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We analyze the phase diagram of QCD with two massless quark flavors in the space of tempeaattire
chemical potential of the baryon chargeusing available experimental knowledge of QCD, insights gained
from various models, as well as general and model independent arguments including continuity, universality,
and thermodynamic relations. A random matrix model is used to describe the chiral symmetry restoration
phase transition at finit€ and w. In agreement with general arguments, this model predicts a tricritical point
in the Tw plane. Certain critical properties at such a point are universal and can be relevant to heavy ion
collision experiments.S0556-282(98)01721-4

PACS numbgs): 11.10.Wx, 11.15.Tk, 12.38.Gc, 21.65.

I. INTRODUCTION we present a more complete and less model dependent analy-
sis of the phase diagram which also includes effects from
Current and projected experimental progress in the physsther phase transitions, such as the nuclear matter liquid-gas
ics of heavy ion collisions increasingly demands better thetransition. Naturally, many of the phenomena to be discussed
oretical understanding of the underlying phenomena. In parhave been studied extensively. As a result, we will repeat
ticular, the most exciting possibility offered by such some familiar experimental facts and theoretical arguments
experiments is the creation of high temperature and densitgith references to some of the original papers or reviews as
conditions under which the dynamics of QCD can bring mat-appropriat¢. The aim of our analysis is to transform this
ter into a new state. The challenge is then to calculate thRnowledge into the determination of a phase diagram for
properties of this new phase together with the properties 0D in theTu plane. Such an analysis is especially impor-
the phase transition from QCD, the underlying theory oftant as an extension of Monte Carlo studies, given the tech-

quark-gluon interactions. _ _ nical problems that these encounter with finite baryon charge
Substantial progress has been achieved in our understan&iénsity_

ing of QCD at high temperatur€. The foundation of this

L ; c The chiral phase transition is of primary interest in ul-
understandmg IS pro_wded by lattice field theory Monj[e Carlotrarelativistic heavy ion experiments since this is the transi-
calculations. In particular, we know that in QCD with two

’ . . tion that separates the hadronic phase from the quark-gluon
massless flavors a transition restoring chiral symmetry oc- . .
phase. In Sec. VI, we introduce a random matrix model of

curs at a temperature of approximately 160 Méy. ) - . . .
On the other hand, little is known about the behavior Ofthe chiral phase transition at finiteand . We find that this

QCD for finite baryon charge density, or chemical potentialM°del predicts a tricritical point in th&u plane in agree-
of the baryon chargg. Standard lattice Monte Carlo tech- Ment with more generic arguments. We analyze the proper-
niques cannot be applied since the determinant of the Dirat€S of some thermodynamic observables in the vicinity of
operator is complex, and hence the Euclidean path integrdhis point.
defining the theory does not have a Giltbs., real, positive-
definite measure. A Gibbs measure is needed for the proba-
bilistic interpretation which forms the basis for importance Il. DEFINITIONS
sampling methods such as Monte Carlo calculations. More- L
over, the approximation of quenched fermions fails in this W& take as our model the standard approximation in
case[2,3] for reasons which have been understood recently?hich we (i) consider pure S(8) QCD with electroweak
using the random matrix theofyt]. However, the conditions Interactions turned off an@) consider this theory with two
created in heavy ion collision experiments require an underMassless quarks. There is then an exact SIXHU(2)
standing of the regime of high baryon density as well as that<U(1)s global symmetry of the action, which is spontane-
of high temperature. As reviewed, e.g.,[Bl, there is good 0usly broken down to SU(Z)XU(1)g at zero and suffi-
evidence that central part of the collisions can be describegiently low temperatures by the formation of a condensate,
approximately before freeze-out by thermodynamics, so thaty ). Many features of QCD indicate that this is a reason-
the temperature and chemical potential can be defined.  able approximation, e.g., the lightness of pions, the success
The purpose of this paper is to assemble available knowlef current algebra relations, et@Ve will comment below on
edge about QCD and apply it to the construction of the phasthe inclusion of electromagnetic interactions and strange
diagram in theT u plane. Most of the studies of this phase quarks) This theory is described by a grand canonical parti-
diagram have concentrated on modeling the properties of thigon function which, when written as a path integral, is for-
chiral phase transitiofsee, €.9.[6,7,8,9,10). In this paper, mally
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oI — lattice calculations are performed in such a way thaind u
Z=e 0K Zf DADYDyr exp{ — Sg}. (1) are the parameters that can be controlled while the densities
are measured. The results of relativistic heavy ion collision
The Euclidean actiose is given by experiments are also often analyzed using this set of param-
eters[5].

uT 1
_ 3
Se fo dXOJ d* ﬁTr FunF Ill. ZERO TEMPERATURE
Ng

=2 ¥
f=1

P We begin by considering the phase diagranuas varied

b+ A+ mf+N— yo)lpf}, 2 along the lineT=0. Strictly speaking, we are not dealing
c with thermodynamics here since the system is in its ground

state. This fact leads to a simple property of the function

n(w). Let us rewrite the partition function, Eql), as the

Gibbs sum over all quantum states,of the system

whereN;=2 is the number of flavord\.=3 is the number
of colors, andm;=m=0 is the quark mass. The Euclidean
matricesy,, are Hermitian. Note that with our sign choices
positive m and w induce positive{ ) and (¢yqip). The E,— uN,
normalization ofu differs from the normalization customary ZZE exp — T]
in lattice calculations by a factor M{ (i.e., the baryon “
charge of a quapk Integrating over the fermion fields we can
also write

