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Gravitational couplings of neutrinos in a medium
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In a medium that contains electrons but not the other charged leptons, such as normal matter, the gravita-
tional interactions of neutrinos are not the same for all the neutrino flavors. We calculate the leading order
matter-induced corrections to the neutrino gravitational interactions in such a medium and consider some of
their physical implications.S0556-282(98)05921-9
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[. INTRODUCTION corresponding rate in the vacuymiQ].
The observation that the universality of the neutrino inter-

When neutrinos propagate through a medium, the effectactions is broken by the background medium is a special
of the background particles can influence their properties irtase of a more general concept. It is the notion that while the
important ways. The possible consequences of these effedisndamental Lagrangian of the theory is invariant under cer-
have been the subject of continuous research activity in retain symmetry operations, a given background medium may
cent years, largely motivated by their implications in a vari-not be invariant under the same operations. Thus, for ex-
ety of astrophysical and cosmological contexts. Some example, normal matter is neith€P nor CPT asymmetric, a
amples of the latter include the original Mikheyev-Smirnov- fact that has interesting consequences for the propagation of
Wolfenstein(MSW) mechanisnj1] and its variations in the photons in achiral) medium such as a gas of neutrirjd4d].
context of the solar neutrino problef@], and the explana- Taking this notion to the extreme, we can even think of the
tion of the large birth velocities of pulsars in terms of the medium as breaking Lorentz invariance since it specifies a
asymmetric emission of neutrinos from the cooling protostarpreferred frame of reference; i.e., that in which the medium
which is produced by the matter-enhanced neutrino oscillais at rest. In the context of QSFT, this breakdown of Lorentz
tions biased by the supernova’s magnetic fi&d invariance is traded by an explicit dependence of the calcu-

Among the various approaches that exist to the study ofated physical properties of the particles on the velocity four-
the matter effects on the propagation of neutrinos, the methvector of the background medium. In this way, for example,
ods of quantum statistical field theof@SFT) have proven the photon acquires a gauge invariant mass, a left-handed
to be very useful ones. These methods have been applied meutrino acquires a chiral-invariant mass and a Majorana
reproduce the Wolfenstein formula for the index of refractionneutrino acquires electromagnetic dipole moments.
of neutrinos in matter and to obtain corrections it 7]. In The main observation of the present paper is that, in the
addition, they have been used to determine the electromagresence of medium, the breakdown of the universality of
netic properties of a neutrino that propagates in matter byhe neutrino interactions includes their gravitational interac-
means of the one-loop calculation of the electromagnetitions as well. In analogy with the fact that, in a medium that
vertex function induced by the neutrino interactions with thecontains electrons but no muons or taus, the electron neutri-
background particle$8]. Furthermore, it was observed in nos have different electromagnetic interactions than the
Ref. [8] that, in the presence of a static magnetic field, thenuon or tau neutrinos, their gravitational interactions also
effective electromagnetic interactions of the neutrinos prodiffer. In this work we determine the effective gravitational
duce an additional contribution to the neutrino index of re-interactions of neutrinos in a matter background, by calculat-
fraction which modifies the condition for resonant oscilla-ing the one-loop contribution to the neutrino stress-energy
tions in matter[9]. This effect is in fact the origin of the tensor, which is the gravitational analogue of the electromag-
possible explanation of the large birth velocities of pulsarsnetic current.
mentioned above. We wish to clarify at the outset the following point. The

In all these situations, a common theme has been the olpossibility that the observed deficit of solar neutrinos can be
servation that the universality of the neutrino interactions isascribed to neutrino oscillations that are driven by flavor
broken due to the fact that normal matter contains electronshanging interactions of gravitational origin has been pro-
but not the other charged leptons. Therefore, in a mediunposed previously12]. In these works, it is postulated that
such as the Sun or a supernova, the electron neutrinos on ottee gravitational interaction of neutrinos has the same form
hand, and the tau and muon neutrinos on the other, are a&s the standard one, but with different coupling strengths for
fected in different ways. This fact implies that in a sucheach neutrino flavor. This assumption violates the equiva-
medium the Glashow-lliopoulos-MaiariGIM) mechanism lence principle in a fundamental way, and in fact destroys the
is not operative, and it explains why the radiative decay of asymmetry that makes it consistent to assume the existence of
neutrino in a medium is greatly enhanced compared to tha massless graviton in the vacuum. On the other hand, no
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such fundamental breaking of the equivalence principle is
assumed in the effect that we describe in the present work. A=f d*x., 23
Our calculations are based on the standard model of particle
interactions, together with the commonly accepted linearizeénd then look at the different terms ity which will be rel-
gravitational coupling of fermions via the stress-energy tenevant for us.
sor, with a universal coupling strength. The non-universal
character of the effective gravitational coupling of the neu- A. Fermion couplings
trinos, whose calculation is the aim of this work, is a conse- ) ) _
quence of the flavor asymmetry of the medium and not of the Th€ Lagrangian for a free Dirac fermion of mass can
fundamental Lagrangian, as we have emphasized above. P& written in the explicitly Hermitian form

We have found convenient to organize the presentation in
the following manner. In Sec. I, we outline the linearized gg )=
theory of the gravitational coupling of fermions, including

the interaction terms with th&/ and Z gauge bosons. This The Lagrangian in the presence of gravitational interactions
has been necessary because the formulas that are commonly - . ;

used and/or quoted in the literature are valid when the fer o{?talned from th;s by making t_he replacemeyftaﬂ_
mions that couple to the graviton are on their mass-shell_ ¥ Da, where they" denote the ordinary gamma matrices
Therefore, it is not appropriate to use them for the internaf"lnd

fermion lines in the one-loop diagrams that we need to con- i

sider. Armed with the preliminaries of Sec. I, the one-loop DaZUa”( d,— ZwaMUbC
diagrams for the induced gravitational interactions of the

neutrinos in a background composed of electrons and nucles 4 gravity-covariant derivative, witlr2®=i/2[ y2,°],

ons are calculated in sec. lll. Thefe we obtain the eﬁeCt'Veandva“ being the vierbein vector fields. These are defined in
gravitational vertex function as an integral over the momen-, way that
tum distribution functions of the background particles. We

conclude that section with some general remarks about the nabva#UE:gMV’
consistency of the one-loop formulas, and in particular we

show explicitly that our result for the effective gravitational whereg,,, is the space-time metric anghy, is the flat space
vertex of the neutrinos, including the background-inducednetric, which we take to be diag1,—1,—1). The spin
terms, is transverse as it should be. Using the one-loop folconnection coefficients are given by

mulas for the vertex function as a starting point, we deter-

mine in Sec. IV the modification to the neutrino index of @aby=Var (300" + T 05", (2.5
refraction in a medium in the presence of a static gravita-

tional field. There we consider also some possible applicawherel’y ., are the Christoffel symbols. This formula can be
tions of these results, giving some of the details in the Apexpressed explicitly in terms of the vierbein fields in the

