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Naturalness, weak scale supersymmetry, and the prospect for the observation of supersymmetr
at the Fermilab Tevatron and at the CERN LHC
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Naturalness bounds on weak scale supersymmetry in the context of radiative breaking of the electroweak
symmetry are analyzed. In the case of minimal supergravity it is found that for low tanb and for low values
of fine-tuningF, whereF is defined essentially by the ratiom2/MZ

2 wherem is the Higgs mixing parameter
and MZ is the Z boson mass, the allowed values of the universal scalar parameterm0 , and the universal
gaugino massm1/2 lie on the surface of an ellipsoid with radii fixed byF leading to tightly constrained upper
bounds;AF. Thus for tanb<2(<5) it is found that the upper limits for the entire set of sparticle masses lie
in the range,700 GeV (,1.5 TeV) for any reasonable range of fine-tuning (F<20). However, it is found
that there exist regions of the parameter space where the fine-tuning does not tightly constrainm0 andm1/2.
Effects of nonuniversalities in the Higgs boson sector and in the third generation sector on naturalness bounds
are also analyzed and it is found that nonuniversalities can significantly affect the upper bounds. It is also found
that achieving the maximum Higgs boson mass allowed in supergravity unified models requires a high degree
of fine-tuning. Thus a heavy sparticle spectrum is indicated if the Higgs boson mass exceeds 120 GeV. The
prospect for the discovery of supersymmetry at the Fermilab Tevatron and at the CERN LHC in view of these
results is discussed.@S0556-2821~98!01819-0#

PACS number~s!: 11.30.Qc, 04.65.1e, 12.60.Jv, 14.80.Ly
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I. INTRODUCTION

One of the important elements in supersymmetric mo
building is the issue of the mass scale of the supersymm
particles. There is the general expectation that this s
should be of the order of the scale of the electroweak ph
ics, i.e., in the range of a TeV. This idea is given a mo
concrete meaning in the context of supergravity unificat
@1# where one has spontaneous breaking of the electrow
symmetry by radiative corrections@2#. Radiative breaking of
the electroweak symmetry relates the scale of supersym
try soft breaking terms directly to theZ boson mass. This
relationship then tells us that the soft supersymme
~SUSY! breaking scale should not be much larger than
scale of theZ boson mass otherwise a significant fine-tuni
will be needed to recover theZ boson mass. The above ge
eral connection would be thwarted if there were large int
nal cancellations occurring naturally within the radiati
breaking condition which would allowm0 and m1/2 dispro-
portionately large for a fixed fine-tuning. We shall show th
precisely such a situation does arise in certain domains o
supergravity parameter space.

The simplest fine-tuning criterion is to impose the co
straint thatm0 ,mg̃,1 TeV wherem0 is the universal soft
SUSY breaking scalar mass in minimal supergravity andmg̃
is the gluino mass. The above criterion is easy to implem
and has been used widely in the literature~for a review see
Ref. @3#!. A more involved fine-tuning criterion is given in
Ref. @4#. However, it appears that the criterion of Ref.@4# is
actually a measure of the sensitivity rather than of fin
tuning @5,6#. Another naturalness criterion is proposed
Ref. @6# and involves a distribution function. Although th
distribution function is arbitrary the authors show that diffe
ent choices of the function lead numerically to similar fin
tuning limits.
0556-2821/98/58~9!/096004~16!/$15.00 58 0960
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In the analysis of this paper we use the fine-tuning cr
rion introduced in Ref.@7# in terms of the Higgs boson mix
ing parameterm which has several attractive features. It
physically well motivated, free of ambiguities, and easy
implement. Next we use the criterion to analyze the up
limits of sparticle masses for low values of tanb, i.e.,
tanb<5. In this case one finds thatm0 andm1/2 allowed by
radiative breaking lie on the surface of an ellipsoid, a
hence the upper limits of the sparticle masses are dire
controlled by the radii of the ellipsoid which in turn ar
determined by the choice of fine-tuning. For instance, o
finds that if one is in the low tanb end ofb2t unification
@8# with the top quark mass in the experimental range, i
tanb'2, then for any reasonable range of fine-tuning t
sparticle mass upper limits for the entire set of SUSY p
ticles lie within the mass range below 1 TeV. Further, o
finds that the light Higgs boson mass lies below 90 G
under the same constraints. Thus in this case discover
supersymmetry at the LHC is guaranteed according to
reasonable fine-tuning criterion. Next the paper explo
larger values of tanb, i.e., tanb>10 and here one finds tha
m0 andm1/2 for moderate values of fine-tuning do not lie o
the surface of an ellipsoid; rather one finds that they lie
the surface of a hyperboloid. In this casem0 andm1/2 are not
bounded by them constraint equation and large values ofm0
andm1/2 can result with a fixed fine-tuning.

Effect of nonuniversalities on naturalness is also a
lyzed. Again one finds phenomena similar to the ones d
cussed above, although the domains in which these phen
ena occur are shifted relative to those in the universal c
One of the important results that emerges is that the up
limits of sparticle masses can be dramatically affected
nonuniversalities. These results have important implicati
for the discovery of supersymmetry at the Fermilab Tevat
© 1998 The American Physical Society04-1
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and the CERN Large Hadron Collider~LHC!.
Our analysis is carried out in the framework of supergr

ity models with gravity mediated breaking of supersymme
@9,1,3#. This class of models possesses many attractive
tures. One of the more attractive features of these mode
that with R parity invariance the lightest neutralino is als
the lightest supersymmetric particle over most of the para
eter space of the theory and hence a candidate for cold
matter. Precision renormalization group analyses show@10#
that these models can accommodate just the right amou
dark matter consistent with the current astrophysical d
@11,12#. However, in this work we shall not impose the co
straint of dark matter.

The outline of the paper is as follows. In Sec. II we gi
a brief discussion of the fine-tuning measure used in
analysis. In Sec. III we use this criterion to discuss the up
limits on the sparticle masses in minimal supergravity
low tanb, i.e., tanb<5 and show that the allowed solution
to radiative breaking lie on the surface of an ellipsoid.
Sec. IV we discuss naturalness in beyond the low tanb re-
gion. Here we show that radiative breaking of the ele
troweak symmetry leads to the soft SUSY breaking para
eters lying on the surface of a hyperboloid. In Sec. V
discuss the effects of nonuniversalities on the upper limits
Sec. VI we show that a high degree of fine-tuning is nee
to have the light Higgs boson mass approach its maxim
upper limit. The limits onF from the current data are dis
cussed in Sec. VII. Implications of these results for the d
covery of supersymmetric particles at colliders are also
cussed in Secs. III–VI. Conclusions are given in Sec. VI

II. MEASURE OF NATURALNESS

We give below an improved version of the analysis of t
fine-tuning criterion given in Ref.@7#. The radiative elec-
troweak symmetry breaking condition is given by

1

2
MZ

25l22m2, ~1!

wherel2 is defined by

l25
m̄H1

2 2m̄H2

2 tan2 b

tan2 b21
. ~2!

