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Hierarchical quark mass matrices
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I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that
the leading rotations in the diagonalization matrix are a pair of~2,3! and~1,2! rotations. In addition to Fritzsch
structures, examples of such hierarchical structures include also matrices with~1,3! elements of the same order
or even much larger than the~1,2! elements. Such matrices can be obtained in the framework of a flavor theory.
To leading order, the values of the angle in the~2,3! plane (s23) and the angle in the~1,2! plane (s12) do not
depend on the order in which they are taken when diagonalizing. We find that any of the Cabibbo-Kobayashi-
Maskawa matrix parametrizations that consist of at least one~1,2! and one~2,3! rotation may be suitable. In the
particular case when thes13 diagonalization angles are sufficiently small compared to the products12s23, two
special CKM parametrizations emerge: theR12R23R12 parametrization follows withs23 taken before thes12

rotation, and vice versa for theR23R12R23 parametrization.@S0556-2821~98!01119-9#

PACS number~s!: 11.30.Hv, 12.15.Ff, 12.15.Hh
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I. INTRODUCTION

A hierarchical structure of the Yukawa matrix is the mo
widely used structure. It can follow, for example, from flav
theories with either Abelian or non-Abelian symmetries.
theories with Abelian symmetries the hierarchy is obtain
by assigning different charges to different families@1#. Fami-
lies that have a larger charge will have a higher power of
flavor symmetry breaking parameter and thus will have
smaller Yukawa coupling. In theories with non-Abelian sym
metries, the hierarchy in the couplings is a reflection of
hierarchy in symmetry breaking scales@2#. Hierarchies can
also be generated radiatively where the small numbers o
nate in the loop factors@3#. General hierarchical structure
but only texture zeroes, have been studied before@4,5,6#.
Another very popular structure, which we do not consid
here, is a democratic one@7# where the elements are all o
order one and sufficiently close to each other so that only
eigenvalue is large. Other structures may combine hierar
and democracy@8,9#.

In this paper I give a set of conditions that define the m
general hierarchical matrix, with the condition that leadi
rotations in the diagonalization matrix are a pair ofs12 and
s23 rotations. In what follows I will assume that there are
large accidental cancellations between the up and down m
ing angles, so that the hierarchies in both up and down
tors are of the same order or smaller than the correspon
observed quark masses and mixings. If the up and do
quark mass matrices are hierarchical, at least one of them
not both,1 must fall into the above category. In addition
the well known Fritzsch structures, the hierarchy conditio
permit structures which may have a large~1,3! element.

Next, I discuss possible parametrizations of the Cabib
Kobayashi-Maskawa~CKM! matrix @10,11# that emerge

1There may be a simpler up or down matrix, i.e. with mixin
between only two generations, which is diagonalized with only o
rotation.
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from hierarchical mass matrices. I will use some recen
obtained exact results about diagonalizing 333 matrices
@12#, in order to control the corrections involving small term
@for example the rotation angles in the~1,3! plane,s13#. The
basic result is that any CKM parametrization that has at le
one ~2,3! rotation and one~1,2! rotation is practical. Which
one of the parametrizations should be used will at the
depend on the flavor theory, i.e. the explicit structure of
Yukawa matrices. If the theory has a prediction, e.g. if so
of the diagonalizing angles can be expressed in terms
quark masses, it might be obvious in one parametrization
not in another.

A particular example is the case when thes13 angles are
small compared to thes12s23 product. Two parametrization
emerge as winners: the ‘‘R12R23R12’’ parametrization@pro-
posed by Dimopoulos, Hall and Raby@13# ~see also
@14,15,16#!; it was recently proposed as ‘‘standard’’ b
Fritzsch and Xing@17# and the ‘‘R23R12R23’’ parametrization
~the original Kobayashi-Maskawa parametrization@11#!. It
will depend on the underlying flavor theory that predicted t
hierarchical structures which one of these two parametr
tions should be used. If one has precise predictions for
s12 rotations in terms of quark masses one should use the
parametrization. Conversely, if one can predict more p
cisely thes23 rotations in terms of the quark masses, o
should use the second parametrization.