— M. (2.2

i —
E lﬂ’y’“aﬂlﬂ‘f’H.C.

2.3

g/.anvaV: Mab» (24)

pendix, and Sec. V contains our conclusions. form
1 " Iz
Il. TREE-LEVEL GRAVITATIONAL COUPLINGS "’abvzi{va (930 0pVby) ¥ 06" (00ay = Iy ay)
It is well known that the linear, or weak field, approxima- +0 0" 0 (3,0%,— 3,0°,)} (2.6)

tion to the metric theory of gravity is equivalent to a quan-
tum particle description of gravitational interactions in which In addition to these changes, we have to include the deter-
the graviton emerges as a spin-2 quantum field coupled tminant of the matrix ,,, , which we denote by det], as an

the stress-energy tensor. The formulas for the gravitationadverall factor.

vertices is given and discussed in many textbooks, at least Thus, in the absence of all interactions except the gravi-
for the common cases of spin 0,1/2, and spif€., photons  tational ones, the Dirac Lagrangian is given [ig]

particles. However, the formulas that are customarily quoted

are given for the case in which the particles are on their f I — I

masg-shell, which is sufficient for the :I.-{l)pplications that have £ ):de(”)( 2 wwva”( Iu~ Zwbwabc y+H.c.

been considered in the literature, but not for the present one.

This is particularly true for the fermions. m El//] 2.7
In the one-loop calculation that we are considering, there f ' '

are diagrams in which the graviton couples to internal elec-

tron lines in a loop. For them, the on-shell form for the With this construction, the term in the action corresponding
gravitational vertex is not valid. Furthermore, there are otheto Lg) is invariant under general coordinate transforma-
interaction vertices that are unique to our case in hand. Itions, labeled by the greek indices, and also under local Lor-
this section we consider all the couplings that relevant to ouentz transformations labeled by the latin indices. The linear
calculation in detail. We define the actioh in presence of theory of the gravitational couplings is obtained by assuming
gravitation by that, for weak gravitational fields, we can write
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= My 20 29 T)(x)=| 7 Y0070, 7,0, 1000 +Hic.
and treat the second term on the right side as a perturbation.
The quantityx is related to the Newton'’s consta@tthrough — N, L gf )(X). (2.17
the equation
From Eqgs.(2.16 and(2.17 it follows that the term corre-

k=+87G, (2.9  sponding to the gravitational fermion vertex in a Feynman
diagram is—i«V{]), where
in order thath,,,,, identified with the graviton quantum field,
has the correctly normalized kinetic energy term in the La-
grangian. The vierbeins cannot be determined uniquely from (f) =1 ' '
Eq.(2.4). They can be determined only up to a local Lorentz Vir (PP =2L7(PF P, 7 (P+P),]
transformation which, however, would leave the action in- —%nw[(p—mf)Jr(p’—mf)]. (2.18

variant. Therefore, we can choose in particular

In the above considerations we have assumed that the
fermionf is a Dirac particle with a given mass. On the other
hand, it is easy to infer by inspection that similar arguments
yield the formula

Vau= Napt KNay, (2.10

which in turn gives
1
Vi(kk) = 207, (k+K'),
det(v)=1+kn,,h*". (2.11)

1
Ty (k+K) L= 5 7, [K+K'JL
Note that this also implies that Y ] 2 Tn [ ]

(2.19

gHr=nh"=2Kkh*" (212 for the case of a chiral, left-handed neutrino.
Notice that if we take the matrix element of the operator

since the matrixg#” is the inverse of the metrig,, and  T4,)(0) between on-shell fermion states, with incoming and

from Eq.(2.4) outgoing momentg and p’ respectively, the term propor-
tional to »,, in Eqg. (2.17) gives no contribution and we
obtain
v = — kht. (2.13
. . . R 1
We now substitute these relations into Eg.7), and keep <f(p’)|TgV)(0)|f(p)>:Z u(p )y, (p+p"),

only the terms that are at most lineardnOnce this approxi-
mation is made, it is no longer necessary to distinguish be-
tween greek and latin indicdsince any difference between
them would contribute only to higher order i) and there-
fore we write everything in terms of the greek indices fromwhich is the expression that is quoted in textbodkd].
now on. From Eq(2.6) we obtain However, for the purposes of the one-loop calculation that
we carry out in Sec. lll, we need to use the vertex for off-
shell fermions given in Eq(2.18. In particular, as we will
show in Sec. lll, the one-loop calculation of the effective
gravitational vertex of the neutrino gives a result that satis-
fies the transversality condition provided that the term pro-
portional to7,,, in Eq. (2.18) is included in the calculation
of the loop diagrams.