Here m̄Hi

2 5mHi

2 1S i ( i 51,2) whereS i arise from the one

loop corrections to the effective potential@13#. The issue of
fine-tuning now revolves around the fact that a cancellat
is needed between thel2 term and them2 term to arrange the
correct experimental value ofMZ . Thus a large value ofl2

would require a large cancellation from them2 term resulting
in a large fine-tuning. This idea can be quantified by defin
the fine-tuning parameterF so that

F2154
l22m2

l21m2
. ~3!
09600
-
y
a-
is

-
rk

of
ta

e
r

r

-
-

n
d
m

-
-

e

n

g

@The factor of 4 on the right hand side in Eq.~3! is just a
convenient normalization.# The expression forF can be sim-
plified by inserting in the radiative breaking condition E
~1!. We then get

F5
1

4
1

m2

MZ
2

. ~4!

The result above is valid with the inclusion of both the tr
and the loop corrections to the effective potential. (F is re-
lated to the fine-tuning parameterd defined in Ref.@7# by
F5d21). For largem one hasF;m2/MZ

2 , a result which
has a very direct intuitive meaning. A largem implies a large
cancellation between thel2 term and them2 term in Eq.~1!
to recover theZ boson mass and thus leads to a large fi
tuning. Typically a largem implies large values for the sof
supersymmetry breaking parametersm0 and m1/2 and thus
large values for the sparticle masses. However, large can
lation can be enforced by the internal dynamics of radiat
breaking itself. In this case a smallm and hence a smal
fine-tuning allows for relatively large values ofm0 and of
m1/2. We show that precisely such a situation arises for c
tain regions of the parameter space of both the minim
model as well as for models with nonuniversalities.

III. UPPER BOUNDS ON SPARTICLE MASSES
IN MINIMAL SUPERGRAVITY

We discuss now the upper bounds on the sparticle ma
that arise under the criterion of fine-tuning we have d
cussed above. Using the radiative electroweak symm
breaking constraint and ignoring theb-quark couplings, jus-
tified for small tanb, we may express the fine-tuning param
eterF0 in the form

F052
1

4
1S m0

MZ
D 2

C11S A0

MZ
D 2

C21S m1/2

MZ
D 2

C3

1S m1/2A0

MZ
2 D C41

Dm loop
2

MZ
2

, ~5!

where

C15
1

t221
S 12

3D021

2
t2D , C25

t2

t221
k, ~6!

C35
1

t221
~g2t2e!, C452

t2

t221
f ,

Dm loop
2 5

S12t2S2

t221
. ~7!

Heret[tanb,e, f ,g,k and the sign conventions ofA0 andm
are as defined in Ref.@14#, D0 is defined by

D0512~mt /mf !
2, mf.200 sinb GeV, ~8!

andS1 andS2 are as defined in Ref.@13#.
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TABLE I. The scale dependence ofC1(Q) –C4(Q) for minimal supergravity whenmt5175 GeV for
tanb52, 5, 10, and 20.

Scale dependence ofC1–C4

tanb Q(GeV) C1 C2 C3 C4

2 91.2 0.7571 0.0711 4.284 0.3119
2000 0.6874 0.0879 2.851 0.3073
4000 0.6702 0.0918 2.607 0.3055
6000 0.6598 0.0941 2.474 0.3043
8000 0.6523 0.0957 2.384 0.3034
10000 0.6464 0.0970 2.316 0.3026

5 91.2 0.14212 0.1024 2.871 0.4491
500 0.09016 0.1099 2.200 0.4245
1000 0.06843 0.1126 1.973 0.4138
1500 0.05558 0.1142 1.851 0.4074
2000 0.04639 0.1152 1.768 0.4028
2500 0.03924 0.1160 1.706 0.3992
3000 0.03336 0.1166 1.657 0.3962
3500 0.02838 0.1172 1.617 0.3937
4000 0.02406 0.1176 1.583 0.3914
4500 0.02023 0.1180 1.553 0.3895
5000 0.01680 0.1184 1.527 0.3877

10 91.2 0.0756 0.1040 2.710 0.4561
250 0.0446 0.1081 2.305 0.4397
500 0.0230 0.1108 2.062 0.4280
750 0.0102 0.1122 1.931 0.4211
1000 0.0011 0.1132 1.843 0.4160
1250 20.0060 0.1140 1.778 0.4121
1500 20.0118 0.1146 1.726 0.4089
1750 20.0167 0.1151 1.683 0.4061
2000 20.0210 0.1155 1.646 0.4037
2500 20.0281 0.1162 1.587 0.3997
3000 20.0341 0.1167 1.540 0.3964

20 250 0.02850 0.1084 2.269 0.4406
500 0.00685 0.1109 2.029 0.4286
750 20.00592 0.1123 1.899 0.4214
1000 20.01504 0.1133 1.812 0.4162
1250 20.02213 0.1140 1.747 0.4122
1500 20.02795 0.1146 1.695 0.4089
1750 20.03288 0.1150 1.653 0.4061
2000 20.03716 0.1154 1.617 0.4036
2500 20.04433 0.1161 1.558 0.3995
3000 20.05020 0.1166 1.511 0.3961
se
To investigate the upper limits onm0 andm1/2 consistent
with a given fine-tuning it is instructive to write Eq.~5! in
the form

C1m0
21C3m1/282 1C28A0

21Dm loop
2 5MZ

2S F01
1

4D , ~9!

where
09600
m1/28 5m1/21
1

2
A0

C4

C3
, C285C22

1

4

C4
2

C3
, ~10!

andDm loop
2 is the loop correction. Now for the universal ca

one finds that the loop corrections tom are generally small
for tanb<5 in the region of fine-tuning ofF0<20. Further,
using renormalization group analysis one finds thatC28.0
and C3.0 and at least for the range of fine-tuningF0
<20, C1.0 ~see Table I!. Thus in this case defining
4-3
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FIG. 1. ~a! Contour plot of the upper limit in them02m1/2 plane for different values ofF0 when mt5175 GeV, tanb52, andm

