anglesands;, are
much bigger than the third angks. In order to discuss
which CKM parametrization to use, we need to know exactly
how much bigger they are since we need to estimate also the
smallest element¥,, and V4, which will involve boths,;

and products;,S,;. We now discuss separately the relative
sizes of these two elements

Case I: sy3 rotations affecting V,,, or Viq

If si53is of the order ofs;;S,; we cannot neglect this
rotation when estimatiny/,, and V4. In this case, in the
most general case when both up and down quark mass ma-
trices need to be diagonalized with three rotations each, the
analysis is quite complicated and one has to resort to the
exact result$12]. However, in the case of simpler structures
where one of the quark mass matrices is diagonalized with
only one rotation, there are preferred CKM parametrizations.

Suppose that the down quark mass matrix has only mix-
ing between the first two families, for example of the
Fritzsch-Weinberg-Wilczek-Zee tydé9,34

0 F O
hi=[ F E 0], (36)
0 0D

Comparing with the approximate anglds), we see that the SO that the diagonalizing matrix is

rotation angleq1,2) and(2,3) agree to leading order. Only

the small(1,3) rotation changes.

V. CKM PARAMETRIZATIONS FOR THE

HIERARCHICAL STRUCTURES

Vd = R12 y (37)
with

s{~ Vmg/m;. (39

The most general CKM matrix can be written as a func-
tion of three angles and one phase. Various parametrizatioriden we should choose the three rotations that diagonalize
of CKM exist today[11,28,29,30,13,3lin which these three the up quark matrix such that the first rotation isja rota-
angles and one phase appear in various places. It was notictidn, so that it is trivially combined with ths;“l’2 into a single
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S1». Of the other two rotations in the up diagonalizing ma- | 855~ Sha < sk, 895~ Shq; | SSs— Sty < s3] 5.~ S, (45)

trix, one should be a,; rotation(since we assume hierarchi-

cal matricey but the choice for the last rotation and the The apove relations are the exact conditions@gand)\%
order of rotations should be chosen only by the criteria ofy; are  bit complicated to write down explicitly in terms of
predictivity. Thus, for this case possible parametrizations arg\ij . As a guideline, a somewhat less restricting, but more

V=R15R,5R12, R13R»3R12, RysR13R1s. (39 understandable conditios) ;<<S;,S,3 iS obtained when

As an example let us assume that, in addition to the form N1s<A\ 15 (46)
(36) for the down quark mass matrix, the up type quark mass 13tz
matrix is of the form given in example IV in both up and down sectors.

0 C C Thus in this case we need to consider only sheands,,
h=lc o B (40) rotations. As was shown in Sec. IV, 'Fhe va_llues of these two
' angles do not depend on the order in which they are taken
cC B A when diagonalizing a quark mass matrix. However, depend-
whereC’=CB/A. Heres, 3 is exactly of the ordes,,s,;and  ing on the order two simple CKM parametrizations emerge,

it needs to be included in the CKM matrix. Thus a choice forand we discuss them next in detail. If one diagonalizes up
the up quark diagonalizing matrix is and down quark matrices with firg¢2,3) rotations and then

RY=RY%RURY,, (41) (1,2 rotations, the CKM matrix is

where, to leading orddisee example 1Y V=R”TRd~R§2TR23R‘1’2, 47)

S5~ /ﬂ, S~ \ /%, S~ \ /ﬂ_ (42)  Wherefy;= 923— 655. This is a parametrization of the CKM
me my my in terms of three rotation angles. What is nice is that these
The CKM matrix that one obtains is grjgles are direct_ly related to ang_les of the original_dia_gonal-
izing matrices. Since one can write aractparametrization
V=RUTRI= RgRgRu, (43) in terms of three rotation angles, the exact ang_les will differ
from the above angles only by small corrections that are

wheres;,=sl,—sY,. This is the “standard CKM parametri- subleading to the1,2) and(2,3) rotations that we used.

zation” of Chau, Keung and MaiahB0,2§. With the above If one allows Yukawa matrices to be complex, one can
predictions(38) and(42) the CKM elements are successfully Show[12] that it amounts to putting one complex phakie
reproduce(‘f'A clear prediction here is the CKM (47) between the rotations. Also, tiﬁﬁ,B) rotation
will now in general be only the absolute value of the sum of
Vuo|  Sis fm, " the (2,3 rotations with a relative complex phase
Veb 553_ me’ d iagu
023=|653— €' (48)

Case II: s 3 rotations too small to affectV,,, or V4 to leading

order so that the relation of that CKM angle with the original di-

agonalizing(2,3) angles gets blurred. However, to leading

In order for the angles};, ands‘li3 not to contribute to/,,  order, the(1,2) CKM anglesare the (1,2) angles that diago-
and V., to leading order, the following conditions must be nalize the up and down sector. For completeness, let us list a
satisfied[14]: complex CKM generalization of Eq47):’

v=diage "’11)R]} diage'’11)R,R:,

u ~d d u —id ud u d —id u —is
C12C1ot S12815C23€ C125127 51€23C1 € — 5125236
u~d ,ié d ~u udod Lid u ~d u
=1 81018 “—81L1023 515818 "+ C1L15C23 C12523 ) (49
d d
$12523 —C15523 Co3

This parametrization appears|ib3,14,15,16,1F One can immediately write the following relations:

81 am interested here only in approximate relations. These relations are successful within a factor of 2 or 3, which can easily be
accommodated in the original Yukawa matrices by numerical factors of order one.