In the next section we review some of the notation a
results about diagonalizing quark mass matrices from re
ence@12#. In Sec. III, we define the hierarchical structures
Yukawa matrices and list some illustrative examples. Int
esting structures emerge beyond the more familiar Fritz
type ones. Then we turn to the question of which CKM p
rametrization is most practical to use for the hierarchi
structures. First, in Sec. IV we show that the values ofs23
ands12 do not depend on the order in which the rotations
taken when diagonalizing the mass matrices. Using this
sult we compare various CKM parametrizations for hier
chical structures in Sec. V. We present examples of pre
tions with particular CKM parametrizations and conclude
Sec. VI.

e
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II. DIAGONALIZING QUARK MASS MATRICES

Following the notation of@12#, we denote the Yukawa
matrices as

uchuQ1dchdQ. ~1!

Each of the matriceshu,d is diagonalized by a biunitary
transformation

m5S†hR. ~2!

The matricesS andR diagonalize the following products o
h:

m25S†hh†S, m25R†h†hR. ~3!

The CKM matrix is given by

V5Ru†Rd. ~4!

Let us neglect phases for the moment,2 we will discuss
them later in the text. Then the matrixh†h is of the form

h†h5S l11 l12 l13

l12 l22 l23

l13 l23 l33

D , ~5!

where we assume all the elements to be non-negative~i.e.
any negative signs are absorbed with the phases which
discussed later!. Since this matrix is Hermitian, the eigenva
uesl i are real and non-negative. They can be found as
solution of the cubic equation inl:

det~h†h2l1!52l31l2~l111l221l33!

2l~l11l221l11l331l22l33

2l23
2 2l13

2 2l12
2 !1l11~l22l332l23

2 !

2l12~l12l332l13l23!

1l13~l12l232l13l22!50. ~6!

The diagonalizing matrixR is a product of three plane
rotations. It is completely arbitrary which three rotations w
pick; the only requirement is that two successive rotatio
are not in the same plane, since they can be trivially co
bined into one rotation.

We can write the three rotation angles in terms of
eigenvaluesl i and matrix elementsl i j . Let us show the
procedure for a choice of rotations

R5R23R13R12. ~7!

From Eq.~3!

2A complete diagonalization of the general case with comp
phases was given in@12#.
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S l1 0 0

0 l2 0

0 0 l3

D 5R12
T R13

T R23
T S l11 l12 l13

l12 l22 l23

l13 l23 l33

D
3R23R13R12. ~8!

We can rewrite the above equation

S l11 l12 l13

l12 l22 l23

l13 l23 l33

D R23R13R125R23R13R12S l1 0 0

0 l2 0

0 0 l3

D .

~9!

Now, comparing the off diagonal elements~2,3!, ~1,3! and
~1,2! on both sides we can find the rotation angles

s23

c23
5

~l32l11!l231l13l12

~l32l22!~l32l11!2l12
2 ,

s13

c13
5

l12s231l13c23

l32l11
, ~10!

s12

c12
5

l12c232l13s23

~l22l11!c131~l12s231l13c23!s13
,

wheresi j [sinuij andci j [cosuij .

III. HIERARCHICAL STRUCTURES OF YUKAWA
MATRICES

In this paper I will define ahierarchical Yukawa matrixas
any Yukawa matrix that has a hierarchy in the elements w
the following conditions:

There is a hierarchy in the eigenvaluesl1!l2!l3 . The
cubic equation inl with coefficients in terms of the eigen
values reduces in the leading order to

~l12l!~l22l!~l32l!

'2l31l2l32ll2l31l1l2l350. ~11!

The hierarchy is such that the largest element isl33. In
addition the second eigenvalue is to the leading order gi
in terms of the closest neighbors of the largest element,
is l2 is given in terms ofl22 andl23. Comparing the cubic
equations~6! and ~11! we see

l3'l33,

l2'l222
l23

2

l3
,

l1'l112
l12

2

l2
2

l13~l13l2222l12l23!

l2l3
.