+v,(p+p")tu(p), (2.20

®,y=3(d,h,,—3d,h.,), (2.19

wry

and it then follows that the term involving thematrices in
Eq. (2.7) drops out because it is proportional to the quantity

{yu 10-)\1/}—’_(#(_)1)):0- (215
From the other terms we then obtain the gravitational inter- B. Fermion and W boson couplings
action Lagrangian of the fermion in the form The interactions that drive the effective gravitational ver-
ff g tex of the neutrinos, are the standard weak interactions with
L= —kh* ()T}, (%), (2.16  the particles of the background. Let us consider the charged-

current interactions first. In the presence of a gravitational

where the stress-energy tensor operdigy for the fermion field, the interaction terne_ y“W, v, in the Lagrangian is
field is given by modified according to
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g — whereﬁffc) is the standard charged-current interaction La-
E(gcc)Zde(v) —5eLyava3#W"+ Hc.;. (2.2) grangian

In the linear approximation given by EqR.10 and(2.11), £g°°)=

g _
— —WHte +H.c., 2.2
this becomes A LY VL (2.23

LEO=L 04 £, (222 while

_ 1 _ _
L Efc)= - K%h‘“’ 7, We Y v+ E(WMeLYVVL"'WVeL?’MVL) +H.c.
g PHMY
== ‘[ MV}\peLy VLW h#”+H. c., (224)
|
where proportional to the/W mass in the coupling of the/ to the
L1 graviton, diagram(B) gives a contribution also of order
Quing= v Map T 2L Wun Topt Muptnl- (2.29 1/M3, that must be taken into account. As far as these terms

only are concerned, we can then replace 8 by
C. W boson couplings

(WW) _ 2 7 AN

The gravitational vertex for photons is well known. For LR =M@y, ) h P WIW?, (229
the W boson, the only difference comes from the mass term
in the kinetic energy part of the Lagrangian. Indeed, from theVhere

usual expression for the kinetic energy of Mévector bo-
son, a,uv)\p nuvn)\p+ /MY 77Vp+ NuwpMox - (230}

E(W)—de‘(v) — —\N* JWAY— M\ZN\N* WH (2.26 D. Including the neutral-current couplings
® ! ’
The charged current interaction discussed above are rel-
and then making the substitutions given in E¢g8) and  €vant only for theve’'s. The v,’s and thev.'s will interact

(2.12, we arrive at with the electrons only through the neutral current. More-
over, a normal background contains nucleons as well, which
LMV=Wy MW, (2.27  interact with all neutrinos via the neutral current. To take

where£ ™ is the standard form of the kinetic energy for the

free W boson, while
4
1
CE]WVV):_KhMV (E\NZBWaB_M\ZN\NzWa) M ;F/\/&‘z
Ve(kl) e(p -9 e(p) Ve(k) VE(k
+(Wh We—MEWEW, +H.c) (2.29
q
(A) (B)
gives the gravitational vertex.
; ; . w
Of particular importance for us are the terms proportional
to theW mass. The reason is the following. In the analogous ‘SJ\/V\/%\
calculation of the charged-current contribution to the electro- - s,
magnetic neutrino vertex in a medium, the dominant termis < “v) o
of order 1M3, and it arises from the diagram that corre-
sponds to diagrarfd) in Fig. 1, in which the photon couples ) 4
to the electron line in the loop. The diagram in which the
photon couples to the intern line, corresponding to dia- FIG. 1. W exchange diagrams for the one-loop contribution to

gram(B), is of order 1My,, and therefore it is negligible. In  the v, gravitational vertex in a background of electrons. The
the present case, because of the presence of the term thatigided line represents the graviton.
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these interactions into account, we consider the neutral cur-
rent couplings of theZ-boson. In absence of gravitation, 1) 1(p) 1)
these are
fle—9)
Ly9=—g,Z" > Vil YuViL
i=eu,T
w(k)  wlk vilk ui(k) (k) y,(k’ ,,,(k)
+ > f_yﬂ(xf+vfy5>f}, (2.3) (4) "o ©
f=e,p,n
FIG. 2. Z-exchange diagrams for the one-loop contribution to
where, in the standard model, the gravitational vertex of any neutrino flavar<e, u, 7) in a back-

ground of electrons and nucleons.
9z=9/(2 cosfy)

—Xo=X,=1—2sirf, erator 'T'My(x), between incoming and outgoing neutrino
© 2 states with momentk andk’ respectively, is given by

Ye=7 (v(K)[T u(0) () =u (KT (kK u (). (3.

Yn=—Yp=30a, (2.32 _ o _ _
It is useful to divide the relevant one-loop diagrams into the
with ga=1.26 being the renormalization constant of thetwo sets given in Figs. 1 and 2, according to whether they
axial-vector current of the nucleon. It is also useful to re-involve theW or the Z boson. In the diagrams, and in the

member that, in the standard model, formulas that follow,g stands for the outgoing graviton mo-
’ 5 mentum
%:g_zz 2GE. (2.33
M7z  4Myy,
g=k—k'. 3.2

Following the arguments that were used for the charged cur-
rent, we find that in presence of gravitation, these interac-

tions will be modified to The additional diagrams in which the graviton line comes out
from one of the external neutrino legs are not shown, since
LY=o+ Lp?, (234 they are 1-particle reducible and do not contributd )
The proper way to take them into account in the calculation
where £ {'® has been given above in E@.31), and of the amplitude for any given process, is by choosing the
external neutrino spinou, (k) to be the(properly normal-
(noy_ _ — ized solution of the effective Dirac equation for the propa-
SLE LR i=e2,,m MLy v gating neutrino mode in the mediumc,] instead of thepspl?nor

representing the free-particle solution of the equation in the
TN PRAY vacuum. This will be discussed in more detail in Sec. Il D.
* 2 ty (xf+Yf75)f}Z he, (239 As commented eatrlier, thé&/-exchange diagrams of Fig.
1 contribute only to the gravitational coupling gf. In con-
wherea,,,, has been defined in EqR.25. Also, there are trast, the diagrams shown in Fig. 2 contribute equally to the
terms which come from the Lagrangian of the pdreoson  gravitational vertex of all the neutrino flavons, , ,, and
which g|ve interactions with the graviton and are propor-therefore are not relevant in phenomena that involve transi-

f=e,p,n

tional to M2 7. These are tions between the standard, weak (8)ddoublet neutrinos.

