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Phase diagram of QCD

M. A. Halasz,1 A. D. Jackson,2 R. E. Shrock,3 M. A. Stephanov,3 and J. J. M. Verbaarschot1

1Department of Physics and Astronomy, SUNY, Stony Brook, New York 11794
2The Niels Bohr Institute, Blegdamsvej 17, Copenhagen, DK-2100, Denmark
3Institute for Theoretical Physics, SUNY, Stony Brook, New York 11794-3840

~Received 22 April 1998; published 30 September 1998!

We analyze the phase diagram of QCD with two massless quark flavors in the space of temperatureT and
chemical potential of the baryon chargem using available experimental knowledge of QCD, insights gained
from various models, as well as general and model independent arguments including continuity, universality,
and thermodynamic relations. A random matrix model is used to describe the chiral symmetry restoration
phase transition at finiteT andm. In agreement with general arguments, this model predicts a tricritical point
in the Tm plane. Certain critical properties at such a point are universal and can be relevant to heavy ion
collision experiments.@S0556-2821~98!01721-4#
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I. INTRODUCTION

Current and projected experimental progress in the ph
ics of heavy ion collisions increasingly demands better t
oretical understanding of the underlying phenomena. In p
ticular, the most exciting possibility offered by suc
experiments is the creation of high temperature and den
conditions under which the dynamics of QCD can bring m
ter into a new state. The challenge is then to calculate
properties of this new phase together with the properties
the phase transition from QCD, the underlying theory
quark-gluon interactions.

Substantial progress has been achieved in our unders
ing of QCD at high temperatureT. The foundation of this
understanding is provided by lattice field theory Monte Ca
calculations. In particular, we know that in QCD with tw
massless flavors a transition restoring chiral symmetry
curs at a temperature of approximately 160 MeV@1#.

On the other hand, little is known about the behavior
QCD for finite baryon charge density, or chemical poten
of the baryon chargem. Standard lattice Monte Carlo tech
niques cannot be applied since the determinant of the D
operator is complex, and hence the Euclidean path inte
defining the theory does not have a Gibbs~i.e., real, positive-
definite! measure. A Gibbs measure is needed for the pro
bilistic interpretation which forms the basis for importan
sampling methods such as Monte Carlo calculations. Mo
over, the approximation of quenched fermions fails in t
case@2,3# for reasons which have been understood rece
using the random matrix theory@4#. However, the conditions
created in heavy ion collision experiments require an und
standing of the regime of high baryon density as well as t
of high temperature. As reviewed, e.g., in@5#, there is good
evidence that central part of the collisions can be descri
approximately before freeze-out by thermodynamics, so
the temperature and chemical potential can be defined.

The purpose of this paper is to assemble available kno
edge about QCD and apply it to the construction of the ph
diagram in theTm plane. Most of the studies of this phas
diagram have concentrated on modeling the properties o
chiral phase transition~see, e.g.,@6,7,8,9,10#!. In this paper,
0556-2821/98/58~9!/096007~11!/$15.00 58 0960
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we present a more complete and less model dependent a
sis of the phase diagram which also includes effects fr
other phase transitions, such as the nuclear matter liquid
transition. Naturally, many of the phenomena to be discus
have been studied extensively. As a result, we will rep
some familiar experimental facts and theoretical argume
~with references to some of the original papers or reviews
appropriate!. The aim of our analysis is to transform th
knowledge into the determination of a phase diagram
QCD in theTm plane. Such an analysis is especially impo
tant as an extension of Monte Carlo studies, given the te
nical problems that these encounter with finite baryon cha
density.

The chiral phase transition is of primary interest in u
trarelativistic heavy ion experiments since this is the tran
tion that separates the hadronic phase from the quark-g
phase. In Sec. VI, we introduce a random matrix model
the chiral phase transition at finiteT andm. We find that this
model predicts a tricritical point in theTm plane in agree-
ment with more generic arguments. We analyze the prop
ties of some thermodynamic observables in the vicinity
this point.

II. DEFINITIONS

We take as our model the standard approximation
which we ~i! consider pure SU~3! QCD with electroweak
interactions turned off and~ii ! consider this theory with two
massless quarks. There is then an exact SU(2)L3SU(2)R
3U(1)B global symmetry of the action, which is spontan
ously broken down to SU(2)V3U(1)B at zero and suffi-
ciently low temperatures by the formation of a condensa

^c̄c&. Many features of QCD indicate that this is a reaso
able approximation, e.g., the lightness of pions, the succ
of current algebra relations, etc.~We will comment below on
the inclusion of electromagnetic interactions and stran
quarks.! This theory is described by a grand canonical pa
tion function which, when written as a path integral, is fo
mally
© 1998 The American Physical Society07-1
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Z[e2V~T,m!/T5E DADc̄Dc exp$2SE%. ~1!

The Euclidean actionSE is given by

SE5E
0

1/T

dx0E d3xF 1

2g2 Tr FmnFmn

2(
f 51

Nf

c̄ f S ]”1A” 1mf1
m

Nc
g0Dc f G , ~2!

whereNf52 is the number of flavors,Nc53 is the number
of colors, andmf5m50 is the quark mass. The Euclidea
matricesgm are Hermitian. Note that with our sign choice
positive m and m induce positive^c̄c& and ^c̄g0c&. The
normalization ofm differs from the normalization customar
in lattice calculations by a factor 1/Nc ~i.e., the baryon
charge of a quark!. Integrating over the fermion fields we ca
also write

Z5E DA expF2
1

2g2 Tr FmnFmnGdetFD” 1mf1
m

Nc
g0G .

~3!