(6

where each state is characterized by its enefgy, and its
baryon chargeN,. In the limit T—0, the state with the
u lowest value oft,,— wN, makes an exponentially dominant
de{ll)ﬂL m; + N—yo}. contribution to the partition function. Whea= 0, this is the
¢ 3) state withN=0 andE=0, i.e., the vacuum o&=0. Let us
introduce
As indicated, this system is characterized by equilibrium
values ofT and u. This may be thought of by imagining the Ho=min(E,/N,). (7)
system to be in thermodynamic equilibrium with a large res- “
ervoir of entropy and baryon charge which is characterized .
by these values of and . The total energy and baryon S long asu<p,, the state with the lowest &, —puN,
charge of our system fluctuate. Of course, the relative magmains the vacuumy=0. Therefore, we conclude that, at
nitude of these fluctuations is negligible for an open systenf€'© temperature,
of macroscopic size. The relation between the chemical po-
tential x and the average baryon number dengjigr unit N(u)=0 for u<p,. ®
volume n is the same as that between the temperafuaead
the average entropy densiger unit volumg, s:

1
z= f DA exp{ =52 T FusFoun

What is the value ofty? As an exercise, we first consider
a free theory of massive fermions carrying one unit of baryon
_ ETo) ETe) charge. The states which minimiz, /N, are states with
V=2, (syoihs)=— o sV=— o7 (4 one or two(more if fermions have flavor or other degen-
f » eracy fermions at rest withp=0. For each of these states,

where(} is the thermodynamic potential defined in Eg). It E./N,=m, the mass of the fermion. Therefoqeo=m for :
can also be seen th&t=—pV, wherep is the pressure. In such a theory. Whem>m, the ground state is the Fermi

) N — (2
other words, pressure, temperature and chemical potentigPhere with radiuspe=yu*—m?". Therefore,n(u)=(n

Al o312/, 2 - o
are not independent variables for our system. Their varia- M)~ 7(37°). Thus, we see that, even in a trivial theory,
tions are related by the functionn(u) has a singularity gtv= wy. The existence

of some singularity at the point= wg, T=0 is a robust and
dp=sdT+ndu. (5) model independent prediction. This follows from the fact
that a singularity must separate two phases distinguished by
Both T andu (as well agp) are intensive parameters. For an order parameter, e.qa, The functionn=0 cannot be
a system in thermodynamic equilibrium, these quantities areontinued ton# 0 without a singularity.
the same for any of its smaller subsystems. In contrast, the What is u for the case of QCD, and what is the form of
extensive densities and n can differ for two subsystems the singularity? The answers to these questions are some-
even when they are in equilibrium with each other. Thiswhat different in QCD and in the real worl@CD+) which
happens in the phase coexistence region, e.g., a glass caneludes other interactions, most notably electromagnetic in-
taining water and ice. It is more convenient to describe thderactions. Since QCD is the focus of the present paper and
phase diagram in the space of intensive paramédtensd . QCD+ is the ultimate goal of our understanding, we shall
In particular, the first-order phase transition which we shallconsider both cases. It is important to understand their dif-
encounter is characterized by one valueudbut two values ferences if we are to extract physically useful predictions
of n—the densities of the two coexisting phases. Anothefrom lattice calculations, which are performed for QCD
reason for working in these coordinates is that first-principlerather than QCB-.
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phenomena as nuclear matter crystallizafit®,13), super-
conducting phases of neutron and quark maftdr-16, and,
due to the strange quark in QGD kaon condensation
[12,17 and a transition to strange quark mat{as8,19.
Moving along theu axis to the right is equivalent to increas-
ing the pressurep=[ndu. Thus, this picture is roughly
what one might encounter in moving towards the center of a
neutron star from the iron crust at the surface.
Ko i Ko 151 Our knowledge ofn(u) is scanty for densities of order
@ (b) one to ten times, and u— uy=O(10—200 MeV) both in
FIG. 1. Schematic dependence of the baryon charge density OQCD anq In Q,CDF' We can o_nly be ;ure that(y) is a
the chemical potential aT=0 (a) in QCD (ug~Mmy—16 MeV) mongtonlcally increasing fungtlon, \{\{h|ch follows from the
and(b) in QCD+ (po~my—8 MeV). requirement of thermodynamic stability.
The behavior ofn(n) again becomes calculable in the
The energy per baryorE/N, can also be written asyy region of very larggu> A cp. In that case, the Pauli exclu-
—(Nmy—E)/N, wheremy=m,~m, is the nucleon mass. sion principle forces the quarks to occupy ever higher mo-
Therefore, the state which minimiz&N is that for which mentum states, and, due to asymptotic freedom, the interac-
the binding energy per nucleoas= (Nmy—E)/N, is a maxi-  tion of quarks near the Fermi surface (isgarithmically
mum. Empirically, we know that this state is a single ironweak. The baryon charge density is proportional to the vol-
nucleus at rest wittN=A=56 ande~8 MeV. However, in ume of a Fermi sphere of radiusu/3, n(w)
QCD without electromagnetism the binding energy per~N¢(u/3)%/(37%). At low temperatures, only quarks near
nucleon increases with. This is the consequence of the the Fermi surface contribute to the Debye screening of the
saturation of nuclear forces and can be seen from the Weizauge fields. The square of the screening mafsss propor-
sacker formula. Without electromagnetism, only the bulk andjonal to the area of the Fermi surfacmZD~g2,u2. This

surface energy terms are significant for lakye means that color interactions are screened on lengths
O(1lgu) = O(VIn(uW/Agep)/ w). This motivates the conclu-
e(A)= AmN_mAma —a, A 1B 9) sion that nonperturbative phenomena such as chiral symme-
A 12 try breaking should be absent at sufficiently laygeThere-

fore, in QCD with massless quarks one should expect at least

with a;~16 MeV, a,~18 MeV[11]. As A—x, e saturates one other phase transition, at a valueuofhich we define as
at the valuea,. This corresponds to the binding energy per u;—a transition characterized by the restoration of the chiral
nucleon in a macroscopically large sample of nuclear mattesymmetry.
as defined by Fetter and Walecka[itL]. We conclude that What is the value ofu; in QCD, and is it finite? Very
in QCD the density jumps gt=uo~my—16 MeV to the little reliable information about the phase transitioryatis
value of the nuclear matter density~0.16 fm 3. There-  available. However, several different approaches agree on
fore, in QCD there is a first-order phase transition, characthe conclusion that the value qf; is finite and thatu;
terized by a discontinuity in the function(u) atu=u (see  —uq is on the order of the typical QCD scal&qcp
Fig. 19. ~200 MeV=1 fm~L. For example, equating the quark pres-

