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QCD sum rules at finite temperature
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We derive thermal QCD sum rules for the correlation function of two vector currents in the rho-meson
channel. It takes into account the leading non-perturbative corrections from the additional operators, which
appear due to the breakdown of Lorentz invariance at finite temperature. The mixing of the new operators has
a drastic effect on their coefficients. The thermal average of all the operators can be related to that of the quark
condensate and the energy density. The sum rules then yield the temperature dependence of the parameters of
the r meson, namely its mass and coupling to the vector current. Our result is that these parameters are
practically independent of temperature at least up to a temperature of 125 MeV.@S0556-2821~98!04921-2#

PACS number~s!: 11.10.Wx, 11.55.Hx, 12.38.Lg
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I. INTRODUCTION

The QCD sum rules@1#, proposed about two decades ag
prove remarkably successful in addressing the n
perturbative problems of hadron phenomenology. In this
proach one considers the product of two local operators, s
as the currents of the QCD theory. A sum rule is obtained
equating the dispersion relation for its vacuum matrix e
ment at sufficiently large space-like momenta to the co
sponding Wilson operator product expansion@2#. The higher
dimension operators present in the expansion give rise to
non-perturbative, power corrections. The idea of extend
these sum rules to finite temperature by replacing
vacuum matrix element with the thermal average natur
suggests itself.

The original work establishing the thermal QCD su
rules is that of Bochkarev and Shaposhnikov@3#. They rec-
ognized the importance of the~low energy! continuum states
in the spectral function to account for the effects of the m
dium. On the basis of these sum rules they discussed
temperature dependence of the resonance parameters a
existence of phase transition. However, there arise additi
operators in the Wilson expansion at finite temperature@4#,
which were not correctly incorporated in their sum rules:
effect, they calculated these new operator contributions
turbatively, which cannot be justified, particularly at lo
temperature.

The additional operators arise because of the breakd
of Lorentz invariance at finite temperature by the choice
the thermal rest frame, where matter is at rest at a defi
temperature@5#. The residual O~3! invariance naturally
brings in additional operators. The expected behavior of
thermal averages of these Lorentz non-invariant~new! opera-
tors is somewhat opposite to those of the Lorentz invar
~old! ones: While the old operators start with non-zero valu
at zero temperature and decrease in magnitude with the
of temperature, the new ones, on the other hand, are ze
zero temperature but grow rapidly with temperature. The
portance of including these new operators in the thermal s
rules, particularly at not too low a temperature, is thus cle

Although a number of works on thermal QCD sum rul
exist by now, these are flawed with respect to the new
erators: Either some of these are missed@6# or their mixing,
0556-2821/98/58~9!/096011~8!/$15.00 58 0960
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which changes their coefficients drastically, is not taken i
account@7#. In a recent work@8# we applied a simple, con
figuration space method@9,10# to evaluate the Wilson coef
ficients of these new operators~up to dimension four! which
appear at finite temperature in the short distance expan
of the product of two quark bilinear operators. Here we ma
use of this result to write and evaluate the thermal QCD s
rules, incorporating correctly the contributions from all th
dimension four operators.

We consider the correlation function of the time order
(T) product of two vector currents in ther-meson channel.
The use of theT-product, rather than the retarded~or ad-
vanced! product, is a little complicated in writing down th
spectral representation but has the advantage in perturb
calculations, for which we can apply the conventional fo
malism. Throughout this work we shall employ the real tim
formulation of the thermal field theory@11#, which requires
in general not only the physical fields but also the accom
nying ‘‘ghost’’ fields. Since, however, we work to lowes
order in perturbation expansion, ghost fields do not show

It is convenient to write difference sum rules by subtra
ing the vacuum sum rules from their finite temperature co
terparts. For such sum rules the absorptive parts are expe
to be saturated with ther-meson pole and thepp-continuum
@3#, whose contributions we derive here for completene
The thermal averages of the different operators reduce es
tially to that of the quark condensate and the energy dens
of quarks and gluons@12#. Chiral perturbation theory@13#
has been used to calculate the temperature dependence
quark condensate@14#. The difficulty with the energy densi
ties is that while one of them is the total energy dens
which can be obtained from a knowledge of the hadro
spectrum at low temperature, the other is an unphysical c
bination of the two densities. We need an additional inpu
relate this latter combination to the total energy density.

