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QCD sum rules at finite temperature
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We derive thermal QCD sum rules for the correlation function of two vector currents in the rho-meson
channel. It takes into account the leading non-perturbative corrections from the additional operators, which
appear due to the breakdown of Lorentz invariance at finite temperature. The mixing of the new operators has
a drastic effect on their coefficients. The thermal average of all the operators can be related to that of the quark
condensate and the energy density. The sum rules then yield the temperature dependence of the parameters of
the p meson, namely its mass and coupling to the vector current. Our result is that these parameters are
practically independent of temperature at least up to a temperature of 125[8@556-282(198)04921-2

PACS numbdss): 11.10.Wx, 11.55.Hx, 12.38.Lg

[. INTRODUCTION which changes their coefficients drastically, is not taken into
account[7]. In a recent wor8] we applied a simple, con-
The QCD sum rulefl], proposed about two decades ago,figuration space methd®,10] to evaluate the Wilson coef-
prove remarkably successful in addressing the nonficients of these new operatongp to dimension foyrwhich
perturbative problems of hadron phenomenology. In this apappear at finite temperature in the short distance expansion
proach one considers the product of two local operators, sucbf the product of two quark bilinear operators. Here we make
as the currents of the QCD theory. A sum rule is obtained byse of this result to write and evaluate the thermal QCD sum
equating the dispersion relation for its vacuum matrix ele-rules, incorporating correctly the contributions from all the
ment at sufficiently large space-like momenta to the corredimension four operators.
sponding Wilson operator product expansj@h The higher We consider the correlation function of the time ordered
dimension operators present in the expansion give rise to th@) product of two vector currents in themeson channel.
non-perturbative, power corrections. The idea of extendinghe use of theT-product, rather than the retardédr ad-
these sum rules to finite temperature by replacing theranced product, is a little complicated in writing down the
vacuum matrix element with the thermal average naturallyspectral representation but has the advantage in perturbative
suggests itself. calculations, for which we can apply the conventional for-
The original work establishing the thermal QCD sum malism. Throughout this work we shall employ the real time
rules is that of Bochkarev and Shaposhnik8y. They rec- formulation of the thermal field theoryl 1], which requires
ognized the importance of tHeow energy continuum states in general not only the physical fields but also the accompa-
in the spectral function to account for the effects of the menying “ghost” fields. Since, however, we work to lowest
dium. On the basis of these sum rules they discussed tharder in perturbation expansion, ghost fields do not show up.
temperature dependence of the resonance parameters and thdt is convenient to write difference sum rules by subtract-
existence of phase transition. However, there arise additionahg the vacuum sum rules from their finite temperature coun-
operators in the Wilson expansion at finite temperafdie  terparts. For such sum rules the absorptive parts are expected
which were not correctly incorporated in their sum rules: Into be saturated with the-meson pole and the-continuum
effect, they calculated these new operator contributions pef3], whose contributions we derive here for completeness.
turbatively, which cannot be justified, particularly at low The thermal averages of the different operators reduce essen-
temperature. tially to that of the quark condensate and the energy densities
The additional operators arise because of the breakdowof quarks and gluon§l2]. Chiral perturbation theory13]
of Lorentz invariance at finite temperature by the choice ofhas been used to calculate the temperature dependence of the
the thermal rest frame, where matter is at rest at a definitquark condensatel4]. The difficulty with the energy densi-
temperature[5]. The residual @) invariance naturally ties is that while one of them is the total energy density,
brings in additional operators. The expected behavior of thevhich can be obtained from a knowledge of the hadronic
thermal averages of these Lorentz non-invar{aeiy) opera-  spectrum at low temperature, the other is an unphysical com-
tors is somewhat opposite to those of the Lorentz invarianbination of the two densities. We need an additional input to
(old) ones: While the old operators start with non-zero valueselate this latter combination to the total energy density.
at zero temperature and decrease in magnitude with the rise Once the power corrections are known, the difference
of temperature, the new ones, on the other hand, are zero stim rules give the temperature dependence ofptheeson
zero temperature but grow rapidly with temperature. The imparameters, namely its mass and its coupling with the vector
portance of including these new operators in the thermal suraurrent. With our simple saturation scheme, the sum rules
rules, particularly at not too low a temperature, is thus clearcan be used up to a temperature of about 125 MeV. The
Although a number of works on thermal QCD sum rulesnumerical evaluation shows that these parameters have neg-
exist by now, these are flawed with respect to the new opligible dependence on temperature.
erators: Either some of these are misfg@dor their mixing, In Sec. Il we write the kinematic decomposition for the
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thermal correlation function of two vector currents, derive  Notice that the kinematic covarian®,, andQ,,, are free

