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Critical region of the finite temperature chiral transition
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We study a Yukawa theory with spontaneous chiral symmetry breaking and with a large numberN of
fermions near the finite temperature phase transition. Critical properties in such a system can be described by
the mean field theory very close to the transition point. We show that the width of the region where non-trivial
critical behavior sets in is suppressed by a certain power of 1/N. Our Monte Carlo simulations confirm these
analytical results. We discuss implications for the chiral phase transition in QCD.@S0556-2821~98!08819-5#
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I. INTRODUCTION

The transition in QCD separating the high temperat
quark-gluon plasma phase from the low temperature h
ronic phase has been studied intensively in the last dec
Understanding the properties of this transition is becom
increasingly important in view of recent experimen
progress in the physics of ultrarelativistic heavy ion co
sions.

Since theu andd quark masses are small, the dynam
of the finite temperature transition is affected by the pheno
enon of chiral symmetry restoration which occurs in the lim
when the quark masses are put to zero. In this limit Q
with two massless quarks has a global SU(2)L3SU(2)R
symmetry which is spontaneously broken to SU(2)V at low
temperatures. It can be argued that if the restoration of
spontaneously broken symmetry proceeds through a sec
order phase transition, the critical properties of this transit
are in the universality class of the classical O~4! spin model
in three dimensions@1,2#. This means that the leading sing
lar behavior of thermodynamic quantities can be predict
i.e., it is given by universal O~4! critical exponents. How-
ever, universality does not answer more detailed quest
such as how this criticality is approached and what is
width of the region of parameters in which this singular b
havior sets in. These questions require more detailed kno
edge of the dynamics of the theory.

In this paper we discuss a phenomenon which is relate
the way the critical behavior sets in for a certain class
theories with a second-order chiral symmetry restorat
transition at finite temperature,Tc . These are theories with
large number of fermion species,N. On general grounds, on
could expect that the universal critical, or scaling, behav
nearTc sets in as soon as the correlation length,j, of the
fluctuations of the chiral condensate exceeds 1/Tc . However,
as we show in this paper, if the number of fermions involv
in the chiral symmetry breaking is large, the critical behav
0556-2821/98/58~9!/096001~9!/$15.00 58 0960
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which sets in whenj exceeds 1/Tc is given by mean field
theory, rather than by arguments based on dimensiona
duction and universality as in@1#. The critical behavior given
by these latter arguments sets in much later, closer toTc ,
when the correlation lengthj exceedsNx/Tc . Below we
shall determine the value of the positive exponentx.

The phenomenon of non-trivial critical region suppress
has been observed in the Yukawa model@3# and in the
Gross-Neveu1 model@4# using a large-N expansion and was
confirmed by lattice Monte Carlo calculations in@4#. These
large-N results predicting mean-field critical behavior we
in an apparent contradiction with the general arguments
@1#. In this paper we show that both critical regimes a
realized in the vicinity ofTc , but in separate scaling win
dows, one following the other.

II. LARGE N YUKAWA THEORY NEAR Tc

In this section we consider a general Yukawa theory ind
dimensions, 2,d<4, with a large numberN of fermion spe-
cies and at finite temperatureT. As argued in@5#, in the
continuum limit both Yukawa model and Gross-Neveu,
Nambu–Jona-Lasinio, models with a four-fermion intera
tion define the same theory. In the absence of a bare ferm
mass there is a~chiral! symmetry, which can be broken spon
taneously at low temperature with a suitable choice of c
plings. This symmetry is restored at some finite temperat
Tc . We are interested in the nature of this phase transiti

In the absence of fermions~or when the Yukawa coupling
is zero! the nature of the transition is rather well known.
depends on the symmetry of the model which is restored

1In this paper we shall use the terms ‘‘Gross-Neveu model’’ a
‘‘Nambu–Jona-Lasinio model’’ interchangeably, especially when
concerns a theory with a four-fermion interaction in 211 dimen-
sions.
© 1998 The American Physical Society01-1
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Tc . In this paper, for simplicity, we consider a model wi
Z2 symmetry. Similar results will also apply to theories wi
other symmetry groups@e.g., SU~2!3SU~2!, as in QCD with
2 massless quarks#, as long as the temperature driven sy
metry restoration transition is of second order.