Once the power corrections are known, the differen
sum rules give the temperature dependence of ther-meson
parameters, namely its mass and its coupling with the ve
current. With our simple saturation scheme, the sum ru
can be used up to a temperature of about 125 MeV. T
numerical evaluation shows that these parameters have
ligible dependence on temperature.

In Sec. II we write the kinematic decomposition for th
©1998 The American Physical Society11-1
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thermal correlation function of two vector currents, deri
the Landau representation@15# for the time ordered produc
and state the results of operator product expansion to de
finally the form of the thermal QCD sum rules. In Sec. III w
obtain the contributions ofr and pp intermediate states to
the spectral function. In Sec. IV we collect the informati
on thermal average of the operators present in the sum r
and evaluate the difference sum rules. In Sec. V we disc
how to extend the sum rules to higher temperature. In
Appendix we give the details of the evaluation of a lim
stated earlier@3#.

II. SUM RULES

We derive the QCD sum rules for the thermal average
the time ordered (T) product of two currents:

T mn
ab~q!5 i E d4xeiq•x^T~Vm

a ~x!Vn
b~o!!&. ~2.1!

HereVm
a (x) is the vector current~in ther meson channel! in

QCD theory:

Vm
a ~x!5q̄~x!gm~ta/2!q~x!, ~2.2!

q(x) being the field of theu andd quark doublet andta the
Pauli matrices. The thermal average of an operatorO is de-
noted by^O&:

^O&5Tr e2bHO/Tr e2bH,

where H is the QCD Hamiltonian,b is the inverse of the
temperatureT ~coinciding with the time ordering symbol!
and Tr denotes the trace over any complete set of states

A. Kinematics

At finite temperature Lorentz invariance is broken by t
choice of a preferred frame of reference, viz., the matter
frame where temperature is defined. But the bookkeep
with indices becomes simpler if we restore it formally b
introducing the four-velocityum of the matter@5#. @In the
matter rest frameum5(1,0,0,0).] The time and space com
ponents ofqm are then raised to the Lorentz scalars,v5u

•q andq̄5Av22q2. We shall, however, return to the matt
rest frame while doing all actual computations.

In such a Lorentz invariant framework, there are two
dependent conserved kinematic covariants@16#, which we
choose as

Pmn52hmn1
qmqn

q2 2
q2

q̄2
ũmũn , Qmn5

q4

q̄2
ũmũn ,

where ũm5um2vqm /q2. The invariant decomposition o
T mn

ab is then given by

T mn
ab~q!5dab~QmnTl1PmnTt!, ~2.3!

where the invariant amplitudesTl ,t are functions ofq2 andv.
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Notice that the kinematic covariantsPmn andQmn are free
from singularities atq250 ~and also atq̄250). This is con-
venient at finite temperature as there are dynamical singu
ties extending up toq250. With this choice of kinematic
covariants, the dynamical singularities reside only in the
variant amplitudes.

To extract the invariant amplitudes fromT mn
ab , it is con-

venient to form the scalarsP1,2:

dabP1~q!5T m
mab~q!, dabP2~q!5umT mn

ab~q!un.

Then the invariant amplitudes are given by

Tl5
1

q̄2
P2 , Tt52

1

2 S P11
q2

q̄2
P2D . ~2.4!

In the limit qW 50, the amplitudesTl andTt are related. To
see this we write the spatial components ofTmn as

T i j
ab~q!5dab@d i j Tt2q̂i q̂ j~Tt2q0

2Tl !#,

whereq̂i is the i th component of the unit vector alongqW . As
uqW u→0, there cannot be any dependence onuqW u, getting

Tt~q0 ,uqW u50!5qo
2Tl~q0 ,uqW u50!. ~2.5!

