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Gravitational couplings of neutrinos in a medium
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In a medium that contains electrons but not the other charged leptons, such as normal matter, the gravita-
tional interactions of neutrinos are not the same for all the neutrino flavors. We calculate the leading order
matter-induced corrections to the neutrino gravitational interactions in such a medium and consider some of
their physical implications.@S0556-2821~98!05921-9#

PACS number~s!: 11.10.Wx, 04.25.Nx, 14.60.Lm
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I. INTRODUCTION

When neutrinos propagate through a medium, the effe
of the background particles can influence their propertie
important ways. The possible consequences of these ef
have been the subject of continuous research activity in
cent years, largely motivated by their implications in a va
ety of astrophysical and cosmological contexts. Some
amples of the latter include the original Mikheyev-Smirno
Wolfenstein~MSW! mechanism@1# and its variations in the
context of the solar neutrino problem@2#, and the explana-
tion of the large birth velocities of pulsars in terms of t
asymmetric emission of neutrinos from the cooling protos
which is produced by the matter-enhanced neutrino osc
tions biased by the supernova’s magnetic field@3#.

Among the various approaches that exist to the study
the matter effects on the propagation of neutrinos, the m
ods of quantum statistical field theory~QSFT! have proven
to be very useful ones. These methods have been applie
reproduce the Wolfenstein formula for the index of refracti
of neutrinos in matter and to obtain corrections to it@4–7#. In
addition, they have been used to determine the electrom
netic properties of a neutrino that propagates in matter
means of the one-loop calculation of the electromagn
vertex function induced by the neutrino interactions with t
background particles@8#. Furthermore, it was observed i
Ref. @8# that, in the presence of a static magnetic field,
effective electromagnetic interactions of the neutrinos p
duce an additional contribution to the neutrino index of
fraction which modifies the condition for resonant oscil
tions in matter@9#. This effect is in fact the origin of the
possible explanation of the large birth velocities of puls
mentioned above.

In all these situations, a common theme has been the
servation that the universality of the neutrino interactions
broken due to the fact that normal matter contains electr
but not the other charged leptons. Therefore, in a med
such as the Sun or a supernova, the electron neutrinos on
hand, and the tau and muon neutrinos on the other, are
fected in different ways. This fact implies that in a su
medium the Glashow-Iliopoulos-Maiani~GIM! mechanism
is not operative, and it explains why the radiative decay o
neutrino in a medium is greatly enhanced compared to
0556-2821/98/58~9!/096005~14!/$15.00 58 0960
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corresponding rate in the vacuum@10#.
The observation that the universality of the neutrino int

actions is broken by the background medium is a spe
case of a more general concept. It is the notion that while
fundamental Lagrangian of the theory is invariant under c
tain symmetry operations, a given background medium m
not be invariant under the same operations. Thus, for
ample, normal matter is neitherCP nor CPT asymmetric, a
fact that has interesting consequences for the propagatio
photons in a~chiral! medium such as a gas of neutrinos@11#.
Taking this notion to the extreme, we can even think of t
medium as breaking Lorentz invariance since it specifie
preferred frame of reference; i.e., that in which the medi
is at rest. In the context of QSFT, this breakdown of Lore
invariance is traded by an explicit dependence of the ca
lated physical properties of the particles on the velocity fo
vector of the background medium. In this way, for examp
the photon acquires a gauge invariant mass, a left-han
neutrino acquires a chiral-invariant mass and a Major
neutrino acquires electromagnetic dipole moments.

The main observation of the present paper is that, in
presence of medium, the breakdown of the universality
the neutrino interactions includes their gravitational inter
tions as well. In analogy with the fact that, in a medium th
contains electrons but no muons or taus, the electron ne
nos have different electromagnetic interactions than
muon or tau neutrinos, their gravitational interactions a
differ. In this work we determine the effective gravitation
interactions of neutrinos in a matter background, by calcu
ing the one-loop contribution to the neutrino stress-ene
tensor, which is the gravitational analogue of the electrom
netic current.

We wish to clarify at the outset the following point. Th
possibility that the observed deficit of solar neutrinos can
ascribed to neutrino oscillations that are driven by flav
changing interactions of gravitational origin has been p
posed previously@12#. In these works, it is postulated tha
the gravitational interaction of neutrinos has the same fo
as the standard one, but with different coupling strengths
each neutrino flavor. This assumption violates the equi
lence principle in a fundamental way, and in fact destroys
symmetry that makes it consistent to assume the existenc
a massless graviton in the vacuum. On the other hand
© 1998 The American Physical Society05-1
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JOSÉP. NIEVES AND PALASH B. PAL PHYSICAL REVIEW D58 096005
such fundamental breaking of the equivalence principle
assumed in the effect that we describe in the present w
Our calculations are based on the standard model of par
interactions, together with the commonly accepted lineari
gravitational coupling of fermions via the stress-energy t
sor, with a universal coupling strength. The non-univer
character of the effective gravitational coupling of the ne
trinos, whose calculation is the aim of this work, is a con
quence of the flavor asymmetry of the medium and not of
fundamental Lagrangian, as we have emphasized above

We have found convenient to organize the presentatio
the following manner. In Sec. II, we outline the linearize
theory of the gravitational coupling of fermions, includin
the interaction terms with theW and Z gauge bosons. This
has been necessary because the formulas that are comm
used and/or quoted in the literature are valid when the
mions that couple to the graviton are on their mass-sh
Therefore, it is not appropriate to use them for the inter
fermion lines in the one-loop diagrams that we need to c
sider. Armed with the preliminaries of Sec. II, the one-lo
diagrams for the induced gravitational interactions of
neutrinos in a background composed of electrons and nu
ons are calculated in Sec. III. There we obtain the effec
gravitational vertex function as an integral over the mom
tum distribution functions of the background particles. W
conclude that section with some general remarks about
consistency of the one-loop formulas, and in particular
show explicitly that our result for the effective gravitation
vertex of the neutrinos, including the background-induc
terms, is transverse as it should be. Using the one-loop
mulas for the vertex function as a starting point, we det
mine in Sec. IV the modification to the neutrino index
refraction in a medium in the presence of a static grav
tional field. There we consider also some possible appl
tions of these results, giving some of the details in the A
pendix, and Sec. V contains our conclusions.

II. TREE-LEVEL GRAVITATIONAL COUPLINGS

It is well known that the linear, or weak field, approxim
tion to the metric theory of gravity is equivalent to a qua
tum particle description of gravitational interactions in whi
the graviton emerges as a spin-2 quantum field couple
the stress-energy tensor. The formulas for the gravitatio
vertices is given and discussed in many textbooks, at l
for the common cases of spin 0,1/2, and spin-1~i.e., photons!
particles. However, the formulas that are customarily quo
are given for the case in which the particles are on th
mass-shell, which is sufficient for the applications that ha
been considered in the literature, but not for the present
This is particularly true for the fermions.