For any product of three angles there is a continuum of possibilities for placement of thedhase
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d
Vip| S12. |[Vid Sz (50)
v 1= |v|T
Vel €1 Vis| €3,

Similarly, if one diagonalizes up and down quark matrices with {ts?) rotations and the(®,3) rotations, the CKM matrix
is

V=R'"RI~RYIR; R, (51

where ,,= 0‘1‘2— 1,, so that the parametrization is again given in terms of three angles. The complex generalization can be
written as

V=diag 11e "*)RY] diag 11e'’)R;,R3,

d d
C12 S12C23 S12573
u u ~d ud hid u d u.d,ié
= —S15Co3 C12C23Co31 S3575€ C12C2357237 S23C23€ . (52

u—id du—id_odAu du—id u d
— 815538 C12C23523€8 "~ Sp3Cp3 C1253578€ "+ Co3Co3

It is the parametrization originally proposed by Kobayashisame(1,2) and(2,3) rotations in any order.

and Maskawd11]. It has the following predictions: In addition to the more familiar Fritzsch structures, ex-
amples of such structures include matrices which have non-
negligible(1,3) elements. They can be used to describe quark

u d

E _ S23. ‘ﬂ - S_fﬁ (53) masses and mixings and examples of such matrices were
u . . . . . .

Vedl €230 |[Vusl €3 given in Sec. lll(examples Ill and IV. It is interesting to

note that it is possible to build such matrices in @)\flavor

A final note: the parametrizatiof52) was discarded if33] theory similar t0[16]’. with an additional doublet flavoi8S).
on two grounds which | now want to argue to be unneces- We studied the dlagonahzatlo.n of hierarchical quark mass
sary. Let us first assume there is @® violating phase. The matrices and th? CKM parametrizations that naturally follow
first requirement that there be only of®; rotation in a from such matrices. When th&; contributions toV,, and

particular parametrization because there should be just o W ct:annozt :lg)e ngglectidz, anty thM parametnzatlo? lethh ?t
angle when the first generation decouples is too strong, sin gas ond2,3 and one(1,2) rotation may appear useful, tha

n e paramerzatogs? when (R, approaches uny, £ SSP157 0 Unring e eony when o e
the two R,; rotations trivially combine into a single one. P P P

. L . tions of the theory.
!E\(en with theC!Dv!oIatmg phase be_tween iR, rotations, If, further, the (1,3 rotations can be neglected in the
it is easy to write it as on®; rotation between two phase CKM, two possible CKM parametrizations that simply relate
transformationgsee for example Refl12]). The second re- ! P b ply

quirement that theCP violating phase should disappear the CKM elements to the diagonalizing angles appear,
. . . . namely R12R23R12 and R23R12R23. Which one of the two
when the first generation masses disappear is also too strond. Pt L
rametrizations should one use? This will depend on the

What one should ask from a parametrization is that the pha l?nderlying flavor theory. If the theory has nice predictions

disappears when the mixing between a certain generatio . .
with the other two generations disappears. From this stan or the (1,2) rotations in terms of quark masses one should

point both parametrization@9) and(52) are acceptable: in use the parametrizatiod?). Examples of this type of theo-

parametrizatior49) the phase disappears when the first genries include generalized Fritzsch structutegzamples | and
T d __ | u __ / ;
eration does not mix with the resR{,=1), and similarly in Ilin Sec. 1Il) wheres ;~ ymy/ms ands,,~ ym, /m;. In this

parametrizatior{52) when the mixings with the third genera- case, we get the clear predictior#5,37,13,14

tion vanish R,3=1).
I Iu_ th
VMg |V

C

Vup AL (54)

Vcb mg

VI. DISCUSSION AND CONCLUSIONS

In conclusion, | have defined general hierarchical strucHowever, one can also have flavor theories of the second and
tures of the Yukawa matrices with the four conditidhd)—  third generation masses where, with first generation masses
(h4). | defined them as structures with hierarchy in Yukawabeing small and their estimation not so reliable. Then the
elements and their eigenvalues, and by demanding that trsecond case might be more applicable if there are clear pre-
(1,3 rotation be much smaller than tki&,2) and(2,3) rota-  dictions of the(2,3) rotations in terms of quark masses. For
tions. Then such structures can be diagonalized with thexample if the up quark matrix is of the type shown in ex-

096012-7
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ample I, and down quark matrix of type Il we get relationsuse depends on the underlying flavor theory, i.e. on which
[16,3§ 3‘2’32 mg/m, and sy;~+/m./m,. The predictions are diagonalizing angles one can relate to the quark masses.
then visible in case Il where

Vub
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