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Long range forces from pseudoscalar exchange

F. Ferrer and J. A. Grifols
Grup de Fı´sica Teo`rica and Institut de Fı´sica d’Altes Energies, Universitat Auto`noma de Barcelona,

E-08193 Bellaterra, Barcelona, Spain
~Received 2 June 1998; published 29 September 1998!

Using dispersion theoretic techniques, we consider coherent long range forces arising from double pseudo-
scalar exchange among fermions. We find that Yukawa type coupling leads to 1/r 3 spin-independent attractive
potentials whereas derivative coupling renders 1/r 5 spin-independent repulsive potentials.
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PACS number~s!: 11.80.Fv, 11.55.Fv
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I. INTRODUCTION

Many extensions of the standard model predict the e
tence of light scalar particles. The axion may be the m
debated one but there are also approximate Nam
Goldstone fields associated with family symmetries, mod
fields, dilatons, or superpartners of the gravitino@1–4#. Ex-
change of such particles by ordinary matter will indu
forces that extend over the Compton wavelength of the p
ticle @2,5,6#. However, the effect will be felt by bulk matte
only if the potential is spin independent so that forces c
add up coherently over macroscopic distances. Now, a p
doscalar particle, such as the axion, is coupled to fermi
via a g5 which, in the nonrelativistic limit, flips the spin
Therefore, single pseudoscalar exchange leads to s
dependent forces that do not extend over macroscopic u
larized bodies@3,5#. A double exchange of pseudoscalars
the other hand can coherently sum over a macrosc
sample of matter because it can leave the spin unflipped.
explicit form of these forces has been derived and their p
nomenological consequences explored in previous work
the context of nonrelativistic ‘‘old fashioned perturbatio
theory’’ @7#. Here we reopen the question of pseudosca
mediated forces in the light of the powerful dispersion the
retical techniques devised by Feinberg, Sucher and Au
make extensive use of full relativistic quantum field theo
@8,9#.

In Sec. II we give the necessary theoretical backgrou
which is nothing but a brief summary of the seminal work
Feinberg and Sucher. Section III is devoted to the Yuka
type interaction and Sec. IV deals with derivatively coupl
scalars. We shall see that the two interactions produce q
different potentials@10#, a fact that could not have been d
rived in a purely non-relativistic framework@11#. The paper
ends with a brief summary and conclusions contained
Sec. V.

II. DISPERSIVE FORCES

Following the general strategy devised by Feinbe
Sucher and Au@8,9#, we define a potential in a given quan
tum field theory by equating the scattering amplitude fo
two body process that follows from the usual Feynman ru
with the transition amplitude associated to a Schro¨dinger
type equation solved in the manner of Lippmann a
Schwinger. Let us be explicit and consider elastic scatte
0556-2821/98/58~9!/096006~12!/$15.00 58 0960
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of particles A and B with four-momentapa and pb in the
initial state andpa8 andpb8 in the final state. The Mandelstam
variables are then

s5~pa1pb!2, t5Q2, u5~pa2pb8!2 ~1!

with Q5pa2pa852pb1pb8 .
In the center of momentum~c.m.! we write the momenta

as

pa5~Ea ,p!, pb5~Eb ,2p!

~2!
pa85~Ea ,p8!, pb85~Eb ,2p8!.

Now s5W2 where W5Ea1Eb and t52Q2 with Q
5(0,Q), whose physical region is

s>s0 and 24p2<t<0 ~3!

where

s05~ma1mb!2

p25@s2~ma1mb!2#@s2~ma2mb!2#/4s. ~4!

The transition from initial statei to final statef is de-
scribed in quantum field theory by the transition matrix e
ment

Tf i5NfMf iNi ~5!

where Nf ,i are normalization factors of one particle stat
andMf i is the invariant Feynman amplitude.

The definition of our potential follows now from identi
fying this transition amplitude with

Tf i5^p8,2p8uV1V~W2h02V1 i e!21Vup,2p&
mamb

EaEb
~6!

whereh0 is the sum of the free Dirac Hamiltonians for pa
ticles A and B. Here all quantities are referred to the c.m

The Feynman amplitudeM is understood as a series e
pansion in~even! powers of the coupling constant associat
to single, double, . . . particle exchange in the t-channel. W
assume that the potentialV also admits a series expansion

V5V~2!1V~4!1 . . . . ~7!

So we determineV order by order in perturbation theor
through
© 1998 The American Physical Society06-1
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^p8,2p8uV~2!up,2p&5M f i
~2! ~8!

^p8,2p8uV~4!up,2p&5M f i
~4!2^p8,2p8uV~2!~W2h01 i e!21V~2!up,2p&. ~9!