,0. The allowed region lies below the curves.~b! Upper bounds on mass of the heavy Higgs bosonH0, of the gluino and of the squarkũL

~for the first two generations! for the same parameters as in~a!. ~c! Upper bounds on mass of theẽL , of the light top squarkt̃ 1 , and of the

heavy top squarkt̃ 2 for the same parameters as in~a!. ~d! Upper bounds on masses of the light Higgs bosonh0, of the light charginox̃1
6 ,

of the heavy charginox̃2
6 , and of the neutralinox̃1

0 for the same parameters as in~a!.
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a25MZ
2 F11/4

C3
, b25MZ

2 F11/4

C1
, c25MZ

2 F11/4

C28
~11!

we find that for tanb<5, F0<20 the radiative breaking con
dition can be approximated by

m1/282

a2
1

m0
2

b2
1

A0
2

c2
.1 ~12!

and the renormalization group analysis shows that at
scaleQ5MZ the quantitiesa2, b2, andc2 are positive. Fix-
ing the fine-tuning parameterF0 fixes a, b, andc and one
finds thatm0 andm1/2 are bounded as they lie on the boun
ary of an ellipse. Further Eq.~12! implies that the upper
09600
e

bounds onm0 andm1/2 increase as;AF0 for largeF0 . A
similar dependence on fine-tuning was observed in the an
sis of Ref.@4#.

We give now the full analysis without the approximatio
of Eq. ~12!. We consider the case of tanb52 first which lies
close to the low end of the tanb region of b-t unification
with the top quark mass taken to lie in the experimen
range@8#. In Fig. 1~a! we give the contour plot of the uppe
limits for the parametersm0 andm1/2 in the m02m1/2 plane
for the case of tanb52 and mt5175 GeV for 2.5<F0
<20. As expected, one finds that the contours correspon
to larger values ofm0 andm1/2 require larger values ofF0 .
The upper limits of the mass spectra for the same se
parameters as in Fig. 1~a! are analyzed in Figs. 1~b!–1~d!. In
Fig. 1~b! the upper limits of the mass spectra of the hea
Higgs boson, the first two generation squarks, and the glu
are given. We find that the mass of the squark and of
gluino are very similar over essentially the entire range
4-4
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TABLE II. The upper bound on sparticle masses for minimal supergravity whenmt5175 GeV andm,0 for different values of tanb
and fine-tuning measureF0 . All the masses are in GeV.

Minimal supergravitym,0
tanb F H ũl ẽl ẽr t̃ 1 t̃ 2 g̃ h x̃1

6 x̃2
6 x̃1

0 m0

2 5 326 290 212 207 264 325 316 69 102 224 48 204
10 479 419 320 315 353 429 459 78 139 303 67 315
20 687 598 463 459 483 579 649 86 190 419 94 459

5 2.5 318 352 292 285 265 352 295 97 77 180 42 282
5 594 589 560 556 365 507 425 103 114 232 60 556
10 930 906 888 884 510 744 610 109 167 309 86 886
20 1417 1381 1368 1365 742 1113 873 116 243 423 123 136

10 2.5 416 464 403 393 323 431 316 106 73 184 42 395
5 3702 4089 3914 3887 2311 3311 1272 136 190 382 158 39
10 5963 6714 6365 6318 3855 5428 2776 144 283 797 273 63
20 8875 10536 9622 9527 6170 8616 4945 150 404 1409 400 95

20 2.5 1889 2136 2044 2003 1202 1697 566 128 104 214 69 20
5 3581 4198 3906 3827 2480 3383 1764 138 194 515 178 39
10 5540 6585 6114 5978 3893 5270 3124 145 282 895 274 62
20 8007 10092 8954 8734 6078 8167 5322 151 403 1516 399 90
n,
e

u-

h

o

o

be
ith
an

e

f
1

et

e
ng
ed
-

s

a

fo

for

f

-

me

up

s
r
s
ange

f the
ary

aint
e

in
ticle
ne-
s

F0 . Upper limits ofẽ, t̃ 1 , t̃ 2 are given in Fig. 1~c!. In Fig.
1~d! we exhibit the upper limits for the light Higgs boso
the chargino, and the lightest neutralino. We note that exc
for small values ofF0 one finds that the scaling laws@15#
~e.g.,mx

1
0. 1

2 mx
1
6) are obeyed with a high degree of acc

racy. We note that the Higgs boson mass upper limit in t
case falls below 85–90 GeV forF0<20. At the Tevatron in
the Main Injector era one will be able to detect chargin
using the trileptonic signal@16# with masses up to 230 GeV
with 10 fb21 of integrated luminosity@17,18#. Reference to
Fig. 1~d! shows that the above implies that the upper limit
chargino masses for the full range ofF0<20 will be acces-
sible at the Tevatron.

For the gluino the mass range up to 450 GeV will
accessible at the Tevatron in the Main Injector era w
25 fb21 of integrated luminosity. This means that one c
explore gluino mass limits up toF0510 for tanb52. How-
ever, at the LHC gluino masses in the range 1.6–2.3 T
@19#/1.4–2.6 TeV@20# for most values ofm and tanb will be
accessible and recent analyses show that the accuracy o
mg̃ mass measurement can be quite good, i.e., to within
10 % depending on what part of the supergravity param
space one is in@21#. Thus for tanb52 one will be able to
observe and measure with reasonable accuracy the mass
the charginos, the gluino, and the squarks for the full ra
of values ofF0<20 at the LHC. It has recently been argu
that the Next Linear Collider~NLC!, where even more accu
rate mass measurements@22–24# are possible, will allow one
to use this device for the exploration of physics at the po
grand unified theory~GUT! and string scales@25#. The NLC
also offers the possibility of testing a good part of the p
rameter space for the tanb52 model. The analysis given in
Table II shows that the full sparticle mass spectrum
tanb52 can be tested at the NLC withAs51 TeV for
09600
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F0<10 and over the entire rangeF0<20 with As
51.5 TeV.