As indicated, this system is characterized by equilibriu
values ofT andm. This may be thought of by imagining th
system to be in thermodynamic equilibrium with a large r
ervoir of entropy and baryon charge which is characteri
by these values ofT and m. The total energy and baryo
charge of our system fluctuate. Of course, the relative m
nitude of these fluctuations is negligible for an open syst
of macroscopic size. The relation between the chemical
tential m and the average baryon number density~per unit
volume! n is the same as that between the temperatureT and
the average entropy density~per unit volume!, s:

nV5(
f

^c̄ fg0c f&52
]V

]m
, sV52

]V

]T
, ~4!

whereV is the thermodynamic potential defined in Eq.~1!. It
can also be seen thatV52pV, wherep is the pressure. In
other words, pressure, temperature and chemical pote
are not independent variables for our system. Their va
tions are related by

dp5sdT1ndm. ~5!

Both T andm ~as well asp) are intensive parameters. Fo
a system in thermodynamic equilibrium, these quantities
the same for any of its smaller subsystems. In contrast,
extensive densitiess and n can differ for two subsystem
even when they are in equilibrium with each other. Th
happens in the phase coexistence region, e.g., a glass
taining water and ice. It is more convenient to describe
phase diagram in the space of intensive parametersT andm.
In particular, the first-order phase transition which we sh
encounter is characterized by one value ofm but two values
of n—the densities of the two coexisting phases. Anot
reason for working in these coordinates is that first-princi
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lattice calculations are performed in such a way thatT andm
are the parameters that can be controlled while the dens
are measured. The results of relativistic heavy ion collis
experiments are also often analyzed using this set of par
eters@5#.

III. ZERO TEMPERATURE

We begin by considering the phase diagram asm is varied
along the lineT50. Strictly speaking, we are not dealin
with thermodynamics here since the system is in its grou
state. This fact leads to a simple property of the funct
n(m). Let us rewrite the partition function, Eq.~1!, as the
Gibbs sum over all quantum states,a, of the system

Z5(
a

expH 2
Ea2mNa

T J , ~6!

where each state is characterized by its energy,Ea , and its
baryon charge,Na . In the limit T→0, the state with the
lowest value ofEa2mNa makes an exponentially dominan
contribution to the partition function. Whenm50, this is the
state withN50 andE50, i.e., the vacuum ora50. Let us
introduce

m0[min
a

~Ea /Na!. ~7!

As long asm,m0 , the state with the lowest ofEa2mNa
remains the vacuum,a50. Therefore, we conclude that, a
zero temperature,

n~m!50 for m,m0 . ~8!

What is the value ofm0? As an exercise, we first conside
a free theory of massive fermions carrying one unit of bary
charge. The states which minimizeEa /Na are states with
one or two ~more if fermions have flavor or other dege
eracy! fermions at rest withp50. For each of these state
Ea /Na5m, the mass of the fermion. Therefore,m05m for
such a theory. Whenm.m, the ground state is the Ferm
sphere with radiuspF5Am22m2. Therefore,n(m)5(m2

2m2)3/2/(3p2). Thus, we see that, even in a trivial theor
the functionn(m) has a singularity atm5m0 . The existence
of some singularity at the pointm5m0 , T50 is a robust and
model independent prediction. This follows from the fa
that a singularity must separate two phases distinguishe
an order parameter, e.g.,n. The functionn[0 cannot be
continued tonÞ0 without a singularity.

What ism0 for the case of QCD, and what is the form o
the singularity? The answers to these questions are so
what different in QCD and in the real world~QCD1! which
includes other interactions, most notably electromagnetic
teractions. Since QCD is the focus of the present paper
QCD1 is the ultimate goal of our understanding, we sh
consider both cases. It is important to understand their
ferences if we are to extract physically useful predictio
from lattice calculations, which are performed for QC
rather than QCD1.
7-2
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PHASE DIAGRAM OF QCD PHYSICAL REVIEW D58 096007
The energy per baryon,E/N, can also be written asmN
2(NmN2E)/N, wheremN5mp'mn is the nucleon mass
Therefore, the state which minimizesE/N is that for which
the binding energy per nucleon,e5(NmN2E)/N, is a maxi-
mum. Empirically, we know that this state is a single ir
nucleus at rest withN5A556 ande'8 MeV. However, in
QCD without electromagnetism the binding energy p
nucleon increases withA. This is the consequence of th
saturation of nuclear forces and can be seen from the W
sacker formula. Without electromagnetism, only the bulk a
surface energy terms are significant for largeA:

e~A![
AmN2mA

A
'a12a2A21/3 ~9!

with a1'16 MeV, a2'18 MeV @11#. As A→`, e saturates
at the valuea1 . This corresponds to the binding energy p
nucleon in a macroscopically large sample of nuclear ma
as defined by Fetter and Walecka in@11#. We conclude that
in QCD the density jumps atm5m0'mN216 MeV to the
value of the nuclear matter densityn0'0.16 fm23. There-
fore, in QCD there is a first-order phase transition, char
terized by a discontinuity in the functionn(m) at m5m0 ~see
Fig. 1a!.

In QCD1, the Coulomb forces change the situation ne
m0 . The contribution of the Coulomb repulsion toe(A) is
negative:2(0.7 MeV)Z2/A2/3, and it is responsible for the
experimentally observed maximum ine(A) at A'56. Isos-
pin singlet nuclear matter (A5`) is unstable at zero pres
sure due to Coulomb repulsion. Neutron matter withZ!A is
also unstable at zero pressure, and we are left to consid
gas of iron nuclei. In order to ensure electric neutrality,
must add electrons. Such a gas is clearly unstable at s
densities and forms a solid—iron. Therefore, there is a
continuity in the value ofn(m) at m0'mN28 MeV. This
discontinuity is equal to the density of normal matter~i.e.,
iron! and is about 10214 times smaller than in QCD. For ver
smallm2m0 , n(m) has structure, fine on the scale of QC
which reflects the properties of normal matter under pr
sure. Then, form2m05O(102200 MeV), we traverse the
domain of nuclear physics with the possibility for vario
phase transitions. In particular, a transition to neutron ma
(Z!A) is probably similar to the transition in QCD atm
5m0 . ~See Fig. 1b.! In this domain, one may encounter su

FIG. 1. Schematic dependence of the baryon charge densit
the chemical potential atT50 ~a! in QCD (m0'mN216 MeV)
and ~b! in QCD1 (m0'mN28 MeV).
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phenomena as nuclear matter crystallization@12,13#, super-
conducting phases of neutron and quark matter@14–16#, and,
due to the strange quark in QCD1, kaon condensation
@12,17# and a transition to strange quark matter@18,19#.
Moving along them axis to the right is equivalent to increas
ing the pressure:p5*ndm. Thus, this picture is roughly
what one might encounter in moving towards the center o
neutron star from the iron crust at the surface.