Here we should point out a technicality. The potential we are after must have the form@12#

V5L11UL11 ~10!

whereL115L1;aL1;b is an operator that projects on the positive energy states ofh0 . BecauseL11up,2p&5up,2p& and
L11

2 5L11 , we can rewrite the previous equations that determine the potential as

^p8,2p8uU ~2!up,2p&5M f i
~2! ~11!

^p8,2p8uU ~4!up,2p&5M f i
~4!2^p8,2p8uU ~2!~W2h01 i e!21L11U ~2!up,2p&. ~12!
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In principle the above equations permit an iterative de
mination of the potential to the desired order. However,
are not done yet because we would like to have our poten
in position space and what we have is the operatorU in the
momentum representation. Therefore, we should Fou
transform our results back to configuration space; i.e.,
wish to findU (n)(r ) such that

^p8,2p8uU ~n!up,2p&5E dreiQ•rU ~n!~r !. ~13!

Inversion of the above equation, however, requires kno
ing the functionM for all values of the three-momentum
But we only know the scattering amplitude on shell, i.e.
p25p82. We can use the fact thatM(s,t) is an analytic
function of t and so analytically extend its domain beyo
the physical region, i.e. for all values ofQ25t.

SupposeM(s,t) is analytic everywhere except for branc
cuts on the real axis and, furthermore, that it vanishes
large utu. Then, using Cauchy’s theorem, we can write

M ~R!5
1

p E
t0

`

dt8
r~R!~s,t8!

t82t
~14!

M ~L !5
1

p E
2`

t̄ 0
dt8

r~L !~s,t8!

t82t
~15!

wherer(s,t)5@M# t/2i is the spectral density and@M# t is
the discontinuity ofM across the cut. Only the piece of th
amplitude arising from the right hand cut will be of intere
to us for only this piece leads to a long range potential@13#.
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Assuming that the basic relations~11! and ~12! hold also in
the extended domain, we can Fourier invert them
follows1:

U ~n!~r ;s!5
1

~2p!3 E dQe2Q•rM ~n!~s,2Q2!. ~16!

We use now the spectral representation given before
obtain

U ~n!~r ;s!5
1

4p2r E
t0

`

dtr~n!~s,t !e2Atr ~17!

where, to reach this final form, we conveniently changed
order in which integrals were done. In short, obtaining lo
range potentials amounts to calculating t-channel disco
nuities in Feynman diagrams and performing a Lapla
transform. We shall see how things work out in detail as
do our specific calculations in the next two sections.

III. YUKAWA COUPLING

Our starting point is the Lagrangian density

L int
Y 52 igC̄~x!g5C~x!F~x! ~18!

wherec is a fermion field andf is the pseudoscalar field
which we take to be massless.2 The potential associated t
single particle exchange is easily obtained from the disc
tinuity associated with the diagram in Fig. 1. The spect
density functionr (2)(s,t) is, in this case,

r~2!~s,t !5pg2ū~pa8!g5u~pa!ū~pb8!g5u~pb!d~ t !. ~19!

After Laplace transforming we get the relativistic pote
tial operator

1Notice that our generalized potential will depend on the para
eters.

2For scalars with mass, the long distance potentials are dam
with Yukawa exponentials. In this case, our results are valid
distances on the order or smaller than the Compton wavelengt
the exchanged particles.
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LONG RANGE FORCES FROM PSEUDOSCALAR EXCHANGE PHYSICAL REVIEW D58 096006
U ~2!5
g2

4pr
ga

0ga
5gb

0gb
5 ~20!

where subindices make explicit that Dirac matrices act eit
on spinor A or spinor B.

The nonrelativistic limit of equation above leads to t
well-known spin-dependent potential

Vnr
~2!5

g2

4pr ~2ma!~2mb!
sa•“^ sb•“ ~21!

with ma andmb the masses of particles A and B respective
What we are really interested in isU (4), i.e. the potential due
to two-particle exchange. To this end we need the disco
nuities of diagrams in Fig. 2 and the discontinuity of t
subtraction term in Eq.~12! ~iteration of the lowest orde
potentialU (2)).

The Feynman amplitude associated to Fig. 2 can be w
ten

M ~4!5
i

2!~2p!4

3E d4kd4k8d~4!~Q2k2k8!
1

k21 i e

1

k821 i e

3M a
C~2k,k8;Pa!M b

C~k,2k8;Pb! ~22!

in terms of the Compton amplitude, depicted in Fig. 3:

FIG. 1. Lowest order scattering amplitude. Single pseudoesc
exchange.

FIG. 2. Diagrams contributing to theO(g4) terms of the poten-
tial.
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MC~k,k8;P!5g2ū~p8!F k”

2p•k
1

k” 8

2p•k8Gu~p!. ~23!