In QCD+, the Coulomb forces change the situation nearsure minus the Massachusetts Institute of Technol&i )
Mo- The contribution of the Coulomb repulsion &A) is bag constant to the pressure of nuclear matter yields such an
negative: — (0.7 MeV)Z?/A%3, and it is responsible for the estimate(see, e.g.[20]). Here, we should also point out an-
experimentally observed maximum &fA) at A=~56. Isos-  other interesting distinction between QCD and Q&lthe
pin singlet nuclear matterA=«) is unstable at zero pres- effect of the strange quark in QCPBis to decrease the value
sure due to Coulomb repulsion. Neutron matter VidteA is  of u, compared to that of QCD. It has even been conjectured
also unstable at zero pressure, and we are left to considertihat this effect might be sufficient to drive,; below g,
gas of iron nuclei. In order to ensure electric neutrality, wewhich would make normal nuclear matter metastable
must add electrons. Such a gas is clearly unstable at smdll8,19. Another model which predicts the phase transition at
densities and forms a solid—iron. Therefore, there is a disfinite u; is the Nambu—Jona-Lasinio model, which focuses
continuity in the value on(w) at ug=~my—8 MeV. This  on the degrees of freedom associated with the spontaneous
discontinuity is equal to the density of normal mattee.,  chiral symmetry breaking and leads to a similar estimate for
iron) and is about 10'* times smaller than in QCD. For very pu, [9].
small w— ug, N(w) has structure, fine on the scale of QCD, What is the order of this phase transition? The MIT bag
which reflects the properties of normal matter under presmodel predicts that it is a first-order transition since the den-
sure. Then, forw— we=O(10—-200 MeV), we traverse the sity n of the baryon charge is discontinuous. Unfortunately,
domain of nuclear physics with the possibility for various analysis of the Nambu—Jona-Lasinio model shows that the
phase transitions. In particular, a transition to neutron matteorder of the transition depends on the values of parameters,
(Z<A) is probably similar to the transition in QCD at  most notably, on the value of the cutoff. A larger cutoff leads
= uo. (See Fig. 1h.In this domain, one may encounter such to a second-order transition, a smaller cutoff to a first-order
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transition[9]. A random matrix model alf=0 predicts a remain a first-order phase transition for sufficiently snfall

first-order phase transitidd]. In this paper, we shall extend Therefore, there must be a line emerging from the pdint

the random matrix model to permit consideration of the en—=0, u= . One can think of this transition as boiling the

tire Tu plane. Before doing this, we shall use more generahuclear fluid. The slope of this line can be related to the

methods to analyze features of the phase diagram of QCD discontinuities in the entropy densitys (or the latent heat

finite densityand temperature in the next section. per volumeTAs) and in the baryon densitxn across the
An additional, qualitative argument for the first-order na-phase transition line through the generalized Clapeyron-

ture of the chiral phase transition gt can also be drawn Clausius relation:

from a certain analogy of QCD to a metamagnet such as a

crystal of ferrous chloride Fegl At temperatures below the dT An

Neel temperatureT, and at zero magnetic fielll such a du_  As’ (12

crystal is antiferromagnetically orderdde., the staggered

magnetization has a nonzero expectation val . . .
9 Pst P uabs) This relation follows from the condition that the pressure,

iO_). Analogously,(:/u/;}io_m Q_CD belowT, . The mag- temperature and chemical potential should be the same in the
netic fieldH is not an ordering field for the staggered mag- o phases on a phase coexistence curve and(Egq.In
. o . : eé{nalogy with ordinary liquid-gas transitions, the gaseous
(i.e., normal m_agnehzaﬂod» with _Ag: N H‘ﬁ_) a_nd induces phase has a lower particle densityhereAn<0) and lower
nonzeﬁ)(@. Similarly, the crlemlcal potential induces non- entropy density (where As<0). Therefore, the slope
zero(yoy), and the termuyryoy does not introduce ex-  ¢T/du must be negative. We further expect that the slope is
plicit breaking of the chiral symmetry. At some critical value jnfinite at T=0 since s(T=0)=0, and henceAs(T=0)
of H, ferrous chloride Undergoes a first-order phase tranSi-: 0. As there is no Symmetry_breaking Order parameter
tion, and the staggered magnetization vanisiesy)=0.  which distinguishes the two phases, there is no reason why
One could naturally expect that in QCD a similar competi-these two phases cannot be connected analytically. As in a
tion between the low temperature spontaneous orderingpical liquid-gas transition, it is natural to expect that the
(Y #0 and the orderingyyyp)#0 induced byu would  first-order phase transition line terminates at a critical point
result in a first-order phase transition. This analogy can bevith the critical exponents of the three-dimensional Ising
continued into theT . plane or theTH plane in the case of model? The temperature of this critical point can be esti-
the antiferromagnet. The antiferromagnet has a well knowmated from the binding energy per nucleon in cold nuclear
tricritical point in this plane. Its analogue in QCD will be matter, To=0(10 MeV). (See Fig. 5. Signatures of this
discussed in Sec. V. point are seen in heavy ion collisions at moderate energies
Following the arguments of the two preceding paragraphsii.e.,~1 GeV per nucleop and the critical properties of this
we base our subsequent analysis of the phase diagram pbint have been studied through measurements of the yields
QCD with two massless quarks on the following expecta-of nuclear fragmentg20,21]. In particular, the reported criti-
tions: (i) w1~ wo+ O(200 MeV) and(ii) the transition is of cal exponents are in agreement with those of the three-
first order. dimensional Ising moddR1].
Additional phase transitions which might occurBt0
IV. FINITE T AND g would give rise to additional phase transition lines. One
could expect two generic situations. If there is a breaking of
We shall use two order parameters to analyze the phasg global symmetnye.g., translational symmetry in the case
diagram of QCD at nonzer® and w: the chiral condensate of nuclear matter crystallizationthe phase transition line
() (per flavop given by must separate such a phase from the symmetric phase at
higher temperatures without any gaps in the line. Otherwise,
— the transition can terminate at a critical point.
(YihV=— N_f am (10) At very highT>Aqcp, wWe have a plasma of quarks and
gluons with a logarithmically small effective coupling con-

and the density of the baryon changejiven by Eq.(4). We  stantg(T) and we can again calculate the density of the
have already used to show that there is a singularity at ~ baryon chargen:

= uo andT=0. It was important for that argument thate

exactly zero for allu<uy. At nonzeroT, howevern is not d3p |p| — u/3 -1

strictly 0 for anyu>0. For example, for very small and T n(T,,u)~4f 23| P T +1 —{u——pp

one finds a very dilute gas of light mesons, nucleons and (13
antinucleons with

(11 1The entropy per particle is greater in the gaseous phase, but the
entropy per volumes is smaller because of a much smaller particle

o density.

Nevertheless, we can use a continuity argument to d‘EduceZThe Ising nature of the universality class follows from the fact

that the first-order phase transition B0, u=po has 10 yhat the transition can be modeled by an Ising lattice gas.

2my T\ ¥2
n(T,M)~$( N ) e Mn/T
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We expect that the chiral condensate is zero at very fiigh end-point of three-phase coexistence. In order to see this in
since the effective coupling is weak because of asymptotiQCD, it is necessary to consider another dimension in the
freedom. Therefore, a phase transition must separate tfapace of parameters—the quark mass This parameter
quark gluon phase from the low temperature phase. Thifreaks chiral symmetry explicitly. In such a three-
transition has been studied extensivelyuat 0 using a va- dimensional space of parameters, one can see that there are
riety of methods. In particular, lattice calculations have esiwo surfacegsymmetric with respect t;— —m reflection
tablished the value of, as approximately 160 MeV1]. of first-order phase transitions emanating from the first-order
Arguments based on universality suggest that this transitiofn® & m=0. On these surfaces or wings with+0, two

is of second order with critical exponents of the SU(2) Phases coexist: a low density phase and a high density phase.
X SU(2)g~0(4) universality clasf22]. Lattice calculations Th_ere IS no symmetry (_j|_st|ngU|sh|ng these two phases since
seem to confirm this scenar[@3].3 Here, we assume that chiral symmetry is explicitly broken whem 0. Therefore,

this is the case and trv to understand what happens to ththe surfaces can have an edge which is a line of critical
. ! y PP Eoints. These lines, or wing lines, emanate from the tricriti-
transition whenu is not zero.

cal point. The first-order phase transition line can now be

For massless quarks, the low-temperature hadronic phagg.,qnized as a line where three phases coexist: theThigh

and the quark-gluon plasma phase can be distinguished By, qensity phase and two low density ahchases with

the expectation value dfiyy)), since this is identically zero nnasite signs ofm and, hence, also dfy). This line is

in the quark-gluon phase and nonzero in the hadronic phasgjied, therefore, a triple line.

with spontaneously broke_n chiral symmetry. Th_e_refore, The planem=0 is a symmetry plane. Chiral symmetry is
when quark masses are strictly zero, a phase transition mugkact only in this plane, and it is only here that the low and
separate these two phases, i.e., these phases cannot be a@@-high temperature phases must be separated by a transi-
nected analytically in th& u plane atm=0. Therefore, a tion. One can also view this plane as a first-order phase tran-

line of phase transitions must begin from the pdikt Te,  sition surface, sincéy) has a discontinuity across it. Then,
w=0 and continue into th&u plane. _ the second-order phase transition line together with the triple
As discussed above, chiral symmetry restoratioi a0 line provide a boundary for this surface.

is most likely to proceed via a first-order phase transition. Critical behavior near the tricritical point can now be in-
Therefore, the transition must remain first-order as we conferred from universality. The upper critical dimension for
tinue along a line into thd w plane. The slope of this line this point is 3. Since critical fluctuations are effectively
can again be related to the discontinuity in the baryon chargthree-dimensional for the second-order phase transition at fi-
and the entropy densit{i2). Since we expect that both den- nite T, we conclude that behavior near this point is described
sity and entropy will be larger in the quark-gluon phase, théddy mean field exponents with only logarithmic corrections.
slope of this linedT/du, should be negative. The effective Landau-Ginsburg theory for the long-
This first-order transition line cannot terminate becausavavelength modesp~ () near this point requires &°
the order parametenyy) is identically zero on the one side Potential which has the fornfin the symmetry planem
of the transition. The minimal possibility is that it merges =0
with the second-order phase transition line coming frém Qo= Qo(T, ) +a(T, ) 2+ b(T, ) $*+ (T, ) $°
=T., »=0; the point where the two lines join is a tricritical (14)
point [6,7,9. Such a point exists in many physical systems 6 . .
(e.g., in the FeGlantiferromagnet and universal behavior With ¢>0. The¢" term is necessary in order to create three
in the vicinity of this point has been studied extensively. InMinima corresponding to the three coexisting phases. This
the next section, we review those properties of a tricritical©XPlains why the critical dimensionality is 3, since for this
point which follow from universality. dimension, the operat(_)q_b becomes a marginal operator.
When b>0, the transition occurs whea=0 and is a
second-order transition similar to that seen g4 theory.
This corresponds to the second-order line. WhenO the
transition occurs at some positive valueafand is of first
order. This is the triple line. When bothandb vanish, we
By analogy with an ordinarybi)critical point, where two have a tricritical point.
distinct coexisting phases become identical, one can define In particular, the following exponents in the symmetry
the tricritical point as a point where three coexisting phase®lanem=0 are readily found using mean fiel theory (as

become identical simultaneously. A tricritical point marks annoted above, renormalization group studi@$] show that
the actual singularities include additional, logarithmic cor-

rectiong. The discontinuity in the order parametéep)
=(y¢y) along the triple line as a function of the distance
from the critical pointu;,T; (measured either ab;—T or
stL—,ug) behaves like