We discuss next the upper limit of sparticle masses
tanb55. In Fig. 2~a! we give the contour plot ofm0 and
m1/2 upper limits in them02m1/2 plane for the same value o
the top mass and in the sameF0 range as in Fig. 1~a!. Here
we find that for fixedF0 the contours are significantly fur
ther outwards compared to the case for tanb52. Corre-
spondingly the upper limits of the mass spectra for the sa
value of F0 are significantly larger in Figs. 2~b!–2~d! rela-
tive to those given in Figs. 1~b!–1~d!. In this case the light
chargino mass lies below 243 GeV forF0<20 and thus the
upper limits for values ofF0<20 could be probed at the
Tevatron in the Main Injector era where chargino masses
to 280 GeV will be accessible with 100 fb21 of integrated
luminosity@17,18#. Similarly in this case the gluino mass lie
below 873 GeV forF0<20 and thus the upper limit fo
values of F0<20 could be probed at the LHC which a
mentioned above can probe gluino masses in the mass r
of 1.622.3 TeV @19#/1.422.6 TeV @20#. LHC can probe
squark masses up to 2–2.5 TeV, so squark masses o
above size should be accessible at the LHC. A full summ
of the results for values of tanb52 –20 is given in Table II
where the sparticle mass limits in the range 2.5<F0<20 are
given. The analysis tells us that for a reasonable constr
on F0 , i.e., F0<20, the gluino and the squarks must b
discovered at the LHC for the values of tanb<5.

IV. REGIONS OF THE HYPERBOLIC CONSTRAINT

In this section we discuss the possibility that in certa
regions of the supergravity parameter space the spar
spectrum can get large even for modest values of the fi
tuning parameterF0 . This generally happens in region
4-5
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FIG. 2. ~a! Contour plot of the upper limit in them02m1/2 plane for different values ofF0 when mt5175 GeV, tanb55, andm

,0. The allowed region lies below the curves.~b! Upper bounds on mass of the heavy Higgs bosonH0, of the gluino and of the squarkũL

~for the first two generations! for the same parameters as in~a!. ~c! Upper bounds on mass of theẽL , of the light top squarkt̃ 1 , and of the

heavy top squarkt̃ 2 for the same parameters as in~a!. ~d! Upper bounds on masses of the light Higgs bosonh0, of the light charginox̃1
6 ,

of the heavy charginox̃2
6 , and of the neutralinox̃1

0 for the same parameters as in~a!.
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where the loop corrections tom are large. For example, in
contrast to the case of small tanb one finds that for the cas
of large tanb the loop corrections tom can become rathe
significant. In this case the size of the loop corrections tom
depends sharply on the scaleQ0 where the minimization of
the effective potential is carried out. In fact, in this case th
is generally a strong dependence onQ0 of both the tree and
the loop contributions tom which, however, largely cancel in
the sum, leaving the totalm with a sharply reduced but stil
non-negligible residualQ0 dependence. An illustration o
this phenomenon is given in Fig. 3. The choice ofQ0 where
one carries out the minimization of the effective potentia
of importance because we can choose a value ofQ0 where
the loop corrections are small so that we can carry out
analytic analysis similar to the one in Sec. III.~For example,
for the case of Fig. 3 the loop correction tom is minimized
at Q0'1 TeV.) Generally we find the valueQ0 at which
the loop correction tom is minimized to be about the averag
of the smallest and the largest sparticle masses, a value
09600
e

n

not

too distant fromAmt̃ L
mt̃ R

, which is typically chosen to
minimize the two-loop correction to the Higgs boson ma
@26,12#. Choosing a valueQ0 where the loop correction is
small (Q0 is typically greater than 1 TeV here!, and follow-
ing the same procedure as in Sec. III we find that this ti
sgn@C1(Q0)#521 @see entries for the case tanb510,20 in
Table I and see also Fig. 5~a!#. There are now two distinc
possibilities: case A and case B which we discuss below

Case A. This case corresponds to

S F01
1

4D MZ
22C28A0

2.0 ~13!

and occurs for relatively small values ofuA0u. Here the ra-
diative breaking equation takes the form

m1/282

a2~Q0!
2

m0
2

b2~Q0!
.1, ~14!
4-6
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where

a25
u~F011/4!MZ

22C28A0
2u

uC3u
~15!

and

b25
u~F011/4!MZ

22C28A0
2u

uC1u
. ~16!

The appearance of a minus sign changes intrinsically
character of the constraint of the electroweak symme
breaking. One finds now that unlike the previous case, wh
m0 and m1/2 lie on the boundary of an ellipse for fixedA0
@see Figs. 4~a! and also Figs. 1~a! and 2~a!#, here they lie on
a hyperbola. A diagrammatic representation of the constr
of Eq. ~14! is given in Figs. 4~b!,4~c!. The position of the
apex of the hyperbola depends onA0 as can be seen from

FIG. 3. ~a! Variation of m with the scaleQ0 where the min-
imization of the potential is carried out for the case wh
tanb510,A050, m052000 GeV,m1/25200 GeV, andm,0. ~b!
Variation of m with the scaleQ0 where the minimization of the
potential is carried out for the case when tanb520, with the other
parameters the same as in~a!.
09600
e
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nt

Fig. 4~c!. The choice ofF itself does not put an upper boun
on m0 and m1/2 and consequently they can get large for
fixed fine-tuning unless other constraints intervene. Thus
this case the rule that the upper bounds are proportiona
AF0 breaks down. In fact from Eqs.~14!–~16! we see that
for largem0 andm1/2 one has

m0.AuC3u
uC1u

m1/28 ~17!

and thus independent ofF0 . Thus the hyperbolae for differ
ent values of fine-tuning have the same asymptote indep
dent ofF0 as illustrated in Fig. 4~b!.

Case B. This case corresponds to

S F01
1

4D MZ
22C28A0

2,0 ~18!

and occurs for relatively large values ofA0 . Here the radia-
tive breaking equation takes the form

m0
2

b2~Q0!
2

m1/282

a2~Q0!
.1. ~19!

A diagrammatic representation of this case is given in F
4~d!. As in case A, here alsom0 andm1/2 lie on a hyperbola,
with the position of the apex determined by the value ofA0 .
Again here as in case A the choice ofF0 itself does not
control the upper bound onm0 and m1/2. This can be seen
from Fig. 4~d! where the hyperbolae for different values
the fine-tuning have the same asymptote independent ofF0
just as in case A. We emphasize that the analytic anal
based on Eqs.~14! and~19! is for illustrative purposes only
and the results presented in this paper are obtained inclu
theb-quark couplings and including the full one loop corre
tions to m. In Fig. 5~b! we present a numerical analysis
the allowed region ofm0 andm1/2. One finds that the case
A050 andA05500 GeV show thatm0 and m1/2 lie on a
branch of a hyperbola and simulate the illustration of F
4~c!. This is what one expects for the smallA0 case. Simi-
larly for the casesA0521000 GeV andA0522000 GeV
in Fig. 5~b!, m0 andm1/2 lie on a branch of a hyperbola an
simulate the illustration of the right hyperbola in Fig. 4~d! as
is appropriate for a large negativeA0 . Similarly for the case
A051000 GeV in Fig. 5~b!, m0 and m1/2 again lie on a
branch of a hyperbola and simulate the illustration of the
hyperbola in Fig. 4~d!. A similar analysis for tanb520 can
be found in Fig. 5~c!. Thus one finds that the results of th
analytic analysis are supported by the full numerical ana
sis.