B. Spectral representation

Let us obtain the spectral representation for the corre
tion function inq0 at fixeduqW u. First, evaluate the trace ove
a complete set of eigenstates of four-momentum, whe
becomes a sum over forward amplitudes weighted by
corresponding Boltzmann factors. Then insert the same s
complete states between the currents to extract
x-dependence which is then integrated out. Introducing ad-
function in q0 , the result can be written as

T mn
ab~q!5

1

2p
E

2`

1`

dq08S Mmn
ab~q08 ,uqW u!

q082q02 i e
2

M nm
ba~q08 ,uqW u!

q082q01 i e
D ,

~2.6!

where the expression forMmn
ab with the double sum over

states may be converted back to the form

Mmn
ab~q!5E d4xeiqx^Vm

a ~x!Vn
b~o!&. ~2.7!

Using the double sum representation, it is easy to show

M nm
ba~q0 ,uqW u!5e2bq0Mmn

ab~q0 ,uqW u!. ~2.8!

The opposite sign ofi e in the two terms in Eq.~2.6! is
typical of T-products. As a result the imaginary part ofT mn

ab

is given by the sum,12 (Mmn
ab1M nm

ba), while the principal
value integral contains the difference,1

2 (Mmn
ab2M nm

ba). But
the two are related by~2.8!:

Mmn
ab2M nm

ba5~Mmn
ab1M nm

ba !tanh~bq0 /2!. ~2.9!
1-2
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QCD SUM RULES AT FINITE TEMPERATURE PHYSICAL REVIEW D58 096011
We thus get the Landau representation for theT product at
finite temperature@15#,

T mn
ab~q0 ,uqW u!5 i Im T mn

ab~q0 ,uqW u!

1PE
2`

1`

dq08
Nmn~q08 ,uqW u!

q082q0
, ~2.10!

where, for brevity, we write

Nmn
ab~q![dabNmn~q!5p21Im T mn

ab~q!tanh~bq0 /2!.

~2.11!

Expressingqm8 5qm1(q082q0)um , we recover the repre
sentation for the invariant amplitudesTl ,t . Further, using the
symmetry properties, ImTl,t(2qm)5Im Tl,t(qm) and going
over to imaginary values ofq0 (q0

252Q0
2 , Q0

2.0), for
which Nmn vanishes, these become

Tl ,t~q0
2 ,uqW u!5E

0

`

dq08
2 Nl ,t~q08 ,uqW u!

q08
2
1Q0

2
. ~2.12!

It may actually require subtractions, but it does not affect
Borel transformed sum rules we shall write below.

C. Operator product expansion

The contributions of operators of dimension four toTl ,t
are obtained from the short distance expansion and impro
upon by the renormalization group equation in a previo
work @8#. Including the unit operator~the perturbative con-
tribution!, Tl is given for large Euclidean momenta by (Q2

52q2)

Tl52
1

8p2 lnS Q2

m2D
1

1

Q4 S m̂^ūu&1
^G2&
24

1
4

1613nf

3$^Q&1a~Q2!^16Q f /32Qg&% D . ~2.13!

Tt is also given by the same expression, except for an ove
factor of 2Q2 and a factor of (122q̄2/Q2) multiplying the
term with Q’s. Herem̂ is the degenerate mass of theu and
the d quarks and1

2 ^q̄q&5^ūu&5^d̄d&. The operatorG2 is
quadratic in the gauge field strengthGmn

a , (a51,̄ ,8), G2

5(as /p)Gmn
a Gamn, with as5g2/4p, whereg is the gauge

coupling constant. Along with these two operators alrea
contributing to zero temperature, we now have the lin
combinations of two new ones,Q f ,g[umQmn

f ,gun, whereQmn
f ,g

are the energy-momentum tensors for quarks and glu
The corresponding components for the total tensor isQ
5nfQ

f1Qg, wherenf is the number of effective quark fla
vors. The logarithmicQ2 dependence ofa(Q2) arise due to
the anomalous dimensiond of the operator (16Q f /32Qg),
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a~2q2!5S as~m2!

as~2q2! D
2d/2b

,

d5
4

3 S 16

3
1nf D , b5112

2

3
nf ,

wherem(.1 GeV) is the scale at which all renormalization
are carried out.