~12!

This is achieved with the following conditions:
x

2-2
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HIERARCHICAL QUARK MASS MATRICES PHYSICAL REVIEW D58 096012
~h1! l33 @all other l i j ;

~h2! ~l222l23
2 /l33! @l11,l12,l13

2 /l33. ~13!

The ~1,3! rotation needed to diagonalize such a matrix
much smaller than the~1,2! and~2,3! rotations. This require-
ment follows from the observed CKM values, assumi
there are no accidental cancellations between the~1,3! rota-
tions coming from diagonalizing up and down sector. Loo
ing at the exact results~10!, for s13!s23 the condition is

~h3! l23@l13. ~14!

Finally, for s13!s12 we need

~h4! l13&l12s23 or

„l13@l12s23 and l22&l23
2 /l33 or

@~l12@l13l22/l33 and l12@l13l23/l33!#….
~15!

Notice that the condition~h4! for a sufficiently smalll22
does not further constrain the elementl13 ~see examples III
and IV below!. The angles are now to leading approximati

s23

c23
'

l23

l3

s13

c13
'

l12s231l13

l3

s12

c12
'

l122l13s23

l2
. ~16!

Conditions ~h1!–~h4! define the hierarchical structure
Notice that these are the conditions on elements ofh†h, not
on h.3 Conditions can be worked out for the elements oh
itself. Here we just give the mass eigenvaluesmi5Al i in
terms ofhi j

3An example of a Yukawa matrixh with a somewhat unusua
structure, but for whichh†h still satisfies conditions~h1!–~h4! was
given in @18#

h5S c1 b1 a1

c2 b2 a2

c3 b3 a3

D , ~17!

with ai@bj@ck . I thank K. S. Babu for bringing this example t
my attention.
09601
-

m3'h33,

m2'Uh222
h23h32

m3
U,

m1'Uh112
h12h21

m2
2

h13~h31h222h21h32!2h31h12h23

m2m3
U.
~18!

In what follows we will only need the actual condition
~h1!–~h4!.

Let us now show five illustrative examples of hierarchic
structures, which have certain relations between diagona
ing angles and quark masses. For simplicity I assume tha
structures are themselves Hermitian in the first four examp
so that conditions~h1!–~h4! apply to elements ofh itself.4

The fifth example is an asymmetric matrix.
Example I@19#:

h5S 0 l12 0

l12 0 l23

0 l23 l33

D , ~19!

where the hierarchy conditions~h1!–~h4! mean l33@l23

@l23
2 /l33@l12.

To leading order the eigenvalues and mixing angles
l3'l33, l2'l23

2 /l3 , l1'l12
2 /l2 , s23'l23/l3 , s13

'l12s23/l3 and s12'l12/l2 .5 We get the predictive rela
tions

s23'Al2

l3
,

s12'Al1

l2
,

s13's23s12

l2

l3
'Al1

l3

l2

l3
. ~20!

Example II:

h5S 0 l12 0

l12 l22 l23

0 l23 l33

D , ~21!

where in addition I will assume

l22.l23. ~22!

Then the hierarchy conditions~h1!–~h4! give l33@l22,
l23@l12.

4The only difference is that some eigenvalues may be nega
which can be simply corrected by a sign redefinition of the field

5For this case exact relations have been obtained in@20,21#.
2-3
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ANDRIJA RAŠIN PHYSICAL REVIEW D 58 096012
To leading order the eigenvalues and mixing angles
l3'l33, l2'l22, l1'l12

2 /l2 , s23'l23/l3 , s13

'l12s23/l3 ands12'l12/l2 . Predictive relations are

s12'Al1

l2
,

s23.
l2

l3
,

s13's23s12

l2

l3
'Al1

l2
S l2

l3
D 2

. ~23!

The second relation follows because I assumedl22.l23.
A note about phases: in this example all phases canno

completely eliminated by redefinitions of the fields. O
phase will be included in the diagonalization matrix.~See for
example@22#. For general treatment of phases see for
ample@23,12#.!