Making use of the Dirac equation and trading the prop
gators for their discontinuities, i.e.

1

k21 i e
→22p id~k2!Q~k0!, ~24!

we arrive at

@M ~4!# t52
ig4

8p2 E dFūa8Fpa•~k82k!k”

2pa•k8pa•k G
3uaūb8Fpb•~k82k!k”

2pb•k8pb•k Gub ~25!

with the two particle phase space explicitly given by

dF5d~Q2k2k8!d~k2!d~k82!Q~k0!

3Q~k80!d4kd4k8. ~26!

It is convenient to do the integrals in the c.m. of the pse
doscalars, i.e. to go to the t-channel, and then use cros
symmetry to recover the original amplitude. We follow he
the notation in Ref.@14# where they deal with a related prob
lem. First define momenta as

pa5SAt

2
,pD , pā52pa85SAt

2
,2pD

pb̄52pb5SAt

2
,2p8D , pb85SAt

2
,p8D

k5SAt

2
,kD , k85SAt

2
,2kD ~27!

and introduce next the unit imaginary vectors

p5 i jamap̂ ~28!

p85 i jbmbp̂8 ~29!

with ja,b[A12t/4ma,b
2 and p̂,p̂8 are unitary complex vec-

tors verifying p̂•p̂521 so that all particles are on-shell.
Now the discontinuity can be put in the form

ar

FIG. 3. Compton scattering amplitude diagrams.
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@M ~4!# t5
ig4

4pbt E dV

4p

xaxb

dadb
ūa8k”uaūb8k”ub ~30!

where, to simplify expressions, we use

b[majambjb

xa[p̂• k̂ xb[p̂8• k̂

da,b[ta,b
2 1xa,b

2

ta,b[
At

2ja,bma,b
. ~31!

The integration to be carried out is an angular avera
We use the shorthand*(dV/4p) f [^ f &. Hence, the discon
tinuity takes the form

@M ~4!# t5
ig4

4pbt
ūa8gmuaūb8gnubT mn ~32!

with T mn[^(xaxb /dadb)kmkn&.
Lorentz covariance dictates the following decompositio

T mn5a1Pa
mPa

n1a2Pb
mPb

n1a3~Pa
mPb

n1Pb
mPa

n!1a4gmn

1a5QmQn1a6~QmPa
n1Pa

mQn!

1a7~QmPb
n1Pb

mQn! ~33!

in terms of the three independent momenta

Pa[pa1pa8 , Pb[pb1pb8 , Q[k1k8. ~34!

The coefficientsai can be found to be combinations o
scalar integrals as shown in the Appendix. Now, in the c
of the incident particles, the relations

ūa8P” auaūb8P” aub54maūa8uaūb8~Wg02mb!ub

ūa8P” buaūb8P” bub54mbūa8~Wg02ma!uaūb8ub

ūa8P” auaūb8P” bub54mambūa8uaūb8ub

ūa8P” buaūb8P” aub54ūa8~Wg02ma!uaūb8~Wg02mb!ub

ūa8Q” ua50

ūb8Q” ub50 ~35!

are easily established with the help of the Dirac equati
This leads directly to

@M ~4!# t5
ig4

4pbt
ūa8ūb8@4mamb~2a32a12a2!

14mbWga
0~a22a3!14maWgb

0~a12a3!

1ga
0gb

0~4W2a31a4!2gagba4#uaub . ~36!
09600
e.

:

.

.

This discontinuity is a complex function since theai are
complex and hence adds an imaginary component to
spectral density which would finally contribute an imagina
piece to the potential. Inspection of Eq.~36! immediately
tells us that the offending piece comes from the imagin
parts of theai . But we should recall that we still have t
subtract the contribution from the iterated lowest order p
tential. It turns out that its imaginary part exactly cancels
unwanted contribution coming from Eq.~36!. Indeed we
have explicitly checked this to be the case. However, in or
to make this paper not too lengthy, we do not include
intermediate steps of the calculation. We only report on
result: i.e.,

R@M ~4!# t5
g4

8pW
ūa8ūb8F t24p2

~4p21t !2 ~Eaga
02ma!

3~Ebgb
02mb!2

p2

4p21t
ga•gbGuaub .

~37!

The relevant contribution to the long range potent
comes from the real parts of theai , that is, the imaginary
part of Eq.~36!, once the contribution of the iterated pote
tial has been subtracted. Let us elaborate on the itera
amplitude:

MI5^p8,2p8uU ~2!~W2h01 i e!21L11U ~2!up,2p&.
~38!

This formal expression can be recast in the explicit for3

MI5
g4

8p2 E l 2dlE dV

4p
ua

†8ub
†8ga

0~Ea8ga
02ga• l2ma!

