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Long range forces from pseudoscalar exchange
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Using dispersion theoretic techniques, we consider coherent long range forces arising from double pseudo-
scalar exchange among fermions. We find that Yukawa type coupling leads’ tepii-independent attractive
potentials whereas derivative coupling renders spin-independent repulsive potentials.
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PACS numbdps): 11.80.Fv, 11.55.Fv

I. INTRODUCTION of particles A and B with four-momentp, and py, in the
initial state andp, andpy, in the final state. The Mandelstam
Many extensions of the standard model predict the exisvariables are then

tence of light scalar particles. The axion may be the most
debated one but there are also approximate Nambu- s=(patpp)? t=Q% u=(pa—pyp)? (1)
Goldstone fields associated with family symmetries, moduli . , ,
fields, dilatons, or superpartners of the gravitjde-4]. Ex- Wit Q=Pa—pa=—py+pp. _
change of such particles by ordinary matter will induce M the center of momenture.m) we write the momenta
forces that extend over the Compton wavelength of the par®S
ticle [2,5,6]. However, the effect will be felt by bulk matter

= E 1 1 = E l_
only if the potential is spin independent so that forces can Pa=(Ea:P),  Po=(Ep,=P)

add up coherently over macroscopic distances. Now, a pseu- "= (E. D’ '—(E, —p’ 2
. . . . pa ( a:p )1 pb ( b p )
doscalar particle, such as the axion, is coupled to fermions
via a ys which, in the nonrelativistic limit, flips the spin. Now s=W? where W=E,+E, and t=—Q? with Q
Therefore, single pseudoscalar exchange leads to spir=(0,Q), whose physical region is
dependent forces that do not extend over macroscopic unpo- 5
larized bodieg3,5]. A double exchange of pseudoscalars on s=sy and —4p°<t=<0 ©)
the other hand can coherently sum over a macroscopic
- : . Where
sample of matter because it can leave the spin unflipped. The
explicit form of these forces has been derived and their phe- So=(My+m,)?
nomenological consequences explored in previous work in
the context of nonrelativistic “old fashioned perturbation p?=[s—(Ma+my)?][s—(m,—my)?]/ds.  (4)

theory” [7]. Here we reopen the question of pseudoscalar h ition T initial . final fis d
mediated forces in the light of the powerful dispersion theo- The transition from initial state to final statef is de-

retical techniques devised by Feinberg, Sucher and Au thaxcribed in quantum field theory by the transition matrix ele-

make extensive use of full relativistic quantum field theoryMent
[8,9]. . : Tri=NeMgN; )
In Sec. Il we give the necessary theoretical background
which is nothing but a brief summary of the seminal work bywhere N ; are normalization factors of one particle states
Feinberg and Sucher. Section Il is devoted to the Yukawand My, is the invariant Feynman amplitude.
type interaction and Sec. IV deals with derivatively coupled The definition of our potential follows now from identi-
scalars. We shall see that the two interactions produce quitging this transition amplitude with
different potential§10], a fact that could not have been de-

rived in a purely non-relativistic framewoil 1]. The paper o o uLa-1 _\MaMy
ends with a brief summary and conclusions contained in' i=(P",—P [V+V(W=ho=V+ie)™*V|p,—p) E.Ep ©
Sec. V.

whereh is the sum of the free Dirac Hamiltonians for par-
ticles A and B. Here all quantities are referred to the c.m.
Il. DISPERSIVE FORCES The Feynman amplitudé is understood as a series ex-
Following the general strategy devised by Feinberg,panSion in(even) powers of the coupling constant associated

Sucher and AU8,9], we define a potential in a given quan- to single, double. . . particle exchan_ge in thg t-channel._ We
tum field theory by equating the scattering amplitude for aassume that the potentisll also admits a series expansion
tvyo body process that foI.Iows from the usual Feynman rules, V=v@iy@®4 7)
with the transition amplitude associated to a Sdimger

type equation solved in the manner of Lippmann and So we determin&/ order by order in perturbation theory
Schwinger. Let us be explicit and consider elastic scatteringhrough
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(', =p'IV@[p,~p)=M? (8)
(P, =p'IV¥[p,—p)=M "~ (p’,—p'|VE(W—ho+ie) 'VZ|p,~p). 9