Our knowledge ofn(m) is scanty for densities of orde
one to ten timesn0 andm2m05O(102200 MeV) both in
QCD and in QCD1. We can only be sure thatn(m) is a
monotonically increasing function, which follows from th
requirement of thermodynamic stability.

The behavior ofn(m) again becomes calculable in th
region of very largem@LQCD. In that case, the Pauli exclu
sion principle forces the quarks to occupy ever higher m
mentum states, and, due to asymptotic freedom, the inte
tion of quarks near the Fermi surface is~logarithmically!
weak. The baryon charge density is proportional to the v
ume of a Fermi sphere of radiusm/3, n(m)
'Nf(m/3)3/(3p2). At low temperatures, only quarks nea
the Fermi surface contribute to the Debye screening of
gauge fields. The square of the screening massmD

2 is propor-
tional to the area of the Fermi surface:mD

2 ;g2m2. This
means that color interactions are screened on len
O(1/gm)5O(Aln(m/LQCD)/m). This motivates the conclu
sion that nonperturbative phenomena such as chiral sym
try breaking should be absent at sufficiently largem. There-
fore, in QCD with massless quarks one should expect at l
one other phase transition, at a value ofm which we define as
m1—a transition characterized by the restoration of the ch
symmetry.

What is the value ofm1 in QCD, and is it finite? Very
little reliable information about the phase transition atm1 is
available. However, several different approaches agree
the conclusion that the value ofm1 is finite and thatm1
2m0 is on the order of the typical QCD scaleLQCD
'200 MeV'1 fm21. For example, equating the quark pre
sure minus the Massachusetts Institute of Technology~MIT !
bag constant to the pressure of nuclear matter yields suc
estimate~see, e.g.,@20#!. Here, we should also point out an
other interesting distinction between QCD and QCD1: the
effect of the strange quark in QCD1 is to decrease the valu
of m1 compared to that of QCD. It has even been conjectu
that this effect might be sufficient to drivem1 below m0 ,
which would make normal nuclear matter metasta
@18,19#. Another model which predicts the phase transition
finite m1 is the Nambu–Jona-Lasinio model, which focus
on the degrees of freedom associated with the spontan
chiral symmetry breaking and leads to a similar estimate
m1 @9#.

What is the order of this phase transition? The MIT b
model predicts that it is a first-order transition since the d
sity n of the baryon charge is discontinuous. Unfortunate
analysis of the Nambu–Jona-Lasinio model shows that
order of the transition depends on the values of parame
most notably, on the value of the cutoff. A larger cutoff lea
to a second-order transition, a smaller cutoff to a first-or

on
7-3
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transition @9#. A random matrix model atT50 predicts a
first-order phase transition@4#. In this paper, we shall exten
the random matrix model to permit consideration of the
tire Tm plane. Before doing this, we shall use more gene
methods to analyze features of the phase diagram of QC
finite densityand temperature in the next section.

An additional, qualitative argument for the first-order n
ture of the chiral phase transition atm1 can also be drawn
from a certain analogy of QCD to a metamagnet such a
crystal of ferrous chloride FeCl2. At temperatures below the
Néel temperatureTN and at zero magnetic fieldH such a
crystal is antiferromagnetically ordered~i.e., the staggered
magnetizationfst has a nonzero expectation value:^fst&
Þ0). Analogously,̂ c̄c&Þ0 in QCD belowTc . The mag-
netic fieldH is not an ordering field for the staggered ma
netization because it couples to a different order param
~i.e., normal magnetizationf with DE52Hf) and induces
nonzero^f&. Similarly, the chemical potential induces no
zero ^c̄g0c&, and the termmc̄g0c does not introduce ex
plicit breaking of the chiral symmetry. At some critical valu
of H, ferrous chloride undergoes a first-order phase tra
tion, and the staggered magnetization vanishes:^fst&50.
One could naturally expect that in QCD a similar compe
tion between the low temperature spontaneous orde

^c̄c&Þ0 and the orderinĝc̄g0c&Þ0 induced bym would
result in a first-order phase transition. This analogy can
continued into theTm plane or theTH plane in the case o
the antiferromagnet. The antiferromagnet has a well kno
tricritical point in this plane. Its analogue in QCD will b
discussed in Sec. V.

Following the arguments of the two preceding paragrap
we base our subsequent analysis of the phase diagra
QCD with two massless quarks on the following expec
tions: ~i! m1;m01O(200 MeV) and~ii ! the transition is of
first order.

IV. FINITE T AND m

We shall use two order parameters to analyze the ph
diagram of QCD at nonzeroT andm: the chiral condensate

^c̄c& ~per flavor! given by

^c̄c&V52
1

Nf

]V

]m
~10!

and the density of the baryon chargen given by Eq.~4!. We
have already usedn to show that there is a singularity atm
5m0 andT50. It was important for that argument thatn be
exactly zero for allm,m0 . At nonzeroT, however,n is not
strictly 0 for anym.0. For example, for very smallm andT
one finds a very dilute gas of light mesons, nucleons
antinucleons with

n~T,m!'
m

T S 2mNT

p D 3/2

e2mN /T. ~11!

Nevertheless, we can use a continuity argument to ded
that the first-order phase transition atT50, m5m0 has to
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remain a first-order phase transition for sufficiently smallT.
Therefore, there must be a line emerging from the poinT
50, m5m0 . One can think of this transition as boiling th
nuclear fluid. The slope of this line can be related to t
discontinuities in the entropy densityDs ~or the latent heat
per volumeTDs) and in the baryon densityDn across the
phase transition line through the generalized Clapeyr
Clausius relation:

dT

dm
52

Dn

Ds
. ~12!