In the one-loop calculation that we are considering, th
are diagrams in which the graviton couples to internal el
tron lines in a loop. For them, the on-shell form for th
gravitational vertex is not valid. Furthermore, there are ot
interaction vertices that are unique to our case in hand
this section we consider all the couplings that relevant to
calculation in detail. We define the actionA in presence of
gravitation by
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A5E d4xL, ~2.1!

and then look at the different terms inL which will be rel-
evant for us.

A. Fermion couplings

The Lagrangian for a free Dirac fermion of massmf can
be written in the explicitly Hermitian form

L 0
~ f !5F i

2
c̄gm]mc1H.c.G2mf c̄c. ~2.2!

The Lagrangian in the presence of gravitational interacti
is obtained from this by making the replacementgm]m
→gaDa , where thega denote the ordinary gamma matrice
and

Da5va
mS ]m2

i

4
vbcmsbcD ~2.3!

is the gravity-covariant derivative, withsab5 i /2@ga,gb#,
andva

m being the vierbein vector fields. These are defined
a way that

habva
mvb

n5gmn, gmnva
mvb

n5hab , ~2.4!

wheregmn is the space-time metric andhab is the flat space
metric, which we take to be diag(1,21,21,21). The spin
connection coefficients are given by

vabg5val~]gvb
l1Gl

mgvb
m!, ~2.5!

whereGlmg are the Christoffel symbols. This formula can b
expressed explicitly in terms of the vierbein fields in t
form

vabg5
1

2
$va

m~]gvbm2]mvbg!1vb
m~]mvag2]gvam!

1va
mvb

nvcg~]nvc
m2]mvc

n!%. ~2.6!

In addition to these changes, we have to include the de
minant of the matrixvam , which we denote by det(v), as an
overall factor.

Thus, in the absence of all interactions except the gra
tational ones, the Dirac Lagrangian is given by@13#

L g
~ f !5det~v !H F i

2
c̄gava

mS ]m2
i

4
vbcmsbcDc1H.c.G

2mf c̄cJ . ~2.7!

With this construction, the term in the action correspond
to L g

( f ) is invariant under general coordinate transform
tions, labeled by the greek indices, and also under local L
entz transformations labeled by the latin indices. The lin
theory of the gravitational couplings is obtained by assum
that, for weak gravitational fields, we can write
5-2
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GRAVITATIONAL COUPLINGS OF NEUTRINOS IN A MEDIUM PHYSICAL REVIEW D58 096005
gmn5hmn12khmn , ~2.8!

and treat the second term on the right side as a perturba
The quantityk is related to the Newton’s constantG through
the equation

k5A8pG, ~2.9!

in order thathmn , identified with the graviton quantum field
has the correctly normalized kinetic energy term in the L
grangian. The vierbeins cannot be determined uniquely fr
Eq. ~2.4!. They can be determined only up to a local Loren
transformation which, however, would leave the action
variant. Therefore, we can choose in particular

vam5ham1kham , ~2.10!

which in turn gives

det~v !511khmnhmn. ~2.11!

Note that this also implies that

gmn.hmn22khmn ~2.12!

since the matrixgmn is the inverse of the metricgmn and
from Eq. ~2.4!

va
m5ha

m2kha
m. ~2.13!

We now substitute these relations into Eq.~2.7!, and keep
only the terms that are at most linear ink. Once this approxi-
mation is made, it is no longer necessary to distinguish
tween greek and latin indices~since any difference betwee
them would contribute only to higher order ink! and there-
fore we write everything in terms of the greek indices fro
now on. From Eq.~2.6! we obtain

vmng5 1
2 ~]nhmg2]mhgn!, ~2.14!

and it then follows that the term involving thes-matrices in
Eq. ~2.7! drops out because it is proportional to the quan

$gm ,sln%1~m↔n!50. ~2.15!

From the other terms we then obtain the gravitational in
action Lagrangian of the fermion in the form

L h
~ f f !52khmn~x!T̂mn

~ f !~x!, ~2.16!

where the stress-energy tensor operatorT̂mn
( f ) for the fermion

field is given by
09600
n.

-
m

-

e-

r-

T̂mn
~ f !~x!5H i

4
c̄~x!@gm]n1gn]m#c~x!1H.c.J

2hmnL 0
~ f !~x!. ~2.17!

From Eqs.~2.16! and ~2.17! it follows that the term corre-
sponding to the gravitational fermion vertex in a Feynm
diagram is2 ikVmn

( f ) , where

Vmn
~ f !~p,p8!5 1

4 @gm~p1p8!n1gn~p1p8!m#

2 1
2 hmn@~p”2mf !1~p” 82mf !#. ~2.18!

In the above considerations we have assumed that
fermion f is a Dirac particle with a given mass. On the oth
hand, it is easy to infer by inspection that similar argume
yield the formula

Vmn
~n!~k,k8!5

1

4
@gm~k1k8!n

1gn~k1k8!m#L2
1

2
hmn@k”1k” 8#L

~2.19!

for the case of a chiral, left-handed neutrino.
Notice that if we take the matrix element of the opera

T̂mn
( f )(0) between on-shell fermion states, with incoming a

outgoing momentap and p8 respectively, the term propor
tional to hmn in Eq. ~2.17! gives no contribution and we
obtain

^ f ~p8!uT̂mn
~ f !~0!u f ~p!&5

1

4
ū~p8!$gm~p1p8!n

1gn~p1p8!m%u~p!, ~2.20!

which is the expression that is quoted in textbooks@14#.
However, for the purposes of the one-loop calculation t
we carry out in Sec. III, we need to use the vertex for o
shell fermions given in Eq.~2.18!. In particular, as we will
show in Sec. III, the one-loop calculation of the effecti
gravitational vertex of the neutrino gives a result that sa
fies the transversality condition provided that the term p
portional tohmn in Eq. ~2.18! is included in the calculation
of the loop diagrams.

B. Fermion and W boson couplings

The interactions that drive the effective gravitational ve
tex of the neutrinos, are the standard weak interactions w
the particles of the background. Let us consider the charg
current interactions first. In the presence of a gravitatio
field, the interaction termēLgmWmnL in the Lagrangian is
modified according to
5-3
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L g
~cc!5det~v !H 2

g

&
ēLganLvamWm1H.c.J . ~2.21!