Here we should point out a technicality. The potential we are after must have thé @im
V=A, UA (10

whereA | =A, ,A ., is an operator that projects on the positive energy statés oBecause\ . . |p,—p)=|p,—p) and
AZ++ A, we can rewrite the previous equations that determine the potential as

(p',—p'|UP|p,—py=M? (11)

(p',—p'lUPp,—p)=M{P—(p',—p'[UD(W—hg+ie) A, U?|p,—p). (12)

In principle the above equations permit an iterative deterAssuming that the basic relatioi$1) and (12) hold also in
mination of the potential to the desired order. However, wethe extended domain, we can Fourier invert them as
are not done yet because we would like to have our potentidbllows":
in position space and what we have is the operbtdan the

momentum representation. Therefore, we should Fourier uUM(r;s)= = fdQe QrAL(M(s,—Q?). (16)
transform our results back to configuration space; i.e., we (2 )
wish to findU(™(r) such that We use now the spectral representation given before to
obtain
. U(n)(r.s): 1 f”dtp(n)(s t)e—y“fr (17)
<p’,—p’|U<“)Ip.—p>=f dre'@u™(r). (13 T ’

where, to reach this final form, we conveniently changed the
order in which integrals were done. In short, obtaining long
range potentials amounts to calculating t-channel disconti-
nuities in Feynman diagrams and performmg a Laplace
transform. We shall see how things work out in detail as we
do our specific calculations in the next two sections.

Inversion of the above equation, however, requires know-
ing the function M for all values of the three-momentum.
But we only know the scattering amplitude on shell, i.e. for
p?=p’2. We can use the fact that(s,t) is an analytic
function oft and so analytically extend its domain beyond 1. YUKAWA COUPLING
the physical region, i.e. for all values @P=t.

SupposeM(s,t) is analytic everywhere except for branch
cuts on the real axis and, furthermore, that it vanishes for Y _ i 5
large|t|. Then, using Cauchy’s theorem, we can write Line=—1g¥ 00y ¥ )P (x) (18

Our starting point is the Lagrangian density

where ¢ is a fermion field andg is the pseudoscalar field

which we take to be massle$dhe potential associated to
1 = (Ri(s 1) smg_le partlclg excha}nge is e_asny ob_tam_ed from the discon-
MP=Z | g p (14) tinuity associated with the diagram in Fig. 1. The spectral

T Jt, t'—t density functionp(®)(s,t) is, in this case,
p'?(s,t) = mg?u(p}) y°u(Pa)U(pp) Y°u(py) 8(1). (19)
1 (o (L(s,t') After Laplace transforming we get the relativistic poten-
ML= fto dqr >/ (15 tial operator

) - t'—t -

INotice that our generalized potential will depend on the param-

eters.
wherep(s,t)=[M]/2i is the spectral density arfd\(]; is 2For scalars with mass, the long distance potentials are damped

the d_iscontin_ui_ty ofmM across the cut. Only t_he piece_‘ of the with Yukawa exponentials. In this case, our results are valid for
amplitude arising from the right hand cut will be of interest distances on the order or smaller than the Compton wavelength of
to us for only this piece leads to a long range potental. the exchanged particles.

096006-2



LONG RANGE FORCES FROM PSEUDOSCALAR EXCHANGE PHYSICAL REVIEW 38 096006

/ / U ! /
pa, pb p . k p , k
4 /
P 4
4
\ ’
Y4
IA\
—-—————-- / \
k S \
p k p K
(a) (b)
Pa Dy FIG. 3. Compton scattering amplitude diagrams.
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FIG. 1. Lowest order scattering amplitude. Single pseudoescalar

C ’. —a2ain’
exchange. M*=(k,K";P)=g7u(p’) _2p~k+—2p-k’ u(p). (23
g Making use of the Dirac equation and trading the propa-
2)_ 0.5 0.5
U )_m YaYaYb7b (20 gators for their discontinuities, i.e.
where subindices make explicit that Dirac matrices act either %—» — 27 8(k?) 0 (kY), (29
on spinor A or spinor B. k“+ie
The nonrelativistic limit of equation above leads to the . i
well-known spin-dependent potential we arrive a
ig* Pa- (k' —k)k
2 B, =— Ul =
g [M ]t_ Q.2 dq)ua ’
@D—____ ¥ 5. . 8w 2p,-k'pa-k
Vi At (2my)(2mp) 0, VR0,V (21 Pa* K Pa
NSTRTH M u (25)
with m, andm, the masses of particles A and B respectively. 3l 2p,-k'py-k| P

What we are really interested in@?, i.e. the potential due _ S
to two-particle exchange. To this end we need the discontiwith the two particle phase space explicitly given by
nuities of diagrams in Fig. 2 and the discontinuity of the B , 2 ,2 0
subtraction term in Eq(12) (iteration of the lowest order d®=5(Q—k—k')a(k%) (k™) O (k%)
potentialU(?). X @ (k') d*kd*k’.