This relation follows from the condition that the pressu
temperature and chemical potential should be the same in
two phases on a phase coexistence curve and Eq.~5!. In
analogy with ordinary liquid-gas transitions, the gaseo
phase has a lower particle density~whereDn,0) and lower
entropy density1 ~where Ds,0). Therefore, the slope
dT/dm must be negative. We further expect that the slope
infinite at T50 since s(T50)50, and henceDs(T50)
50. As there is no symmetry-breaking order parame
which distinguishes the two phases, there is no reason
these two phases cannot be connected analytically. As
typical liquid-gas transition, it is natural to expect that t
first-order phase transition line terminates at a critical po
with the critical exponents of the three-dimensional Isi
model.2 The temperature of this critical point can be es
mated from the binding energy per nucleon in cold nucl
matter, T05O(10 MeV). ~See Fig. 5.! Signatures of this
point are seen in heavy ion collisions at moderate ener
~i.e.,'1 GeV per nucleon!, and the critical properties of this
point have been studied through measurements of the yi
of nuclear fragments@20,21#. In particular, the reported criti-
cal exponents are in agreement with those of the thr
dimensional Ising model@21#.

Additional phase transitions which might occur atT50
would give rise to additional phase transition lines. O
could expect two generic situations. If there is a breaking
a global symmetry~e.g., translational symmetry in the cas
of nuclear matter crystallization!, the phase transition line
must separate such a phase from the symmetric phas
higher temperatures without any gaps in the line. Otherw
the transition can terminate at a critical point.

At very high T@LQCD, we have a plasma of quarks an
gluons with a logarithmically small effective coupling con
stant g(T) and we can again calculate the density of t
baryon chargen:

n~T,m!'4E d3p

~2p!3 Fexp
upu2m/3

T
11G21

2$m→2m%.

~13!

1The entropy per particle is greater in the gaseous phase, bu
entropy per volumes is smaller because of a much smaller partic
density.

2The Ising nature of the universality class follows from the fa
that the transition can be modeled by an Ising lattice gas.
7-4
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PHASE DIAGRAM OF QCD PHYSICAL REVIEW D58 096007
We expect that the chiral condensate is zero at very higT
since the effective coupling is weak because of asympt
freedom. Therefore, a phase transition must separate
quark gluon phase from the low temperature phase. T
transition has been studied extensively atm50 using a va-
riety of methods. In particular, lattice calculations have
tablished the value ofTc as approximately 160 MeV@1#.
Arguments based on universality suggest that this transi
is of second order with critical exponents of the SU(2L
3SU(2)R;O(4) universality class@22#. Lattice calculations
seem to confirm this scenario@23#.3 Here, we assume tha
this is the case and try to understand what happens to
transition whenm is not zero.

For massless quarks, the low-temperature hadronic p
and the quark-gluon plasma phase can be distinguishe
the expectation value of̂c̄c&, since this is identically zero
in the quark-gluon phase and nonzero in the hadronic ph
with spontaneously broken chiral symmetry. Therefo
when quark masses are strictly zero, a phase transition m
separate these two phases, i.e., these phases cannot b
nected analytically in theTm plane atm50. Therefore, a
line of phase transitions must begin from the pointT5Tc ,
m50 and continue into theTm plane.

As discussed above, chiral symmetry restoration atT50
is most likely to proceed via a first-order phase transiti
Therefore, the transition must remain first-order as we c
tinue along a line into theTm plane. The slope of this line
can again be related to the discontinuity in the baryon cha
and the entropy density~12!. Since we expect that both den
sity and entropy will be larger in the quark-gluon phase,
slope of this line,dT/dm, should be negative.

This first-order transition line cannot terminate becau
the order parameter^c̄c& is identically zero on the one sid
of the transition. The minimal possibility is that it merge
with the second-order phase transition line coming fromT
5Tc , m50; the point where the two lines join is a tricritica
point @6,7,9#. Such a point exists in many physical system
~e.g., in the FeCl2 antiferromagnet!, and universal behavio
in the vicinity of this point has been studied extensively.
the next section, we review those properties of a tricriti
point which follow from universality.

V. UNIVERSAL PROPERTIES OF THE TRICRITICAL
POINT

By analogy with an ordinary~bi!critical point, where two
distinct coexisting phases become identical, one can de
the tricritical point as a point where three coexisting pha
become identical simultaneously. A tricritical point marks

3A sufficiently light third quark would drive the transition first
order @22#. However, lattice calculations of the Columbia grou
@24# using staggered fermions indicate that the strange quark is
sufficiently light for this to occur. This issue has also been stud
using Wilson fermions, although in this case one must tune
action to counteract the explicit chiral symmetry breaking tha
introduces even for massless quarks; see Iwasakiet al. in Ref. @24#.
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end-point of three-phase coexistence. In order to see th
QCD, it is necessary to consider another dimension in
space of parameters—the quark massm. This parameter
breaks chiral symmetry explicitly. In such a thre
dimensional space of parameters, one can see that ther
two surfaces~symmetric with respect tom→2m reflection!
of first-order phase transitions emanating from the first-or
line at m50. On these surfaces or wings withmÞ0, two
phases coexist: a low density phase and a high density ph
There is no symmetry distinguishing these two phases s
chiral symmetry is explicitly broken whenmÞ0. Therefore,
the surfaces can have an edge which is a line of crit
points. These lines, or wing lines, emanate from the tricr
cal point. The first-order phase transition line can now
recognized as a line where three phases coexist: the higT
and density phase and two low density andT phases with
opposite signs ofm and, hence, also of̂c̄c&. This line is
called, therefore, a triple line.