V. UNIVERSAL PROPERTIES OF THE TRICRITICAL
POINT

3A sufficiently light third quark would drive the transition first-
order [22]. However, lattice calculations of the Columbia group
[24] using staggered fermions indicate that the strange quark is n
sufficiently light for this to occur. This issue has also been studied A(E@’V(M—Ms)m- (15)
using Wilson fermions, although in this case one must tune the
action to counteract the explicit chiral symmetry breaking that itThe discontinuity in the densith=dQ./du across the
introduces even for massless quarks; see Iwastadi. in Ref.[24]. triple line behaves like
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An~(u—u3)t. (16)  taneous chiral symmetry breaking is related to the density of
small eigenvalues of the Dirac operatot<€Aqcp). This
The critical behavior along the second-order line is everyrelationship is expressed quantitatively by the Banks-Casher
where the same as at the pojat=0, T=T,. (which is an formula[34], <$¢>:7Tpev(0)- Here,pe(0) is the density of
infrared attractive fixed point Therefore ) vanishes on small (but non-zerd eigenvalues(per unit X and per unit
the second-order line wit(4) exponents. At the tricritical four-volume,V,) of the Euclidean Dirac operator in the ther-
point, however, the exponent with whidl) vanishes is modynamic limitV,—c. The dynamics of these eigenval-

given by the Landau-Ginzburg theory as ues can be described using a random mabfxnfinite size
o in place of the Dirac operator. This approximation can be
(Yy)~(T3—THV4 (17 shown to give exact results in the mesoscopic lif28,35.

When the chemical potential is non-zero, the Dirac opera-

Whenm#0, the potential) .(¢) can also contain terms tor is not Hermitian, and its determinant is no longer real. As
¢ and ¢* which break¢— — ¢ symmetry explicitly.(The  a result, the density of its eigenvalues can be defined
term ¢° can be absorbed by a shift @.) The potential straightforwardly only in quenched QCD, i.e., when the con-
QO k() still has three minima, and a first-order phase transitribution of the (complex fermion determinant to the mea-
tion can occur when two adjacent minima are equally deepsure is approximated by unity. Fortunately, a more general
These transitions form a surface of first-order phaseelation exists between the chiral condensate and the linear
transitions—the wings. The two minimand an intermedi- density of zeroes of the partition function:
ate maximum can also fuse into a single minimum. This .
happens on the wing lines at the edge of the surface of first- (gpy=mp(0). (19
order phase transitions. The critical behavior along the wing
lines is given by the three-dimensional Ising exponents, as i4S observed by Yang and L¢86], non-analytic behavior in
usual at the endpoints of first-order liquid-gas type phasé thermodynamic quantity, including in the present case the
transitions not associated with restoration of a symmetry. Iliscontinuity in the value of an order parameter in the ther-

particular, the discontinuity ith(y) andAn vanishes with ~Modynamic limit, is caused by the coalescence of zeros of
the partition function to form a boundary crossing the rel-

exponentB~0.31. These discontinuities are related to the s In th £ OCD. the s f
slope of the wing surface at constahtthrough a relation evant paramete_r axis. In the case 0 Q ¢ € S|gnatqre 0
spontaneous chiral symmetry breaking is the discontinuity in

similar to Eq.(12): L
(¢y) asm is varied along the real axis and crosses 0.
du A<E¢>Nf T'his discontinuity is equql toﬁp(O) whgrep(O) is thg den-
am=- " " An - (18)  sity of the zeroes on the imaginany axis nearm=0 in the
thermodynamic limit. One can also show that p, in the

There are many other universal properties in the vicinityguenched limitN;—0 butonly when »=0. For nonzerqu,
of a tricritical point which can be derived from the abape  the density of the eigenvalueg,,, is fundamentally differ-
Landau-Ginzburg effective potential. One can, for example€nt from theN¢—0 limit of p [4].
show that them=0 second-order line, the wing lines, and It can be shown that certain properties of the small eigen-
the triple lines approach the triple point with the same tanvalues of the Dirac oper_ator are ur_1iversa| an(_j are identica_l to
gential direction: The second-order line approaches from on#10se of a random matrix model with appropriate symmetries
side while the wing lines and the triple line approach from[37—39,35,27,4D The virtue of the random matrix model is

the Opposite side. For a more detailed description of théhat it is SOIVable, i.e., one can calculate the distribution of
properties of tricritical points, see R425]. the eigenvalues and of the Yang-Lee zeroes. The partition

function of QCD at finite temperature and chemical potential
VI. A RANDOM MATRIX MODEL AT FINITE T AND g in random matrix approximation is given by
Random matrix models have proven to be a valuable tool
for studying spontaneous chiral symmetry breaking in QCD.
For example, it has been conjectured that the distribution of
the eigenvalues of the Dirac operator near zero is universavhereD is the 2N X 2N matrix approximating the Dirac op-
[26]. The universal expressions show a remarkable agreesratorD + (u/N¢)yo:
ment with lattice Monte Carlo dati27] and are consistent
with spectral sum rules from chiral perturbation thef2g].
Random matrix models have also been used to study chiral
symmetry restoration phenomenon at finite temperd28e-
30] as well as finite chemical potentigd,31-33. The random matriX has dimensioMN X N. The total dimen-
Random matrix theory provides an effective descriptionsion of D is 2N. This is the number of small eigenvalues,
of those degrees of freedom in QCD which are responsiblahich is proportional toV,. In QCD we expectN to be
for the spontaneous breaking of chiral symmetry. In this reapproximately equal to the typical number of instantems
spect, it is similar to Landau-Ginzburg effective theory. Ran-anti-instantons in V,; therefore, N/V,~n;,~0.5 fm*
dom matrix theory is based on the observation that the spori41]. The matrixC is deterministic and describes the effects

zRsz DX exp( - ;Nz Tr XXT)def“f(D+m), (20)