the Landau representati¢a5] for the time ordered product from singularities at?=0 (and also ag?=0). This is con-
and state the results of operator product expansion to derigenient at finite temperature as there are dynamical singulari-
finally the form of the thermal QCD sum rules. In Sec. lll we tjes extending up t@?=0. With this choice of kinematic
obtain the contributions op and 7 intermediate states 10 covariants, the dynamical singularities reside only in the in-
the spectral function. In Sec. IV we collect the information yariant amplitudes.

on thermal average of the operators present in the sum rules 14 extract the invariant amplitudes frofff . it is con-

and evaluate the difference sum rules. In Sec. V we disCUS§anient to form the scalam e

how to extend the sum rules to higher temperature. In the
Appendix we give the details of the evaluation of a limit ybnl(q)zq*ﬁab(q)1 EabHZ(q)zu“Tfﬁ(q)uV.
stated earlief3].

1,2

Then the invariant amplitudes are given by

Il. SUM RULES 1

We derive the QCD sum rules for the thermal average of TI:?HZ' Ti=

the time orderedT) product of two currents:

q2
=73 H1+?H2>. (2.9

In the limit q=0, the amplituded, andT, are related. To
T20(q)= if d*x€9YT(VA(x)V2(0)).  (2.))  see this we write the spatial componentsTgf as

by SAbF S T A A (T 2
Here V4 (x) is the vector currentin the p meson channgin T5(@) =" 8y Te— 6y (Te— T,

QCD theory: whereq; is theith component of the unit vector alortﬁg As
o q|—0, there cannot be any dependencein gettin
VA(X)=0(X) 7,,(712)4(%), (22 ld- y dependence @ip getting
-, -
q(x) being the field of thes andd quark doublet and?® the Ti(9o.|q[=0)=05Ti(do,|q[=0). 29
Pauli matrices. The thermal average of an operétas de-
noted by(O): B. Spectral representation
(O)=Tr e PHO/Tre FH Let us obtain the spectral representation for the correla-

tion function inqq at fixed|q|. First, evaluate the trace over

where H is the QCD Hamiltoniang is the inverse of the @ complete set of eigenstates of four-momentum, when it
temperatureT (coinciding with the time ordering symbol becomes a sum over forward amplitudes weighted by the

and Tr denotes the trace over any Comp]ete set of states. corresponding Boltzmann factors. Then insert the same set of
complete states between the currents to extract its

x-dependence which is then integrated out. Introducing a

o ) ) ) function ingg, the result can be written as
At finite temperature Lorentz invariance is broken by the
M2%(ag.lal)  MDa(dg,|dl)

choice of a preferred frame of reference, viz., the matter rest 1 [+o
frame where temperature is defined. But the bookkeeping 75%(q)= — f dagy| — , - — |,
with indices becomes simpler if we restore it formally by 2m J = GQo—do—l€ Gp—Qotle
introducing the four-velocity,, of the matter[5]. [In the (2.6
matter rest framejﬂ=(1,0!0,0).] The time and space com- where the expression faM2° with the double sum over
ponents ofg, are then raised to the Lorentz scalaissu my

= > states may be converted back to the form
-q andg=+Vw“—q*. We shall, however, return to the matter

A. Kinematics

rest frame while doing all actual computations. ab . A b
In such a Lorentz invariant framework, there are two in- MW(Q):J d*xeP(VL(x)V5(0)). 2.7
dependent conserved kinematic covarigit§], which we
choose as Using the double sum representation, it is easy to show that
2 4
9.9 9 ~ ~ q ~ ~ ba 21\ — a—Baopg ab -
P#V:_U,uvdl_%_:zu,uuw Q//-v::Z Uy, M”“(qo’|q|) € OMI“V(qO'|q|)' (2.8

The opposite sign ofe in the two terms in Eq(2.6) is
where U, =u,—q,/q?. The invariant decomposition of typical of T-products. As a result the imaginary part T},

72 is then given by is given by the sumjz(M3°+M52), while the principal
value integral contains the differencg(M3°—M52). But