The planem50 is a symmetry plane. Chiral symmetry
exact only in this plane, and it is only here that the low a
the high temperature phases must be separated by a tr
tion. One can also view this plane as a first-order phase t
sition surface, sincêc̄c& has a discontinuity across it. Then
the second-order phase transition line together with the tr
line provide a boundary for this surface.

Critical behavior near the tricritical point can now be i
ferred from universality. The upper critical dimension f
this point is 3. Since critical fluctuations are effective
three-dimensional for the second-order phase transition a
nite T, we conclude that behavior near this point is describ
by mean field exponents with only logarithmic correction
The effective Landau-Ginsburg theory for the lon
wavelength modesf;^c̄c& near this point requires af6

potential which has the form~in the symmetry planem
50)

Veff5V0~T,m!1a~T,m!f21b~T,m!f41c~T,m!f6

~14!

with c.0. Thef6 term is necessary in order to create thr
minima corresponding to the three coexisting phases. T
explains why the critical dimensionality is 3, since for th
dimension, the operatorf6 becomes a marginal operato
When b.0, the transition occurs whena50 and is a
second-order transition similar to that seen in af4 theory.
This corresponds to the second-order line. Whenb,0 the
transition occurs at some positive value ofa and is of first
order. This is the triple line. When botha andb vanish, we
have a tricritical point.

In particular, the following exponents in the symmet
planem50 are readily found using mean fieldf6 theory~as
noted above, renormalization group studies@25# show that
the actual singularities include additional, logarithmic co
rections!. The discontinuity in the order parameter^f&
5^c̄c& along the triple line as a function of the distan
from the critical pointm3 ,T3 ~measured either asT32T or
m2m3) behaves like

D^c̄c&;~m2m3!1/2. ~15!

The discontinuity in the densityn5dVeff /dm across the
triple line behaves like

ot
d
e
t
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Dn;~m2m3!1. ~16!

The critical behavior along the second-order line is eve
where the same as at the pointm50, T5Tc ~which is an
infrared attractive fixed point!. Therefore,̂ c̄c& vanishes on
the second-order line withO(4) exponents. At the tricritica
point, however, the exponent with which^c̄c& vanishes is
given by the Landau-Ginzburg theory as

^c̄c&;~T32T!1/4. ~17!

WhenmÞ0, the potentialVeff(f) can also contain term
f and f3 which breakf→2f symmetry explicitly.~The
term f5 can be absorbed by a shift off.! The potential
Veff(f) still has three minima, and a first-order phase tran
tion can occur when two adjacent minima are equally de
These transitions form a surface of first-order pha
transitions—the wings. The two minima~and an intermedi-
ate maximum! can also fuse into a single minimum. Th
happens on the wing lines at the edge of the surface of fi
order phase transitions. The critical behavior along the w
lines is given by the three-dimensional Ising exponents, a
usual at the endpoints of first-order liquid-gas type ph
transitions not associated with restoration of a symmetry
particular, the discontinuity inD^c̄c& andDn vanishes with
exponentb'0.31. These discontinuities are related to t
slope of the wing surface at constantT through a relation
similar to Eq.~12!:

dm

dm
52

D^c̄c&Nf

Dn
. ~18!

There are many other universal properties in the vicin
of a tricritical point which can be derived from the abovef6

Landau-Ginzburg effective potential. One can, for examp
show that them50 second-order line, the wing lines, an
the triple lines approach the triple point with the same t
gential direction: The second-order line approaches from
side while the wing lines and the triple line approach fro
the opposite side. For a more detailed description of
properties of tricritical points, see Ref.@25#.

VI. A RANDOM MATRIX MODEL AT FINITE T AND m

Random matrix models have proven to be a valuable
for studying spontaneous chiral symmetry breaking in QC
For example, it has been conjectured that the distribution
the eigenvalues of the Dirac operator near zero is unive
@26#. The universal expressions show a remarkable ag
ment with lattice Monte Carlo data@27# and are consisten
with spectral sum rules from chiral perturbation theory@26#.
Random matrix models have also been used to study c
symmetry restoration phenomenon at finite temperature@28–
30# as well as finite chemical potential@4,31–33#.

Random matrix theory provides an effective descript
of those degrees of freedom in QCD which are respons
for the spontaneous breaking of chiral symmetry. In this
spect, it is similar to Landau-Ginzburg effective theory. Ra
dom matrix theory is based on the observation that the sp
09600
-

i-
p.
e

t-
g
is
e
n

y

,

-
e

e

ol
.

of
al
e-

al

le
-
-
n-

taneous chiral symmetry breaking is related to the densit
small eigenvalues of the Dirac operator (l!LQCD). This
relationship is expressed quantitatively by the Banks-Cas
formula @34#, ^c̄c&5prev(0). Here,rev(0) is the density of
small ~but non-zero! eigenvalues~per unit l and per unit
four-volume,V4) of the Euclidean Dirac operator in the the
modynamic limitV4→`. The dynamics of these eigenva
ues can be described using a random matrix~of infinite size!
in place of the Dirac operator. This approximation can
shown to give exact results in the mesoscopic limit@26,35#.

When the chemical potential is non-zero, the Dirac ope
tor is not Hermitian, and its determinant is no longer real.
a result, the density of its eigenvalues can be defin
straightforwardly only in quenched QCD, i.e., when the co
tribution of the ~complex! fermion determinant to the mea
sure is approximated by unity. Fortunately, a more gene
relation exists between the chiral condensate and the lin
density of zeroes of the partition function:

^c̄c&5pr~0!. ~19!

As observed by Yang and Lee@36#, non-analytic behavior in
a thermodynamic quantity, including in the present case
discontinuity in the value of an order parameter in the th
modynamic limit, is caused by the coalescence of zeros
the partition function to form a boundary crossing the r
evant parameter axis. In the case of QCD, the signatur
spontaneous chiral symmetry breaking is the discontinuity

^c̄c& as m is varied along the real axis and crossesm50.
This discontinuity is equal to 2pr~0! wherer~0! is the den-
sity of the zeroes on the imaginarym axis nearm50 in the
thermodynamic limit. One can also show thatr→rev in the
quenched limitNf→0 but only whenm50. For nonzerom,
the density of the eigenvalues,rev, is fundamentally differ-
ent from theNf→0 limit of r @4#.