Note the mixing of the operatorsQ f andQg in Eq. ~2.13!
under the renormalization group, which is well-known in t
context of deep inelastic scattering@17#. In the operator prod-
uct expansion of two quark currents, the Wilson coefficie
of Q f andQg are, to leading order, of zeroth and first ord
in as , arising from Born and one-loop graphs respective
However, due to operator mixing, the coefficients are dra
cally changed in that bothQ and (16Q f /32Qg) have coef-
ficients with leading terms of zeroth order inas . In Eq.
~2.13! we retain only these leading terms.

D. Sum rules

We now equate the spectral representation and the re
of operator product expansion for the amplitudesTl andTt at
sufficiently highQ0

2. Taking Borel transform we arrive at th
thermal QCD sum rules@3#. For Tl we get

1

M2 E
0

`

dq0
2e2q0

2/M2
Nl~q0 ,uqW u!5e2uqW u2/M2S 1

8p2 1
^O&

M4 D ,

~2.14!

where^O& is the non-perturbative contribution of higher d
mension operators:

^O&5m̂^ūu&1
^G2&
24

1
4

1613nf
$^Q&1a~M2!^16Q f /32Qg&%,

~2.15!

and a similar one forTt . Each is a two parameter sum rul
dependent not only onT but also onuqW u.

In the thermal rest frame the thermal average of the n
operators are energy densities, which increase rapidly w
temperature. Earlier works on thermal QCD sum rules w
flawed, as these contributions were not properly included

III. ABSORPTIVE PARTS

We work below the critical temperature, where hadro
constitute the physical spectrum. As with the vacuum s
rules, the dominant contribution to the spectral function
given by ther-meson. We also calculate the contribution
the non-resonantpp-continuum. The question of other sig
nificant contributions will be discussed in Sec. IV.
1-3
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A. r-pole

The coupling of the vector current to ther-meson is given
by

^0uVm
a urb&5dabFrmrem , ~3.1!

whereem is the polarization vector ofr of massmr . The
experimental value ofFr as measured by the electronic d
cay rate ofr0 @18# is Fr5153.5 MeV.

A simple way to calculate the absorptive part of ther-
pole diagram is to note the field-current identity ofVm

a (x)
with the rho-meson fieldrm

a ,

Vm
a ~x!5mrFrrm

a ~x!, ~3.2!

which reproduces Eq.~3.1!. Then ther-meson contribution
is given essentially by its thermal propagator

T mn
ab~q!5 imr

2Fr
2E d4xeiqx^rm

a ~x!rn
b~o!&

5 idabmr
2Fr

2S 2hmn1
qmqn

mr
2 DD11

r ~q!,

~3.3!

whereD11
r (q) is the 11-component of a scalar field propag

tor with massmr :

D11
r ~q!5

i

q22mr
21 i e

12pn~vq!d~q22mr
2!, ~3.4!

and n(vq) is the Bose distribution function,n(vq)5(ebvq

21)21, vq5AqW 21mr
2. We then get

S Nl

Nt
D5S 1

mr
2DFr

2d$q0
22~ uqW u21mr

2!%. ~3.5!

Loop corrections at finite temperature will makemr andFr

temperature dependent, modifying them, in general, dif
ently in the longitudinal and transverse amplitudes. Th
modifications may be obtained by calculating the appropr
loop graphs. Here we shall find them by evaluating our s
rules.

B. pp-continuum

The pp-contribution to the amplitudes describes the
teraction of the current with the particles in the mediu
which are predominantly pions. Chiral perturbation theo
@13# gives the contribution of the pion fieldfa(x) to the
vector current, which, to lowest order, is

Vm
a ~x!5eabcfb~x!]mfc~x!.