One can argue that the critical behavior of a quant
theory of a scalar field nearTc is the same as in a classic
scalar theory with the same symmetry. The argumen
based on two expected properties of the model: dimensi
reduction and universality. In the Euclidean formulation t
quantum scalar field is defined in ad-dimensional box with
the extent in the imaginary~Matsubara! time dimension
equal to 1/T. When the diverging correlation length,j, be-
comes much larger than 1/Tc long wavelength fluctuations o
the field become effectively (d21)-dimensional: i.e., on
their scale the box looks like a (d21)-dimensional ‘‘pan-
cake.’’ Since such fluctuations determine the critical beh
ior in the model, one can expect that, by universality,
critical exponents are the same as in a (d21)-dimensional
theory with the same symmetry. This (d21)-dimensional
theory is obviously a classical field theory at finite tempe
ture. One can also understand this realizing that class
thermal fluctuations whose energy isO(kBT) dominate over
quantum fluctuations with energyO(\v) for soft modes of
the field.

Another common way of describing this phenomenon
perturbation theory is to consider Fourier decomposition
the field into discrete Matsubara frequency components
non-zero frequency acts as a mass term of orderpT for the
(d21)-dimensional components of the field. NearTc this
mass is much larger than the mass of a component with
Matsubara frequency. The dimensional reduction is th
equivalent to the decoupling of the modes with non-z
frequencies.

We want to understand what happens in this theory n
Tc when one turns on the Yukawa coupling. Dimension
reduction and universality arguments suggest that the cri
behavior of the theory should not change. This is based
the observation that there is no zero Matsubara frequency
the fermion fields due to antiperiodic boundary condition
the Euclidean time. Therefore all fermion modes should
couple atTc . In other words, the fermion fields do not hav
a classical limit and do not survive quantum-to-classical
duction atTc @6#.

However, as was demonstrated in@4#, the fermions do
affect the behavior nearTc in a certain way. We shall show
that this happens when there are ‘‘too many’’ of them. T
theory can be solved in the limit when the number of ferm
ons,N, is large. In this limit the theory has mean-field cri
cal behavior nearTc @4,3#. This is different from the critical
behavior of the corresponding classical scalar field theo
The mean-field behavior was also observed in numer
Monte Carlo calculations nearTc @4#.

Here we show that such mean-field behavior can be
onciled with the standard arguments of dimensional red
tion and universality. The phenomenon which leads to
apparent contradiction is the suppression of the width of
non-mean-field critical region by a power of 1/N.

We consider the following model with one-compone
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scalar field andZ2 symmetry ind dimensional Euclidean
space:

L5
1

2
~]f!21

1

2
m2f21lf41(

f 51

N

c̄ f~]”1gf!c f . ~1!

We regularize the model by some momentum cutoff,L.
The cutoff can be removed ifd,4 but we shall keep it finite
to compare with a corresponding lattice theory. There
two other important scales in the theory: the temperatureT,
and the physical mass,m, which we identify with the mass
of thermal excitations of the scalar field. NearTc this mass,
m, is significantly different from the zero temperature ma
m0 , sincem vanishes at the critical temperature. It is th
massm, or the correlation length 1/m, which is important for
the critical behavior. The massm is a natural measure~more
natural than, say,T2Tc) of the distance from the criticality.2

Therefore, near the finite temperature phase transition
have the following hierarchy of scales:L@T@m.

Let us consider the renormalization group~RG! evolution
of the couplings from the scale ofL down to the scale ofT
and then fromT down to m. We focus on the quartic self
coupling of the scalar field,l. The evolution from the scale
L to the scaleT is governed by the RG equations of th
d-dimensional quantum Yukawa model. After that, at t
scale ofT, we pass through a crossover region due to the
that the fermions and non-zero Matsubara frequencies of
scalar fields do not contribute to the evolution belowT ~the
decoupling!. The evolution belowT is governed by the RG
equations of the scalarf4 theory ind21 dimensions.

If the window of scales betweenL andT is wide enough
~as it is in the continuum limitL→`), the value of the
renormalized couplingl at the scaleT, l(T), is close to the
infrared fixed point of thed-dimensional Yukawa theory. In
the large-N limit one can calculate this value@7#:

l~T!;
~42d!T42d

N
for 2,d,4. ~2!

The cased54 is special. The infrared fixed point is trivia
and is approached logarithmically asL/T→`:

l~T!;
1

N ln~L/T!
for d54. ~3!