Example III:

h5S 0 0 l13

0 0 l23

l13 l23 l33

D , ~24!

Then the hierarchy conditions~h1!–~h4! imply l33@l23
@l13. The structure in this example appears in@24,25,26#.
A similar structure appears in@5#, with a nonzerol22, but
small ~of the order ofl23

2 /l33), so that the results and pre
dictions are same as here.

To leading order the eigenvalues and mixing angles
l3'l33, l2'l23

2 /l3 , l1'0, s23'l23/l3 , s13'l13/l3

and s12'2l13/l23. It is interesting that here even thoug
the structure has a~1,3! element, but vanishing~1,2! element,
still the ~1,2! rotation is bigger than the~1,3! rotation, as in
the previous examples.

Predictive relations are

s23'Al2

l3
,

s13's23s12. ~25!

Example IV:

h5S 0 l12 l13

l12 0 l23

l13 l23 l33

D , ~26!

where in addition I will assume

l12.
l13l23

l33
, ~27!

that is l12 still smaller then l13. The hierarchy conditions
~h1!–~h4! imply l33@l23@l13 andl23

2 /l33@l12. A similar
structure appears in@24# with various relative sizes ofl13
andl12.
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To leading order the eigenvalues and mixing angles
l3'l33, l2'l23

2 /l3 , l1.l12
2 /l2.l13

2 /l3 , s23'l23/l3 ,
s13'l13/l3 ands12.l12/l2 . Still the ~1,2! rotation is big-
ger than the~1,3! rotation, as in the previous examples.

Predictive relations are

s23'Al2

l3
,

s12.Al1

l2
,

s13.s23s12.Al1

l3
. ~28!

It is interesting to note that the matrices in examples
and IV can be obtained in a U~2! flavor theory in a similar
manner to Ref.@16#. Before the flavor symmetry is broke
the only allowed term isl33 and it is of order one. Othe
elements get generated from higher dimensional opera
when the flavor symmetry is broken down. Which of th
elements get created depends now on the flavon conten
the theory. For example, one doublet can createl23 when
U~2! is broken first to U~1! and thenl13 andl12 get created
with another doublet and an antisymmetric singlet wh
U~1! is broken to nothing at a lower scale.

Example V@27#:

h5S 0 c 0

c8 0 b

0 b8 a
D , ~29!

with a@b,b8 and (bb8/a)@c,c8. This is an asymmetric
matrix and we must diagonalizeh†h. To leading order the
eigenvalues ofh and mixing angles are

m35Al3'a,

m25Al2'
bb8

a
,

m15Al1'
cc8

m2
,

s23'
b8

a
,

s13'
c8b

a2 ,

s12'2
c8

S bb8

a D , ~30!

with one relation
2-4
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HIERARCHICAL QUARK MASS MATRICES PHYSICAL REVIEW D58 096012
s12'2s13s23

m3
2

m2
2 . ~31!

IV. IS IT IMPORTANT TO DO THE „2,3… ROTATION
BEFORE THE „1,2… ROTATION?

As we saw in the previous section, diagonalization of
erarchical structures is done to leading order with only~2,3!
and ~1,2! rotations with the diagonalizing matrix~7!

R'R23R12. ~32!

It is interesting, if not surprising, that diagonalization of t
hierarchical structures can be done to leading order in
reverse order of rotations, that is first the~1,2! rotation, and
then the~2,3! rotation. To show this let us consider the exa
results for the diagonalizing unitary transformation

R5R12R13R23. ~33!

For this choice of rotations one can obtain the exact res
for diagonalizing angles similar to the case discussed in S
II,

s12

c12
5

~l332l1!l122l13l23

~l332l1!~l222l1!2l23
2 ,

s13

c13
5

l13c122l23s12

l332l1
,

s23

c23
5

l13s121l23c12

~l332l2!c131~l13c121l23s12!s13
. ~34!

For hierarchical Yukawa structures, conditions~h1!–~h4!
give

s12

c12
'

l122l13

l23

l33

l222
l23

2

l33

,

s13

c13
'

l132l23s12

l33
,

s23

c23
'

l23

l3
. ~35!