However, in processes in which the so-called sterile neutri-
LiFP=3 kMZa),,, hwrz ze, (2.39  nos participate, these flavor-diagonal contributions are im-

portant. Moreover, we consider them first since the results

wherea,,  , is the tensor defined in E¢2.30. for the W-diagrams can be easily obtained from the corre-
sponding ones for th&-diagrams by making some simple

I1l. INDUCED GRAVITATIONAL VERTEX substitutions.
OF NEUTRINOS
We now consider the background contributions to the A. The Z-mediated diagrams

neutrino gravitational vertex. We denote the proper vertex )

function for off-shell neutrinos, including the background- 1. Diagram (A)

induced contributions, b)FELVV)(k,k’). It is is defined such This contribution, which will be marked by the super-

that the matrix element of the total stress-energy tensor ogscript 2A, is given by
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f d*p where
f=e,p,n

i
i T A 20 A
IKF,u,V ( IgZ) ( IK) sz L (277)4

z AL)=(p" +m)V! ) (p.p ) (p+mp).  (3.10

X Ty (Xe+ Y ys)iSE (p VL)
X(p,p")isE (p)], (3.3

or equivalently

Using forV,,,’ the expression given in E¢2.18, we have

Alf)=all) =37, [(p'+mp)(p?—m?)

+(p+mg)(p'>—mp)] (3.1
pn_192 f 0D X+ Yy list
w =mz?h 2 | Gt My (Xs+Ysy5)i Sk where
X (p" )V (p,p"ist (p)], (3.4 all)=(p" +mp)i{yu(p+p"),+ vu(p+P) H(B+my).
(3.12
In these expressions we have introduced the shorthand . . .
When Eq.(3.11) is substituted in Eq(3.9), the terms that
p'=p-—q, (3.5 involve the factor ofy,, are reduced very simply, and the

result can be expressed in the form
which will be used throughout the calculations, and we have
neglected the momentum dependence ofah@opagator in
anticipation of the fact that we are interested only in the I eN=AZD—b%8Ly,,, (3.13
terms that are linear in the Fermi const@. Further,S{"’

is the thermal fermion propagator which is given by whereA(ZV) is given by the same expression given in Eq.
i (3.9 but with the replacemer&,,—a,,,, and
ISt (p)=(p+my) m—Zwﬁ(pz—m?)m(p) :
(3.6
b@=2 Xiby, (3.14
where f
o(p-v) 6(—p-v) with

71(P)= eﬁ(p~v7,uf)+1+ e Blpvtup g (3.7

with 8 being the inverse temperaturg; the chemical po- dp 0 2
tential andv* the velocity four-vector of the mediufd5]. In bf:4‘szFf Wé(p —mg) pi(p)p-v. (3.19
the frame in which the medium is at rest; has components

Uﬂ:(lf)). (3.9 In arriving at Eq.(3.13 we have used the formula

When the expressions f&')(p) andS{(p’) given in Eq. dp

(3.6 are substituted in Eq(3.4), three kinds of term are 41/QGFJ ?é(pz—m?) n(P)P,=bsv,, (3.16
generated, according to whether they contain none, one or (2)

two factors of ;. We are interested in the terms with at

least one factor ofy;, since that is where the background gnd the relation/iGF:gilMé.

dependence of the neutrino gravitational vertex will come |t is convenient to introduce the particle and antiparticle
from. However, the terms with two factors gf are relevant momentum distribution functions

only in the calculation of the absorptive part of the ampli-

tude, which we are not considering here, and therefore the

important terms for us are the ones having a single factor of fe1(ps)= PYCITEmE (3.17
n¢. Denoting their contribution to the vertex function by
I'7(2% we then obtain where the upper and the lower signs hold for the particle and
the antiparticle respectively, and
N s d“p
[2A = =5 N f ——— Ty (X + Yiys)A 5 322
2% Mé‘y f=Son (277)3 [7)\( f f75) ,uv] pr:(Ef,P), Ef: P2+mf2. (31a
S(p?=m{)ne(p)  S(p'*~mf) pe(p’) The corresponding total number densities are given by
T pr-mi )

B dip - P
(39) nf—2 Wff, I’lf—ZJ Wff, (319)
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and in terms of them Eg3.15 can then be written in the

oE
form AR =z (L f (—g(xp —mg) ()
z
b;=v2Gg(n¢+np). (3.20 X{XfoV)x(paQ)—Yf Z(p.q)
9°-2p-q
The expression fon %) can be simplified by taking the XN, (p, ~ )+ VN2, (p,~ )
traces and making change of integration varigblep+q in + %+ 2p-q E (3.21
the term containing the factor ofs(p’). In this way we
obtain where
|
NSO (P A)= (2P =) [ 2P, Py~ (PAC,+ AuD,) + (P Q) 7y, ]+ (o)
NSZA(P,0)= (2P 0) 4l €007 P7+ (). (322
It is useful to observe that these quantities satisfy the relations
N (—p,—a)=—N2(p,a), (3.23

from which other similar relations can be obtained. Using them, after performing®titegration in Eq.(3.21) we obtain
finally

,LLV}\( Ps, Q)
—2p¢-q

97
A=z (PO f SE2n )f Xi(fi=fp)

N2\ (ps,) ”

_ L _

+(q Q)} Yi(fs+15) ~2piq (q——a)|-
(3.29

Further reduction of E¢(3.24) is not possible without making some assumption about the conditions of the electron gas, in
order to be able to carry out the required integrations. Before turning to that, we consider the contributions from the other
diagrams, that must be added to E8.13 to yield the full one-loop result for the induced vertex function.