This value provides the starting point,ld215Tl(T), for the
evolution of this coupling belowT in the f4 theory in d
21 dimensions. For largeN this coupling is small. As we
shall see shortly, this is the reason why the critical reg
where one observes non-trivial critical behavior is reach
only very close to the phase transition.

The phenomenon of the suppression of the width o
non-trivial critical region is common in condensed mat

2The whole theory of critical scaling is based on this observati
We shall also use this fact more explicitly when we conside
lattice theory.
1-2
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CRITICAL REGION OF THE FINITE TEMPERATURE . . . PHYSICAL REVIEW D 58 096001
physics @8#. BCS superconductors provide the most we
known example of a system where criticality nearTc is de-
scribed by the Landau-Ginzburg mean-field theory. T
width, DT, of the region aroundTc where the mean-field
description breaks down is tiny. There are systems where
width of the non-trivial critical region is small but measu
able. In such systems one can observe the crossover bet
a mean-field and a non-trivial scaling.

The quantitative relation between the size of the n
trivial, non-mean-field critical region, the Ginzburg regio
and certain parameters of a given system is known as
Ginzburg criterion. In superconductors such a parameter
small ratioT/EF : i.e., the width of the Ginzburg region i
suppressed by a power of this parameter. In this paper
show that in a field theory with large number of fermion
such as Eq.~1!, the width of the Ginzburg region is sup
pressed by a power of 1/N.

The Ginzburg criterion can be obtained by estimating
effects of fluctuations within the mean-field approximatio
When the fluctuations become large the mean-field appr
mation breaks down because of self-inconsistency. A m
sure of the importance of the fluctuations, or the size
corrections to the mean-field, is the value of the effect
selfcoupling of the scalar field,l. If the couplingl is small,
the effect of the fluctuations is also small and the theory
be described by the mean-field approximation very w
However, for thef4 theories in less than four dimension3

fluctuations always become important close enough to
phase transition. This happens roughly when the coup
ld21 on the scale ofm is not small anymore. Sinceld21 has
nonzero dimension equal to 52d, it should be compared to
m52d. In this way, and with the help of Eq.~2!, one arrives
at the following Ginzburg criterion for the applicability o
the mean-field scaling:

m@
T

Nx , x5
1

52d
. ~4!

In the special case ofd54, using Eq.~3! one finds

m@
T

N ln~L/T!
for d54. ~5!

Alternatively, one can compare the size of the one-lo
correction in the effectivef4 theory ind21 dimensions to
the bareld21 . The loop correction becomes important wh
Eq. ~4! is violated.4 Indeed, consider the contribution,Dl, of
a graph such as in Fig. 1 to the effective quartic couplingl.
This contribution diverges whenm→0:

Dl;
T@l~T!#2

m52d , ~6!

3Here again the case of four dimensions is special. However
are now discussing theories ind21 dimensions and 1,d21<3.

4In fact, the criterion~5! is well-known in the formlTc /m!1 @9#
as the criterion for the applicability of perturbation theory nea
finite temperature phase transition.
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where we integrated over fluctuations in the window b
tweenT andm with m!T. Thus, this one-loop contribution
Dl, is negligible compared tol(T) if Tl(T)!m52d, which
together with Eq.~2! leads to Eq.~4!. Note also that, since
l(T);1/N, the contribution of the graph in Fig. 1 should b
subleading in the large-N expansion. Therefore, the large-N
expansion breaks down when Eq.~4! is violated.

The Ginzburg criterion tells us that for massesm inside
the windowT@m@T/Nx the mean-field scaling holds, whil
for smaller massesm!T/Nx ~i.e., closer to the transition! the
non-trivial d21 Ising scaling sets in. We see that the size
this latter, non-trivial critical region is suppressed at lar
N.5

III. LATTICE THEORY

In this section we analyze how the effect of the suppr
sion of the non-trivial critical region manifests itself in th
lattice formulation of the theory. For simplicity, we sha
discuss the cased53. The generalization to arbitraryd,
2,d<4, can be done as in the previous section. We c
sider the following lattice discretization of the theory~1! in
d53:

S5(
x̃

S 2k(
m

f x̃1m̂f x̃1l latf x̃
4
1

bN

4
f x̃

2D
1(

i 51

N/2 S (
x,y

x̄x
i Mx,yxy

i 1
1

8 (
x

x̄x
i xx

i (
^ x̃,x&

f x̃D , ~7!