The Feynman amplitude associated to Fig. 2 can be writ-
ten

(26)

It is convenient to do the integrals in the c.m. of the pseu-
doscalars, i.e. to go to the t-channel, and then use crossing
i symmetry to recover the original amplitude. We follow here
the notation in Ref{14] where they deal with a related prob-
lem. First define momenta as

pa:(%’p)’ pfﬂé:(g—p)

1
k2+ie k'2+ie

xf d*kd*k’ 8Y(Q—k—k')
XMS(—kk'; POME(k,—k';Py) (22

in terms of the Compton amplitude, depicted in Fig. 3:

pa, pb pa, pb \/E \/f
kl k:(?!k)! k :(?!_k (27)
- - N k .2
\<' and introduce next the unit imaginary vectors
- Y pP=i&amaP (28
k
Pa 2 Pa P P’ =1&pMsD (29)
(a) (b)

FIG. 2. Diagrams contributing to th@(g*) terms of the poten-
tial.

with ga,bz\/l—tmmib andp,p’ are unitary complex vec-
tors verifyingp- p=—1 so that all particles are on-shell.
Now the discontinuity can be put in the form
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ig? dQ XX This discontinuity is a complex function since thgare
[M(4)]t:4ﬂ_bt f Eﬁﬁékuaﬁékub (300 complex and hence adds an imaginary component to the
avh spectral density which would finally contribute an imaginary

where, to simplify expressions, we use piece to the potential. Inspection of E(B6) immediately
tells us that the offending piece comes from the imaginary

b=m,&.myé, parts of thea;. But we should recall that we still have to

subtract the contribution from the iterated lowest order po-
x,=p-k x,=p'-k tential. It turns out that its imaginary part exactly cancels the

unwanted contribution coming from Ed36). Indeed we

have explicitly checked this to be the case. However, in order

to make this paper not too lengthy, we do not include the

Jt intermediate steps of the calculation. We only report on the
(31 result: ie.,

_ 2 2
dab=TaptXap

Tap=m s -
ab 2§a,bma,b
The integration to be carried out is an angular average R[M @] g* AN t—4p? (Ey° )
' = UpUpl V>3 -m
We use the shorthanf{dQ/47) f=(f). Hence, the discon- tTgpw 2P| (4pZ+p)2 TaYa e
tinuity takes the form 0’
ig* X (Epyp—mp) = ap7rt Yo Yo|Yal:
(4) — — — wv
[M )= s ULy, Ualh y, U T (32 a7

with T#7=((X.Xp /dadp) k4K?).

Lorentz covariance dictates the following decomposition: The relevant contribution to the long range potential

comes from the real parts of the, that is, the imaginary
part of Eqg.(36), once the contribution of the iterated poten-

THr =, PP+ a,PLPL+ ag(PLPL+ PLPY) +a,gn" . oten
1PaPat a:PyPytas(PaPy+ Py Pa) Tasg tial has been subtracted. Let us elaborate on the iteration

+a5Q“Q"+ag( QP2+ PLQY) amplitude:
v 1 7Y

Tar(QPy+PEQY) B3 =0 —p UPW—ho+ie) AL UP|p,—p).
in terms of the three independent momenta (38

P.=patpPs, Po=pPptp,, Q=k+k'. (34) This formal expression can be recast in the explicit form

The coefficientsa; can be found to be combinations of g* ) dQ )t 0rer 0
scalar integrals as shown in the Appendix. Now, in the c.m. M =g— J | d'f 27 Ya Up' a(Eava= ¥al—ma)
of the incident particles, the relations
11
ULP UL P Uy =4mauluUup(Weyo— M) Uy X Yo(Eb¥o+ Yo 1= Mp)uaupC(p, 1) 2 (39

UaPoUially Py =4MoUa (W0~ M) Ualipy with g=p—1 and g’=p’ 1 and C(p,!)=LELEL(W—W'
= = 1)=1/E,Ey

+ie).