V. EFFECTS OF NONUNIVERSAL SOFT
SUSY BREAKING

The analysis of Secs. III and IV above is carried out und
the assumption of universal soft supersymmetry bound
conditions at the GUT scale. These universal boundary c
ditions arise from the assumption of a flat Kahler potent
However, the framework of supergravity unification@1,3# al-
4-7
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FIG. 4. ~a! Diagrammatic illustration of the ellipse represented by Eq.~12!, where the values ofC1–C4 are for tanb52 andQ5MZ

from Table I. The relevant parts of the ellipses are in solid line.~b! Diagrammatic illustration of the hyperbola represented by Eqs.~14! and
~28!, where the values ofC1–C4 are for tanb510 andQ53000 GeV from Table I. The relevant parts of the hyperbolae are in solid
~c! Diagrammatic illustration of the hyperbola represented by Eqs.~14! and ~28!, where the values ofC1–C4 are for tanb510 andQ
53000 GeV from Table I. The relevant parts of the hyperbolae are in solid line.~d! Diagrammatic illustration of the hyperbola represent
by Eqs.~19! and~30!, where the values ofC1–C4 are for tanb510 andQ53000 GeV from Table I. The relevant parts of the hyperbo
are in solid line.
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lows for more general Kahler structures and hence for n
universalities in the soft supersymmetry breaking parame
@27,25#. In the analysis of this section we shall assume u
versalities in the soft supersymmetry breaking parameter
the first two generations of matter but allow for nonunive
salities in the Higgs boson sector@25,28–30# and in the third
generation of matter@25,30,31#. It is convenient to param
etrize the nonuniversalities in the following fashion. In t
Higgs boson sector one has

mH1

2 5m0
2~11d1!, mH2

2 5m0
2~11d2!. ~20!

Similarly in the third generation sector one has

mQ̃L

2
5m0

2~11d3!, mŨR

2
5m0

2~11d4!. ~21!
09600
n-
rs
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-

A reasonable range for the nonuniversality parameters
ud i u<1 (i 51 –4). Inclusion of nonuniversalities modifie
the electroweak symmetry breaking equation determining
parameterm2, and leads to corrections to the fine-tuning p
rameterF. One finds that with these nonuniversality corre
tions F is given by

F52
1

4
1S m0

MZ
D 2

C181S A0

MZ
D 2

C21S m1/2

MZ
D 2

C3

1S m1/2A0

MZ
2 D C41

Dm loop
2

MZ
2

, ~22!

where
4-8
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FIG. 5. ~a! The scale dependence ofC1(Q) for minimal supergravity whenmt5175 GeV for tanb52, 5, 10, and 20.~b! Allowed region
in the m0–m1/2 plane in the minimal supergravity case formt5175 GeV, tanb510, F0510, and negativem. ~c! Allowed region in the
m0–m1/2 plane in the minimal supergravity case formt5175 GeV, tanb520, F0510, and negativem.
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C185
1

t221
S 12

3D021

2
t2D1

1

t221
S d12d2t2

2
D021

2
~d21d31d4!t2D1

3

5

t211

t221

pS0

m0
2

, ~23!

andC2 , C3 , andC4 are as defined in Eqs.~6! and~7!. Here
S0 is the trace anomaly term

S05Tr~Ym2! ~24!

evaluated at the GUT scaleMG . It vanishes in the universa
case since Tr(Y)50, but contributes when nonuniversalitie
are present.p is as defined in Ref.@30#. Numerically for
MG51016.2 GeV andaG51/24 one hasp.0.045. Equation
~23! shows how important the effects of nonuniversalities
on F. For a moderate value ofm05250 GeV the factor
(m0 /MZ)2 is ;7.5 and sinced i;O(1), F gets a huge shift.
09600
e

This means that the upper limits of the sparticle masses
going to be sensitively dependent on the magnitudes
signatures ofd i .

It is instructive to write the radiative breaking equatio
Eq. ~22! with nonuniversalities in a form similar to Eq.~9!.
We get

C18m0
21C3m1/282 1C28A0

21Dm loop
2 5MZ

2S F1
1

4D , ~25!

whereC18 is defined in Eq.~23!, andC2 andC3 are defined
in Eq. ~6!, and whereDm loop

2 is the loop correction. We dis
cuss the case of nonuniversalities in the Higgs boson se
first and consider two extreme examples within the co
straint of ud i u<1 (i 51 –2). These are~i! d151, d2521
and ~ii ! d1521, d251, with d3505d4 in both cases. For
case~i! we find from Eq.~23! that the nonuniversalities mak
a positive contribution toC18 , and thusC18.0 ~see Table
III !. As for the universal case the loop corrections in this c
4-9
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are generally small. Thus in this case one finds that the
diative breaking condition takes the form

m1/282

a2
1

m0
2

b82
1

A0
2

c2
.1, ~26!

wherea andc are defined by Eq.~11! andb8 is defined by

b825MZ
2 ~F11/4!

uC18u
. ~27!

As in the universal case@see Figs. 1~a!, 2~a!, and 4~a!# here
also for given fine-tuning one finds thatm0 and m1/2 are

TABLE III. C18(MZ) for different values ofd1 and d2 when
mt5175 GeV for tanb52, 5, 10, and 20.

tanb d1 d2 C18

2 21.0 1.0 20.341
20.75 0.75 20.067
20.5 0.5 0.208
20.25 0.25 0.483

0.0 0.0 0.757
0.25 20.25 1.032
0.5 20.5 1.306
0.75 20.75 1.581
1.0 21.0 1.855

5 21.0 1.0 20.572
20.75 0.75 20.393
20.5 0.5 20.215

20.25 0.25 20.036
0.0 0.0 0.142
0.25 20.25 0.321
0.5 20.5 0.499
0.75 20.75 0.677
1.0 21.0 0.856

10 21.0 1.0 20.597
20.75 0.75 20.429
20.5 0.5 20.261

20.25 0.25 20.092
0.0 0.0 0.076
0.25 20.25 0.244
0.5 20.5 0.412
0.75 20.75 0.580
1.0 21.0 0.748

20 21.0 1.0 20.603
20.75 0.75 20.437
20.5 0.5 20.272

20.25 0.25 20.106
0.0 0.0 0.060
0.25 20.25 0.225
0.5 20.5 0.391
0.75 20.75 0.556
1.0 21.0 0.722
09600
a-

bounded as they lie on the boundary of an ellipse. Furth
C18.C1 implies that a givenF corresponds effectively to a
smallerF0 , and hence admits smaller values of the upp
limits of the squark masses relative to the universal ca
This is what is seen in Table IV. Here we find that the upp
limits are generally decreased over the full range ofF.