T30(9)=6*(Q,,Ti+P,,Ty, (2.3  the two are related b(2.9):
where the invariant amplitudds ; are functions ofj? ande. M35 —Mba=(M3°+MD2)tanh B /2). 2.9
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QCD SUM RULES AT FINITE TEMPERATURE

We thus get the Landau representation for Thproduct at
finite temperaturg¢15],

q)) =i Im78°(qo.|al)

+Pf d 0 W(Qo

Tit:;(%,
lal)

—do (2.10

where, for brevity, we write

N2(q)=&""N,,,(q) =7 Im 72(q)tanh( B /2).
(2.1

Expressingq;,=q,+(do—do)u,, We recover the repre-
sentation for the invariant amplitud&s, . Further, using the
symmetry properties, I (—qg,)=Im T|t(qﬂ) and going
over to imaginary values ofj, (qO QO, Q0>O) for
which N, vanishes, these become

It(q0’|q|)

2 2
0

(2.12

/

do

T,4(93, |Q|)_f dag

PHYSICAL REVIEW 38 096011

a(_qz):( aS(MZ) )—d/Zb

as(—q°) ’

d—4 b= 2
—5 §+nf s —11_§nf,

whereu (=1 GeV) is the scale at which all renormalizations
are carried out.

Note the mixing of the operato®f and®9 in Eq. (2.13
under the renormalization group, which is well-known in the
context of deep inelastic scatterifij7]. In the operator prod-
uct expansion of two quark currents, the Wilson coefficients
of ®" and®9 are, to leading order, of zeroth and first order
in ag, arising from Born and one-loop graphs respectively.
However, due to operator mixing, the coefficients are drasti-
cally changed in that bot® and (18 f/3—©9) have coef-
ficients with leading terms of zeroth order . In Eq.
(2.13 we retain only these leading terms.

D. Sum rules

We now equate the spectral representation and the result

It may actually require subtractions, but it does not affect theof operator product expansion for the amplitudgsindT, at

Borel transformed sum rules we shall write below.

C. Operator product expansion

The contributions of operators of dimension fourTg,

are obtained from the short distance expansion and improved
upon by the renormalization group equation in a previous

work [8]. Including the unit operatofthe perturbative con-
tribution), T, is given for large Euclidean momenta b@?

=—0q)

1 (Q?

e gl
(A— (G, 4
+a m{uu) + +16+3nf

><{<®>+a(Q2)(16®f/3—®9>}). (2.13
T, is also given by the same expression, except for an over
factor of —Q? and a factor of (+2q%/Q?) multiplying the
term with ©’s. Herem is the degenerate mass of theand

the d quarks and:(qq)=(uu)=(dd). The operatoiG? is
guadratic in the gauge field strengﬂﬁ (a=1,--,8), G?
= (as/m) G5, G*, with as=g*/4m, whereg is the gauge

coupling constant Along with these two operators already

sufficiently highQS. Taking Borel transform we arrive at the
thermal QCD sum ruleg3]. For T, we get

<O>
M4

(2.19

2

1 “ 2,12 > S22
—zJ dage™ %N (qo.|al)=e 19"
0 8

where(O) is the non-perturbative contribution of higher di-
mension operators:

(Oy=m(uu)+

(G?)
24

4
16+3 == {(0)+a(M?)(160/3-09)},

(2.15

aﬂnd a similar one foll;. Each is a two parameter sum rule,

dependent not only off but also on|q|.

In the thermal rest frame the thermal average of the new
operators are energy densities, which increase rapidly with
temperature. Earlier works on thermal QCD sum rules were
flawed, as these contributions were not properly included.

Ill. ABSORPTIVE PARTS

contributing to zero temperature, we now have the linear

combinations of two new one®,"9=u*®/,%u”, where®';?

We work below the critical temperature, where hadrons

are the energy-momentum tensors for quarks and gluonsonstitute the physical spectrum. As with the vacuum sum

The corresponding components for the total tenso®is

=n®'+ 09, wheren; is the number of effective quark fla-
vors. The IoganthmlcQ2 dependence cd(Q?) arise due to

the anomalous dimensiah of the operator (16/3—09),

rules, the dominant contribution to the spectral function is
given by thep-meson. We also calculate the contribution of
the non-resonantr-continuum. The question of other sig-
nificant contributions will be discussed in Sec. IV.