3gb
0~Eb8gb

01gb• l2mb!uaubC~p,l !
1

q82

1

q2 ~39!

with q[p2 l and q8[p82 l and C(p,l )[1/Ea8Eb8(W2W8
1 i e).

The integration over momentuml reflects the fact that we
have inserted a complete set of plane wave intermed
states in Eq.~38!. We have also used

L1;a~ l!5
Ea81ga

0ga• l1ga
0ma

2Ea8
~40!

whereEa85Ama
21 l 2.

The iteration amplitude can be conveniently put as f
lows:

3This integral as it stands is infrared divergent. A fictitious ma
regulator is understood to be introduced in the scalar propaga
which is set to zero after the integrations are performed.
6-4
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MI5
g4

8p2 E l 2dlūa8ūb8$~Ea8ga
02ma!~Eb8gb

02mb!

3L2ga•V~Eb8gb
02mb!

1~Ea8ga
02ma!gb•V2ga

i gb
j Y i j %uaubC~p,l ! ~41!

where

L[E dV

4p

1

q82

1

q2 ~42!
09600
V[E dV

4p
l

1

q82

1

q2 ~43!

Y i j [E dV

4p
l i l j

1

q82

1

q2 ~44!

and they can be found in the Appendix.
A little bit of Dirac algebra and the results in the Appe

dix allow us to write the discontinuity ofMI as
th order

n
for
@MI # t5
g4

8p2 E l 2dlūa8ūb8H ~Ea8ga
02ma!~Eb8gb

02mb!22
p21 l 2

4p21t
@~Eaga

02ma!~Eb8gb
02mb!1~Ea8ga

02ma!~Ebgb
02mb!#

1
4

4p21t S 2
~p21 l 2!2

4p21t
2 l 2D ~Eaga

02ma!~Ebgb
02mb!1ga•gbS ~p21 l 2!2

4p21t
2 l 2D J @L# tuaubC~p,l !. ~45!

The explicit form for@L# t is given in the Appendix. Note that in Eq.~45! we have

1

W2W81 i e
5`S 1

W2W8D2 ipd~W2W8!. ~46!

The Dirac delta piece gives a contribution that, as already advertised, will exactly cancel the real part of the four
discontinuity function~37!. The principal part integral can be cast in the form

iI@MI # t5
ig4

16pAt~4p21t !2
`E

21

1 dx

A12x2
C~p,l !ūa8ūb8Nuaub ~47!

where we changed the integration variable via the relation

l 25
a81b8x

2
[

1

2
@~2p21t !1At~4p21t !x# ~48!

and we used the shorthand

N[~4p21t !2~Ea8ga
02ma!~Eb8gb

02mb!22~4p21t !~p21 l 2!

3@~Eaga
02ma!~Eb8gb

02mb!1~Ea8ga
02ma!~Ebgb

02mb!#14@2~p21 l 2!22 l 2~4p21t !#

3~Eaga
02ma!~Ebgb

02mb!2ga•gb~4p21t !@~4p21t !l 22~p21 l 2!2#. ~49!

It is convenient now to split the functionC(p,l ) as

C~p,l ![C1~p,l !1C2~p,l ![
2

W~p22 l 2!
1

1

Ea8Eb8W
S p21 l 21ma

21mb
2

EaEb1Ea8Eb8
1

W8

W1W8D . ~50!

The integral above cannot be done exactly and we will expand the integral in a power series int and p2. This is a licit
procedure because we will perform a Laplace transform that heavily weighs the smallt region of the spectral function whe
determining the long range~large r! potential and we will eventually take the non-relativistic limit of the potential, i.e.
p2;0. Furthermore, each extra power oft or p2 implies a correction to the potential with an extra power ofr 21. We see from
Eq. ~50! that the calculation will involve doing integrations of the type

I c1~n![E
21

1 dx

A12x2

l n

p22 l 2 ~51!
6-5
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I c2~n![E
21

1 dx

A12x2
l n. ~52!

The explicit results of the integrals needed in our calculation are also given in the appendix. Armed with all this artill
find, for theC1 piece of the discontinuity@MI # t ,

iI@M I
C1# t5

ig4

8At~4p21t !2~ma1mb!
ūa8ūb8H mambF4t2

2tp2

mamb
1

p4t

2mamb
S 1

ma
2 1

1

mb
2 1

1

mamb
D G

1ga
0mambF24t1

2~ma2mb!

ma
2mb

tp21
t3

32ma
4 1

t2p2

4ma
4 1

2ma
32ma

2mb1mamb
212mb

3

2ma
4mb

3 tp4G
1gb

0mambF24t1
2~mb2ma!