The integration over momentuhreflects the fact that we
have inserted a complete set of plane wave intermediate
states in Eq(38). We have also used

77 77 — T i
uzPau up Prup=4mympujuujuy

Uy PpuaUnPaup=4u;(Wyg—mgy) uaun(Wyo— Mp) Uy

u.,Qu,=0
aQua A Eit ¥2%a 1+ y2m, 0
UpQu,=0 (39 e 2E,

are easily established with the help of the Dirac equatlonwhereEé: \/EiJr—lz

This leads directly to The iteration amplitude can be conveniently put as fol-

i g4 lows:
Ugup[4mymy(2az—a; —ap)

(47 =
LM 47bt

+4mbeg(a2—a3)+4maWyg(a1—a3) 3This integral as it stands is infrared divergent. A fictitious mass
00 ) regulator is understood to be introduced in the scalar propagators
+ ¥avp(4W-ag+as) — Yamas]ualp.  (36) which is set to zero after the integrations are performed.
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o ;o o 1 1
Mi=g— | 17dIuaupi(Eaya— Ma) (Epyp—mp) v=| ;| T2 (43
Xﬁ—ya-V(Eévg—mb)‘ | w11
+(EaYa—Ma) % V= a7 Yij}UalsC(p,1) (42) Yiizf 7 gz (44)
where
and they can be found in the Appendix.
:f aa 1 1 42 A little bit of Dirac algebra and the results in the Appen-
) 4mq?q? dix allow us to write the discontinuity oM, as

g4 24177 r 0 r 0 p2+|2 0 r .0 1.0 0
[Ml]tzﬁf| dluzug (Ea?’a_ma)(Ebe_mb)_zm[(EaYa_ma)(Ebyb_mb)+(EaYa_ma)(Eb7b_mb)]

4

N (p*+12)? (p*+12)?
4p°+t

apPit [ 2) (Eaya—my) (Epya—mp) + ¥a: '}’b(W —I 2) ] [L]iuaupC(p,1). (45)

The explicit form for[ L], is given in the Appendix. Note that in E¢45) we have

1 1) ,
W—W’+ie:p(W—W’>_IW5(W_W)' (46)

The Dirac delta piece gives a contribution that, as already advertised, will exactly cancel the real part of the fourth order
discontinuity function(37). The principal part integral can be cast in the form

o _ ig* fl dx .
IJ[MI]t_—l&-r\/fMsz)z 9] N C(p,lyujup Nuauy (47)

where we changed the integration variable via the relation

|2 a'+b’'x
2

N| =

[(2p*+1)+Vt(4p*+1)x] (48)
and we used the shorthand
N=(4p?+)%(Egya—Ma) (Epyo— Mp) — 2(4p?+ 1) (p?+1?)
X [(Ea¥a—Ma) (Epyo—My) +(E4ya—ma)(Epyp—my)1+4[2(p*+1%)°—1%(4p*+1)]
X (Ea¥a—Ma) (Epyp—My) = ¥a: 1(4P%+ D[ (4p°+ )17 (p*+1%)7]. (49
It is convenient now to split the functiof(p,l) as

1 p?+124+m3+m3 W’
! ! ! ! + ! -
ELELW| E.E,+ELE,  W+W

2
ePN=Calp.)+ Colp) = oz + (50)

The integral above cannot be done exactly and we will expand the integral in a power sdrasdip?. This is a licit
procedure because we will perform a Laplace transform that heavily weighs thetsmgibn of the spectral function when
determining the long rangéarge n potential and we will eventually take the non-relativistic limit of the potential, i.e. for
p2~0. Furthermore, each extra powertadr p? implies a correction to the potential with an extra power of. We see from
Eq. (50) that the calculation will involve doing integrations of the type

|n

| =fl dx 51
Cl(n)_ _lmp2_|2 ( )
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1 dx
ICZ(n)EJll 1_X2|n. (52)

The explicit results of the integrals needed in our calculation are also given in the appendix. Armed with all this artillery we
find, for theC,; piece of the discontinuity M, ];,