For case~ii ! the situation is drastically different. Here th
nonuniversalities make a negative contribution drivingC18
negative~see Table III! and furtherC18 remains negative in
the relevantQ range~see Table V!. Thus the radiative break
ing solutions no longer lie on the boundary of an ellipse. T
analysis in this case is somewhat more complicated in
the loop corrections tom2 at the scaleQ5MZ are large. For
illustrative purposes one may carry out an analysis simila
the one discussed in Sec. III and go to the scaleQ5Q08 ,
where the loop corrections tom2 are negligible. Again there
are two cases and we discuss these below.

Case C. This case is defined by Eq.~13! and the radiative
symmetry breaking constraint here reads

m1/282

a2~Q08!
2

m0
2

b82~Q08!
.1, ~28!

where

b825
u~F11/4!MZ

22C28A0
2u

uC18u
. ~29!

Equation ~28! shows that the radiative symmetry breakin
constraint in this case is a hyperbolic constraint.

Case D. This case is defined by Eq.~18! and the radiative
symmetry breaking constraint here reads

m0
2

b82~Q08!
2

m1/282

a2~Q08!
.1. ~30!

Again the radiative symmetry breaking constraint is a hyp
bolic constraint.

Cases C and D are similar to the cases A and B exc
that herem0 andm1/2 lie on a hyperbola even for small tanb
because of the effect of the specific nature of the nonuniv
salities in this case. Thus here it is the nonuniversalit
which transform the radiative breaking equation from an
lipse to a hyperbola. Of coursem0 andm1/2 do not become
arbitrarily large, since eventually other constraints set in a
limit the allowed values ofm0 and m1/2. Results of the
analysis are given in Fig. 6. One finds thatm0 and m1/2
indeed can become large for a fixed fine-tuning.

To understand the effects of the nonuniversalities in
third generation in comparison to the nonuniversalities in
Higgs boson sector it is useful to expressDF in the follow-
ing alternate form:
4-10
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TABLE IV. The upper bounds on sparticle masses for the case of nonuniversalities in the
boson sector when (d1 ,d2)5(1,21), d3505d4 , mt5175 GeV, andm,0 for different values of tanb and
F. All the masses are in GeV.

Nonuniversal case: (d1 ,d2 ,d3 ,d4)5(1,21,0,0), m,0

tanb F H ũl ẽl ẽr t̃ 1 t̃ 2 g̃ h x̃1
6 x̃2

6 x̃1
0 m0

2 5 313 291 148 140 267 328 319 70 104 225 49 13
10 457 419 220 207 354 430 459 79 140 304 68 20
20 655 601 317 296 488 585 656 87 193 420 95 29

5 2.5 213 274 133 121 243 336 301 95 79 181 44 10
5 356 391 221 228 324 430 429 103 115 233 62 20
10 535 569 334 312 462 580 620 110 170 310 89 31
20 775 841 485 451 677 820 915 116 254 425 130 46

10 2.5 203 285 129 103 246 349 316 104 74 185 43 9
5 371 406 234 216 333 447 446 110 112 237 62 21
10 559 583 357 332 471 598 637 116 169 314 90 33
20 810 843 520 483 680 828 920 122 251 427 130 49

20 2.5 216 286 125 69 242 350 315 105 69 186 40 7
5 383 409 236 203 330 451 448 111 109 237 60 21
10 577 590 357 323 472 604 646 117 167 315 89 34
20 843 854 519 479 687 835 932 122 252 428 130 50
a
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DF5
1

t221
H d12F12

1

2S mt

mf
D 2Gd2t21

1

2S mt

mf
D 2

~d31d4!t2J
3S m0

MZ
D 2

1
3

5

t211

t221

pS0

MZ
2

. ~31!

Since mt,mf one has@12 1
2 (mt /mf)

2#.0 which implies
that the effect of a negative~positive! d2 can be simulated
by a positive ~negative! value ofd3 or by a positive~nega-
tive! value ofd4 . This correlation can be seen to hold by
comparison of Tables IV and VI. As in the case of Table
where a positived1 and a negatived2 leads to lowering of
the upper limits on squark masses, we find that a positived3
or a positived4 produces a similar effect. The analysis
Table VI where we choose (d1 ,d2 ,d3 ,d4)5(0,0,1,0) sup-
ports this observation. A similar correlation can be ma
between the case ofd1,0,d2.0, and the cased31d4,0 by
the comparison given above. We note, however, that the
fects of nonuniversalities in the Higgs sector and in the th
generation sector are not identical in every respect as
enter in different ways in other parts of the spectrum. Ho
ever, the gross features of the upper limits of squarks
Table VI can be understood by the rough comparison gi
above.

A comparison of Tables II, IV, and VI shows that th
nonuniversalities have a remarkable effect on the upper
its of sparticle masses. One finds that the upper limits on
sparticle masses can increase or decrease dramaticall
pending on the type of nonuniversality included in the ana
sis. The prospects for the observation of sparticles at co
ers are thus significantly affected. For the case of Tables
and VI one finds that the sparticle spectrum falls below
09600
e
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d
ey
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1

TeV in the range tanb<5,F<20. Thus in this case the
gluino and the squarks should be discovered at the LHC
all of the other sparticles should also be discovered o
most of the mass ranges in Table IV. In contrast for the c
of nonuniversality of Table VI we find that the nature
nonuniversal contribution is such that squark masses can
ceed the discovery potential of even the LHC. The analy
given above is form,0. A similar analysis holds with es
sentially the same general conclusions for them.0 case.