In the linear approximation given by Eqs.~2.10! and ~2.11!,
this becomes

L g
~cc!5L 0

~cc!1L h
~cc! , ~2.22!
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rm

th

e

na
u

tro

e-
s
he
-

ha

09600
whereL 0
(cc) is the standard charged-current interaction L

grangian

L 0
~cc!52

g

&
WmēLgmnL1H.c., ~2.23!

while
L h
~cc!52k

g

&
hmnFhmnWaēLganL1

1

2
~WmēLgnnL1WnēLgmnL!1H.c.G

52k
g

&
amnlrēLglnLWrhmn1H.c., ~2.24!
r
rms

rel-

re-
ich
ke

to
he
where

amnlr5hmnhlr1 1
2 @hmlhnr1hmrhnl#. ~2.25!

C. W boson couplings

The gravitational vertex for photons is well known. F
the W boson, the only difference comes from the mass te
in the kinetic energy part of the Lagrangian. Indeed, from
usual expression for the kinetic energy of theW vector bo-
son,

L g
~W!5det~v !H 2

1

2
Wmn* Wmn2MW

2 Wm* WmJ , ~2.26!

and then making the substitutions given in Eqs.~2.8! and
~2.11!, we arrive at

L g
~W!5L ~W!1L h

~WW! , ~2.27!

whereL (W) is the standard form of the kinetic energy for th
free W boson, while

L h
~WW!52khmnF S 1

2
Wab* Wab2MW

2 Wa* WaDhmn

1~Wma* Wn
a2MW

2 Wm* Wn1H.c.!G ~2.28!

gives the gravitational vertex.
Of particular importance for us are the terms proportio

to theW mass. The reason is the following. In the analogo
calculation of the charged-current contribution to the elec
magnetic neutrino vertex in a medium, the dominant term
of order 1/MW

2 and it arises from the diagram that corr
sponds to diagram~A! in Fig. 1, in which the photon couple
to the electron line in the loop. The diagram in which t
photon couples to the internalW line, corresponding to dia
gram~B!, is of order 1/MW

4 , and therefore it is negligible. In
the present case, because of the presence of the term t
e

l
s
-

is

t is

proportional to theW mass in the coupling of theW to the
graviton, diagram~B! gives a contribution also of orde
1/MW

2 that must be taken into account. As far as these te
only are concerned, we can then replace Eq.~2.28! by

L h
~WW!5kMW

2 amnlr8 hmnWlW* r, ~2.29!

where

amnlr8 5hmnhlr1hmlhnr1hmrhnl . ~2.30!

D. Including the neutral-current couplings

The charged current interaction discussed above are
evant only for thene’s. The nm’s and thent’s will interact
with the electrons only through the neutral current. Mo
over, a normal background contains nucleons as well, wh
interact with all neutrinos via the neutral current. To ta

FIG. 1. W exchange diagrams for the one-loop contribution
the ne gravitational vertex in a background of electrons. T
braided line represents the graviton.
5-4
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GRAVITATIONAL COUPLINGS OF NEUTRINOS IN A MEDIUM PHYSICAL REVIEW D58 096005
these interactions into account, we consider the neutral
rent couplings of theZ-boson. In absence of gravitation
these are

L 0
~nc!52gZZmF (

i 5e,m,t
n̄ iLgmn iL

1 (
f 5e,p,n

f̄ gm~Xf1Yfg5! f G , ~2.31!

where, in the standard model,

gZ5g/~2 cosuW!

2Xe5Xp5 1
2 22 sin2uW

Xn52 1
2

Ye5 1
2

Yn52Yp5 1
2 gA , ~2.32!

with gA51.26 being the renormalization constant of t
axial-vector current of the nucleon. It is also useful to
member that, in the standard model,

gZ
2

MZ
2 5

g2

4MW
2 5&GF . ~2.33!

Following the arguments that were used for the charged
rent, we find that in presence of gravitation, these inter
tions will be modified to

L g
~nc!5L 0

~nc!1L h
~nc! , ~2.34!

whereL 0
(nc) has been given above in Eq.~2.31!, and

L h
~nc!52kgZamnlrF (

i 5e,m,t
n̄ iLgln iL

1 (
f 5e,p,n

f̄ gl~Xf1Yfg5! f GZrhmn, ~2.35!

whereamnlr has been defined in Eq.~2.25!. Also, there are
terms which come from the Lagrangian of the pureZ-boson
which give interactions with the graviton and are prop
tional to MZ

2 . These are

L h
~ZZ!5 1

2 kMZ
2amnlr8 hmnZlZr, ~2.36!

whereamnlr8 is the tensor defined in Eq.~2.30!.

III. INDUCED GRAVITATIONAL VERTEX
OF NEUTRINOS

We now consider the background contributions to
neutrino gravitational vertex. We denote the proper ver
function for off-shell neutrinos, including the backgroun
induced contributions, byGmn

(n)(k,k8). It is is defined such
that the matrix element of the total stress-energy tensor
09600
r-

-

r-
-

-

e
x

p-

erator T̂mn(x), between incoming and outgoing neutrin
states with momentak andk8 respectively, is given by

^n~k8!uT̂mn~0!un~k!&5ūL~k8!Gmn
~n!~k,k8!uL~k!. ~3.1!

It is useful to divide the relevant one-loop diagrams into t
two sets given in Figs. 1 and 2, according to whether th
involve theW or the Z boson. In the diagrams, and in th
formulas that follow,q stands for the outgoing graviton mo
mentum

q5k2k8. ~3.2!

The additional diagrams in which the graviton line comes
from one of the external neutrino legs are not shown, si
they are 1-particle reducible and do not contribute toGmn

(n) .
The proper way to take them into account in the calculat
of the amplitude for any given process, is by choosing
external neutrino spinoruL(k) to be the~properly normal-
ized! solution of the effective Dirac equation for the prop
gating neutrino mode in the medium, instead of the spi
representing the free-particle solution of the equation in
vacuum. This will be discussed in more detail in Sec. III

As commented earlier, theW-exchange diagrams of Fig
1 contribute only to the gravitational coupling ofne . In con-
trast, the diagrams shown in Fig. 2 contribute equally to
gravitational vertex of all the neutrino flavorsne,m,t , and
therefore are not relevant in phenomena that involve tra
tions between the standard, weak SU~2!-doublet neutrinos.
However, in processes in which the so-called sterile neu
nos participate, these flavor-diagonal contributions are
portant. Moreover, we consider them first since the res
for the W-diagrams can be easily obtained from the cor
sponding ones for theZ-diagrams by making some simpl
substitutions.