2. Diagram (B)

Because this diagram contains t&eboson propagators, we retain only the terms proportionM%drom theZZh vertex
given in Eq.(2.36), since the rest will yield results proportional td\/ll‘}. For the same reason, we also neglect the momentum
dependence of the twé propagators in the diagram. In this way we then obtain

. . i |2 d*p .
— kT2 =—(-igz)? —| (ixM3a},, ) y'"L> f 7 Ty (X¢+ Yiy5)iSE (p)] (3.29
M2 T (27)

for the contribution to the vertex function. For the background-dependent part, this yields

2 4
! g ' d p
P == Gz LS f 23 TV Xt Yey5) (B M) 8(p% = mi) 7¢(p) (3.26

which, by taking the trace and using E¢3.14 and(3.16, can be reduced to
F/’L(VZB)Z — b(z)a;y)\py}‘Lv”
= _b(Z)[n,u.Vﬁ—i_ yﬂvV+ ’)/VU;L]L' (327)
3. Diagrams (C) and (D)

For these diagrams we use the vertices given in Ej81) and(2.35. The O(1/M %) term is given by

. . d*p .
—iKDED == (= lgz>(MZ)<—|ngaW>y*LZ f Gays TV X+ Yiy9)iSE(p)], (3.29

and, sincea,,,,, is symmetric in the indices andp, it follows thatT'{>> =T . Following the same steps that led to Eq.
(3.27) we find for the background dependent part
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[29=1=0@ 5, 6+5(y,0,+vv,)]L. (3.29

B. W-exchange diagrams
1. Diagram (A)
We now consider the diagrams shown in Fig. 1. We begin with diagi@mwhich corresponds to the expression

.\ 2 . 4
. ig , i d’p . :
_ A 2 (= _ L (®)(n’ nige A
IKF/}.V ( ‘/§> ( IK)(M\Z/V)J (277)47)\L|SF (p )V,u,u(plp )ISF (p)7 Lv (33()
where we have neglected the momentum dependence &Vthepagator. Using the identity
(Y'LM(pnL)=—(L)T(My,L), (3.3)

which is valid for any 4<4 matrix M, Eq.(3.30 can be written as

ig? dp _ , N
Fi}ﬁ)=(m) at f Za® TTSE(P)V,(PPISE (P ML (3.32

This expression coincides with what is obtained from B34 by discarding the nucleon terms and then making there the
substitutions

o ¢
M2 2Mg,’

1

Xe=z, Ye——3. (3.33

With this observation, the result for the background-induced paﬁﬁﬁf) can be immediately deduced to be
LN =AL —bebla,,, (334
where

N,(Uillz)\( pe vq)

Nfu.zlz)\(pe 1q)
92— 2pe-q -

0°—2pe-q

2 3
g d°P
W) _ \ _

+(q——q) +(fe+ fg)

(QH—Q)H- (3.39

2. Other diagrams

The steps to follow in the calculation of the other diagrams of Fig. 1 are very similar to those for the corresponding
diagrams of Fig. 2. Omitting the details here, the background-dependent terms are given by the formulas

[
_iKF;L(:B)Z—(_E

2 I 2 d4p
ﬁ (WV) (| KM\Z/Va;LVaﬁ)j (2—77)3 5(p2—m§) ne(p) ’}’QL(lé-f—me) ’yBL

. 2
(R )
V2

i fd4—p5 2—m3 “L(p+me) yPL (3.39
M\ZN( IKanaﬁ) (277_)3 (p me)ﬂe(p)’)’ (p me)y ’ .

with /(P =T Using Eq.(3.16), after some straightfor- C. Complete vertex

ward algebra these reduce to We have completed the calculation of the diagrams that
give rise to the background-induced part of the proper vertex
of neutrinos with the graviton. The complete vertex function
defined in Eq.(3.1) is obtained by adding these individual
contributions. For the diagrams of Fig. 1 the results are given
in Egs.(3.34) and(3.37), and adding them we obtain

DoAer OB PO+ 0D =AM - (3.39

L

r(®=py — w+1( by, +7,67,)
mv e 7];“» 2 yﬂ YV yV 7;4

1
1(1C) _ 1D) _
FM(V )_F,:L(V )_Ebe

1
208 = 5 (Vub vty m)}L- For the diagrams of Fig. 2, the sum of the individual results
(3.37 given in Egs.(3.13, (3.27 and(3.29 yields
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IR 7128 /(20 L [ A (D) (339 1)
As we have already mentioned ;) contributes to the ver- W
tex only when the neutrino i, while A{)) contributes ')’J\/‘\/Lg
equally for all the weak-doublet neutrinos, including the Z
In addition, the vertex function has the tree-level term which,
for chiral, left-handed neutrinos is given in EQ.18. ve(k) e(p) ve(k) vilk) (k)
In this way we find that the complete effective vertex (A) (B)

function for the various neutrino flavors is given by
FIG. 3. One-loop diagrams for the self-energy of neutrinos in a

T®=v®» A , (3.40 medium. Diagram(A) contributes only tov., while diagram(B)
pyo Ty Ry contributes equally toe, v, andv,.
where
with wg corresponding to the neutrino angg to the an-
AWLAZD for b, tineutrino, which in the general case must be considered as
= X(Z) fgr . (3.4)  implicit equations that must be solved fary, and wx as
ald me functions ofK. In the context of our perturbative approach,
the solutions to Eq(3.46) are given approximately by

A

V..
Notice that the vertex function is symmetric in the indices

M,v, as it should be. o =K+[1+a(K,K)Jb(K,K)

D. Transversality of the vertex ox=K—[1+a(—K,K)]b(—K,K).

Before proceeding to the explicit calculations of the neu- (3.47
trino vertex using the one-loop formula given above, it is
useful to check that the complete effective vertex satisfies th
transversality condition

At the one-loop level, the neutrino self-energy in the pres-

ence of matter is determined by calculating the diagrams

shown in Fig. 3, which has been carried out in detail in the

q“UL(k’)FL”,f(k,k’)uL(k)=q”UL(k’)FL”y(k,k’)uL(k)=0. references cited. The result is that, to ordemy/, the pa-
(3.42  rametera vanishes while

Here, be+b@ for v,
Bma= (2) (3.48
N b for v, v,
k,lL= (wK !K)
whereb, andb'® are given in Eqs(3.15 and (3.14), re-
K'“=(wy K'), (3.43 spectively. In this casey =K + b, for the neutrinos, and it
follows that the spinors satisfy the equation
where wy is the correct dispersion relation for a neutrino
mode propagating with momentuknin the medium, andi (K=bpmatf)Lu (k) =0 (3.49
is the corr_espondmg spinor. As shown severgl years[ago and the relation
6], the spinoru (k) and the corresponding dispersion rela-
tion are found by solving the effective Dirac equation k?=2by.k-v—b? (3.50
(k=Zem)uL(k)=0, (3.44 holds. These, together with the analogous relationsif&f)

andk’?, imply the useful formulas
where X o is the neutrino self-energy in the medium. The Py