0 iX+iC
iXxt+ic 0

(21)
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of temperature and chemical potential. In the simp(esid _ 1 91InZgy

original) T#0, u=0 model[28], the choiceC==T de- W@ZW

scribes the effect of the smallest Matsubara frequency. As e

noted in Ref[30], it is possible to simulate the effects of the o

eigenvalue correlations induced by the pairing of instanton€urrent algebra fixes the value 6fy)o~2fm 2 at T=pu

and anti-instantons into molecules by choosing a more gen=m=0. The only dimensionful parameter remaining in the

eral form for the diagonal matri€ with elementsC, which  partition functionZgy, is the variance of the random matrix,

are(increasing functions ofT. In theT=0, u#0 model of . Thus,

Ref. [4], C=u/(iN.) describes the effect of the chemical

potential. In this paper, we consider the more general case . N n.

T+#0, u#0. Although we do not know the detailed depen- (¢zp>0:consb<—~const><l5t. (23

dence of the elements 6f on T and u, we understand that Vao i

primarily affects the reali.e., Hermitian part of C and u

affects the imaginaryi.e., anti-Hermitian part. We shall The dimensionless constant will be found below and is equal

adopt the following approximate form for this dependenceo 2. This fixes the value of~0.5 fm 1~100 MeV. It is

C=anT+bu/(iN.) for one half of eigenvalues an@,  convenient to use as a unit of mass in the model and also

=—anT+bu/(iN.) for the other half witha andb dimen-  absorb the coefficientsa andb/N, into T and . In other

sionless parametefsThis form accounts for the fact that words, we measune in units of o, T in units of o/(7ra) and

there are the two smallest Matsubara frequertties;T and  u in units of oN./b.

—aT. Such a linear ansatz f@ is certainly very naive, but The N—o (i.e., thermodynamiclimit of the partition

in this paper we decided not to try to refine it. This form function, Eq.(20), can be found in the now-standard way

reflects sufficiently well our understanding of the propertied28—-30. Performing the Gaussian integration ovérand

of C. introducing auxiliaryN; X N; matricesg, one can rewrite the
The chiral condensate is calculated as partition function in the form

—m (22

d+m  u+iT d+m  u—iT
— _ t /2 12 - _
ZRM_f D¢ exd —N Tr(¢p¢")]det L+iT 4T+m u—iT o'+m —J D¢ exf —NQ(¢)], (24
|
where tion. One can see that the value@t the minimum, i.e., the
) equilibrium value({¢), gives us the value of the chiral con-
Up)=Tr{ "3 In{[(¢+m)(¢"+m) densate, Eq(22):
—(u+iT)?)-[(p+m)(pT+m) = (u—iT)?]}. 1N
(25 W=y, 5 2Re K. (27)

The integration in Eq{(24) is performed over X N¢X N; [cf. Eq. (23)]
variables which are the regl and imaginary parts_of_ the ele- For realm, it is reasonable to expect that the minimum
ments of the complex matriz. In the [imit N— this inte- 00,15 wheng is a real matrix proportional to a unit matrix.

glral Is Qetlermrined_py a S?)?)dle point of the integrand Ofyyiih this assumption, we need to find only one real param-
alternatively, the minimum of)(¢): eter, ¢, which minimizes the potential:

1
lim —In Zgy=—min Q(a). 26 1 ,
o NI R T min () (20 Q=Nf[¢>2—5!n{[<¢+m>2—<u+|T>2]-[<¢+m>2
The function()(¢) is an effective potential for the degrees of 5
freedom describing the dynamics of the chiral phase transi- —(p=IT)7JH- (28)

This is not a simplep® potential, but it has remarkably simi-
“These parameters are intended to reflect the degree of overld@l pProperties. In particular, the conditi@)/d¢=0 gives a

and correlation between instantons and anti-instantons. One cdifth-order polynomial equation ig. Let us first consider the
therefore anticipate that andb are smaller than 1. We shall esti- symmetry planen=0. Then the equatiot{)/d¢$=0 always

mate the values od andb below. has one trivial root¢p=0. The remaining four roots are the
SAlternatively, this form preserves the relatign,D)=0 at »  solutions of a quartic equation, which has the form of a qua-
=0. dratic equation ing?:
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1
¢>4—2( pP=T2+ E) *+ (P +T2)%+ p?—T2=0.
(29

Above the second-order line, i.e., in the high temperature
phase, Eq(29) does not have real roofsince ¢>2<O for FIG. 2. Phase diagram of QCD with two light flavors of mass
each pair of roots This corresponds to the fact that the as calculated from the random matrix model. The almost parallel
potential(2 has only one minimum a$=0 (i.e., the trivial  curves on the wing surface are cross sections of this surface with
root). On the second-order line, a pair of roots of E9) m=const planes. The units oh are 0~100 MeV, of T are T,

becomes zero, i.e., the potential s~ ¢* near the origin. ~160 MeV, of u are u,/0.53~2300 MeV, with the choices of
This means that on the second-order line, and u, from the text.
2 2\2 2_T2_ . . . . . . .
(u+ T+ u=T7=0. (30 tinuing this line below poinfT;, we obtain the location of

gpinodal points. In the region between this line of spinodal
points and the first-order phase transition line, the chirally
symmetric phaseb=0 can exist as a metastable state. Such
a state can be reached by supercooling, and it is unstable
1 towards the nucleation of bubbles of the broken phéase
w’—T2+ 5=0 (31)  #0. A similar line with equation #u=1, the superheating
line, together with the supercooling line, EO), bound the
on the second-order line. The condition, E§l) together region around the first-order phase transition line where the

with Eq. (30) determines the location of the tricritical point POtential (#) has 3 minima. All these lines meet at the

in the Tu plane: tricritical point. .
Away from the symmetry plane= 0, the expressions for