It can be shown that certain properties of the small eig
values of the Dirac operator are universal and are identica
those of a random matrix model with appropriate symmetr
@37–39,35,27,40#. The virtue of the random matrix model i
that it is solvable, i.e., one can calculate the distribution
the eigenvalues and of the Yang-Lee zeroes. The parti
function of QCD at finite temperature and chemical poten
in random matrix approximation is given by

ZRM5E DX expS 2
N

s2 Tr XX†DdetNf~D1m!, ~20!

whereD is the 2N32N matrix approximating the Dirac op
eratorD” 1(m/Nc)g0 :

D5S 0 iX1 iC

iX†1 iC 0 D . ~21!

The random matrixX has dimensionN3N. The total dimen-
sion of D is 2N. This is the number of small eigenvalue
which is proportional toV4 . In QCD we expectN to be
approximately equal to the typical number of instantons~or
anti-instantons! in V4 ; therefore, N/V4'ninst'0.5 fm24

@41#. The matrixC is deterministic and describes the effec
7-6
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of temperature and chemical potential. In the simplest~and
original! TÞ0, m50 model @28#, the choiceC5pT de-
scribes the effect of the smallest Matsubara frequency.
noted in Ref.@30#, it is possible to simulate the effects of th
eigenvalue correlations induced by the pairing of instant
and anti-instantons into molecules by choosing a more g
eral form for the diagonal matrixC with elementsCk which
are~increasing! functions ofT. In theT50, mÞ0 model of
Ref. @4#, C5m/( iNc) describes the effect of the chemic
potential. In this paper, we consider the more general c
TÞ0, mÞ0. Although we do not know the detailed depe
dence of the elements ofC on T andm, we understand thatT
primarily affects the real~i.e., Hermitian! part of C and m
affects the imaginary~i.e., anti-Hermitian! part. We shall
adopt the following approximate form for this dependen
Ck5apT1bm/( iNc) for one half of eigenvalues andCk
52apT1bm/( iNc) for the other half witha andb dimen-
sionless parameters.4 This form accounts for the fact tha
there are the two smallest Matsubara frequencies,5 1pT and
2pT. Such a linear ansatz forC is certainly very naive, but
in this paper we decided not to try to refine it. This for
reflects sufficiently well our understanding of the propert
of C.

The chiral condensate is calculated as
ele

o

of
ns

er
c
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^c̄c&5
1

NfV4

] ln ZRM

]m
. ~22!

Current algebra fixes the value of^c̄c&0'2 fm23 at T5m
5m50. The only dimensionful parameter remaining in t
partition functionZRM is the variance of the random matrix
s. Thus,

^c̄c&05const3
N

V4s
'const3

ninst

s
. ~23!

The dimensionless constant will be found below and is eq
to 2. This fixes the value ofs'0.5 fm21'100 MeV. It is
convenient to uses as a unit of mass in the model and al
absorb the coefficientspa andb/Nc into T andm. In other
words, we measurem in units ofs, T in units ofs/(pa) and
m in units of sNc /b.

The N→` ~i.e., thermodynamic! limit of the partition
function, Eq. ~20!, can be found in the now-standard wa
@28–30#. Performing the Gaussian integration overX and
introducing auxiliaryNf3Nf matricesf, one can rewrite the
partition function in the form
ZRM5E Df exp@2N Tr~ff†!#detN/2S f1m m1 iT

m1 iT f†1mD detN/2S f1m m2 iT

m2 iT f†1mD 5E Df exp@2NV~f!#, ~24!
-

m
.
m-

-

e
ua-
where

V~f!5Tr@ff†2 1
2 ln$@~f1m!~f†1m!

2~m1 iT !2#•@~f1m!~f†1m!2~m2 iT !2#%#.

~25!

The integration in Eq.~24! is performed over 23Nf3Nf
variables which are the real and imaginary parts of the
ments of the complex matrixf. In the limit N→` this inte-
gral is determined by a saddle point of the integrand
alternatively, the minimum ofV~f!:

lim
N→`

1

N
ln ZRM52min

f
V~f!. ~26!

The functionV~f! is an effective potential for the degrees
freedom describing the dynamics of the chiral phase tra

4These parameters are intended to reflect the degree of ov
and correlation between instantons and anti-instantons. One
therefore anticipate thata andb are smaller than 1. We shall est
mate the values ofa andb below.

5Alternatively, this form preserves the relation^g0D&50 at m
50.
-

r,

i-

tion. One can see that the value off at the minimum, i.e., the
equilibrium value^f&, gives us the value of the chiral con
densate, Eq.~22!:

^c̄c&5
1

NfV4

N

s
2 Re Tr̂ f&, ~27!

@cf. Eq. ~23!#.
For realm, it is reasonable to expect that the minimu

occurs whenf is a real matrix proportional to a unit matrix
With this assumption, we need to find only one real para
eter,f, which minimizes the potential:

V5NfFf22
1

2
ln$@~f1m!22~m1 iT !2#•@~f1m!2

2~m2 iT !2#%G . ~28!

This is not a simplef6 potential, but it has remarkably simi
lar properties. In particular, the condition]V/]f50 gives a
fifth-order polynomial equation inf. Let us first consider the
symmetry planem50. Then the equation]V/]f50 always
has one trivial root,f50. The remaining four roots are th
solutions of a quartic equation, which has the form of a q
dratic equation inf2:

lap
an
7-7
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f422S m22T21
1

2Df21~m21T2!21m22T250.

~29!

Above the second-order line, i.e., in the high temperat
phase, Eq.~29! does not have real roots~since f2,0 for
each pair of roots!. This corresponds to the fact that th
potentialV has only one minimum atf50 ~i.e., the trivial
root!. On the second-order line, a pair of roots of Eq.~29!
becomes zero, i.e., the potential isV;f4 near the origin.
This means that on the second-order line,

~m21T2!21m22T250. ~30!