096011-3



S. MALLIK AND KRISHNENDU MUKHERJEE PHYSICAL REVIEW D58 096011

A. p-pole whereAT] is again the 11-component of the scalar propaga-

The coupling of the vector current to tpemeson is given  tor (3.4) but with massm,,. Its imaginary part can be ob-

by tained by the cutting rules at finite temperat[t€]. Here we
obtain it directly for this simple amplitude. We expres$;
(0[V3|p°) = 62F ,m,e,,, 3D as

where €, is the polarization vector op of massm,. The AT(K)={1+n(w)}D(K)+n(w,)D*(K), (3.7
experimental value oF , as measured by the electronic de-
cay rate ofp® [18] is F,=153.5 MeV. where D(k) is the zero temperature propagatdd,k)

A simple way to calculate the absorptive part of #he  =i/(k?—m?2+ie), and carry out th&,-integration[20]. The

pole diagram is to note the field-current identity \&f, (x) imaginary part may then be read off as

with the rho-meson fielgh?, X
. . Im 750 = %L, (@ +Lu(-a)}h (38
V,(X)=m,F p7(X), (3.2
. o where
which reproduces Eq3.1). Then thep-meson contribution
is given essentially by its thermal propagator d3k (2k—q) ,(2k—q),
LMv(Q):TT (217_)3

oo [{(1+ny)(1+ny)
big)=i ZFZJ d*x€%(p?(x)p°(0)) N
TZ»(Q) Imp p Pu Py +n1n2}5(QO_wl_w2)+{(1+nl)n2

. +(1+n,)Nn.}8(qp— wq+ wy)]. (3.9
=i5&‘bm§F§(—mv+ A )A’il(m, 2N} Go etz
m .
P 3.3 Here nj=n(wy), n=n(w;) with w;=VkK*+m?, o,

b _ = V(k—q)?+mZ. The time component o, in the tensor
whereA?,(q) is the 11-component of a scalar field propaga-;r cture is understood to be given ky= ;.

tor with massm, : With the help of thes-functions we can rewrite E43.9)
i to getN,,, defined by Eq(2.11) for q¢>0,
+2mn(wg) 8(g°—m?), (3.9

Afy(a)=

_q2—m§+ie d*k (2k—q),(2k—q),

| o | e s
andn(wg) is the Bose distribution functlom(wq)=(ef5’“’q
—1)7%, wq=Vg?+m?2. We then get X[(1+n1+N2) (G~ w1~ w3)

N, +(N2—Nn1) 3(go— w1+ wy)]. (3.10
NE
L . fini il dF can be interpreted in terms of pion absorption from and
oop corrections at finite temperature will makg, andF, emission into the mediufi21]. Since the first and the second

temperature dependent, modifying them, in general, differ- : : . il 42 5
ently in the longitudinal and transverse amplitudes. Thesé(;fumtlons in £q.(3.10 contribute to time-like §°=4m~,)

_ - 2 . . . .
modifications may be obtained by calculating the appropriatgmd space-liked”<0) regions respectively, we write it as

1 ) -
F28{q3— (|q|?+m32)}. 3.
my )" {9~ (lal 2 39 In this form the factors involving the density distributions

loop graphs. Here we shall find them by evaluating our sum d3k
rules. = — _
N,.(Q) J W(ZK q).(2k—0q),
B. @rwr-continuum X[(1+n;+n,) 6(q2—4mi)

The mr-contribution to the amplitudes describes the in- 2 2 2
teraction of the current with the particles in the medium, +(N2=n1) 6(— 9] (Ao~ w1) "~ w3).
which are predominantly pions. Chiral perturbation theory (3.11
[13] gives the contribution of the pion fielgp?(x) to the
vector current, which, to lowest order, is Thus in addition to the usual cutnd +|g|><gi<, the

amplitude at finite temperature acquires a new short cut, 0

a _ _abc b c
V5 (X)=€°p°(x) 9, ¢°(X). <g2<|q|? [21.3.