;::rirrl?lity of the neutrino interactions dictate th&g; has the U (k")du, (k)=0

2_ 12— .
2= (ak+bo)L, (3.4H k“—k 2b.0-v. 350

We are now in the position to consider the transversality
property of the effective vertex. From E(B.22) it follows

where, in generak andb are functions ofwx andK. In this
form, the dispersion relations implied by E&.44) are given

by that
b(wy ,K
W= +% 9“NY,=(2p-q—0%)[4P,Pu—20,Pe— Pu+ P U7,0]
~a(ox,
“N@) = (2p-q—g?)i pP 3.5
b(_a K q nva ( p-g—q )Ieva)\pq p. ( . 2)
o =K— ———— (3.46
l1-a(—wg,K Then from Eq.(3.35
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g2 d’p
qMAELVZ): Nf(ﬂyaL)J Wﬁ(pz_mg) 779(F’)[2qvpa
W

+P, 0.~ p'qnva]

:%be[zqvﬁ_'—vuq_v'q)/v]l-v (353
and similarly
q“AZ)=3b@[29,4 +v,4-v-qy,]JL. (354

On the other hand, from E¢2.19, we obtain

gV =Ld(k+K'),+ (K—K'?)y,]L— 1q,[K+K']L.
(3.55

From these, and using the relations given in E§s49 and

PHYSICAL REVIEW D58 096005

addition, we now restrict ourselves to a uniform field in
space, which means that can write

P(K' —k)=(2m)*6 (k' — k) ¢~ 4.5

The justification for this is the usual one. Namely, we as-
sume that we are working in a region of space that is micro-
scopically large but macroscopically small, and therefore the
external field is approximately constant over it. The macro-

scopic dependence of the external field orcan then be
restored at the end.
Thus, substituting Eq4.5) into Eq. (4.3), we obtain

S,,=—i(2m)*6 ¥ (k—k")(V)(kk)

+A,,(0,0—0)(2v "= n*") ¢>  (4.6)

(3.51), it is easy to verify that the transversality condition |gentifying the gravitational contribution to the self-energy

stated in Eq(3.42 is indeed satisfied.

IV. NEUTRINO INDEX OF REFRACTION
IN A GRAVITATIONAL FIELD

A. The self-energy of neutrinos in a static gravitational field

Our aim in this section is to determine the correction to

the neutrino index of refraction in the presence of a static h
gravitational field. To this end, let us consider the scattering/""€®

of a neutrino by a static gravitational potentisf*(x) which

is produced by a static mass densﬁ?‘t(i). Defining the

Fourier transform of®* by

ext o dgq, >0 1iq’ X
¢ [(X)Zf Wd)(q )e'd X, 4.1

with a similar definition forp(q’), the corresponding metric

is such that, in momentum space,
-, 1
h#*(a")=—é(a') (2v* "= 7*), (4.2)

where we have used 2g2¢= «2p. The formula in Eq(4.2)

is the solution to the linearized field equation for the metric

with the static energy momentum tengat” =v*v”p®. Un-

der the influence of such an external potential, the off-shell

v-v transition amplitude is then
S,,= —ik(2m) 8(K°— k'O (V{)(Kk k")

+A,,(0,0)h#"(K' —K). 4.3

In Eqg. (4.3 we have indicated explicitly the fact that the

background parl\W(Q,@) of the vertex function does not
depend ork andk’ separately, but only on the variablgs

and O that are defined by writing

q“=(k—k")*=(Q,9) (4.9

in the rest frame of the medium. Moreover, we have(3et

by writing
S,,=—i(2m)*8W(k—k")2s(k), (4.7)
we then find
EGZEQ‘FE,G, (48)
24(k) = ¢>V (K K) (2040 = 7)
3 6(k) = ¢ ,,,(0,0—0) (20 v " — 7H*).
(4.9

As indicated in Eq(4.9), the gravitational contribution to the
self-energy has two parts. We consider fi£g{(k), which is
the contribution from the gravitational field when there is no
background medium present. Using the expressiorvigy
given in Eq.(2.19, we obtain
EQ(k)=¢eXt(k+2k~vé)L, (4.10
which in terms of the parametrization of the self-energy
given in Eq.(3.45 amounts to
a :¢ext
g L

bg= $®2k-v. (4.19)

B. The matter-induced gravitational contribution
to the self energy

Since the expression fay,, contains the factop™L, itis
useful to define the vectdy, by writing

(2v*v"= 7*")A,,(Q,0)=(Y'L)ty(Q,9), (4.12

in terms of which

36(k) = ¢®%*, (0,0—0). (4.13

In an isotropic background, which we have assumed by writ-
ing the distribution functions as in Eq3.17), t, can be

=0 as implied by the delta function in the right-hand side. Inexpressed in the form
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t\=Ag0r+Bgl) , (4.14
where we have defined
1%
v)‘:v}‘—qu (4.19
Sinceq-v=0, the scalar functions can be calculated by us-
ing
Ag= ! t
G azq ,
1.
Be==;v-t. (4.1
v

If Ag(0,9) is not singular in the limitd—O0, then Egs.

(4.13 and(4.14 imply that

36=¢%Bs(0.0—-0)bL, (4.17)

so that onlyBg needs to be evaluated. To prove that this is

the case, notice from E@3.22 that

v (2v¥ "= 7" )NG), =M (20#v " — *")N2), =0.
(4.18
Therefore, Ag andBg are given by
(
At D XA; for e,
T
AG=\/2GF<
E XfAf fOI’ V,uvy‘r!
T
.
Bot+ > X(Bf for wg,
T
BG:\/QC;':<
2 Xfo fOI’ VM,VT,
L T
(4.19
with
1 3P { 1:(Q,0) }
A =—f = ()| — -q)|,
f q2 (27T)32Ef( f f_) q2_2pf'q (q_> Q)

1 d3p { 1,(Q,0) }
Bi== | m——=—(—)|—=5—"+(0q——0q)]|,
f v2 (277)32Ef( f ?) q2_2pfq (q q)

(4.20
where we have defined
a*(2v*v” —77’“’)N#M,
ly=0"(2v"v"~ n*")N},) (4.20)

From the expression given in E@3.22 for N(l))\ it is
straightforward to see that

PHYSICAL REVIEW D58 096005

1,(0,0)=(Q%-2P- O)(8E?—4m?-2P- 0).
(4.22

Using this in Eq.(4.20), it follows that A;(0,Q) is propor-
tional to the integral of- O, which is zero for an isotropic
distribution. Therefore

A(0,9)=0, (4.23
which proves Eq(4.17).