A. The Z-mediated diagrams

1. Diagram (A)

This contribution, which will be marked by the supe
script 2A, is given by

FIG. 2. Z-exchange diagrams for the one-loop contribution
the gravitational vertex of any neutrino flavor (i 5e,m,t) in a back-
ground of electrons and nucleons.
5-5
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2 ikGmn
~2A!52~2 igZ!2~2 ik!

i

MZ
2 glL (

f 5e,p,n
E d4p

~2p!4

3Tr@gl~Xf1Yfg5!iSF
~ f !~p8!Vmn

~ f !

3~p,p8!iSF
~ f !~p!#, ~3.3!

or equivalently

Gmn
~2A!5

igZ
2

MZ
2 glL (

f 5e,p,n
E d4p

~2p!4 Tr@gl~Xf1Yfg5!iSF
~ f !

3~p8!Vmn
~ f !~p,p8!iSF

~ f !~p!#, ~3.4!

In these expressions we have introduced the shorthand

p8[p2q, ~3.5!

which will be used throughout the calculations, and we ha
neglected the momentum dependence of theZ propagator in
anticipation of the fact that we are interested only in t
terms that are linear in the Fermi constantGF . Further,SF

( f )

is the thermal fermion propagator which is given by

iSF
~ f !~p!5~p”1mf !F i

p22mf
21 i e

22pd~p22mf
2!h f~p!G ,

~3.6!

where

h f~p!5
u~p•v !

eb~p•v2m f !11
1

u~2p•v !

e2b~p•v1m f !11
~3.7!

with b being the inverse temperature,m f the chemical po-
tential andvm the velocity four-vector of the medium@15#. In
the frame in which the medium is at rest,vm has components

vm5~1,0W !. ~3.8!

When the expressions forSF
( f )(p) andSF

( f )(p8) given in Eq.
~3.6! are substituted in Eq.~3.4!, three kinds of term are
generated, according to whether they contain none, on
two factors ofh f . We are interested in the terms with
least one factor ofh f , since that is where the backgroun
dependence of the neutrino gravitational vertex will co
from. However, the terms with two factors ofh f are relevant
only in the calculation of the absorptive part of the amp
tude, which we are not considering here, and therefore
important terms for us are the ones having a single facto
h f . Denoting their contribution to the vertex function b
Gmn8(2A) we then obtain

Gmn8~2A!5
gZ

2

MZ
2 glL (

f 5e,p,n
E d4p

~2p!3 Tr@gl~Xf1Yfg5!Amn#

3S d~p22mf
2!h f~p!

p822mf
2 1

d~p822mf
2!h f~p8!

p22mf
2 D ,

~3.9!
09600
e
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where

Amn
~ f !5~p” 81mf !Vmn

~ f !~p,p8!~p”1mf !. ~3.10!

Using for Vmn
( f ) the expression given in Eq.~2.18!, we have

Amn
~ f !5amn

~ f !2 1
2 hmn@~p” 81mf !~p22mf

2!

1~p”1mf !~p822mf
2!# ~3.11!

where

amn
~ f !5~p” 81mf !

1
4 $gm~p1p8!n1gn~p1p8!m%~p”1mf !.

~3.12!

When Eq.~3.11! is substituted in Eq.~3.9!, the terms that
involve the factor ofhmn are reduced very simply, and th
result can be expressed in the form

Gmn8~2A!5Lmn
~Z!2b~Z!v”Lhmn , ~3.13!

where Lmn
(Z) is given by the same expression given in E

~3.9! but with the replacementAmn→amn , and

b~Z!5(
f

Xfbf , ~3.14!

with

bf54&GFE d4p

~2p!3 d~p22mf
2!h f~p!p•v. ~3.15!

In arriving at Eq.~3.13! we have used the formula

4&GFE d4p

~2p!3 d~p22mf
2!h f~p!pm5bfvm , ~3.16!

and the relation&GF5gZ
2/MZ

2 .
It is convenient to introduce the particle and antipartic

momentum distribution functions

f f , f̄~pf !5
1

eb~pf•v7m f !
, ~3.17!

where the upper and the lower signs hold for the particle
the antiparticle respectively, and

pf
m5~Ef ,PW !, Ef5APW 21mf

2. ~3.18!

The corresponding total number densities are given by

nf52E d3P

~2p!3 f f , nf̄52E d3P

~2p!3 f f̄ , ~3.19!
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and in terms of them Eq.~3.15! can then be written in the
form

bf5&GF~nf1nf̄ !. ~3.20!

The expression forLmn
(Z) can be simplified by taking the

traces and making change of integration variablep→p1q in
the term containing the factor ofh f(p8). In this way we
obtain
09600
Lmn
~Z!5

gZ
2

MZ
2 ~glL !(

f
E d4p

~2p!3 d~p22me
2!h f~p!

3H XfNmnl
~1! ~p,q!2YfNmnl

~2! ~p,q!

q222p•q

1
XfNmnl

~1! ~p,2q!1YfNmnl
~2! ~p,2q!

q212p•q J ~3.21!

where
as, in
e other

tum

q.
Nmnl
~1! ~p,q![~2p2q!m@2pnpl2~plqn1qlpn!1~p•q!hln#1~m↔n!

Nmnl
~2! ~p,q![~2p2q!mi enlrsqrps1~m↔n!. ~3.22!

It is useful to observe that these quantities satisfy the relations

Nmnl
~1,2!~2p,2q!52Nmnl

~1,2!~p,q!, ~3.23!

from which other similar relations can be obtained. Using them, after performing thep0 integration in Eq.~3.21! we obtain
finally

Lmn
~Z!5

gZ
2

MZ
2 ~glL !(

f
E d3P

2Ef~2p!3 H Xf~ f f2 f f̄ !FNmnl
~1! ~pf ,q!

q222pf•q
1~q→2q!G2Yf~ f f1 f f̄ !FNmnl

~2! ~pf ,q!

q222pf•q
2~q→2q!G J .

~3.24!

Further reduction of Eq.~3.24! is not possible without making some assumption about the conditions of the electron g
order to be able to carry out the required integrations. Before turning to that, we consider the contributions from th
diagrams, that must be added to Eq.~3.13! to yield the full one-loop result for the induced vertex function.