Then the pions contribute to the correlation function as The angular integration is carried out using tife
function, when the constraintosé;i<1 results in a¢-
d*k function, 0] — q*(w1— 0. )(w;— ©_)], where
by —i 5ab _ _
To(@) Ié""f 2t (2K u(2k=a), .
X AT(K)AT(k—q), (3.6 0-=5(0ox|dlv), v(g?)=V1-4m;/e% (3.12
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We thus get

_ 1 @y dwl 1
Nu@= 5 [ e a2k-a (e, 7
< G (2,2 @)y ) 6P, 313

It is now simple to extract the absorptive parts of the invariant amplitudes by (@if)g Changing the variable; to x
given by ;= 3(do+|q|x), we get

Nr—v3(1> NC) for gt 3.1
NS aga? (g2 T O AT (319
with
NFy 1 2x? ) -
NY| T 322 f_vdx (02— x2) n((|q|x+qo)/2) (3.1
and
i Y LV ) 1x—do)/2)—n((|dlx+qo)/2)},  for g2<
Ny _WL X 2(v2—x2) | IN(dx=a0)/2=n(([alx+a0)/2)}, for g°<O0. (3.16

The superscripté+) on N denote time-like and space-likg, respectively, where they are non-vanishing. The first term on the
right of Eq.(3.14) arising from the unity in the factor (n;+n,) in Eq.(3.13 is the zero temperature contribution of ther
state. Evaluated here in a non-covariant way it, of course, agrees with the covariant evaluation of the Feynman &@rlitude
with AT;(k) replaced by the vacuum propaga¢k) [13].

C. Explicit sum rules

Let us now write explicitly the sum rul€.14) for T,. SaturatingN, with the above contributions it becomes

m(T)/M 2/m2 v3(a2+14a12) + 1g/2/m2 f 2.~ qAM2 g+ >
Fo(TMe” + 182 (g5+lal*)+e 2, 520%8 TN (do.|al)
lal? 2 (0)
dage™0™*N; (g, |Q|)> —2+W 3.17
|
As the temperature goes to zero, the two terms in brackets go M2 5 4
to zero and the thermal average of the operators on the rightn2(T)F5(T)e ™ SN L 36(M2) 4+ 3r(M?) = a2 (0,
become the vacuum expectation values, recovering the fa- (3.19

miliar vacuum sum rule. The integral on the left is the non-
resonant zr contribution and is small compared to the reso-
nance contribution.

As |g|—0, the sum rule(3.17) simplifies considerably.
The limit for the second integral in bracket is given in Ref. j dse sM%,
[3]. Here we derive it in the Appendix. The sum rules Tor
and T, then become

where

2y— +siM? 3
2 2 M2 (O) Jo(M?)= > v
FA(T)e MM 1o(M?)+11(M?) = g5 + 7, 48
(3.18
2y -s/M? 3 — 02/ Js!
J I+(M9) a2 vo+v(3—v9)/2tn(ys/2),
an
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1 (= 2 — ——G?
- =
JT(M2)—W Lmidsse M3 (s/2), (3.20 (O)=m{uuy+-7,-
4
with v=v(s)=+1—4m?/s. Observe that the sum rules +m{<®)+a(M2)(16®f/3—®9>}, 4.3
f

(3.18, (3.19 are not independent, in agreement with the
relation (2.5): the second one is obtained by differentiating

the first with respect to M2 where the bar on the operators indicates subtraction of their

vacuum expectation values. Here we insert the experimental
values form, andF,, as these are well reproduced by the
IV. EVALUATION OF SUM RULES vacuum sum rules.

We now collect information on the operator contributions.

i Inth::‘ abfot\;]e sum Ir'lilfjs WE h?ve approxin}atedéhti;t%sorﬁ-he vacuum expectation value of the chiral condensate
Ive parts of the amplitudes by thiemeson pole an t<0|uu|0) is known from the partially conserved axial-vector

continuum, while we retain only the contributions of the uni : )
operator(the perturbative resyltand of all the operators of current(PCAQ) relation of Gell-Mann, Oakes and Renner:

dimension four in the operator product expansion. To check
this saturation scheme, let us compare the zero temperature
limit of our sum rules with the corresponding vacuum sum A .
rules[1]. The latter include, in addition, the rather large c:on—Wh?'re m=1/2(m,+mg) and the pion decay constaft,,
tribution from the high energy continuum beyond 1.5 GeV,deflned by

as indicated by the experimental data, as well as the contri- aj_b _ b

bution of a quark operator of dimension six, which is also <O|A“|7T (@)=i0q,57F -,

large beqause of its origin in Borfrather than Ioopfma-_ has the valud . =93.3 MeV. Takingm=7 MeV [22], we
grams. Since we do not include any of these contributions,

we cannot expect the sum rules as written above to be wef€t (0Juu|0)=— (225 MeV)>. The vacuum ‘expectation

saturated. value of the two-gluon operator, as determined from the
Rather than incorporate these contributions, we isolate th@CD sum rules{lg, Is (0]G?|0)=(330 MeV)*.

thermal effects by considering the difference sum rules, ob- The operatoG* is related to the trace of the energy mo-

tained by subtracting out the vacuum sum rules from thenentum tenso ,, by the trace anomaly. Normalizing it to

corresponding finite temperature ones. Then the contributioR€"0 Vacuum expectation value and taking the thermal aver-

to the absorptive parts beyond 1.5 GeV, being temperatur@d® It gives

independent, cancels out in the difference. Thus it is the tem-

p?