1 1 the wing surfaces and the wing lines become rather lengthy
Ts=3 VV2+1~0.776 and M3=75 VV2—-1~0.322. and will be presented elsewhere. The principle, however, re-
(32) mains simple. The minima of the potentifd satisfy the
equationdQ/d¢p=0 and are given bythree out of five
The equation for the triple line is obtained from the re-roots of a fifth-order polynomial. On the wing surface, the
quirement that the depth of the minimahat ¢ given by  depthQ(¢) in a pair of adjacent minima is the same. On the
the pair of solutions of Eq(29) (farthest from the origin ~ wing line, the two adjacent minima fuse into one. In terms of
should coincide with the depth at the origin=0. The equa- the roots of the polynomial, three roots coincidavo

The second-order line ends when the remaining pair of root
also becomes zero, i.e., the potential becofles¢® near
the origin. This happens when

tion for the triple line is therefore minima and one maximumIn other words, the potential is
Q~(¢p—{¢))* on the wing line and near the minimum.
1 1 1 [1+y1- 16#7T7 The resulting phase diagram is plotted in Fig. 2. One can
2 2 / 2712
pom T §+ 2 1-16u"T"~ 5'” 2 see, as expected from mean field theory near the ftricritical
point, that the wing lines together with the triple line ap-
+In(u?+T?)=0. (33 proach the tricritical point with the same slope as the second-

] ] _order line but from the other side. The critical exponents near
Inzpart|cular,2 whenT =0, we obtain the elementary equation he tricritical point as given by the random matrix model can
u"+1+In 4*=0 whose solution ig.~0.528[4]. Thisis the  pe 4150 seen coinciding, as expected, with the mean field
value of ;. Settingu=0 in the equation for the second- exponents of Eqg15), (16), and (17).
order line, Eq.30), we findT.=1 [28]. From the random matrix model, we also learn how the

We recall that the units oT and . depend on the un- zeros of the partition function in the complexplane evolve
known dimensionless parameteasand b. However, these yith changes in temperature and chemical potential. A few

unknown factors cancel from the ratios typical cases are illustrated in Fig. 3. At zeFoand u, the
T zeros form a cutin the N—co limit) along imaginary axis.
—3~0.78, &~0.61. (34) R_aising the temperature pu_shes t_he zeros away from th_e _ori-
c M1 gin along the imaginary axis until the density at the origin

vanishegcontinuously, the cut breaks in two, as in Fig. 3a,
and chiral symmetry is restorgdf. Eq. (19)]. The chemical

~ —~ 6
~120 MeV andu;~700 MeV.” potential pushes the zeros away from the origin in the direc-
Note that the second-order line, E0), marks the loca-  {jon of the real axis until the cut splits in two, as illustrated in

tion of the points on the phase diagram where the symmetrig;; 3y, Note that the density(0) is finite just before the
minimum ¢ =0 disappears, i.e., turns into & maximum. Con-gjit Therefore, the transition is of first order. Near the tric-
ritical point, the split in the direction of the real axidue to
the chemical potentialoccurs at the same time that the den-
Swith these values foll, and u;, the parametera andb have  sity p(0) vanishes(due to the effects of the temperature
the valuesa~0.2 andb~0.13. This is illustrated in Fig. 3c. The resulting dependence of

Taking T,=160 MeV andu,=1200 MeV, we find thail5
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Ty Py P ”
3~ N=40 T=1.000"] 3~ N=40 T=0.000 ] 31 N=40 T=0.780
r 1#=0.000 ] F #=0555 ¥ #=0390 1
By 4 eL 4 =F —
b E S E T,
. c 1 F ] Ts,03
of 1 °F 4 oF .
1 ¢ : 1 ] .
g J aF i Y — T,
1 ] ’ 2
. 4 -2F 4 -=F 3 0 o M bl
3_ — _3f_ _ —ai— 7 FIG. 5. A schematic phase diagram of QCD with 2 massless
e E e e L e quark flavors. Other phase transition lines are possible, for example,
(@ () (©) in the low temperature region to the right @f,. Another example

N . o is a transition associated with color superconductivity plotted as a
FIG. 3. Zeros of the partition function of a finite sikerandom  dashed line. Thicker lines are first-order phase transitions.Tthe

matrix model(20) in the complexm plane calculated numerically at — T, |ine is a second-order phase transition. The tricritical point is
different values off and w. The calculation is done fdN¢=1, but 4t T, 4, and the critical point of the nuclear matter liquid-gas
theN—oe limit is N; independent. The density of points is propor- transition is afT,.
tional to the strength of the cytliscontinuity in(¢)) in the N
] g VOB 4o 12
2
—+2uq | ~5NN;, (35
M1

(Y onT and u is shown in Fig. 4.