Then the pions contribute to the correlation function as

T mn
ab~q!5 idabE d4k

~2p!4 ~2k2q!m~2k2q!n

3D11
p ~k!D11

p ~k2q!, ~3.6!
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whereD11
p is again the 11-component of the scalar propa

tor ~3.4! but with massmp . Its imaginary part can be ob
tained by the cutting rules at finite temperature@19#. Here we
obtain it directly for this simple amplitude. We expressD11

p

as

D11
p ~k!5$11n~vk!%D~k!1n~vk!D* ~k!, ~3.7!

where D(k) is the zero temperature propagator,D(k)
5 i /(k22mp

2 1 i e), and carry out theko-integration@20#. The
imaginary part may then be read off as

Im T mn
ab~q!5dab$Lmn~q!1Lmn~2q!%, ~3.8!

where

Lmn~q!5pE d3k

~2p!3

~2k2q!m~2k2q!n

4v1v2
@$~11n1!~11n2!

1n1n2%d~q02v12v2!1$~11n1!n2

1~11n2!n1%d~q02v11v2!#. ~3.9!

Here n1[n(v1), n2[n(v2) with v15AkW21mp
2 , v2

5A(kW2qW )21mp
2 . The time component ofkm in the tensor

structure is understood to be given byk05v1 .
With the help of thed-functions we can rewrite Eq.~3.9!

to getNmn defined by Eq.~2.11! for q0.0,

Nmn~q!5E d3k

~2p!3

~2k2q!m~2k2q!n

4v1v2

3@~11n11n2!d~q02v12v2!

1~n22n1!d~q02v11v2!#. ~3.10!

In this form the factors involving the density distribution
can be interpreted in terms of pion absorption from a
emission into the medium@21#. Since the first and the secon
d-functions in Eq.~3.10! contribute to time-like (q2>4mp

2 )
and space-like (q2,0) regions respectively, we write it as

Nmn~q!5E d3k

~2p!32v1
~2k2q!m~2k2q!n

3@~11n11n2!u~q224mp
2 !

1~n22n1!u~2q2!#d„~q02v1!22v2
2
….

~3.11!

Thus in addition to the usual cut, 4mp
2 1uqW u2<q0

2<`, the
amplitude at finite temperature acquires a new short cu
<q0

2<uqW u2 @21,3#.
The angular integration is carried out using thed-

function, when the constraintucosuqW,kWu<1 results in au-
function,u@2q2(v12v1)(v12v2)#, where

v65
1

2
~q06uqW uv !, v~q2!5A124mp

2 /q2. ~3.12!
1-4
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We thus get

Nmn~q!5
1

2uqW u
E

v2

v1 dv1

~2p!2 ~2k2q!m~2k2q!n~11n11n2!u~q224mp
2 !1

1

2uqW u

3E
v1

` dv1

~2p!2 ~2k2q!m~2k2q!n~n22n1!u~2q2!. ~3.13!

It is now simple to extract the absorptive parts of the invariant amplitudes by using~2.4!. Changing the variablev1 to x

given byv15 1
2 (q01uqW ux), we get

S Nl
1

Nt
1D 5

v3

48p2 S 1
q2D1S N̄l

1

N̄t
1D , for q2.4mp

2 ~3.14!

with

S N̄l
1

N̄t
1D 5

1

32p2 E
2v

v
dxS 2x2

q2~v22x2! Dn„~ uqW ux1q0!/2… ~3.15!

and

S Nl
2

Nt
2D 5

1

64p2 E
v

`

dxS 2x2

q2~v22x2! D $n„~ uqW ux2q0!/2…2n„~ uqW ux1q0!/2…%, for q2<0. ~3.16!

The superscripts~6! on N denote time-like and space-likeqm respectively, where they are non-vanishing. The first term on
right of Eq.~3.14! arising from the unity in the factor (11n11n2) in Eq. ~3.13! is the zero temperature contribution of thepp
state. Evaluated here in a non-covariant way it, of course, agrees with the covariant evaluation of the Feynman amplit~3.6!
with D11

p (k) replaced by the vacuum propagatorD(k) @13#.

C. Explicit sum rules

Let us now write explicitly the sum rule~2.14! for Tl . SaturatingNl with the above contributions it becomes

Fr
2~T!e2mr

2
~T!/M2

1
1

48p2 E
4mp

2

`

dq0
2e2q0

2/M2
v3~q0

21uqW u2!1euqW u2/M2S E
4mp

2
1uqW u2

`

dq0
2e2q0

2/M2
N̄l

1~q0 ,uqW u!