2. Diagram (B)

Because this diagram contains twoZ-boson propagators, we retain only the terms proportional toMZ
2 from theZZh vertex

given in Eq.~2.36!, since the rest will yield results proportional to 1/MZ
4 . For the same reason, we also neglect the momen

dependence of the twoZ propagators in the diagram. In this way we then obtain

2 ikGmn
~2B!52~2 igZ!2S i

MZ
2D 2

~ ikMZ
2amnlr8 !glL(

f
E d4p

~2p!4 Tr@gr~Xf1Yfg5!iSF
~ f !~p!# ~3.25!

for the contribution to the vertex function. For the background-dependent part, this yields

Gmn8~2B!52
gZ

2

MZ
2 amnlr8 glL(

f
E d4p

~2p!3 Tr@gr~Xf1Yfg5!~p”1mf !#d~p22mf
2!h f~p! ~3.26!

which, by taking the trace and using Eqs.~3.14! and ~3.16!, can be reduced to

Gmn8~2B!52b~Z!amnlr8 glLvr

52b~Z!@hmnv”1gmvn1gnvm#L. ~3.27!

3. Diagrams (C) and (D)

For these diagrams we use the vertices given in Eqs.~2.31! and ~2.35!. TheO(1/MZ
2) term is given by

2 ikGmn
~2C!52~2 igZ!S i

MZ
2D ~2 ikgZamnlr!glL(

f
E d4p

~2p!4 Tr@gr~Xf1Yfg5!iSF
~ f !~p!#, ~3.28!

and, sinceamnlr is symmetric in the indicesl andr, it follows thatGmn
(2D)5Gmn

(2C) . Following the same steps that led to E
~3.27! we find for the background dependent part
5-7
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Gmn8~2C!5Gmn8~2D !5b~Z!@hmnv”1 1
2 ~gmvn1gnvm!#L. ~3.29!

B. W-exchange diagrams

1. Diagram (A)

We now consider the diagrams shown in Fig. 1. We begin with diagram~A!, which corresponds to the expression

2 ikGmn
~1A!5S 2

ig

&
D 2

~2 ik!S i

MW
2 D E d4p

~2p!4 glLiSF
~e!~p8!Vmn~p,p8!iSF

~e!~p!glL, ~3.30!

where we have neglected the momentum dependence of theW propagator. Using the identity

~glL !M ~glL !52~glL !Tr~MglL !, ~3.31!

which is valid for any 434 matrix M , Eq. ~3.30! can be written as

Gmn
~1A!5S ig2

2MW
2 DglLE d4p

~2p!4 Tr@ iSF
~e!~p8!Vmn~p,p8!iSF

~e!~p!glL#. ~3.32!

This expression coincides with what is obtained from Eq.~3.4! by discarding the nucleon terms and then making there
substitutions

gZ
2

MZ
2→

g2

2MW
2 , Xe→ 1

2 , Ye→2 1
2 . ~3.33!

With this observation, the result for the background-induced part ofGmn
(1A) can be immediately deduced to be

Gmn8~1A!5Lmn
~W!2bev”Lhmn , ~3.34!

where

Lmn
~W!5

g2

4MW
2 ~glL !E d3P

2Ee~2p!3 H ~ f e2 f ē!FNmnl
~1! ~pe ,q!

q222pe•q
1~q→2q!G1~ f e1 f ē!FNmnl

~2! ~pe ,q!

q222pe•q
2~q→2q!G J . ~3.35!

2. Other diagrams

The steps to follow in the calculation of the other diagrams of Fig. 1 are very similar to those for the corresp
diagrams of Fig. 2. Omitting the details here, the background-dependent terms are given by the formulas

2 ikGmn8~1B!52S 2
ig

&
D 2S i

MW
2 D 2

~ ikMW
2 amnab8 !E d4p

~2p!3 d~p22me
2!he~p!gaL~p”1me!g

bL

2 ikGmn8~C!52S 2
ig

&
D 2S i

MW
2 D ~2 ikamnab!E d4p

~2p!3 d~p22me
2!he~p!gaL~p”1me!g

bL, ~3.36!
hat
tex
on
l

ven

lts
with Gmn8(D)5Gmn8(C) . Using Eq.~3.16!, after some straightfor-
ward algebra these reduce to

Gmn8~1B!5beF2hmnv”1
1

2
~gmv”gn1gnv”gm!GL

Gmn8~1C!5Gmn8~1D !5
1

2
beF2hmnv”2

1

2
~gmv”gn1gnv”gm!GL.

~3.37!
09600
C. Complete vertex

We have completed the calculation of the diagrams t
give rise to the background-induced part of the proper ver
of neutrinos with the graviton. The complete vertex functi
defined in Eq.~3.1! is obtained by adding these individua
contributions. For the diagrams of Fig. 1 the results are gi
in Eqs.~3.34! and ~3.37!, and adding them we obtain

Gmn8~1A!1Gmn8~1B!1Gmn8~1C!1Gmn8~1D !5Lmn
~W! . ~3.38!

For the diagrams of Fig. 2, the sum of the individual resu
given in Eqs.~3.13!, ~3.27! and ~3.29! yields
5-8
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Gmn8~2A!1Gmn8~2B!1Gmn8~2C!1Gmn8~2D !5Lmn
~Z! . ~3.39!

As we have already mentioned,Lmn
(W) contributes to the ver-

tex only when the neutrino isne , while Lmn
(W) contributes

equally for all the weak-doublet neutrinos, including thene .
In addition, the vertex function has the tree-level term whi
for chiral, left-handed neutrinos is given in Eq.~2.18!.

In this way we find that the complete effective vert
function for the various neutrino flavors is given by

Gmn
~n!5Vmn

~n!1Lmn , ~3.40!

where

Lmn5H Lmn
~W!1Lmn

~Z! for ne ,

Lmn
~Z! for nm ,nt .

~3.41!

Notice that the vertex function is symmetric in the indic
m,n, as it should be.

D. Transversality of the vertex

Before proceeding to the explicit calculations of the ne
trino vertex using the one-loop formula given above, it
useful to check that the complete effective vertex satisfies
transversality condition

qmūL~k8!Gmn
~n!~k,k8!uL~k!5qnūL~k8!Gmn

~n!~k,k8!uL~k!50.
~3.42!

Here,

km5~vK ,KW !

k8m5~vK8 ,KW 8!, ~3.43!

where vK is the correct dispersion relation for a neutrin
mode propagating with momentumKW in the medium, anduL
is the corresponding spinor. As shown several years ago@4–
6#, the spinoruL(k) and the corresponding dispersion re
tion are found by solving the effective Dirac equation

~k”2Seff!uL~k!50, ~3.44!

where Seff is the neutrino self-energy in the medium. Th
chirality of the neutrino interactions dictate thatSeff has the
form

Seff5~ak”1bv” !L, ~3.45!

where, in general,a andb are functions ofvK andK. In this
form, the dispersion relations implied by Eq.~3.44! are given
by

vK5K1
b~vK ,K !