2m(0[uu|0)= —F2m?

T

o™ — /2 2
perature dependent contributions of thneson and of the (G%)=(G*)—(0[G"0)
27 continuum, which should dominate the absorptive parts
of these sum rules. Also the dimension six quark operator, __ § L T
. S CHEDS myuuy) |.
O say, contributes an amourt(Og) —(0|Og|0), which is 9\ # 9
insignificant in the immediate neighborhood B0 and as (4.4

the temperature rises, this contribution is overwhelmed by o o

that of the two-gluon and other Lorentz non-invariant opera-1he trace at finite temperature is given K9)=(0)

tors, as our estimates below for these operators show. ~ —3P where(0) is the energy density anél the pressure.
The difference sum rules for the two invariant amplitudes The temperature dependence of botiu) and(®) have

allow us to calculate the temperature dependence opthe been calculated in chiral perturbation thedtd]. Correc-

meson parameters, tions due to nonzero quark masses as well as the contribu-
tions of the massive stateK (#,p, ) have also been incor-
Am,(T)=m,(T)—m, porated. However, as the authors point out, the validity of the

perturbation theory and the use of dilute gas approximation
to calculate the contribution of the massive states restrict
1\ — these results to within a temperature of about 150 MeV. Thus
the critical temperaturd is, strictly speaking, beyond the
(4.2  range of validity of their calculation. Since, however, the

order parametefuu) falls rapidly at the upper end of this

AF (T)=F,(T)-F, range, one has only to extrapolate it a little further to get
T.=190 MeV.

2 Besides the total energy dens{y), there also occurs the

P TAV thermal averagg,160/3— 09). The last one cannot be cal-
culated without further input, at least in the hadronic phase.
4.2 Now both naive counting of the degrees of freedom and em-

pirical study of the pion structure functidd] suggest the

with quark fraction of the energy density to be about half of the

2F?2

2,2

m*/M

m,e" Jr
= I+—

p

2012
mp/M

2F,

e
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L B L WL B R O
= [ ] = [ ]
g 5 - M=1 GeV - S -1 -
. I = F :
E r ] e r ]
A ] = A ]
S o ] R -
-sf o 3
DY, ) PRI R NN AR S S 7Y PRI I S SN AR B
0 25 50 75 100 125 150 0 25 50 75 100 125 150
T(MeV) T (MeV)
FIG. 1. Shiftin the rho-meson mass as a function of temperature FIG. 2. Shift in the coupling of rho-meson with the vector cur-
for M2=1 Ge\? andM?=4 Ge\2. rent as a function of temperature favi’=1Ge\® and M?
=4 Ge\A

total. So we assume( 0O’ =y(®), with y;=.5, where
<16@f/3_@g>:{(16/3f1<f+i)X)f(fjl}?@)_ At Unfortunately the sum rules, as they stand, cannot be ex-

As with the zero temperature sum rules, the results ar(;}ended up to the critical temperature. One reason contribut-

expected to be stable in a regionM?, which is neither too Ing to this restriction has to do with the evaluation of the
high to make the continuum contribution large relative to thethermal average of the operators, as we already discussed in

resonance contribution nor too low to emphasize the nethe last section. What restricts it further is their instability

2
glected power corrections of higher order. Since the hignder & change oM for temperatures above 125 MeV.