1E
0

uqW u2
dq0

2e2q0
2/M2

Nl
2~q0 ,uqW u! D 5

M2

8p2 1
^O&
M2 . ~3.17!
s
rig

f
n
o

f

As the temperature goes to zero, the two terms in bracket
to zero and the thermal average of the operators on the
become the vacuum expectation values, recovering the
miliar vacuum sum rule. The integral on the left is the no
resonant 2p contribution and is small compared to the res
nance contribution.

As uqW u→0, the sum rule~3.17! simplifies considerably.
The limit for the second integral in bracket is given in Re
@3#. Here we derive it in the Appendix. The sum rules forTl
andTt then become

Fr
2~T!e2mr

2
~T!/M2

1I 0~M2!1I T~M2!5
M2

8p2 1
^O&
M2 ,

~3.18!

and
09601
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mr
2~T!Fr

2~T!e2mr
2
~T!/M2

1J0~M2!1JT~M2!5
M4

8p2 2^O&,

~3.19!

where

I 0~M2!5
1

48p2 E
4mp

2

`

dse2s/M2
v3,

J0~M2!5
1

48p2 E
4mp

2

`

dsse2s/M2
v3,

I T~M2!5
1

24p2 E
4mp

2

`

ds$e2s/M2
v31v~32v2!/2%n~As/2!,
1-5
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JT~M2!5
1

24p2 E
4mp

2

`

dsse2s/M2
v3n~As/2!, ~3.20!

with v[v(s)5A124mp
2 /s. Observe that the sum rule

~3.18!, ~3.19! are not independent, in agreement with t
relation ~2.5!: the second one is obtained by differentiati
the first with respect to 1/M2.

IV. EVALUATION OF SUM RULES

In the above sum rules we have approximated the abs
tive parts of the amplitudes by ther-meson pole and the 2p
continuum, while we retain only the contributions of the u
operator~the perturbative result! and of all the operators o
dimension four in the operator product expansion. To ch
this saturation scheme, let us compare the zero tempera
limit of our sum rules with the corresponding vacuum su
rules@1#. The latter include, in addition, the rather large co
tribution from the high energy continuum beyond 1.5 Ge
as indicated by the experimental data, as well as the co
bution of a quark operator of dimension six, which is al
large because of its origin in Born~rather than loop! dia-
grams. Since we do not include any of these contributio
we cannot expect the sum rules as written above to be
saturated.

Rather than incorporate these contributions, we isolate
thermal effects by considering the difference sum rules,
tained by subtracting out the vacuum sum rules from
corresponding finite temperature ones. Then the contribu
to the absorptive parts beyond 1.5 GeV, being tempera
independent, cancels out in the difference. Thus it is the t
perature dependent contributions of ther-meson and of the
2p continuum, which should dominate the absorptive pa
of these sum rules. Also the dimension six quark opera
O6 say, contributes an amount;^O6&2^0uO6u0&, which is
insignificant in the immediate neighborhood ofT50 and as
the temperature rises, this contribution is overwhelmed
that of the two-gluon and other Lorentz non-invariant ope
tors, as our estimates below for these operators show.

The difference sum rules for the two invariant amplitud
allow us to calculate the temperature dependence of thr-
meson parameters,

Dmr~T![mr~T!2mr

5
mremr

2/M2

2Fr
2 H I T2

JT

mr
2 2S 1

mr
2 1

1

M2D ^O&J ,

~4.1!

DFr~T![Fr~T!2Fr

52
emr

2/M2

2Fr
H JT

M2 1S 12
mr

2

M2D I T1
mr

2

M4 ^O&J ,

~4.2!
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^O&5m̂^ūu&̄1
^G2&
24

1
4

1613nf
$^Q&1a~M2!^16Q f /32Qg&%, ~4.3!

where the bar on the operators indicates subtraction of t
vacuum expectation values. Here we insert the experime
values formr and Fr , as these are well reproduced by th
vacuum sum rules.