Comparing with the approximate angles~16!, we see that the
rotation angles~1,2! and ~2,3! agree to leading order. Onl
the small~1,3! rotation changes.

V. CKM PARAMETRIZATIONS FOR THE
HIERARCHICAL STRUCTURES

The most general CKM matrix can be written as a fun
tion of three angles and one phase. Various parametrizat
of CKM exist today@11,28,29,30,13,31# in which these three
angles and one phase appear in various places. It was no
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some time ago@32# that there are essentially twelve differe
parametrizations@12,33#, which correspond to various way
of combining the three rotation angles in a particular para
etrization. For each of the combinations there is a continu
of possibilities, depending on positioning of the one no
trivial CP violating phase in the parametrization.

Physics of the standard model clearly does not depend
which parametrization we use. However, if one goes bey
the standard model, it might turn out more practical to us
certain parametrization. In such a parametrization a part
lar prediction, such as a relation between CKM elements
quark masses, may be more transparent.

As was shown in@12#, it is always possible to get any o
the 12 possible parametrizations of the CKM matrix fro
any parametrizations of the unitary matrices that diagona
up and down quark masses. However, such procedure
be quite complicated, and, in the process, possible relat
between quark masses and CKM matrix elements may
lost. Only a clever choice of a particular parametrization m
reveal clearly such predictions, and we discuss which
should be used in the case of hierarchical structures.

We defined hierarchical structures in the previous secti
as the ones in which the diagonalizing angless23 ands12 are
much bigger than the third angles13. In order to discuss
which CKM parametrization to use, we need to know exac
how much bigger they are since we need to estimate also
smallest elementsVub andVtd , which will involve boths13
and productss12s23. We now discuss separately the relati
sizes of these two elements

Case I: s13 rotations affecting Vub or Vtd

If s13 is of the order ofs12s23 we cannot neglect this
rotation when estimatingVub and Vtd . In this case, in the
most general case when both up and down quark mass
trices need to be diagonalized with three rotations each,
analysis is quite complicated and one has to resort to
exact results@12#. However, in the case of simpler structur
where one of the quark mass matrices is diagonalized w
only one rotation, there are preferred CKM parametrizatio

Suppose that the down quark mass matrix has only m
ing between the first two families, for example of th
Fritzsch-Weinberg-Wilczek-Zee type@19,34#

hd5S 0 F 0

F E 0

0 0 D
D , ~36!

so that the diagonalizing matrix is

Vd5R12, ~37!

with

s12
d 'Amd /ms. ~38!

Then we should choose the three rotations that diagona
the up quark matrix such that the first rotation is as12

u rota-
tion, so that it is trivially combined with thes12

d into a single
2-5
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ANDRIJA RAŠIN PHYSICAL REVIEW D 58 096012
s12. Of the other two rotations in the up diagonalizing m
trix, one should be as23 rotation~since we assume hierarch
cal matrices!, but the choice for the last rotation and th
order of rotations should be chosen only by the criteria
predictivity. Thus, for this case possible parametrizations

V5R12R23R12, R13R23R12, R23R13R12. ~39!

As an example let us assume that, in addition to the fo
~36! for the down quark mass matrix, the up type quark m
matrix is of the form given in example IV

hu5S 0 C8 C

C8 0 B

C B A
D , ~40!

whereC8.CB/A. Heres13 is exactly of the orders12s23 and
it needs to be included in the CKM matrix. Thus a choice
the up quark diagonalizing matrix is

Ru5R12
u R13

u R23
u , ~41!

where, to leading order~see example IV!,

s12
u .Amu

mc
, s23

u 'Amc

mt
, s13

u 'Amu

mt
. ~42!

The CKM matrix that one obtains is

V5Ru†Rd5R23
uTR13

uTR12, ~43!

wheres125s12
d 2s12

u . This is the ‘‘standard CKM parametri
zation’’ of Chau, Keung and Maiani@30,28#. With the above
predictions~38! and~42! the CKM elements are successful
reproduced.6 A clear prediction here is

UVub

Vcb
U' s13

u

s23
u .Amu

mc
. ~44!