VI. UPPER LIMIT ON THE HIGGS BOSON MASS

One of the most interesting parts of our analysis conce
the dependence of the Higgs boson mass upper limits onF0 .
For the analysis of the Higgs boson mass upper limits
have taken account of the one loop corrections to the ma
and further chosen the scaleQ which minimizes the two loop
corrections @26,12#. For tanb52 the upper limit on the
Higgs boson mass increases from 60 GeV atF052.5 to 86
GeV at F0520. Further from the successive entries in th
case in Table II we observe that in each of the cases wh
an increment in the Higgs boson mass occurs, one requir
significant increase in the value ofF0 . The same genera
pattern is repeated for larger values of tanb. Thus for
tanb55 the Higgs boson mass increases from 97 to 1
GeV asF0 increases from 2.5 to 20. In Fig. 7 we exhibit th
upper bound on the Higgs boson mass as a function of tab.
From the analysis of Table II and Fig. 7 one can draw
general conclusion that the Higgs boson mass upper lim
a sensitive function of tanb and F0 . For values of tanb
near the low end, i.e., tanb'2, the upper limit of the Higgs
boson mass lies below 85–90 GeV for any reasonable ra
of fine-tuning, i.e.,F0<20. This is a rather strong resul
4-11



KWOK LUNG CHAN, UTPAL CHATTOPADHYAY, AND PRAN NATH PHYSICAL REVIEW D 58 096004
TABLE V. The scale dependence ofC18(Q),C2(Q) –C4(Q) for (d1 ,d2 ,d3 ,d4)5(21,1,0,0) for mt

5175 GeV and tanb52, 5, 10, and 20.

(d1 ,d2 ,d3 ,d4)5(21,1,0,0)

tanb Q(GeV) C18 C2 C3 C4

2 91.2 20.341 0.071 4.284 0.312
250 20.363 0.0765 3.742 0.3110
500 20.378 0.0802 3.415 0.3101
750 20.387 0.0825 3.239 0.3094
1000 20.394 0.0841 3.119 0.3089
1250 20.399 0.0853 3.030 0.3084
1500 20.404 0.0863 2.959 0.3080
1750 20.408 0.0872 2.901 0.3077
2000 20.411 0.0879 2.851 0.3073

5 91.2 20.572 0.1024 2.871 0.4491
250 20.602 0.1069 2.452 0.4348
500 20.624 0.1099 2.200 0.4245
750 20.636 0.1115 2.064 0.4183
1000 20.645 0.1126 1.973 0.4138
1250 20.652 0.1135 1.905 0.4103
1500 20.658 0.1142 1.851 0.4074
1750 20.663 0.1147 1.806 0.4049
2000 20.667 0.1152 1.768 0.4028

10 91.2 20.597 0.1040 2.710 0.4561
250 20.628 0.1081 2.305 0.4397
500 20.649 0.1108 2.062 0.4280
750 20.662 0.1122 1.931 0.4211
1000 20.671 0.1132 1.843 0.4160
1250 20.678 0.1140 1.778 0.4121
1500 20.684 0.1146 1.726 0.4089
1750 20.689 0.1151 1.683 0.4061
2000 20.693 0.1155 1.646 0.4037

20 91.2 20.603 0.1043 2.671 0.4575
250 20.634 0.1084 2.269 0.4406
500 20.655 0.1109 2.029 0.4286
750 20.668 0.1123 1.899 0.4214
1000 20.677 0.1133 1.812 0.4162
1250 20.684 0.1140 1.747 0.4122
1500 20.690 0.1146 1.695 0.4089
1750 20.695 0.1150 1.653 0.4061
2000 20.699 0.1154 1.617 0.4036
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Thus if the low tanb region ofb2t unification turns out to
be the correct scenario then our analysis implies the e
tence of a Higgs boson mass below 85–90 GeV for a
reasonable range of fine-tuning. This scenario will be co
pletely tested at LEPII which can allow coverage of t
Higgs boson mass up tomh'95 GeV withAs5192 GeV.
If no Higgs boson is seen at LEPII then a high degree
fine-tuning, i.e.,F0.20, is indicated on the low tanb end of
b2t unification.

Further, the analysis also indicates that in order to
proach the maximum allowed Higgs boson mass one ne
to have a high degree of fine-tuning. In particular from Ta
09600
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y
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II and Fig. 7 we see that going beyond 120 GeV in the Hig
boson mass requires a value ofF0 on the high side, prefer-
ably 10 and 20. The strong correlation of the Higgs bos
mass upper limits with the value ofF0 has important impli-
cations for sparticle masses. Thus if the Higgs boson m
turns out to lie close to its allowed upper limit then a larg
value of F0 would be indicated. In turn a largeF0 would
point to a heavy sparticle spectrum. At TeV33 with 25 fb21

of integrated luminosity Higgs boson mass up to 120 G
will be probed. A nonobservation of the light Higgs boson
this mass range will imply that one needs a high degree
fine-tuning which would point in the direction of heavy spa
4-12
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ticle masses. These results are in general agreement wit
analysis of Ref.@32# which arrived at much the same co
clusion using a very different criterion of fine-tuning. In pa
ticular the analysis of Ref.@32# also found that the nonob
servation of the Higgs boson mass below 120 GeV w
imply a heavy spectrum.

VII. FINE-TUNING LIMITS FROM THE
CURRENT EXPERIMENTAL DATA

One may put limits on the fine-tuning parameter using
current experimental data on sparticle searches at colli

FIG. 6. Allowed region in them0–m1/2 plane under the nonuni
versal boundary condition of (d1 ,d2)5(21,1) for mt5175 GeV,
tanb52, F510, and negativem.
09600
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@33,34#. The result of this analysis is presented in Table V
For low tanb the strongest lower limits on the fine-tunin
parameter arise from the lower limits on the Higgs bos
mass. In Table VII we have used the experimental low
limits on the Higgs boson mass from the four detectors
LEP, i.e., L3, OPAL, ALEPH, and DELPHI@33#, to obtain
lower limits on F for values of tanb from 2 to 20. As
expected one finds that the strongest limit onF arises for the
smallest tanb, and the constraint onF falls rapidly for
larger tanb. Thus for tanb greater than 5 the lower limit on
F already drops below 2 which is not a stringent fine-tuni
constraint. Lower limits onF from the current data on the

FIG. 7. Upper bounds on the light Higgs bosonh0 mass for
different values ofF0 as a function of tanb when mt5175 GeV
andm,0.
6

0

4

0

TABLE VI. The upper bound on sparticle masses for nonuniversalities in the third generation when (d3 ,d4)5(1,0), mt5175 GeV, and
m,0 for different values of tanb andF. All the masses are in GeV.