The second-order line ends when the remaining pair of ro
also becomes zero, i.e., the potential becomesV;f6 near
the origin. This happens when

m22T21
1

2
50 ~31!

on the second-order line. The condition, Eq.~31! together
with Eq. ~30! determines the location of the tricritical poin
in the Tm plane:

T35
1

2
A&11'0.776 and m35

1

2
A&21'0.322.

~32!

The equation for the triple line is obtained from the r
quirement that the depth of the minima inV at f given by
the pair of solutions of Eq.~29! ~farthest from the origin!
should coincide with the depth at the originf50. The equa-
tion for the triple line is therefore

m22T21
1

2
1

1

2
A1216m2T22

1

2
lnS 11A1216m2T2

2 D
1 ln~m21T2!50. ~33!

In particular, whenT50, we obtain the elementary equatio
m2111 ln m250 whose solution ism'0.528@4#. This is the
value of m1 . Settingm50 in the equation for the second
order line, Eq.~30!, we findTc51 @28#.

We recall that the units ofT and m depend on the un
known dimensionless parametersa and b. However, these
unknown factors cancel from the ratios

T3

Tc
'0.78,

m3

m1
'0.61. ~34!

Taking Tc5160 MeV andm151200 MeV, we find thatT3
'120 MeV andm3'700 MeV.6

Note that the second-order line, Eq.~30!, marks the loca-
tion of the points on the phase diagram where the symme
minimumf50 disappears, i.e., turns into a maximum. Co

6With these values forTc and m1 , the parametersa and b have
the valuesa'0.2 andb'0.13.
09600
e

ts

ic
-

tinuing this line below pointT3 , we obtain the location of
spinodal points. In the region between this line of spino
points and the first-order phase transition line, the chira
symmetric phasef50 can exist as a metastable state. Su
a state can be reached by supercooling, and it is unst
towards the nucleation of bubbles of the broken phasef
Þ0. A similar line with equation 4Tm51, the superheating
line, together with the supercooling line, Eq.~30!, bound the
region around the first-order phase transition line where
potential V~f! has 3 minima. All these lines meet at th
tricritical point.

Away from the symmetry planem50, the expressions fo
the wing surfaces and the wing lines become rather leng
and will be presented elsewhere. The principle, however,
mains simple. The minima of the potentialV satisfy the
equation]V/]f50 and are given by~three out of five!
roots of a fifth-order polynomial. On the wing surface, t
depthV~f! in a pair of adjacent minima is the same. On t
wing line, the two adjacent minima fuse into one. In terms
the roots of the polynomial, three roots coincide~two
minima and one maximum!. In other words, the potential is
V;(f2^f&)4 on the wing line and near the minimum.

The resulting phase diagram is plotted in Fig. 2. One c
see, as expected from mean field theory near the tricrit
point, that the wing lines together with the triple line a
proach the tricritical point with the same slope as the seco
order line but from the other side. The critical exponents n
the tricritical point as given by the random matrix model c
be also seen coinciding, as expected, with the mean fi
exponents of Eqs.~15!, ~16!, and~17!.

From the random matrix model, we also learn how t
zeros of the partition function in the complexm plane evolve
with changes in temperature and chemical potential. A f
typical cases are illustrated in Fig. 3. At zeroT and m, the
zeros form a cut~in the N→` limit ! along imaginary axis.
Raising the temperature pushes the zeros away from the
gin along the imaginary axis until the density at the orig
vanishes~continuously!, the cut breaks in two, as in Fig. 3a
and chiral symmetry is restored@cf. Eq. ~19!#. The chemical
potential pushes the zeros away from the origin in the dir
tion of the real axis until the cut splits in two, as illustrated
Fig. 3b. Note that the densityr~0! is finite just before the
split. Therefore, the transition is of first order. Near the tr
ritical point, the split in the direction of the real axis~due to
the chemical potential! occurs at the same time that the de
sity r~0! vanishes~due to the effects of the temperature!.
This is illustrated in Fig. 3c. The resulting dependence

FIG. 2. Phase diagram of QCD with two light flavors of massm
as calculated from the random matrix model. The almost para
curves on the wing surface are cross sections of this surface
m5const planes. The units ofm are s'100 MeV, of T are Tc

'160 MeV, ofm arem1/0.53'2300 MeV, with the choices ofTc

andm1 from the text.
7-8
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PHASE DIAGRAM OF QCD PHYSICAL REVIEW D58 096007
^c̄c& on T andm is shown in Fig. 4.
A comment should be added regarding the calculation

the baryon densityn in the random matrix model. The valu
of (1/V4)] ln ZRM /]m does not represent the comple
baryon density. The reason is that lnZRM contains only con-

tributions from the soft modes of the condensate,f;c̄c.
Further dependence onm is contained in the contributions t
ln Z from other degrees of freedom. In the effective Landa
Ginzburg theory, such additional contributions are embed
in the termV0(T,m), Eq. ~14!. However, thesingular be-
havior of the system is exclusively due to the soft modes
the condensate, i.e., terms involvingf in Veff . Thus, it is
legitimate to calculate singular properties ofn, such asDn,
near a ~tri!critical point using (1/V4)] ln ZRM /]m. At T
50, for example, we find

FIG. 3. Zeros of the partition function of a finite sizeN random
matrix model~20! in the complexm plane calculated numerically a
different values ofT andm. The calculation is done forNf51, but
theN→` limit is Nf independent. The density of points is propo

tional to the strength of the cut~discontinuity in ^c̄c&) in the N
→` limit.

FIG. 4. The chiral condensatêc̄c& ~in units of ^c̄c&0

'2 fm23) as a function ofT and m in the random matrix model
The units ofT andm are the same as in Fig. 2.
09600
f

-
d

f

DnV45NF S ]V

]m D
f50

2S ]V

]m D
f5A11m

1
2G

5NNf S 2

m1
12m1D'5NNf , ~35!

in units of 1/m, which is b/NcS. With our previous choice
of m151200 MeV ~i.e., b'0.13), we find that Dn
'0.4 fm23'2.5n0 , which seems a reasonable estimate.