12a~vK ,K !

v̄K5K2
b~2v̄K ,K

12a~2v̄K ,K
, ~3.46!
09600
,

-

e

with vK corresponding to the neutrino andv̄K to the an-
tineutrino, which in the general case must be considered
implicit equations that must be solved forvK and v̄K as
functions ofK. In the context of our perturbative approac
the solutions to Eq.~3.46! are given approximately by

vK5K1@11a~K,K !#b~K,K !

v̄K5K2@11a~2K,K !#b~2K,K !.
~3.47!

At the one-loop level, the neutrino self-energy in the pre
ence of matter is determined by calculating the diagra
shown in Fig. 3, which has been carried out in detail in t
references cited. The result is that, to order 1/MW

2 , the pa-
rametera vanishes while

bmat5H be1b~Z! for ne ,

b~Z! for nm ,nt
~3.48!

wherebe and b(Z) are given in Eqs.~3.15! and ~3.14!, re-
spectively. In this casevK5K1bmat for the neutrinos, and it
follows that the spinors satisfy the equation

~k”2bmatv” !LuL~k!50 ~3.49!

and the relation

k252bmatk•v2b2 ~3.50!

holds. These, together with the analogous relations foru(k8)
andk82, imply the useful formulas

ūL~k8!q”uL~k!50

k22k8252bmatq•v.
~3.51!

We are now in the position to consider the transversa
property of the effective vertex. From Eq.~3.22! it follows
that

qmNmna
~1! 5~2p•q2q2!@4pnpa22qnpa2pnqa1p•qhna#

qmNmna
~2! 5~2p•q2q2!i enalrqlpr. ~3.52!

Then from Eq.~3.35!

FIG. 3. One-loop diagrams for the self-energy of neutrinos i
medium. Diagram~A! contributes only tone , while diagram~B!
contributes equally tone , nm andnt .
5-9
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qmLmn
~W!5

g2

2MW
2 ~gaL !E d4p

~2p!3 d~p22me
2!he~p!@2qnpa

1pnqa2p•qhna#

5 1
2 be@2qnv”1vnq”2v•qgn#L, ~3.53!

and similarly

qmLmn
~Z!5 1

2 b~Z!@2qnv”1vnq”2v•qgn#L. ~3.54!

On the other hand, from Eq.~2.19!, we obtain

qmVmn
~n!5 1

4 @q” ~k1k8!n1~k22k82!gn#L2 1
2 qn@k”1k” 8#L.

~3.55!

From these, and using the relations given in Eqs.~3.49! and
~3.51!, it is easy to verify that the transversality conditio
stated in Eq.~3.42! is indeed satisfied.

IV. NEUTRINO INDEX OF REFRACTION
IN A GRAVITATIONAL FIELD

A. The self-energy of neutrinos in a static gravitational field

Our aim in this section is to determine the correction
the neutrino index of refraction in the presence of a sta
gravitational field. To this end, let us consider the scatter
of a neutrino by a static gravitational potentialfext(xW ) which
is produced by a static mass densityrext(xW ). Defining the
Fourier transform offext by

fext~xW !5E d3q8

~2p!3 f~qW 8!eiqW 8•xW, ~4.1!

with a similar definition forr(qW 8), the corresponding metric
is such that, in momentum space,

hmn~qW 8!5
1

k
f~qW 8!~2vmvn2hmn!, ~4.2!

where we have used22qW 2f5k2r. The formula in Eq.~4.2!
is the solution to the linearized field equation for the met
with the static energy momentum tensorTmn5vmvnrext. Un-
der the influence of such an external potential, the off-sh
n-n transition amplitude is then

Snn52 ik~2p!d~k02k80!„Vmn
~n!~k,k8!

1Lmn~0,QW !…hmn~kW82kW !. ~4.3!

In Eq. ~4.3! we have indicated explicitly the fact that th
background partLmn(V,QW ) of the vertex function does no
depend onk andk8 separately, but only on the variablesV

andQW that are defined by writing

qm5~k2k8!m5~V,QW ! ~4.4!

in the rest frame of the medium. Moreover, we have seV
50 as implied by the delta function in the right-hand side.
09600
ic
g

ll

addition, we now restrict ourselves to a uniform field
space, which means that can write

f~kW82kW !5~2p!3d~3!~kW82kW !fext. ~4.5!

The justification for this is the usual one. Namely, we a
sume that we are working in a region of space that is mic
scopically large but macroscopically small, and therefore
external field is approximately constant over it. The mac
scopic dependence of the external field onxW can then be
restored at the end.

Thus, substituting Eq.~4.5! into Eq. ~4.3!, we obtain

Snn52 i ~2p!4d~4!~k2k8!„Vmn
~n!~k,k!

1Lmn~0,QW→0!…~2vmvn2hmn!fext. ~4.6!

Identifying the gravitational contribution to the self-energ
by writing

Snn52 i ~2p!4d~4!~k2k8!SG~k!, ~4.7!

we then find

SG5Sg1SG8 , ~4.8!

where

Sg~k!5fextVmn
~n!~k,k!~2vmvn2hmn!

SG8 ~k!5fextLmn~0,QW→0!~2vmvn2hmn!.
~4.9!

As indicated in Eq.~4.9!, the gravitational contribution to the
self-energy has two parts. We consider firstSg(k), which is
the contribution from the gravitational field when there is
background medium present. Using the expression forVmn

given in Eq.~2.19!, we obtain

Sg~k!5fext~k”12k•vv” !L, ~4.10!

which in terms of the parametrization of the self-ener
given in Eq.~3.45! amounts to

ag5fext, bg5fext2k•v. ~4.11!

B. The matter-induced gravitational contribution
to the self energy

Since the expression forLmn contains the factorglL, it is
useful to define the vectortl by writing

~2vmvn2hmn!Lmn~V,QW ![~glL !tl~V,QW !, ~4.12!

in terms of which

SG8 ~k!5fextgltl~0,QW→0!. ~4.13!

In an isotropic background, which we have assumed by w
ing the distribution functions as in Eq.~3.17!, ta can be
expressed in the form
5-10
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tl5AGql1BGṽl , ~4.14!

where we have defined

ṽl[vl2
v•q

q2 ql. ~4.15!

Sinceq• ṽ50, the scalar functions can be calculated by
ing

AG5
1

q2 q•t,

BG5
1

ṽ2
ṽ•t. ~4.16!