mamb
2 tp21

t3

32mb
4 1

t2p2

4mb
4 1

2ma
31ma

2mb2mamb
22mb

3

2ma
3mb

4 tp4G
1ga

0gb
0mambF4t1S 2

ma
2 1

2

mb
2 2

2

mamb
D tp22t3S 1

32ma
4 1

1

32mb
4 1

1

8ma
2mb

2D 2t2p2S 1

4ma
4 1

1

4mb
4 1

1

ma
2mb

2D
2tp4

2ma
41ma

3mb1ma
2mb

21mamb
312mb

4

2ma
4mb

4 G1ga•gbF2tp21
t2

2
2

t2p2

4mamb
2

tp4

mamb
G J uaub ~53!

and, for theC2 piece,

iI@M I
C2# t5

ig4

16At~4p21t !2~ma1mb!mamb

ūa8ūb8H ga
0mambFma

21mamb1mb
2

16ma
3mb

t~4p21t !2G
1gb

0mambFma
21mamb1mb

2

16mamb
3 t~4p21t !2G2ga

0gb
0Fma

41ma
3mb12ma

2mb
21mamb

31mb
4

16ma
2mb

2 t~4p21t !2G
2ga•gbFma

21mamb1mb
2

16mamb
t~4p21t !2G J uaub . ~54!

In both equations above we kept terms only up to the powers oft andp2 that will be needed, either in this section or in the
section, to obtain the leading two-particle exchange potential. In this respect Eq.~54! does not contribute to the leadin
potential just under scrutiny. To obtain the spectral densityr (4), we must finally perform the subtraction

r~4!~s,t !5
I@M ~4!# t2I@MI # t

2
. ~55!

Recall that what entersr (4) is the real part of theai in Eq. ~36!. Although the integrals that go in theai are exactly given
in the Appendix, the required subtraction~55! and final Laplace transformation~17! demand that we here also expand t
integrands in a power series int and p2. After some lengthy algebra, we arrive at the final form for the imaginary par
@M# t :

I@M# t5I@M# t
odd1I@M# t

even ~56!

where

I@M ~4!# t
odd5

g4mamb

4~ma1mb!At~4p21t !2
ūa8ūb8H F2t2

tp2

mamb
1

23ma
412ma

2mb
223mb

4

4ma
4mb

4 tp4

1
23ma

42ma
3mb1ma

2mb
22mamb

323mb
4

8ma
4mb

4 t2p21
23ma

42ma
3mb1ma

2mb
22mamb

323mb
4

64ma
4mb

4 t3G
1ga

0F22t1
ma2mb

ma
2mb

tp21
3ma14mb

4mamb
4 tp41

3ma
415ma

3mb1ma
2mb

22mamb
32mb

4

8ma
4mb

4 t2p2
096006-6
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1
3ma

415ma
3mb1ma

2mb
22mamb

32mb
4

64ma
4mb

4 t3G
1gb

0F22t1
mb2ma

mamb
2 tp21

4ma13mb

4ma
4mb

tp41
2ma

42ma
3mb1ma

2mb
215mamb

313mb
4

8ma
4mb

4 t2p2

1
2ma

42ma
3mb1ma

2mb
215mamb

313mb
4

64ma
4mb

4 t3G
1ga

0gb
0F2t1

ma
22mamb1mb

2

ma
2mb

2 tp21
tp4

ma
2mb

2 1
ma

41ma
3mb1ma

2mb
21mamb

31mb
4

8ma
4mb

4 t2p2

1
ma

41ma
3mb1ma

2mb
21mamb

31mb
4

64ma
4mb

4 t3G
1ga•gbF p2t

mamb
1

t2

4mamb
1

ma
214mamb1mb

2

2ma
3mb

3 tp41
3ma

215mamb13mb
2

8ma
3mb

3 t2p21
2ma

21mamb12mb
2

32ma
3mb

3 t3G J uaub

~57!

contains the odd powers ofAt and

I@M ~4!# t
even5

g4

4p
ūa8ūb8H 2

~ma1mb!gb
02mb

6ma
2mb

2
~ma1mb!ga

02ma

6mamb
2 1

ga
mgm

b

4mamb

2
mamb1@~ma1mb!ga

02ma#@~ma1mb!gb
02mb#

12ma
2mb

2 J uaub ~58!

contains the even powers ofAt. We did this separation to emphasize that, after the subtraction in Eq.~55!, only the term~58!
survives to leading non-vanishing order. Indeed, Eq.~57! coincides exactly with Eq.~53! if we neglect terms beyondt2, p4,
or tp2.