energy continuum contribution gets cancelled in the differ-=ven n this restricted temperature range, th? r.“%me”ca'
ence sum rules, the region b2 may be extended somewhat evaluation shows that the new operators are significant. In

at the upper end. Figs. 1 and 2 show the evaluatiorVidr fact, for temperatures above say 70 MeV, the new contribu-

equal to 1 Ge¥ and 4 GeV. The results foAm, andAF, tl(r)]ns q:/erg{vhelm the '(t)loti Ones in thle <_j|ffefrer|1|ce Sll_Jm ruIeTt.
are rather stable for temperatures up to about 125 MeV. At 'S ;I uatlr?n neTes(s_:lg es a relana yﬁ's Otr? earlier res;J S
higher temperatures the results, particularly fan, appear ased on thermal QCD sum rules, where the new operators

unstable. Closer observation reveals here a large cancellati&qev\?m prop:;erly taken mtqbalmcountt. tend th les t
between the 2 contribution and the leading power correc- € now discuss a possibie way 1o extend the sum rules to

tion we have retained. Thus the non-leading power correct"gh.er temperatures. In t_he vacuum sum r“'e$ the operators
f dimension four(and higher provide corrections to the

tion become important here, whose inclusion may restore th . . : .
P y eading(perturbative result. But in the difference sum rules

g . 2 .
stability in M* to higher temperatures, it is these corrections which become the leading contribution.
One thus expects that by including nonleading contributions
V. DISCUSSIONS from higher dimension operators along with those of dimen-
. . sion four already included, the sum rules would be stable
In this work we have written the thermal QCD sum rules , it variations itM2 over a wider range of temperature.

for the two po!nt correlatlon funpt|on of vector cqrrents N This inclusion is all the more necessary for sum rules like the
the p-channel, mcludmg the _Ieadlng power correction due to, | for Am,, where the leading operator contribution can-
all the operat_ors of d|n_1e_n5|on four. Because of the loss o els largely with that ofrar-continuum.

Lorgntz Invariance at finite temperature, two n(alymrer_ltz . The higher dimension operators will, of course, compli-
noninvariar operators creep up in the Wilson expansion, Ncate the evaluation of the sum rules in that we have to know

ad_qun to the wo oldLorentz invariant ones, already ex- the temperature dependence of their thermal averages. Also
Isting In the_vacuum sum rules. Thus compared to the WQhere is more proliferation of operators than what is generally
numbers(O[uu|0) and(0|G?|0) in the vacuum sum rules, thought. The procedure in the literatig] of including di-

we have now four temperature dependent quantities), mension six quark operators and excluding the Lorentz non-
(G?), (©) and (160 /3—09) in the thermal sum rules. All invariant gluon operatorf24], because of the smallness of
these thermal averages can be evaluated from chiral pertutheir coefficients by a factor af(M?), is not justified. For,
bation theory, supplemented by contributions from the masas we have seen, the quark and the gluon operators mix
sive states. An extra input is needed only for the last ununder a change of scale, so that after a renormalization group
physical operator. The sum rules can then be used tonprovement, both the coefficients are of the same order in
determine the temperature dependence of gimeson pa-  agy(M?).

rameters. Our evaluation shows that the mass optheeson A way to proceed here is to write the entire set of sum
and its coupling with the vector current remain practicallyrules by considering two-point functions of not only the vec-
unaffected by the rise of temperature up to at least 125 MeWor quark bilinear but also the others, like the scalar, tensor,
The absence of the shift in the mass appears to agree witktc. All of these sum rules receive contributions from a few
one set of results obtained in RE23]. resonances and the operators from the same set. The simul-
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taneous evaluation of all these sum rules is expected to pro- 1 1 g o o [

vide a self-consistent check on the thermal average of the A= 32,2 J dx2e” (M- DlalM f du
operators. Further, using quark bilinears of appropriate 0 !

chiralities, one can get sum rules without any of the gluon 1 . .
operatorg25]. These sum rules should prove easier to evalu- X u?—={n((|a|x—do)/2)—n((|q|x+ao)/2)},
ate and would also check the saturation scheme in a simpler |al

context.
. Am?
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1 1
APPENDIX ot 2
A= fodx Y

Here we calculate the limit of the second integral in
brackets in(3.17):

1 o0
; . % - _,2
A 17T2 f‘qlquge*(qgﬁq‘z)”\"zf i 282 Lmidsv(?: voIN(s/2). (A2)
0 v

fw d 2dn(u/2)

U ———
2m, IN1-22 du

32

xx2{n((|alx—de)/2)—n((|qlx+de)/2)} (A1)  To get the second line we integrate by parts oueand
. interchange the order of integration in the remaining double
as|q|—0. It is convenient to change the integration variablesintegral.
0o andx to A and u respectively bgo=X\|q| and|q|x=u, The limit of the corresponding integral for; is zero,
getting because of the presenceaf in the integrand.
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