If AG(0,QW ) is not singular in the limitQW→0, then Eqs.
~4.13! and ~4.14! imply that

SG8 5fextBG~0,QW→0!v”L, ~4.17!

so that onlyBG needs to be evaluated. To prove that this
the case, notice from Eq.~3.22! that

vl~2vmvn2hmn!Nmnl
~2! 5ql~2vmvn2hmn!Nmnl

~2! 50.
~4.18!

Therefore,AG andBG are given by

AG5&GFH Ae1(
f

XfAf for ne ,

(
f

XfAf for nm ,nt ,

BG5&GFH Be1(
f

XfBf for ne ,

(
f

XfBf for nm ,nt ,

~4.19!

with

Af5
1

q2 E d3P

~2p!32Ef
~ f f2 f f̄ !F I a~V,QW !

q222pf•q
2~q→2q!G ,

Bf5
1

ṽ2 E d3P

~2p!32Ef
~ f f2 f f̄ !F I b~V,QW !

q222pf•q
1~q→2q!G ,

~4.20!

where we have defined

I a5ql~2vmvn2hmn!Nmnl
~1! ,

I b5 ṽl~2vmvn2hmn!Nmnl
~1! . ~4.21!

From the expression given in Eq.~3.22! for Nmnl
(1) it is

straightforward to see that
09600
-

s

I a~0,QW !5~Q 222PW •QW !~8Ef
224mf

222PW •QW !.
~4.22!

Using this in Eq.~4.20!, it follows that Af(0,QW ) is propor-
tional to the integral ofPW •QW , which is zero for an isotropic
distribution. Therefore

Af~0,QW !50, ~4.23!

which proves Eq.~4.17!.
To evaluateBf(0,QW→0), we use Eq.~4.21! and the defi-

nition of Nmna
(1) given in Eq.~3.22! to obtain, after rearranging

some terms,

I b~0,QW !52Ef~8Ef
224mf

222Q 2!26Ef~2PW •QW 2Q 2!.
~4.24!

Using this in Eq.~4.20!,

Bf~0,QW ![23~nf2nf̄ !1E d3P

~2p!3 FF22Q 2~ f f2 f f̄ !

2Q 212PW •QW

1~QW→2QW !G , ~4.25!

with

F[4~2Ef
22mf

2!~ f f2 f f̄ !. ~4.26!

To evaluate this integral, we make the change of variab
PW→PW 1 1

2QW in the first term, andPW→PW 2 1
2QW in the second

one, remembering that the distribution functions andF are
functions ofPW . This procedure yields

Bf~0,QW→0!5Jf1O~Q 2!, ~4.27!

where

Jf523~nf2nf̄ !1E d3P

~2p!3 S QW •¹W PF

2PW •QW
D ,

523~nf2nf̄ !1E d3P

~2p!32Ef

dF

dEf
.

~4.28!

In arriving at Eq.~4.28! we have used the definition in Eq
~3.19!, and in writing the second equality we have used
fact the the functionF depend onPW only throughEf . From
Eqs.~4.19!, ~4.17! and ~4.27! we finally obtain

SG8 ~k!5bGv” ~4.29!

where
5-11
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bG5fext&GF3H Je1(
f

XfJf for ne ,

(
f

XfJf for nm ,nt .
~4.30!

C. Dispersion relations

We are now in the position to determine the dispers
relation for the neutrinos in the medium in the presence o
static gravitational field. Referring back to Eq.~3.45!, the
results we have obtained can be summarized by writing

a5ag

b5bmat1bg1bG . ~4.31!

The termsag andbg , which are given in Eq.~4.11!, repre-
sent the contribution from pure gravity and are present e
in the case that there is no matter. On the other hand,
term bmat, given in Eq.~3.48!, arises due to the presence
the background medium, independently of whether a gra
tational field is present or not. Finally,bG , given in Eq.
~4.30!, is the contribution that arises due to the simultane
presence of matter and the external gravitational field. Th
substituting Eq.~4.31! in Eq. ~3.47!, and keeping in mind
that we are allowed to retain only terms that are linear in
external gravitational potential, we obtain

vK5K12Kfext1bmat1~fextbmat1bG!. ~4.32!

The corresponding formula forv̄K is obtained from this by
reversing the sign in front ofbmat and bG . Apart from the
first term in the right-hand side Eq.~4.32!, which corre-
sponds just to the vacuum dispersion relation, the other te
have the following meaning.

The second term has a purely gravitational origin. If w
take it by itself and neglect the effects of the medium,
gives rise to the dispersion relation

v̄K5vK5K~112fext!, ~4.33!

which is equivalent to say that the neutrino and antineutr
acquire an index of refraction given by

N0[122fext. ~4.34!

This is the same result that is obtained by solving the eq
tion

kmkngmn50, ~4.35!

which is the appropriate equation to solve in order to de
mine the dispersion relation for the photon or a mass
scalar particle. That purely gravitational term also gives r
to effects analogous to the gravitational red shift and bend
of light. For example, consider a neutrino beam propaga
along thez direction in the vicinity of a massive body o
massM situated at the origin, with an impact parameterb. In
the eikonal approximation,vK(t) and KW (xW ) satisfy the
Hamilton equation
09600
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]KW

]t
52¹W vK , ~4.36!

which can be used to obtain the transverse componenKx
that the momentum develops as a consequence of the i
ence of the gravitational field. SubstitutingvK5(1
12fext)K in Eq. ~4.36!, we can write

Kx

K
522E

2`

`

dt
]fext~r !

]b
, ~4.37!

where the position vector isrW5(b,0,t) and fext(r )5
2GM/r . From this we obtain the bending formula for ne
trinos

Kx

K
52

4GM

b
, ~4.38!

which is the same result as the corresponding formula
photons.

In contrast to the purely gravitational terms, the matt
dependent terms contribute with opposite signs to the n
trino and antineutrino indices of refraction. The termbmat on
the right side of Eq.~4.32!, which denotes the matter contr
bution in the absence of a gravitational field, is the us
Wolfenstein term. It is flavor dependent, and it is the orig
of the MSW mechanism for neutrino oscillations in matte
The remaining terms are the new contributions we set ou
determine. One of them is exactly the Wolfenstein term m
tiplied by the external gravitational potential. Since we a
considering weak gravitational fields, that term is mu
smaller than the usual Wolfenstein term and can be
glected. Thus, the dispersion relation reduces to

vK5K12fextK1bmat1bG , ~4.39!

which can be equivalently stated in terms of the index
refraction

Nn[
K

vK

5N02
bmat

K
2

bG

K
.

~4.40!