The final step involves the Laplace transformation indicated by Eq.~17!. Using the general formula

E
0

`

tne2Atrdt5
2~2n11!!

r 2n12 ~59!

we get

U ~4!~r ;s!5
g4

16pr 3 ūa8ūb8H 2
~ma1mb!gb

02mb

6ma
2mb

2
~ma1mb!ga

02ma

6mamb
2 1

ga
mgm

b

4mamb

2
mamb1@~ma1mb!ga

02ma#@~ma1mb!gb
02mb#

12ma
2mb

2 J uaub ~60!

which leads, in the non-relativistic limit and concentrating only on the spin-independent terms of Eq.~60!, to the long-range
attractive potential

Vnr
~4!52

g4

64p3r 3mamb
12

a
^ 12

b ~61!

where this operator is supposed to act between two-component Pauli spinors.

IV. DERIVATIVE COUPLING

In this section we consider the interaction Lagrangian

L int
der5

g

2m
C̄~x!gmg5C~x!]mF~x!, ~62!

which is how Goldstone bosons couple to fermions.
096006-7
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This derivative coupling leads to the same one particle exchange Feynman amplitude as before and therefore to
lowest order potential~20!. Hence the iteration amplitude will be also identical. However, the two particle exchange amp
~see Fig. 2! is different because the Compton amplitude that goes into Eq.~22! is different. Indeed, the Compton amplitud
corresponding to Fig. 3, is now

MC~k,k8;P!5g2ū~p8!F k”

2p•k
1

k” 8

2p•k8
2

1

mGu~p!. ~63!

This amplitude differs from Eq.~23! by an extra term proportional tom21.
We introduce this amplitude in Eq.~22! and replace the massless propagators by Dirac deltas to obtain the discon

function

@M ~4!# t52
ig4

8p2 E dFūa8Fpa•~k82k!k”

2pa•k8pa•k Guaūb8Fpb•~k82k!k”

2pb•k8pb•k Gub

2
ig4

8p2 E dFH ūa8uaūb8ub

1

mamb
2

1

ma
ūa8uaūb8F pb•~k82k!

2pb•kpb•k8
k” Gub2

1

mb
ūa8F pa•~k82k!

2pa•kpa•k8
k” Guaūb8ubJ . ~64!

The first piece is exactly what we had in the last section. We call@DM (4)# t the extra added piece that involves th
integrations

2
ig4

8p2 E dFūa8uaūb8ub

1

mamb
52

ig4

16pmamb
ūa8uaūb8ub ~65!

and

ig4

8p2ma
E dFūa8uaūb8F pb•~k82k!

2pb•kpb•k8
k” Gub1~a↔b!5

ig4

8p2ma
E dFūa8uaūb8k”ub

iAtjbmbxb

t

2 S t

4
1~jbmbxb!2D 1~a↔b!

52
g4

8pmaAtjbmb

ūa8uaūb8gmubK xb

db
kmL 1~a↔b!

5
ig4

16pmambjb
2 F12tbarctanS 1

tb
D G ūa8uaūb8ub1~a↔b!. ~66!

The last line in Eq.~66! is reached by demanding Lorentz covariance to write

K xb

db
kmL 5abPa

m1bbPb
m1cbQm, ~67!

by solving for the coefficients as explained in the Appendix, and by using the Dirac equation.
Putting things together,

@DM ~4!# t5
ig4

16pmamb
ūa8uaūb8H 1

ja
2 F12taarctanS 1

ta
D G1

1

jb
2 F12tbarctanS 1

tb
D G21J uaub . ~68!

To leading order int andp2 we have

@DM ~4!# t5
ig4

16pmamb
ūa8uaūb8ub . ~69!

In the non-relativistic limit this contributes the quantity

DVnr
~4!5

1

4p2r E
0

`

Dre2Atrdt5
g4

64p3r 3mamb
~70!

which exactly cancels contribution~61!, i.e.,

Vder;nr
~4! 5VY;nr

~4! 1DVnr
~4!501O~r 24!. ~71!
096006-8
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Hence, to find the form for the potential in the case under scrutiny, we must go to the next order in our series exp
What we need now is to consistently take into account the previously neglected terms in the spectral density

rder
~4! [

@M Y
~4!1DM ~4!2MI # t

2i
. ~72!

So we collect the relevant pieces in Eqs.~57!, ~53!, and~54! in addition to

@DM# t
~4!;...2

ig4At

16mamb
ūa8ūb8S 1

4ma
1

1

4mb
Duaub ~73!

which is the next to leading term in the expansion of Eq.~68!. The result is

rder
~4! [

@M Y
~4!1DM2MI # t

2i
5

g4mambAt

8~ma1mb!
ūa8ūb8H 2

3ma
415ma

3mb17ma
2mb

215mamb
313mb

4

64ma
4mb

4

1ga
0

3ma
415ma

3mb22mamb
323mb

4

64ma
4mb

4 1gb
0

23ma
422ma

3mb15mamb
313mb

4

64ma
4mb

4

1ga
0gb

0
3ma

412ma
3mb17ma

2mb
212mamb

313mb
4

64ma
4mb

4 1spin-dependent terms of the kindga•gbJ uaub . ~74!