(d1 ,d2 ,d3 ,d4)5(0,0,1,0), m,0

tanb F H ũl ẽl ẽr t̃ 1 t̃ 2 g̃ h x̃1
6 x̃2

6 x̃1
0 m0

2 5 290 292 162 140 266 326 319 70 104 225 49 147
10 418 419 242 211 351 429 456 79 139 304 68 226
20 597 601 349 306 486 583 656 87 193 420 95 331

5 2.5 198 275 151 125 244 337 301 95 79 181 44 126
5 325 391 258 223 325 430 429 103 115 233 62 239
10 485 559 389 340 453 573 611 110 168 310 87 368
20 702 807 571 501 652 791 880 116 245 424 125 54

10 2.5 194 291 144 110 247 349 316 104 74 185 43 11
5 342 422 279 239 333 445 446 110 112 237 62 259
10 514 606 428 371 471 599 637 116 169 314 90 407
20 747 870 629 549 680 828 920 122 251 427 130 60

20 2.5 213 293 134 77 245 352 316 106 70 187 41 88
5 360 431 281 229 331 452 449 112 110 238 61 261
10 541 621 433 364 473 605 646 118 168 316 90 416
20 804 894 638 543 688 836 932 123 252 429 131 62
4-13
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TABLE VII. Current experimental lower bounds on masses of the lightest Higgs boson and va
sparticles from LEP and the Tevatron. Corresponding fine-tunings (m,0) are also shown.

As5183 GeV LEP 95 % C.L. lower bound onmh

tanb mass lower bdd~GeV! Lower bound onF(m,0)

2 86 ~L3! 20
74 ~OPAL scan B! 8

88 ~ALEPH! 23
84 ~DELPHI! 18

5 72 ~L3! 0.25
71 ~OPAL scan B!

73 ~ALEPH!

76 ~DELPHI!

10 72 ~L3! 0.25
70 ~OPAL scan B!

76 ~ALEPH!

75 ~DELPHI!

20 71 ~L3! 0.25
70 ~OPAL scan B!

76 ~ALEPH!

76 ~DELPHI!

As5183 GeV LEP 95 % C.L. lower bounds on various sparticles masses
Particle mass lower bdd~GeV! Lower bound onF(m,0)

24 independent ofm0 ~DELPHI!
x0 14 anym0 ~ALEPH! 0.25 for tanb>2

27 for tanb52 ~L3! 0.25

x6 51 ~ALEPH! 0.25 for tanb>2

t̃ t̃→cx mt̃.74 ~ALEPH! 0.25 for tanb>2

t̃→blnx mt̃.82 ~ALEPH!

95 % C.L. lower bounds on various sparticles masses from Ref.@34#

Particle mass lower bdd~GeV! Lower bound onF(m,0)

x6 mx6.45, 0.66 pb 0.25

mx6.124, 0.01 pb F.8, tanb52
F.5.8, tanb55

q̃ g̃ mg̃.230, heavy squarks F.2.7, tanb52

mq̃,g̃.260,mq̃5mg̃ F.4.0, tanb52
0.25, tanb>5

mq̃.219, heavy gluinos F.2.8, tanb52
0.25, tanb>5
rk
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lower limits on the neutralino, the chargino, the top squa
the heavy squarks, and the gluino are also analyzed in T
VII. One finds that here the current lower limits on th
chargino mass produce the stongest lower limit onF. For
tanb of 2, the lower limit onF from the Higgs boson secto
09600
,
le
is still more stringent constraint than the lower limit co
straint from the chargino sector. However, for tanb55 the
constraint from the chargino sector becomes more string
than the constraint from the Higgs sector. These constra
on the fine-tuning will become even more stringent after
4-14
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CERNe1e2 collider LEP II completes its runs and if supe
symmetric particles do not become visible.

VIII. CONCLUSIONS

In this paper we have analyzed the naturalness bound
sparticle masses within the framework of radiative break
of the electroweak symmetry for minimal supergravity mo
els and for nonminimal models with nonuniversal soft SUS
breaking terms. For the case of minimal supergravity it
found that for small values of tanb, i.e., tanb<5 and a
reasonable range of fine-tuning, i.e.,F<20, the allowed val-
ues ofm0 andm1/2 lie on the surface of an ellipsoid with th
radii determined by the value of fine-tuning. Specifically f
the case tanb52 it is found that the upper limits on th
gluino and squark masses in minimal supergravity lie wit
1 TeV and the light Higgs boson mass lies below 90 GeV
F0<20. For tanb<5 the upper limits of the sparticle
masses all still lie within the reach of the LHC for the sam
range ofF0 . The analysis shows that the upper limits
sparticle masses are very sensitive functions of tanb. As
values of tanb become large the loop corrections tom be-
come large and the nature of the radiative breaking equa
can change, i.e.,m0 andm1/2 may not lie on the surface of a
ellipsoid. Thus it is found that there exist regions of t
parameter space for large tanb where the upper bounds o
the sparticle masses can get very large even for reason
values of fine-tuning.

We have also analyzed the effects of nonuniversalitie
the Higgs boson sector and in the third generation secto
the upper limits on the sparticle masses. It is found that n
universalities have a very significant effect on the ove
size of the sparticle mass upper limits. Thus we find that
case~i! d1.0 or d2,0 and d3505d4 has the effect of
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decreasing the upper limits on the squark masses, an
contrast the case~ii ! d1,0 or d2.0 andd3505d4 has the
effect of increasing the upper limits on the squark mass
Remarkably ford151, d2521, andd3505d4 all of the
sparticle masses lie below 1 TeV for tanb<5 andF<20
because of the nonuniversality effects. In this case the s
ticles would not escape detection at the LHC. However,
the cased1521, d251, andd3505d4 there is an opposite
effect and the nonuniversalities raise the upper limits of
sparticle masses. Here for the same range of tanb, i.e.,
tanb<5 the first and second generation squark masses
reach approximately 3 TeV forF<10 ~4–5 TeV for F
<20) and consequently these sparticles may escape d
tion even at the LHC. Similar effects occur for the nonun
versalities in the third generation sector. Thus nonunivers
ties have important implications for the detection
supersymmetry at colliders.

Finally, it is found that the upper limit on the Higgs boso
mass is a very sensitive function of tanb in the region of low
tanb and moving the upper limit beyond 120 GeV towar
its maximally allowed value will require a high degree
fine-tuning. In turn large fine-tuning would result in a corr
sponding upward movement of the upper limits of oth
sparticle masses. Thus a nonobservation of the Higgs bo
at the upgraded Tevatron with an integrated luminosity
25 fb21, would imply a high degree of fine-tuning and poi
to the possibility of a heavy sparticle spectrum.
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