To evaluateB;(0,0—0), we use Eq(4.21) and the defi-
nition of N),, given in Eq.(3.22 to obtain, after rearranging
some terms,

15(0,0) = 2E(8E2—4m?—202)—6E((2P- O— Q?).
(4.24)

Using this in Eq.(4.20,

. d3P |F—2Q2(f;—fp)
B:(0,9)=—-3(n;—n7) +
§ (e f<2w>3 ~Q?+2P.0
+<Q¥—é>], (4.25
with
F=4(2E?—m?)(f;—f7). (4.2

To evaluate this integral, we make the change of variables
P—P+13 in the first term, and®—P—1Q in the second
one, remembering that the distribution functions d&hére
functions of P. This procedure yields

B(0,0—0)=J;+0(Q?), (4.27)
where
dP [ Q-VF
Jf=—3(nf—nf)+J Qa i
(2m)®\ 2.9
d®P  dF
=-3(ns—ny) + —(27T)32Ef d_Ef
(4.28

In arriving at Eq.(4.28 we have used the definition in Eq.
(3.19, and in writing the second equality we have used the

fact the the functior depend orP only throughE;. From
Egs.(4.19, (4.17) and(4.27) we finally obtain
3 L(K)=bgd (4.29

where
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oK -
Je+ Z XfJf for Ve, W = VCUK ’ (43@
be=*VIG, X (4.30
Z X¢Jy for v, ,v.. which can be used to obtain the transverse compoKgnt

that the momentum develops as a consequence of the influ-
ence of the gravitational field. Substitutingex=(1

C. Dispersion relations +2¢K in Eq. (4.36, we can write
We are now in the position to determine the dispersion . ex
relation for the neutrinos in the medium in the presence of a &2 _ZJ dta‘ZS ) (4.37)
static gravitational field. Referring back to E(B.45, the K —o b’

results we have obtained can be summarized by writing
where the position vector ig=(b,0t) and ¢*{r)=

a=ayq —GM/r. From this we obtain the bending formula for neu-
trino
b=bpact by+ b - 43y NoS
. . . Ky 4GM
The termsay and by, which are given in Eq(4.11), repre- K=" "p (4.39

sent the contribution from pure gravity and are present even

in the case that there is no matter. On the other hand, the, . . .
. . . which is the same result as the corresponding formula for
termb,4, given in Eq.(3.48, arises due to the presence of

) . .photons.
the background medium, independently of whether a gravi In contrast to the purely gravitational terms, the matter-

tatlona! field is present or not.' Finalfys, given in Eq. dependent terms contribute with opposite signs to the neu-
(4.30, is the contribution that arises due to the S|multaneou§rino and antineutrino indices of refraction. The telop,, on
presence of matter and the external gravitational field. Thu he right side of Eq(4.32, which denotes t'he matter (t:ontri-
substituting Eq.(4.3 in Eq. (3.47, and keeping in mind bution in the absence of a gravitational field, is the usual

that we are allowed to retain only terms that are linear in th% : X D -
o . . olfenstein term. It is flavor dependent, and it is the origin
external gravitational potential, we obtain . . —_— :
of the MSW mechanism for neutrino oscillations in matter.
o =K+ 2K ™+ b, o+ (¢t be).  (4.32 The remaining terms are the new contributions we set out to
determine. One of them is exactly the Wolfenstein term mul-
The corresponding formula faby is obtained from this by tiplied by the external gravitational potential. Since we are
reversing the sign in front ob,, andbg. Apart from the considering weak gravitational fields, that term is much
first term in the right-hand side Eq4.32, which corre- smaller than the usual Wolfenstein term and can be ne-
sponds just to the vacuum dispersion relation, the other tern@ected. Thus, the dispersion relation reduces to
have the following meaning.
The second term has a purely gravitational origin. If we

take it by itself and neglect the effects of the medium, it . . . .
gives rise to the dispersion relation which can be equivalently stated in terms of the index of

wK:K+2¢EXtK+bmat+ bG y (439)

refraction
EKIwKZK(l—I—Z(ﬁEXI), (433 K
. : , , , N,=—
which is equivalent to say that the neutrino and antineutrino Wk
acquire an index of refraction given by
bmat bG
No=1—2¢1 (4.34 =No—

This is the same result that is obtained by solving the equa- (4.40

tion The term that we have denoted by is more interesting
K K g“'=0 43 since it can have a non-trivial dependence on the temperature
pKogm =0, (4.39 and density of the background material. It is flavor depen-

which is the appropriate equation to solve in order to deter—dent as well, ar_1d !t arises because of the presence of .bOth
mine the dispersion relation for the photon or a massles.gfqatter qnd gravnguonal flelds: In orderto.be able.to conS|d_er
scalar particle. That purely gravitational term also gives risd > possm_le physu_:al effects, n the ensuing section we will
to effects analogous to the gravitational red shift and bendin stimate its magnltude for various physical conditions of the
of light. For example, consider a neutrino beam propagatin ackground medium.

along thez direction in the vicinity of a massive body of

massM situated at the origin, with an impact parametein D. Estimates of the matter-gravitational effects
the eikonal approximationwg(t) and Ii()?) satisfy the The question we wish to address here is how large are the
Hamilton equation matter-gravitational effects, represented by the téxmin
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Eq. (4.40), relative to the Wolfenstein terin,,,.. To answer ~matter. This has been done by first carrying out the one-loop
this question we need an estimate of the integra] which  calculation of the matter-induced gravitational couplings of
we have carried out in the Appendix, and also make somthe neutrinos, and then by determining the corrections to the
assumptions about the composition of the background for thBeutrino self-energy that such couplings imply in the pres-
possible physical situations of interest. ence of the gravitational potential.