This spectral density nonetheless gives a vanishing spin-independent potential in the static approximation, i.e.

Vder;nr
~4! 501O~r 25!. ~75!

The first non-vanishing contribution to the spin-independent potential arises from the part in the spectral density w
linear in t. Indeed, the explicit form of the spectral density reads

r~4![
@M Y

~4!1DM ~4!# t

2i
5

g4

8p

1

240ma
4mb

4 ūa8ūb8$4@~23ma
422ma

3mb12ma
2mb

222mamb
323mb

4!p2

1~6ma
413ma

3mb14ma
2mb

213mamb
316mb

4!t#

1ga
02~ma1mb!@~6ma

322ma
2mb13mamb

224mb
3!p21~212ma

316ma
2mb24mamb

213mb
3!t#

1gb
02~ma1mb!@~24ma

313ma
2mb22mamb

216mb
3!p21~3ma

324ma
2mb16mamb

2212mb
3!t#

1ga
0gb

0@~8ma
412ma

3mb212ma
2mb

212mamb
318mb

4!p21~26ma
412ma

3mb29ma
2mb

212mamb
326mb

4!t#%uaub ~76!
th ote

er
his
x-
s a
o-

ce no
s of

d-
e to

ble
e

where no iterated second order amplitude contributes to
order, and where we picked the term proportional tot in the
expansion of Eqs.~65! and ~66!.

If we use now

ūa8ga
0ua'ūa8@11O~p2!#ua ~77!

and pass to the static limit, we find

rnr
~4!5

t

32ma
2mb

2 1a^ 1b ~78!

which, upon Laplace transformation, leads to

Vder;nr
~4! 5

3g4

128p3ma
2mb

2

1

r 5 ~79!
09600
isfor the desired spin-independent long range potential. N
that, as opposed to the Yukawa type coupling potential~61!,
the derivative interaction leads to a repulsive potential.

V. CONCLUSIONS

Very light particles can mediate forces extending ov
distances on the order of their Compton wavelength. If t
range is macroscopic, unpolarized bulk matter will only e
perience the effect of spin-independent interactions. It i
well-known fact that the Yukawa potential due to pseud
scalar exchange depends on spin and as a consequen
coherent effects do arise on a macroscopic scale, unles
course our sample is polarized@5#. However, residual~van
der Waals type! forces may arise between macroscopic bo
ies in the case of pseudoscalar mediated interactions, du
the exchange of two quanta ‘‘at the same time.’’ The dou
helicity flip involved eventually makes the resulting effectiv
6-9
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potential spin-independent@7#.
In the preceding sections we have established, with

help of the formalism developed by Feinberg and Sucher,
large distance behavior of such residual forces, i.e. th
associated to double pseudoscalar exchange. We have
sidered two different basic couplings of those scalars to m
ter fermions. On the one hand we took the ordinary Yuka
coupling ~e.g., this is the way the Higgs particle couples
fermions! and on the other we considered the derivative c
pling ~e.g., the axion-fermion interaction!. Both couplings
reduce to the same spin-flip interaction in the static n
relativistic limit. And both interactions also produce identic
one-particle exchange~spin-dependent! potentials. In spite of
this fact, we have explicitly shown that the spin-independ
two-particle exchange potential is substantially different
both cases. Indeed, for Yukawa coupling we derive a 1r 3

attractive long distance behavior whereas for the deriva
coupling the potential, which is now repulsive, falls off
1/r 5. Since, as emphasized, double exchange will lead
residual macroscopic effects, these effects will be quite
ferent in both cases. So we have found still another insta
where the interaction of pseudoscalars to fermions can
discriminated. Other places are soft pion emission in prot
proton scattering or axion bremsstrahlung in a supern
core @4,15#.

Of course, the effects just reported are extremely small
the light scalars presently contemplated in particle phys
such as the axion, and thus their experimental detectio
beyond the reach of present technology. However, ther
much activity and interest on the experimental front and
periments have been designed and performed that exp
the sub-centimeter and sub-millimeter regime with an ev
increasing sensitivity@16,17#. And on the theoretical side
the completion of the particle physics paradigm may s
require new superlight scalar particles to exist.
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APPENDIX

Coefficientsai

The coefficients in the tensor decomposition~33! read

a15
t~ I 122I 52I 614yI42y2I 12y2I 6!

16ma
2ja

2~12y2!2

a25
t~ I 12I 522I 614yI42y2I 12y2I 5!

16mb
2jb

2~12y2!2

a35
t~2I 42yI112yI512yI623y2I 41y3I 1!