A comment should be added regarding the calculation of
the baryon density in the random matrix model. The value =NN;
of (IN4)d InZgy/dpn does not represent the complete
baryon density. The reason is thatdpy contains only con- in units of 1ju, which isb/N.X. With our previous choice
tributions from the soft modes of the condensape; sy  Of w,=1200 MeV (i.e., b~0.13), we find that An
Further dependence qnis contained in the contributions to ~0.4 fm3~2.5n,, which seems a reasonable estimate.
In Z from other degrees of freedom. In the effective Landau-

Ginzburg theory, such additional contributions are embedded VII. DISCUSSION AND SUMMARY
in the termQ(T,u), Eq. (14). However, thesingular be-

havior of the system is exclusively due to the soft modes of !N this paper, we have presented an analygislitative
the condensate, i.e., terms involvimgin Q. Thus, it is and, in some cases, quantitadivé the salient features of the

legitimate to calculate singular propertiesmof such asAn, phase diagram of QCD with two light or massless quark

- ; : flavors at finite temperature and baryon chemical potential.
near a(trijcritical p""?t using (¥4)d In Zgw/dp. AL T The most important features of this phase diagram are sum-
=0, for example, we find

marized in Fig. 5. The phase diagram can certainly have a
much richer structure. The phase transitions shown there are
distinguished by the fact that a good order parameter can be
associated with each of them. Here the term “good order
parameter” implies the existence of some quantity whose
expectation value is identically zero in some finite region of
parameter space or in one phase and is some function of
parameters in the other phase. Two such phases must be
separated by a nonanalytic boundary, i.e. a phase transition.
What is crucial here is the identical vanishing of an order
parameter or its strict independence of the parameters of the
theory. Usually, this is ensured by the existence of some
symmetry with respect to which this order parameter trans-
forms nontrivially.

For the chiral phase transition, a good order parameter is

the value of(%p), which spontaneously breaks the global
SU(2),_><SU_(2)R chiral symmetry toSL&Z)V. Hence, the
phase with{ ¢y/) =0 and the phase witfws)# 0 cannot be
connected without crossing a phase transition line inTthe

FIG. 4. The chiral condensaté)y) (in units of (y4),  Plane. - _
~2fm~%) as a function ofT and u in the random matrix model. The transition fromn=0 to n#0 along theT=0 line
The units of T and u are the same as in Fig. 2. provides another example of a phase transition associated
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with a good order parameter. The phases0 andn#0
cannot be analytically connected; i.e. one must pass through

a nonanalytic boundarfphase transitionwhen passing from

one to the other. Since this is a first-order phase transition, T.
continuity requires that there is also a first-order transition Ty
line for someT # 0. This line can, however, terminate since

is no longer a good order parameter whiea 0.

The existence of a good order parameter is a sufficient but
not a necessary condition for a phase transition. Other phase T
transition lines associated with more subtle phenomena are é\ 9
also possible. One interesting example, which attracted atten-
tion recently, is the transition associated with color supercon- 0 1 ! 12
ductivity. The existence of a color superconducting phase FIG. 6. The phase diagram of Fig. 5 shown as a function of
was first argued for by Bailin and Love on the grounds thatdensity and temperature. The dashed line of the color superconduc-
one gluon exchange is attractive in the color antitriplettivity transition is not drawn. Horizontal lines connect points corre-
quark-quark channglL4]. This means that the Fermi surface sponding to densities of phases on two sides of the first-order line
at very highu becomes unstable and forms a gap. This phe(i.e., the coexistence c_ur)/ef Fig. 5. The point$); on theT=0 line
nomenon was recently reanalyzed using other methods &f€ the same as on Figcal
moderate values oft with the conclusion that the effect is
enhanced by instanton-induced interactidid$,15. This

The tricritical point lies in the region expected to be
e o . probed by heavy ion collision experiments. It would be in-
VT:;TOS thf;anﬁffl,gnéiggﬂf gﬁ?ﬁ!gﬁ:sztﬁggr?ma”l:tige 5te_resting to find an experimental S_ignature for such a point.

Thisl:rans,ition unlike the chiral phase transition énd t.heS.Ince que_lrk masses are not p(eC|ser Zero, we shoulq con-
nuclear matter qu,uid—gas transitigat T=0), does not seem S|_der a slice of a_thr_ee—d|_men5|onal phase diagram, Flg.' 2
to have a good order parameter associatéd with it. In particuv—vIth m+#0. A qualitative dlfference.between the phase dia-
lar, the diquark condensaté) is not gauge invariént The gram form#0 and that fqrmz'o IS the.absen(_:e of the
dyr,1amical mechanism responsible for the binding of aiquarkse(_:ond-ord(_ar phase transmor_l line assoua_ted W'Fh. the resto-

ration of chiral symmetry. This symmetry is explicitly bro-

pairs is certainly operative at low temperatures, but the abl'«?n form=0. However, continuity frorm=0 ensures that
fr?antcfhgftzn%OgEa’g:jeerin%irc?(:]jeifa:ni?t?(fnn;;:glgi\;vt;; \t/Sit?stsh%e first-order finite density transition is still presentrat
breaking of dFi)quark pairs must alwagise., at all ) proceed 0. This transition line is terminated by an ordinary critical
through a thermodynamic singularity rather than a smootlﬁomt' Criticality at_thls point is not assom_ated with chiral
ymmetry restoration, and excitations with the quantum

analytic crossover. gumbers of pions do not become massless there. Criticality
For some purposes, it is more natural to study the phasé this point is associated with the fact that a correlation

diagram in the space of density and temperature. The pha . ; .
diagram of Fig. 5 can be converted into such a space and gngth in the chan.ne.l W'th the quantum ““F“bers C.)f the sigma
meson becomes infinit¢Hence, it is plausible to infer that

shown in Fig. 6. A typical feature is that the first-order phase

transition line from theT . plane now appears as a region of th_ls point has the _cr|t|cal behawor of _the three-d|me_n3|onal
. A Y sing model) Possible experimental signatures of this phe-
phase coexistence in Fig. 6. In equilibrium, the values otI

density and temperature inside this region can be achievedPmenon are linder inyestigation.
Note addedAfter this work was completed, a papet2]

only through arinhomogeneoumixture of two phases with . . ) A
) " - appeared which addresses similar questions in the context of
different densities but the sanfeand u. These densities are o g
a Nambu-Jona-Lasinio model for color superconductivity.

indicated by the ends_of the horizontal lines drawn in theThe results of42] agree with and complement our findings.
phase coexistence region.

The most interesting feature _of_t_he pha_se diagram of Figs. ACKNOWLEDGMENTS
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