As an example, let us consider a medium such as the Sun As a consistency check of the one-loop formulas, we
or a supernova. In these, the conditions are such that thghowed explicitly that the effective gravitational vertex of

nucleons are non-relativistic. Therefore, using the result§he neutrino is transverse. This required that the correct dis-
given in Egs.(A4) and (A8), we can write for the nucleons persion relation and wavefunction associated with the exter-

(N=p,n) nal neutrino modes be used, and not their vacuum counter-
part. We emphasize again that it is crucial that, in the
—Bmyny classical nucleon gas, calculation of the one-loop diagrams, we have used the full
In= 3ny (4.4)  off-shell formula for the tree-level gravitational vertex func-
T2 degenerate nucleon gas, tion of the internal fermions in the loop, and not the on-shell

limit that is customarily quoted.

whereu gy stands for the Fermi velocity of the nucleon gas. . AS indicated in Sec. IV, the matter-gravitational contribu-
Regarding the electrons, if they are relativistic then fromtion to the neutrino index of refractlor! could .be _relevant in
Eq. (A11) we haveJ,=—5n,. In this case, the electron the context of matter—enh.anceq neutrino oscnlatlonsl, and in
contribution in Eq.(4.30 is of the order of the Wolfenstein Particular in phenomena involving the so-called sterile neu-
term multiplied by$®, and therefore it is unimportant. On trinos. This may occur not only because their magnlt_ude
the other hand, this is not necessarily the case for a norfeuld be non-negligible, but also because they have a differ-

relativistic electron gas. In analogy with E€#.41 for this €Nt dependence on the coordinate compared with the stan-
dard Wolfenstein term. Whether or not these gravitational

case . . .
effects can lead to interesting observable consequences in

—Bmgn, classical non-relativistic electron gas, SPecific contexts, such as the supernova or the Solar neutrino

J— 3n problem, is an open question that needs further detailed

)

e e .
— —— degenerate non-relativistic electron gas. study.
UFe The results presented here indicate that such studies could

(4.42 be well motivated, and our work sets down the arena to carry
To assess further the possible importance of the matte;[-hem out on firm grounds and in a systematic fashion.
P P Note addedAfter this paper was submitted for publica-

gravitational contributions to the index of refraction, we also,. o
need some knowledge of the magnitude of the gravitationatllon’ the work by Piriz, Roy and WudKd.6] was brought to

. . ... _our attention, in which the tree-level gravitational coupling
potential that could be involved. If we take as a guiding U : ; S
. of the neutrino is also considered without violating the
value the potential at the surface of the Sun,

equivalence principle. However, these authors assume an in-

_ —6 trinsic magnetic moment of the neutrino, and they concern
o 2x10°, (4.43 themselves with the effect of tHgacuum gravitational in-

we find that the matter-gravitational contributions could betéractions on the magnetic spin flip oscillations. They do not

relevant under the appropriate conditions. This is particularhFonsider the effect of matter on the gravitational neutrino

true for the nucleon terms, which have the enhancement faddteractions, which is the focus of the present work.

tors Smy or u;,\,z in the classical and the degenerate cases,

respectively. This is not unexpected, since the gravitational

potential couples more strongly to the more massive par-

ticles. The work of J.F.N. was patrtially supported by the US

As we have already mentioned, and as Eg30 clearly  National Science Foundation Grant PHY-9600924.

indicates, the nucleon contributionstig are the same for all

the neutrino flavors, and therefore they are irrelevant for neu-

trino oscillations involving only weak-doublet neutrinos. On APPENDIX A: EVALUATION OF  J;

the other hand, they are relevant for oscillation phenomena

in which sterile neutrinos participate and, as we have show

above, they may be important. Furtherm_obenat and bg gas. That expression fal; can be rewritten by taking the
have a different dependence on the neutrino coordinate as{{ ", .. . ) ) )
derivative of the functiorr given in Eq.(4.26) and using Eq.

propagates through the medium, a property that may hav .
also distinctive implications. &'19)' In this way Eq.(4.28 becomes
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We consider the evaluation of the quantity defined in
%q. (4.28 for various conditions of the background fermion

V. CONCLUSIONS Ji=(ns—n7) +Hy (A1)

In this work we have determined the effects of a static
gravitational potential on the neutrino index of refraction inwhere
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mg

d
2_Ef) d—Ef(ff—f?)- (A2)

Hi=4 f i E
=) e (B
In order to carry out this integral, we consider the following
illustrative cases.

1. Classical non-relativistic gas

In this case, we can put=0 and use

df

aE (A3)

Bf.
Using these and remembering that we can approxirgate

=m; in the integrand, we then obtain from Ed#1) and
(A2)

Ji=H¢=—pm¢ny, (A4)

where we have used the fact th@m;>1 for a non-
relativistic gas.

2. Degenerate gas at zero temperature

For this case, the distribution function is given by

f=@(Er—E), f~0, (A5)
where® denotes the step function amtt is the Fermi en-
ergy. Thusdf/dE= — §(E— Ef). Putting this back into Eq.

(A2) and usingP§=3w2nf for the Fermi momentum, we

obtain
3nf 1/3
Hi=— ?) }

6n¢+m? (AB)

PHYSICAL REVIEW D58 096005

an 1/3
# |

No assumption has been made here about whether or not the
gas is non-relativistic. However, in the relativistic or non-
relativistic limits, this formula reduces to

which in turn implies

Ji=— (A7)

5n;+ m,?(

—5n¢ relativistic gas
= 3n
Js - non-relativistic gas (A8)
Uk

where we have usep-=mvg for the non-relativistic case.

3. Ultra-relativistic gas

In this case we neglect the mass of the background par-
ticles and therefore we approximate E42) by

d

d*P

By carrying out a partial integration and using E8.19 this
is equivalent to

Hi=—6(n;—ny), (A10)
and therefore

Ji=—5(n;—np). (A11)
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