R AN A R
1J = usUp) mym - —
8t (mtmy) T LT ° MM, 2MaM, (M3~ mp  mam,
2(my—my) 3 t?p2  —mi-mimy+m,mi+2md
+ydm,my| —4t+ tp?+ +—+ tp*
Yallla b[ mim, P 32m? " 4m] 2mimg P
2(my—m,) 3 t2p2 2mi+mlm,—m,mi—md
+ yomamy| —4t+ tp2+ +—g+ tp
% b[ mam2 P 32md " 4m] 2mm
1 1 1
+9292m my| 4t+| —+ —— tp2—t3 + + —12p2 n +
Ya% Ml m2 ' m?2 mamb) P zom? " 3omd " 8mZme) P\ amd T amd T m2m?
, 2mM3+m3mp+ mamg + mymg + 2my 2 2p? tp*

~tp e | 2P 5 g

2m§mﬁ ] UgUp (53

and, for theC, piece,

ig* —_ {
u
16\/f(4p2+t)2(ma+ mb)mamb :

I3[ M 2=

2 2 4 3 2.2 3 4
ms+m,m,+m m,+m_my+2m:m; +m,m;+m
0 a a'l'b b 2 2 0.0l & a'''b a'''b a'''b b 2 2
+ YoM M| ———5——t(4p?+1)?|— t(4p+t
YoMaMp T6m,m? (4p°+1t)° | — vavp 16m2m? (4p=+1t)
2 2
mg+ mymy+mg
— Y| ———————1(4Ap%+ )2 | fuLuy, 54
Ya' Yo 16m,m, (4p ) alp (59

In both equations above we kept terms only up to the powersinfip? that will be needed, either in this section or in the next
section, to obtain the leading two-particle exchange potential. In this respe¢b&gdoes not contribute to the leading
potential just under scrutiny. To obtain the spectral densiy, we must finally perform the subtraction

~ (47 _~

Recall that what enters'®) is the real part of the,; in Eq. (36). Although the integrals that go in the are exactly given
in the Appendix, the required subtracti¢d5) and final Laplace transformatiofl7) demand that we here also expand the

integrands in a power series inand p2. After some lengthy algebra, we arrive at the final form for the imaginary part of
[M];:

M= M+ T MIEe" 56
where
~T A4 (4)70dd_ g*m,my, S 3 tp? —3mg+ 2m§m§—3mg .
J[M ]t Uyuy, 2t — tp
4(mg+mp) Vt(4p?+1)? M.y, Amim?

4 3 22 3 4 4 3 22 3 4
—3m,—mymy+ mamb—mamb—:%mbt2p2+ —3Mmy— MMy + MMy — MMy —3m,

+ 77 T2
8mymj, 64m,m,

4 3 2.2 3_ b
0 Ma—M, ,  3My+4m, ,  3My+5mymy+memy—mymp—m;, ,
+y, —2t+ — tpc+ —tp™+ T4 t°p
mgmy 4m,m 8m;m,
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3mj+5mim,+ m2mz—m,m3— mﬁts
72
64m;my

my—m 4m,+3m,
—2t+ B
m,mg 4m,m,

4_ 03 2 2 3 4
4~ Ma—Mamy+mamp+5mmy+3my ,

+'yg tp™+

4.4
8m,mj,

+

4 3 2.2 3 4
—m5—m3mg,+ mamg+5m,m; + Smbtﬂ

64mam;
2 2 4 4 3 2.~2 3 4
400 5y Mam Mamyt mbtp2+ tp* |, Ma+mamy + mgmg + memg + mbt2p2
B2 e g o

4, 3 2.2 3, 4

ma+ mym,+ mimg + m,mg + mj, t3}

77
64mmj

. p2t . t2 +m§+4mamb+mﬁt . 3m3+5mymy+3mg 2m§+mamb+2m§t3 -

Ya Y mam,  4mum, 2m3m; 8m3m; 32mim; a’b

(57)
contains the odd powers aft and . 0 0 b
j[/\/l(‘l)]even_g—ﬁrﬁ' _ (Ma+Mp) Y= My B (Ma+Mp) ya— My 'y'laL'y,u
t T 4gah 6m:m, 6m,m; 4m,m,

0 0
_ MaMp+[(Ma+Mp) Y3 — Mg ][ (Ma+Mp) yp—M] (58)

usu
2.2 aYb
12ma|nb

contains the even powers gf. We did this separation to emphasize that, after the subtraction it6Bg.only the term(58)
survives to leading non-vanishing order. Indeed, &) coincides exactly with Eq53) if we neglect terms beyontf, p?,
or tp?.