Case II: s13 rotations too small to affectVub or Vtd to leading
order

In order for the angless13
u ands13

d not to contribute toVub

and Vcb to leading order, the following conditions must b
satisfied@14#:
09601
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us13
d 2s13

u u!s12
u us23

d 2s23
u u;us13

d 2s13
u u!s12

d us23
d 2s23

u u. ~45!

The above relations are the exact conditions onl13
u andl13

d ,
but are a bit complicated to write down explicitly in terms
l i j . As a guideline, a somewhat less restricting, but m
understandable conditions13!s12s23 is obtained when

l13!l12s23, ~46!

in both up and down sectors.
Thus in this case we need to consider only thes23 ands12

rotations. As was shown in Sec. IV, the values of these t
angles do not depend on the order in which they are ta
when diagonalizing a quark mass matrix. However, depe
ing on the order two simple CKM parametrizations emer
and we discuss them next in detail. If one diagonalizes
and down quark matrices with first~2,3! rotations and then
~1,2! rotations, the CKM matrix is

V5Ru†Rd'R12
uTR23R12

d , ~47!

whereu235u23
d 2u23

u . This is a parametrization of the CKM
in terms of three rotation angles. What is nice is that th
angles are directly related to angles of the original diagon
izing matrices. Since one can write anexactparametrization
in terms of three rotation angles, the exact angles will dif
from the above angles only by small corrections that
subleading to the~1,2! and ~2,3! rotations that we used.

If one allows Yukawa matrices to be complex, one c
show@12# that it amounts to putting one complex phased in
the CKM ~47! between the rotations. Also, the~2,3! rotation
will now in general be only the absolute value of the sum
the ~2,3! rotations with a relative complex phase

u235uu23
d 2eiau23

u u ~48!

so that the relation of that CKM angle with the original d
agonalizing~2,3! angles gets blurred. However, to leadin
order, the~1,2! CKM anglesare the ~1,2! angles that diago-
nalize the up and down sector. For completeness, let us l
complex CKM generalization of Eq.~47!:7
asily be
V5diag~e2 id11!R12
Tu diag~eid11!R23R12

d

5S c12
u c12

d 1s12
d s12

u c23e
2 id c12

u s12
d 2s12

u c23c12
d e2 id 2s12

u s23e
2 id

s12
u c12

d eid2s12
d c12

u c23 1s12
u s12

d eid1c12
u c12

d c23 c12
u s23

s12
d s23 2c12

d s23 c23

D . ~49!

This parametrization appears in@13,14,15,16,17#. One can immediately write the following relations:

6I am interested here only in approximate relations. These relations are successful within a factor of 2 or 3, which can e
accommodated in the original Yukawa matrices by numerical factors of order one.

7For any product of three angles there is a continuum of possibilities for placement of the phased.
2-6
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UVub

Vcb
U5 s12

u

c12
u ; UVtd

Vts
U5 s12

d

c12
d . ~50!

Similarly, if one diagonalizes up and down quark matrices with first~1,2! rotations and then~2,3! rotations, the CKM matrix
is

V5Ru†Rd'R23
uTR12R23

d , ~51!

whereu125u12
d 2u12

u , so that the parametrization is again given in terms of three angles. The complex generalization
written as

V5diag~11e2 id!R23
uT diag~11eid!R12R23

d

5S c12 s12c23
d s12s23

d

2s12c23
u c12c23

u c23
d 1s23

u s23
d eid c12c23

u s23
d 2s23

u c23
d eid

2s12s23
u e2 id c12c23

d s23
u e2 id2s23

d c23
u c12s23

d s23
u e2 id1c23

u c23
d
D . ~52!
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e
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th

x-
on-
ark
ere
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w

at
t
e
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e
te
ar,
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-

and
sses
the
pre-
or
x-
It is the parametrization originally proposed by Kobaya
and Maskawa@11#. It has the following predictions:

UVtd

Vcd
U5 s23

u

c23
u ; UVub

Vus
U5 s23

d

c23
d . ~53!