We now collect information on the operator contribution
The vacuum expectation value of the chiral condens

^0uūuu0& is known from the partially conserved axial-vect
current~PCAC! relation of Gell-Mann, Oakes and Renner

2m̂^0uūuu0&52Fp
2 mp

2 ,

where m̂51/2(mu1md) and the pion decay constantFp ,
defined by

^0uAm
a upb~q!&5 iqmdabFp ,

has the valueFp593.3 MeV. Takingm̂57 MeV @22#, we
get ^0uūuu0&52(225 MeV)3. The vacuum expectation
value of the two-gluon operator, as determined from
QCD sum rules@1#, is ^0uG2u0&5(330 MeV)4.

The operatorG2 is related to the trace of the energy m
mentum tensorQmn by the trace anomaly. Normalizing it to
zero vacuum expectation value and taking the thermal a
age, it gives

^G2&[^G2&2^0uG2u0&

52
8

9 S ^Qm
m&2(

q
mq^ūu&̄ D .

~4.4!

The trace at finite temperature is given by^Qm
m&5^Q&

23P where^Q& is the energy density andP the pressure.
The temperature dependence of both^ūu& and ^Q& have

been calculated in chiral perturbation theory@14#. Correc-
tions due to nonzero quark masses as well as the contr
tions of the massive states (K,h,r,¯) have also been incor
porated. However, as the authors point out, the validity of
perturbation theory and the use of dilute gas approxima
to calculate the contribution of the massive states res
these results to within a temperature of about 150 MeV. T
the critical temperatureTc is, strictly speaking, beyond th
range of validity of their calculation. Since, however, th
order parameter̂ūu& falls rapidly at the upper end of thi
range, one has only to extrapolate it a little further to g
Tc5190 MeV.

Besides the total energy density^Q&, there also occurs the
thermal average,̂16Q f /32Qg&. The last one cannot be ca
culated without further input, at least in the hadronic pha
Now both naive counting of the degrees of freedom and e
pirical study of the pion structure function@4# suggest the
quark fraction of the energy density to be about half of t
1-6



a

th
ne
ig
er
at

. A

at
c-
e
th

es
in
t
o

in

tw
,

l
rt
a
un

lly
eV
w

ex-
but-
he
ed in
ity
.
ical
. In
bu-
es.
ults
tors

s to
tors

s
on.
ns
n-

ble
.

the
n-

li-
ow
Also
ally

on-
f

mix
oup
r in

m
c-
or,
w

imul-

r-tu

QCD SUM RULES AT FINITE TEMPERATURE PHYSICAL REVIEW D58 096011
total. So we assumenf^Q
f&5x f^Q&, with x f5.5, where

^16Q f /32Qg&5$(16/3nf11)x f21%^Q&.
As with the zero temperature sum rules, the results

expected to be stable in a region inM2, which is neither too
high to make the continuum contribution large relative to
resonance contribution nor too low to emphasize the
glected power corrections of higher order. Since the h
energy continuum contribution gets cancelled in the diff
ence sum rules, the region ofM2 may be extended somewh
at the upper end. Figs. 1 and 2 show the evaluation forM2

equal to 1 GeV2 and 4 GeV2. The results forDmr andDFr

are rather stable for temperatures up to about 125 MeV
higher temperatures the results, particularly forDmr appear
unstable. Closer observation reveals here a large cancell
between the 2p contribution and the leading power corre
tion we have retained. Thus the non-leading power corr
tion become important here, whose inclusion may restore
stability in M2 to higher temperatures.

V. DISCUSSIONS

In this work we have written the thermal QCD sum rul
for the two point correlation function of vector currents
the r-channel, including the leading power correction due
all the operators of dimension four. Because of the loss
Lorentz invariance at finite temperature, two new~Lorentz
noninvariant! operators creep up in the Wilson expansion,
addition to the two old~Lorentz invariant! ones, already ex-
isting in the vacuum sum rules. Thus compared to the
numbers,̂ 0uūuu0& and ^0uG2u0& in the vacuum sum rules
we have now four temperature dependent quantities,^ūu&,
^G2&, ^Q& and ^16Q f /32Qg& in the thermal sum rules. Al
these thermal averages can be evaluated from chiral pe
bation theory, supplemented by contributions from the m
sive states. An extra input is needed only for the last
physical operator. The sum rules can then be used
determine the temperature dependence of ther-meson pa-
rameters. Our evaluation shows that the mass of ther-meson
and its coupling with the vector current remain practica
unaffected by the rise of temperature up to at least 125 M
The absence of the shift in the mass appears to agree
one set of results obtained in Ref.@23#.