The final step involves the Laplace transformation indicated by(Eq. Using the general formula

© 2(2n+1)!
f t"e Wdt= ez (59
0

we get

0 0 b
g* [ (Matmy)yp—my (MatMp)ya—Ma  ¥5Y,
6m3m; 6m,m; 4m,m,

MaMy+ [ (Mg +my,) 72— Mg ][ (My+my,) 78— m |

- 60

which leads, in the non-relativistic limit and concentrating only on the spin-independent terms @0Edo the long-range
attractive potential

4

V(4) - 2
nr 647°r3m,m,

115 (61)
where this operator is supposed to act between two-component Pauli spinors.

IV. DERIVATIVE COUPLING

In this section we consider the interaction Lagrangian

g J—
L= V(07,77 (0 D(x), (62

which is how Goldstone bosons couple to fermions.
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This derivative coupling leads to the same one particle exchange Feynman amplitude as before and therefore to the same
lowest order potentigl20). Hence the iteration amplitude will be also identical. However, the two particle exchange amplitude
(see Fig. 2is different because the Compton amplitude that goes intd2).is different. Indeed, the Compton amplitude,
corresponding to Fig. 3, is now

!

1
TR T —ﬂu(p» (63)

ME(kk';P)=g’ulp’ ){
This amplitude differs from Eq23) by an extra term proportional tm .
We introduce this amplitude in Eq22) and replace the massless propagators by Dirac deltas to obtain the discontinuity
function

Pa: (k' —k)k pb-(k'—k)k}
M= —zquﬁ - ur -
e 2pa-k’pa-k] "0 2py K'pp k|7
ig* 1 1 [k =K P (k'—K) ] _
—W d@{uauaubub mamb—m—a Usuuy W - mk UaUpUp [ - (64)

The first piece is exactly what we had in the last section. We [aaM (Y], the extra added piece that involves the
integrations

4

ig* f AT U U g 65
87 | APy o= = e Ul (65)
and
ig* -k i Vt&ympx
9| qowum, M K|u,+(acb)= —2—jdq>u U ULKU, Vtomox, +(a—b)
8m°m, 2py-kpy-k 8 t 5
5 | 77 (EoMpXp)
I N Y B
=— ————— U U Uy, Up\ = a—
grmytgom, o 0\
o* 1 tr61 uuupu,+ b 66
_167Tmamb§§ Tparcta . uzu upuyt(a—h). (66)
The last line in Eq(66) is reached by demanding Lorentz covariance to write
Xp
d_ k# =abP§+ bbpg"r‘ CbQ’u', (67)
b

by solving for the coefficients as explained in the Appendix, and by using the Dirac equation.
Putting things together,

[AM(‘U]‘:%”;% Wauaﬁ{){ fa[l raarctar{ ! §b 1- Tbarctaré 1b }—l]uaub. (68)
To leading order irt andp? we have
[AMM)]t:LUéuaﬁtv)ub- (69)
16mmym,
In the non-relativistic limit this contributes the quantity
0 4
Avfﬁ)=4i2r L Ape” rgt= m (70)
which exactly cancels contributiai®l), i.e.,
Vit =V +AVIP=0+0(r%). (72)
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Hence, to find the form for the potential in the case under scrutiny, we must go to the next order in our series expansions.
What we need now is to consistently take into account the previously neglected terms in the spectral density

[MP+AMP =M,
Pler= 5 : (72)

So we collect the relevant pieces in E¢s7), (53), and(54) in addition to

ight __
16|'namb Uallp

1 N 1
4m, 4m,

[AM]P~...—

)uaub (73
which is the next to leading term in the expansion of E&g). The result is

(4) —

[MP+AM- M, g4mamb\/f_,_'[ 3mi+5mem,+ 7m2mz+5m,m;:+ 3m;

Pder= 2i ~ 8(my+my) 64mimy
0 3M3+5m3m, — 2m,m; — 3mp —3mi-2m3m,+5m,m3+3m¢
+7 a'''b b+’}’0 a a''o a'llh b
. st : 6
o o 3Mi+2mimy+7mimg+2m,mp+3my .
+va¥p + spin-dependent terms of the Kingl,- ¥, UaUy . (74