VII. DISCUSSION AND SUMMARY

In this paper, we have presented an analysis~qualitative
and, in some cases, quantitative! of the salient features of the
phase diagram of QCD with two light or massless qua
flavors at finite temperature and baryon chemical poten
The most important features of this phase diagram are s
marized in Fig. 5. The phase diagram can certainly hav
much richer structure. The phase transitions shown there
distinguished by the fact that a good order parameter can
associated with each of them. Here the term ‘‘good or
parameter’’ implies the existence of some quantity who
expectation value is identically zero in some finite region
parameter space or in one phase and is some functio
parameters in the other phase. Two such phases mus
separated by a nonanalytic boundary, i.e. a phase transi
What is crucial here is the identical vanishing of an ord
parameter or its strict independence of the parameters o
theory. Usually, this is ensured by the existence of so
symmetry with respect to which this order parameter tra
forms nontrivially.

For the chiral phase transition, a good order paramete
the value of^c̄c&, which spontaneously breaks the glob
SU(2)L3SU(2)R chiral symmetry toSU(2)V . Hence, the
phase witĥ c̄c&50 and the phase witĥc̄c&Þ0 cannot be
connected without crossing a phase transition line in theTm
plane.

The transition fromn[0 to nÞ0 along theT50 line
provides another example of a phase transition associ

FIG. 5. A schematic phase diagram of QCD with 2 massl
quark flavors. Other phase transition lines are possible, for exam
in the low temperature region to the right ofm0 . Another example
is a transition associated with color superconductivity plotted a
dashed line. Thicker lines are first-order phase transitions. TheTc

2T3 line is a second-order phase transition. The tricritical poin
at T3 ,m3 and the critical point of the nuclear matter liquid-ga
transition is atT0 .
7-9
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M. A. HALASZ et al. PHYSICAL REVIEW D 58 096007
with a good order parameter. The phasesn[0 and nÞ0
cannot be analytically connected; i.e. one must pass thro
a nonanalytic boundary~phase transition! when passing from
one to the other. Since this is a first-order phase transit
continuity requires that there is also a first-order transit
line for someTÞ0. This line can, however, terminate sincen
is no longer a good order parameter whenTÞ0.

The existence of a good order parameter is a sufficient
not a necessary condition for a phase transition. Other ph
transition lines associated with more subtle phenomena
also possible. One interesting example, which attracted a
tion recently, is the transition associated with color superc
ductivity. The existence of a color superconducting ph
was first argued for by Bailin and Love on the grounds t
one gluon exchange is attractive in the color antitrip
quark-quark channel@14#. This means that the Fermi surfac
at very highm becomes unstable and forms a gap. This p
nomenon was recently reanalyzed using other method
moderate values ofm with the conclusion that the effect i
enhanced by instanton-induced interactions@16,15#. This
means that another finite-T transition, which stretches all th
way to m5`, may be present on the phase diagram, Fig

This transition, unlike the chiral phase transition and
nuclear matter liquid-gas transition~at T50), does not seem
to have a good order parameter associated with it. In part
lar, the diquark condensate^cc& is not gauge invariant. The
dynamical mechanism responsible for the binding of diqu
pairs is certainly operative at low temperatures, but the
sence of a good order parameter does not allow us to a
that the temperature induced transition associated with
breaking of diquark pairs must always~i.e., at allm! proceed
through a thermodynamic singularity rather than a smo
analytic crossover.

For some purposes, it is more natural to study the ph
diagram in the space of density and temperature. The p
diagram of Fig. 5 can be converted into such a space an
shown in Fig. 6. A typical feature is that the first-order pha
transition line from theTm plane now appears as a region
phase coexistence in Fig. 6. In equilibrium, the values
density and temperature inside this region can be achie
only through aninhomogeneousmixture of two phases with
different densities but the sameT andm. These densities ar
indicated by the ends of the horizontal lines drawn in
phase coexistence region.

The most interesting feature of the phase diagram of F
5 and 6 is the presence of a tricritical point. Because of
fact that the critical dimensionality for such a point is equ
to 3, critical behavior near this point is given by mean fie
theory plus logarithmic corrections. In particular, a simp
random matrix model predicts the correct algebraic criti
exponents.
B
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The tricritical point lies in the region expected to b
probed by heavy ion collision experiments. It would be i
teresting to find an experimental signature for such a po
Since quark masses are not precisely zero, we should
sider a slice of a three-dimensional phase diagram, Fig
with mÞ0. A qualitative difference between the phase d
gram for mÞ0 and that form50 is the absence of the
second-order phase transition line associated with the re
ration of chiral symmetry. This symmetry is explicitly bro
ken for mÞ0. However, continuity fromm50 ensures that
the first-order finite density transition is still present atm
Þ0. This transition line is terminated by an ordinary critic
point. Criticality at this point is not associated with chir
symmetry restoration, and excitations with the quant
numbers of pions do not become massless there. Critica
at this point is associated with the fact that a correlat
length in the channel with the quantum numbers of the sig
meson becomes infinite.~Hence, it is plausible to infer tha
this point has the critical behavior of the three-dimensio
Ising model.! Possible experimental signatures of this ph
nomenon are under investigation.

Note added.After this work was completed, a paper@42#
appeared which addresses similar questions in the conte
a Nambu–Jona-Lasinio model for color superconductiv
The results of@42# agree with and complement our finding
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FIG. 6. The phase diagram of Fig. 5 shown as a function
density and temperature. The dashed line of the color supercon
tivity transition is not drawn. Horizontal lines connect points corr
sponding to densities of phases on two sides of the first-order
~i.e., the coexistence curve! of Fig. 5. The pointsni on theT50 line
are the same as on Fig. 1~a!.
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