16b~12y2!2

a452
t~ I 12I 52I 612yI42y2I 1!

4~12y2!
~A1!
09600
e
e

se
on-
t-
a

-

-
l

t

e

to
f-
ce
e
-
a

r
s,
is
is
-
re

r-

l

t
l

with y[p̂•p̂8, in terms of various angular integrals in the s

I 0[ K 1

dadb
L , I 1[ K xaxb

dadb
L , I 2[K xa

2

dadb
L

I 3[K xb
2

dadb
L , I 4[K xa

2xb
2

dadb
L , I 5[K xa

3xb

dadb
L

I 6[K xaxb
3

dadb
L . ~A2!

These results are obtained after repeated contractio
Eq. ~33! with the independent momenta in our problem a
after solving the resulting algebraic system of equations.

The angular integralsI i are given next. The explicit cal
culation of I i for i ,5 is given in @13#, I 5 can be found in
@14# and I 6 follows trivially from I 5 by interchanginga and
b. For the first two integrals from the set~A2! one gets

I 05
F11pN1

21

2tatb
, I 15

F21pN1
21

2
~A3!

where we have defined

F656N2
21arctanS N2

D1
D2N1

21arctanS N1

D2
D

N152
ips1/2

b

N252
iAp2s1byt

b

D65y6tatb ~A4!

and the rest is given in terms ofI 0 and I 1 by

I 25
1

tb
arctanS 1

tb
D2ta

2I 0

I 35
1

ta
arctanS 1

ta
D2tb

2I 0

I 4512taarctanS 1

ta
D2tbarctanS 1

tb
D

1ta
2tb

2I 0

I 55yF12tbarctanS 1

tb
D G2ta

2I 1

I 65yF12taarctanS 1

ta
D G2tb

2I 1 .

~A5!
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Angular integrals entering the iterated amplitude

We start with Eq.~42!. Its discontinuity@L# t has been
obtained in@13#:

@L# t5 i F p

lAt

1

A~ l 1
2 2 l 2!~ l 22 l 2

2 !
GQ~ l 1

2 2 l 2!Q~ l 22 l 2
2 !

~A6!

with

l 6
2 5

a86b8

2
, a852p21t, b85At~4p21t !. ~A7!

For p25 l 2, simplifies to

@L# tup25 l 25
ip

p2t
. ~A8!

We turn now to Eq.~43!. It has been calculated in@14#. It
is symmetric inp andp8. Hence it can be cast in the form

V5vP with P[p1p8 ~A9!

wherev is given by

v5
1

P2 S ~p21 l 2!L2
1

4pl
lnF ~p1 l !2

~p2 l !2G D . ~A10!

The associated discontinuity is then

@V# t5@v# tP5
p21 l 2

4p21t
@L# tP. ~A11!

Finally let us discuss Eq.~44!. This integral admits the
general decomposition

Y i j 5aPi Pj1bQiQj1cd i j ~A12!

in terms of the vectorsP, defined above, andQ[p2p8.
Clearly, we can write

Pi PjY
i j 5a~P2!21cP2

QiQjY
i j 5b~Q2!21cQ2

d i j Y
i j 5aP21bQ213c ~A13!

~we usedP•Q50). The scalar integrals on the left are, r
spectively,
09600
Pi PjY
i j 5E dV

4p

~P• l!2

~q82!~q2!

5~p21 l 2!L2
p21 l 2

2pl
lnF ~p1 l !2

~p2 l !2G
1

4p21t

4p2 1
p21 l 2

16p3l
t lnF ~p1 l !2

~p2 l !2G
QiQjY

i j 5
1

4 S 221
2p21t

p2

1
p21 l 2

4p3l
t lnF ~p1 l !2

~p2 l !2G D
d i j Y

i j 5 l 2L. ~A14!

Now the three equations can be solved fora, b, andc.
Recall that we only need the discontinuity of Eq.~44!, i.e.
the discontinuities ofa, b, andc. They are

@a# t5
1

4p21t S 2
~p21 l 2!2

4p21t
2 l 2D @L# t

@b# t5
@c# t

t
@L# t

@b# t5S l 22
~p21 l 2!2

4p21t D @L# t . ~A15!

Integrals I c1 and I c2

Here we display the explicit solutions of Eqs.~51! and
~52! for n50,2,4,6:

I c1~0!50

I c1~2!52p

I c1~4!52
p

2
~4p21t !

I c1~6!52
p

8
@~4p21t !212~2p21t !2#

~A16!

and

I c2~0!5p

I c2~2!5
p

2
~2p21t !

I c2~4!5
p

8
~8p4112p2t13t2!

I c2~6!5
p

16
~16p6148p4t130p2t215t3!.

~A17!
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