FIG. 1. Shift in the rho-meson mass as a function of tempera
for M251 GeV2 andM254 GeV2.
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Unfortunately the sum rules, as they stand, cannot be
tended up to the critical temperature. One reason contri
ing to this restriction has to do with the evaluation of t
thermal average of the operators, as we already discuss
the last section. What restricts it further is their instabil
under a change ofM2 for temperatures above 125 MeV
Even in this restricted temperature range, the numer
evaluation shows that the new operators are significant
fact, for temperatures above say 70 MeV, the new contri
tions overwhelm the old ones in the difference sum rul
This situation necessitates a reanalysis of all earlier res
based on thermal QCD sum rules, where the new opera
are not properly taken into account.

We now discuss a possible way to extend the sum rule
higher temperatures. In the vacuum sum rules the opera
of dimension four~and higher! provide corrections to the
leading~perturbative! result. But in the difference sum rule
it is these corrections which become the leading contributi
One thus expects that by including nonleading contributio
from higher dimension operators along with those of dime
sion four already included, the sum rules would be sta
against variations inM2 over a wider range of temperature
This inclusion is all the more necessary for sum rules like
one for Dmr , where the leading operator contribution ca
cels largely with that ofpp-continuum.

The higher dimension operators will, of course, comp
cate the evaluation of the sum rules in that we have to kn
the temperature dependence of their thermal averages.
there is more proliferation of operators than what is gener
thought. The procedure in the literature@6# of including di-
mension six quark operators and excluding the Lorentz n
invariant gluon operators@24#, because of the smallness o
their coefficients by a factor ofas(M2), is not justified. For,
as we have seen, the quark and the gluon operators
under a change of scale, so that after a renormalization gr
improvement, both the coefficients are of the same orde
as(M2).

A way to proceed here is to write the entire set of su
rules by considering two-point functions of not only the ve
tor quark bilinear but also the others, like the scalar, tens
etc. All of these sum rules receive contributions from a fe
resonances and the operators from the same set. The s

FIG. 2. Shift in the coupling of rho-meson with the vector cu
rent as a function of temperature forM251 GeV2 and M2

54 GeV2.

re
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S. MALLIK AND KRISHNENDU MUKHERJEE PHYSICAL REVIEW D58 096011
taneous evaluation of all these sum rules is expected to
vide a self-consistent check on the thermal average of
operators. Further, using quark bilinears of appropri
chiralities, one can get sum rules without any of the glu
operators@25#. These sum rules should prove easier to eva
ate and would also check the saturation scheme in a sim
context.
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APPENDIX

Here we calculate the limit of the second integral
brackets in~3.17!:

A5
1

32p2 E
0

uqW u2
dq0

2e2~q0
2
2uqW u2!/M2E

v

`

dx

3x2$n„~ uqW ux2q0!/2…2n„~ uqW ux1q0!/2…% ~A1!

asuqW u→0. It is convenient to change the integration variab
q0 andx to l and u respectively byq05luqW u and uqW ux5u,
getting
l.
d

hy

09601
o-
e

e
n
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ler

,
f

s

A5
1

32p2 E
0

1

dl2e2~l221!uqW u2/M2E
l

`

du

3u2
1

uqW u
$n„~ uqW ux2q0!/2…2n„~ uqW ux1q0!/2…%,

l 5AuqW u21
4mp

2

12l2 .

As uqW u→0, it becomes

A→2
1

16p2 E
0

1

dl2lE
2mp /A12l2

`

duu2
dn~u/2!

du

5
1

48p2 E
4mp

2

`

dsv~32v2!n~As/2!. ~A2!

To get the second line we integrate by parts overu and
interchange the order of integration in the remaining dou
integral.

The limit of the corresponding integral forTt is zero,
because of the presence ofq2 in the integrand.
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