64mam;
This spectral density nonetheless gives a vanishing spin-independent potential in the static approximation, i.e.
Vit =0+0(r%). (75

The first non-vanishing contribution to the spin-independent potential arises from the part in the spectral density which is
linear int. Indeed, the explicit form of the spectral density reads

@ MPHAMDY gt 1
P 2i ~ 87 240m’mf

7 ULUp {40 (—3mi—2m3m,+ 2m2m2 — 2m,m— 3m¢) p?

+(6m?+3m3my +4m2m2+3m,m3+6m;)t]
¥22(my+ my)[ (M — 2mZm,+ 3m,m2— 4m3) p?+ (— 12m3+ 6m2m, — 4m,mz+ 3m3)t]
+y22(my+ my)[ (—4m3+3mZm, — 2m,mz + 6my) p?+ (3m: — 4m2m;,+ 6m,m2— 12m?)t]

+y2 vl (8mE+ 2m3m,— 12m2mZ + 2m,m3+ 8mg) p?+ (— 6mi+ 2m3m, — 9m2mz + 2m,m3— 6my)t]}u,u, (76)

where no iterated second order amplitude contributes to thifor the desired spin-independent long range potential. Note
order, and where we picked the term proportional io the  that, as opposed to the Yukawa type coupling potef@ia),
expansion of Eqs(65) and(66). the derivative interaction leads to a repulsive potential.

If we use now

e ) V. CONCLUSIONS
Uz Yala~Ug[ 1+ O(p°)]u, (77) _ , , _
Very light particles can mediate forces extending over

distances on the order of their Compton wavelength. If this
range is macroscopic, unpolarized bulk matter will only ex-
perience the effect of spin-independent interactions. It is a

(79) well-known fact that the Yukawa potential due to pseudo-
scalar exchange depends on spin and as a consequence no
coherent effects do arise on a macroscopic scale, unless of

which, upon Laplace transformation, leads to course our sample is polariz¢8]. However, residuafvan

der Waals typgforces may arise between macroscopic bod-

ies in the case of pseudoscalar mediated interactions, due to

and pass to the static limit, we find

(4 t
pnr :32,n2 2 1a®1b

4
Vg?r'nr:—sg — 15 (790  the exchange of two quanta “at the same time.” The double
128w m;my, 1 helicity flip involved eventually makes the resulting effective
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potential spin-independefT]. with y=p-p’, in terms of various angular integrals in the set
In the preceding sections we have established, with the
help of the formalism developed by Feinberg and Sucher, the 1 XaXp x;
large distance behavior of such residual forces, i.e. those |oz<ﬁ>- 1E<W>, P d.d
aYb aYb aYb

associated to double pseudoscalar exchange. We have con-
sidered two different basic couplings of those scalars to mat- 2

ter fermions. On the one hand we took the ordinary Yukawa
coupling (e.g., this is the way the Higgs particle couples to
fermiong and on the other we considered the derivative cou-
pling (e.g., the axion-fermion interactipnBoth couplings XaXo
reduce to the same spin-flip interaction in the static non- 65<ﬁ>-
relativistic limit. And both interactions also produce identical a-b
one-particle exchangspin-dependepotentials. In spite of

this fact, we have explicitly shown that the spin—independenkq
two-particle exchange potential is substantially different in
both cases. Indeed, for Yukawa coupling we derive r& 1/

attractive long distance behavior whereas for the derivativ%u
coupling the potential, which is now repulsive, falls off as

1/r5. Since, as emphasized, double exchange will lead t
residual macroscopic effects, these effects will be quite dif-
ferent in both cases. So we have found still another instance

dadb

(A2)

These results are obtained after repeated contraction of
. (33) with the independent momenta in our problem and
after solving the resulting algebraic system of equations.
The angular integrals; are given next. The explicit cal-
lation ofl; for i<5 is given in[13], |5 can be found in