The term that we have denoted bybG is more interesting
since it can have a non-trivial dependence on the tempera
and density of the background material. It is flavor depe
dent as well, and it arises because of the presence of
matter and gravitational fields. In order to be able to consi
its possible physical effects, in the ensuing section we w
estimate its magnitude for various physical conditions of
background medium.

D. Estimates of the matter-gravitational effects

The question we wish to address here is how large are
matter-gravitational effects, represented by the termbG in
5-12
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Eq. ~4.40!, relative to the Wolfenstein termbmat. To answer
this question we need an estimate of the integralH f , which
we have carried out in the Appendix, and also make so
assumptions about the composition of the background for
possible physical situations of interest.

As an example, let us consider a medium such as the
or a supernova. In these, the conditions are such that
nucleons are non-relativistic. Therefore, using the res
given in Eqs.~A4! and ~A8!, we can write for the nucleon
(N5p,n)

JN5H 2bmNnN classical nucleon gas,

2
3nN

vFN
2 degenerate nucleon gas,

~4.41!

wherevFN stands for the Fermi velocity of the nucleon ga
Regarding the electrons, if they are relativistic then fro

Eq. ~A11! we haveJe525ne . In this case, the electro
contribution in Eq.~4.30! is of the order of the Wolfenstein
term multiplied byfext, and therefore it is unimportant. O
the other hand, this is not necessarily the case for a n
relativistic electron gas. In analogy with Eq.~4.41! for this
case

Je5H 2bmene classical non-relativistic electron gas,

2
3ne

vFe
2 degenerate non-relativistic electron gas.

~4.42!

To assess further the possible importance of the ma
gravitational contributions to the index of refraction, we al
need some knowledge of the magnitude of the gravitatio
potential that could be involved. If we take as a guidi
value the potential at the surface of the Sun,

f(52231026, ~4.43!

we find that the matter-gravitational contributions could
relevant under the appropriate conditions. This is particula
true for the nucleon terms, which have the enhancement
tors bmN or vFN

22 in the classical and the degenerate cas
respectively. This is not unexpected, since the gravitatio
potential couples more strongly to the more massive p
ticles.

As we have already mentioned, and as Eq.~4.30! clearly
indicates, the nucleon contributions tobG are the same for al
the neutrino flavors, and therefore they are irrelevant for n
trino oscillations involving only weak-doublet neutrinos. O
the other hand, they are relevant for oscillation phenom
in which sterile neutrinos participate and, as we have sho
above, they may be important. Furthermore,bmat and bG
have a different dependence on the neutrino coordinate
propagates through the medium, a property that may h
also distinctive implications.

V. CONCLUSIONS

In this work we have determined the effects of a sta
gravitational potential on the neutrino index of refraction
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matter. This has been done by first carrying out the one-l
calculation of the matter-induced gravitational couplings
the neutrinos, and then by determining the corrections to
neutrino self-energy that such couplings imply in the pr
ence of the gravitational potential.

As a consistency check of the one-loop formulas,
showed explicitly that the effective gravitational vertex
the neutrino is transverse. This required that the correct
persion relation and wavefunction associated with the ex
nal neutrino modes be used, and not their vacuum coun
part. We emphasize again that it is crucial that, in t
calculation of the one-loop diagrams, we have used the
off-shell formula for the tree-level gravitational vertex fun
tion of the internal fermions in the loop, and not the on-sh
limit that is customarily quoted.

As indicated in Sec. IV, the matter-gravitational contrib
tion to the neutrino index of refraction could be relevant
the context of matter-enhanced neutrino oscillations, and
particular in phenomena involving the so-called sterile n
trinos. This may occur not only because their magnitu
could be non-negligible, but also because they have a dif
ent dependence on the coordinate compared with the s
dard Wolfenstein term. Whether or not these gravitatio
effects can lead to interesting observable consequence
specific contexts, such as the supernova or the Solar neu
problem, is an open question that needs further deta
study.

The results presented here indicate that such studies c
be well motivated, and our work sets down the arena to ca
them out on firm grounds and in a systematic fashion.

Note added.After this paper was submitted for publica
tion, the work by Piriz, Roy and Wudka@16# was brought to
our attention, in which the tree-level gravitational couplin
of the neutrino is also considered without violating t
equivalence principle. However, these authors assume a
trinsic magnetic moment of the neutrino, and they conc
themselves with the effect of the~vacuum! gravitational in-
teractions on the magnetic spin flip oscillations. They do
consider the effect of matter on the gravitational neutr
interactions, which is the focus of the present work.
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APPENDIX A: EVALUATION OF Jf

We consider the evaluation of the quantityJf defined in
Eq. ~4.28! for various conditions of the background fermio
gas. That expression forJf can be rewritten by taking the
derivative of the functionF given in Eq.~4.26! and using Eq.
~3.19!. In this way Eq.~4.28! becomes

Jf5~nf2nf̄ !1H f ~A1!

where
5-13
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H f54E d3P

~2p!3 S Ef2
mf

2

2Ef
D d

dEf
~ f f2 f f̄ !. ~A2!

In order to carry out this integral, we consider the followin
illustrative cases.

1. Classical non-relativistic gas

In this case, we can putf f̄.0 and use

d f

dEf
.2b f . ~A3!

Using these and remembering that we can approximateEf
.mf in the integrand, we then obtain from Eqs.~A1! and
~A2!

Jf.H f.2bmfnf , ~A4!

where we have used the fact thatbmf@1 for a non-
relativistic gas.

2. Degenerate gas at zero temperature

For this case, the distribution function is given by

f 5Q~EF2E!, f̄ '0, ~A5!

whereQ denotes the step function andEF is the Fermi en-
ergy. Thusd f /dE52d(E2EF). Putting this back into Eq
~A2! and usingPF

353p2nf for the Fermi momentum, we
obtain

H f52F6nf1mf
2S 3nf

p4 D 1/3G , ~A6!
, f

a
ki

09600
which in turn implies

Jf52F5nf1mf
2S 3nf

p4 D 1/3G . ~A7!

No assumption has been made here about whether or no
gas is non-relativistic. However, in the relativistic or no
relativistic limits, this formula reduces to

Jf5H 25nf relativistic gas

2
3nf

vF
2 non-relativistic gas

~A8!

where we have usedpF5mfvF for the non-relativistic case

3. Ultra-relativistic gas

In this case we neglect the mass of the background
ticles and therefore we approximate Eq.~A2! by

H f54E d3P

~2p!3 P
d

dP
~ f f2 f f̄ !. ~A9!

By carrying out a partial integration and using Eq.~3.19! this
is equivalent to

H f526~nf2nf̄ !, ~A10!

and therefore

Jf525~nf2nf̄ !. ~A11!
y
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