A final note: the parametrization~52! was discarded in@33#
on two grounds which I now want to argue to be unnec
sary. Let us first assume there is noCP violating phase. The
first requirement that there be only oneR23 rotation in a
particular parametrization because there should be just
angle when the first generation decouples is too strong, s
in the parametrization~52! when theR12 approaches unity
the two R23 rotations trivially combine into a single one
Even with theCP violating phase between twoR23 rotations,
it is easy to write it as oneR23 rotation between two phas
transformations~see for example Ref.@12#!. The second re-
quirement that theCP violating phase should disappe
when the first generation masses disappear is also too st
What one should ask from a parametrization is that the ph
disappears when the mixing between a certain genera
with the other two generations disappears. From this sta
point both parametrizations~49! and ~52! are acceptable: in
parametrization~49! the phase disappears when the first g
eration does not mix with the rest (R1251), and similarly in
parametrization~52! when the mixings with the third genera
tion vanish (R2351).

VI. DISCUSSION AND CONCLUSIONS

In conclusion, I have defined general hierarchical str
tures of the Yukawa matrices with the four conditions~h1!–
~h4!. I defined them as structures with hierarchy in Yuka
elements and their eigenvalues, and by demanding tha
~1,3! rotation be much smaller than the~1,2! and ~2,3! rota-
tions. Then such structures can be diagonalized with
09601
i

-

ne
ce

ng.
se
on
d-

-

-

he

e

same~1,2! and ~2,3! rotations in any order.
In addition to the more familiar Fritzsch structures, e

amples of such structures include matrices which have n
negligible~1,3! elements. They can be used to describe qu
masses and mixings and examples of such matrices w
given in Sec. III~examples III and IV.!. It is interesting to
note that it is possible to build such matrices in a U~2! flavor
theory similar to@16#, with an additional doublet flavon@35#.

We studied the diagonalization of hierarchical quark m
matrices and the CKM parametrizations that naturally follo
from such matrices. When thes13 contributions toVub and
Vtd cannot be neglected, any CKM parametrization with
least one~2,3! and one~1,2! rotation may appear useful, tha
is it will depend on the underlying flavor theory which of th
CKM parametrizations will be most transparent to pred
tions of the theory.

If, further, the ~1,3! rotations can be neglected in th
CKM, two possible CKM parametrizations that simply rela
the CKM elements to the diagonalizing angles appe
namely R12R23R12 and R23R12R23. Which one of the two
parametrizations should one use? This will depend on
underlying flavor theory. If the theory has nice predictio
for the ~1,2! rotations in terms of quark masses one sho
use the parametrization~47!. Examples of this type of theo
ries include generalized Fritzsch structures~examples I and
II in Sec. III! wheres12

d 'Amd /ms ands12
u 'Amu /mc. In this

case, we get the clear predictions@36,37,13,14#

UVub

Vcb
U'Amu

mc
; UVtd

Vts
U'Amd

ms
. ~54!

However, one can also have flavor theories of the second
third generation masses where, with first generation ma
being small and their estimation not so reliable. Then
second case might be more applicable if there are clear
dictions of the~2,3! rotations in terms of quark masses. F
example if the up quark matrix is of the type shown in e
2-7
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ample I, and down quark matrix of type II we get relatio
@16,38# s23

d .ms /mb and s23
u 'Amc /mt. The predictions are

then visible in case II where

UVtd

Vcd
U'Amc

mt
; UVub

Vus
U. ms

mb
. ~55!

Of course, physics of the standard model does not depen
which CKM parametrization one uses. However, if there i
flavor theory, as we strongly believe, it will hopefully redu
the number of parameters and produce some predicti
Then, it is important to have clear and simple formulas
the predictions, and this depends on which parametrizat
one uses. Which one of the two parametrizations one sh
wa

rk

09601
on
a

s.
r
ns
ld

use depends on the underlying flavor theory, i.e. on wh
diagonalizing angles one can relate to the quark masses
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