14] andl ¢ follows trivially from |5 by interchanginga and

. For the first two integrals from the se42) one gets

-1 -1
where the interaction of pseudoscalars to fermions can be :F++7TN+ :F‘+7TN+
. L . . . . I 0 ’ 1 (A3)
discriminated. Other places are soft pion emission in proton- 27,Th 2
proton scattering or axion bremsstrahlung in a supernova
core[4,15]. where we have defined
Of course, the effects just reported are extremely small for
the light scalars presently contemplated in particle physics, _ 1 N_ 1 I
such as the axion, and thus their experimental detection is F.==N_"arcta D, — N, Tarctan 5—
beyond the reach of present technology. However, there is
much activity and interest on the experimental front and ex- ipst2
periments have been designed and performed that explore N,=— b
the sub-centimeter and sub-millimeter regime with an ever-
increasing sensitivity16,17. And on the theoretical side, _
the completion of the particle physics paradigm may still N — iVp°s+byt
require new superlight scalar particles to exist. - b
ACKNOWLEDGMENTS D.=y* 7.7 (A4)
Work partially supported by the CICYT Research Project L .
AEN95-0882. F.F. acknowledges the CIRIT for financial and the rest is given in terms & and!, by
support. 1 1 ,
l,=—arctan —| —75lg
APPENDIX b b
Coefficientsg; 1 1 )
The coefficients in the tensor decompositi@3) read 3= o, arctan - Tlo
(1= 2l5— g+ Ayl Yy’ —y?le) 1 1
&= 16m2¢2(1—y?)? l,=1— raarctar€ —|- Tbarctaré —
Ta Th
a _t(|1_|5_2|6+4y|4_y2|1_y2|5) + 7272l
’ 16mpéh(1-y?)°
— 1 2
(= lamyli+2ylst2yle— 3yl 4 +yRly) ls=y| 1= marctan = | |~ 7al1
= 160(1-y?)?
1 2
t(l,—ls—lg+2yl,—y?l,) D le=y|1— rarcta - —7ily.
as=-—
N 4(1-y?) (AS5)

096006-10



LONG RANGE FORCES FROM PSEUDOSCALAR EXCHANGE PHYSICAL REVIEW 338 096006

Angular integrals entering the iterated amplitude - dQ  (P-1)?
pyi=[ —Z
We start with Eq.(42). Its discontinuity[L]; has been PiP;Y f 47 (9'9 (9P
obtained in[13]: - ,
pe+I1 [ (p+1)
[ 1 2 2122 =P L o o
[L]i=i| —= 7= = 05190 1°=12)
It V(2 =12)(12—1%) 2 2,2 2
4pc+t  p+l (p+1)
(A6) +——+—=——>tln 5
4p 16p°l (p—1)
with ! 2p%+t
QiQY"=7| -2+ 02
2 a'+b’ 2 2
4= . a'=2p?+t, b'=\t(4p?+t). (A7) p2+1? (p+1)?
2 +=——>—tIn .
4p°l (p=1)
For p?=12, simplifies to 8 Yi=12C. (A14)
i Now the three equations can be solved &rb, andc.
[g]t|p2:|2: —-. (A8) Recall that we only need the discontinuity of Eg4), i.e.
pt the discontinuities o, b, andc. They are
(p2+|2)2
We turn now to Eq(43). It has been calculated [14]. It [a],= — i _|2)[£]t
is symmetric inp andp’. Hence it can be cast in the form 4p°+t 4p+t
— H — ! o [C]’[
V=vP with P=p+p (A9) [bli= e [L];
wherev is given by , (p?+1%)?
[b]t_(l T ot [£L]:. (A15)
1 s 1 [(p+1)?
V= p2 (p=+l )£_4T)|In (p—H2|) (A10) Integrals 1, and |,
Here we display the explicit solutions of Eq&l) and
The associated discontinuity is then (52) for n=0,2,4,6:
p2+|2 lc1(0)=0
[V]i=[v]P= M[‘C]tp- (A11) lea(2)=—m
T oan2
Finally let us discuss Eq44). This integral admits the lea(4)=— 5 (4p™+1)
general decomposition
- _ E 2 2 2 2
Y, =aP,P,+bQQ,+cs; (A12) le1(6)=— g [(4p"+ )" +2(2p"+1)7]
(Al6)
in terms of the vector$, defined above, an@=p—p’. and
Clearly, we can write
le2(0) =
PP,Y=a(P?)2+cP? o
le2(2)= 5 (2p*+1)
QiQY=b(Q*?*+cQ?
aw
) leo(4)= §(8p4+ 12p%t+ 3t?)
8;Y1=aP?+bQ?+3c (A13)
| (6):1(16p6+48p4t+30p2t2+5t3)
(we usedP-Q=0). The scalar integrals on the left are, re- c2 16 '
spectively, (A17)
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