where x i and x̄ i are Grassmann-valued staggered ferm
fields defined on the lattice sites; the scalar fieldf is defined
on the dual lattice sites, and the symbol^x̃,x& denotes the se
of 8 ~i.e., 2d) dual lattice sitesx̃ surrounding the direct lattice
site x. The fermion kinetic~hopping! matrix M is given by

Mx,y5
1

2 (
m

hm~x!@dy,x1m̂2dy,x2m̂#, ~8!

where hm(x) are the Kawamoto-Smit phase
(21)x11 . . . 1xm21. The cubic lattice hasLs lattice spacingsa
in spatial directions andLt lattice spacings in the tempora
direction. The cutoff scale can be defined asL51/a, the

e 5Note that there is no proportionality constant in the Ginzbu
criterion ~4!. This constant would depend on the definition of t
boundary of the mean-field region which is naturally ambiguo
The Ginzburg criterion tells us how this boundary moves as a fu
tion of N.

FIG. 1. An example of a graph whose contribution breaks
mean field approximation and the large-N expansion nearTc .
1-3
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J. B. KOGUT, M. A. STEPHANOV, AND C. G. STROUTHOS PHYSICAL REVIEW D58 096001
temperature is given byT51/(Lta) and the mass ism
51/(ja), wherej is the correlation length of the scalar fiel
To reach a continuum limit one has to satisfy the followi
two conditions:L@T and L@m. The conditionL@T re-
quires a lattice with sufficiently largeLt@1. The parameters
of the action should then be tuned towards their critical v
ues where the correlation lengthj@1. This satisfies the con
dition L@m.

The condition j@1, or ma51/j→0, specifies a 2-
dimensional critical surface in the space of 3 parameterk,
l lat andb. One expects that a continuum limit taken at a
generic point of this surface defines the same theory@5,10#.
~This is the meaning of the equivalence between Yuka
and four-fermion theories.! Therefore we can fix two out o
three bare parameters,k5l lat50, and tune a single param
eterb to criticality: 1/j→0.

The phase diagram as a function ofb andTa51/Lt looks
like in Fig. 2~a!. A natural measure of the distance from t
criticality is ma51/j. Trading the lattice parameterb for
ma we obtain the phase diagram of Fig. 2~b!.

The lineT5m separates the regions of quantum and cl
sical behavior or, equivalently, the regions ofd-dimensional
and (d21)-dimensional behavior. Below this line, whenT
!m, the correlation lengthj is smaller than the extent in th
time direction Lt and the system behaves as a quant
Yukawa model in 211 dimensions. Above the line, whe
T@m, the correlation lengthj is much larger thanLt , the
system looks like a ‘‘pancake’’ and behaves as a
dimensional classical statistical theory of a scalar field.

Now consider changing the parameterb on a given lat-
tice, i.e., at fixedTa51/Lt , so that we move along a trajec
tory such as ABC in Fig. 3. The effective~long distance!
coupling l~j! follows the evolution governed by the RG
equations of the Yukawa model from A to B. Near the po
B it reaches some value,l(Lt), which, if Lt is large enough,
is given by the infrared fixed point and isO(1/N). As we
continue to increasej from B to C the couplingl~j! evolves
according to the RG equations of the 2-dimensionalf4

theory. Sincel(Lt);1/N, in order to reach the non-trivia
critical region one needs to go to the correlation lengthj

FIG. 2. A schematic phase diagram~a! of a lattice Yukawa
theory in the plane ofTa[1/Lt and the lattice action parameterb.
The solid line is the phase boundary. The dashed lines show
location of points where the correlation length,j, reachesLt . The
same phase diagram~b! but the distance from the critical line i
expressed in terms of a natural variablema51/j and only one side
~either symmetric or broken! is shown. Various continuum limits
correspond to approaching the origin in~b!. The slope determines
the ratioT/m in the resulting continuum theory. The values ofLt

and thus ofTa are discrete, but this is of no importance to o
discussion.
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x, with x51/2 in d53, according to the Ginzburg cri

terion ~4!.
Thus the line of a crossover with a slopeTa/ma5Nx

divides the region,T.m, of a 2-dimensional, or classica
behavior into two subregions, or windows: one windo
where the mean-field approximation works (Lt!j!LtN

x),
and another window, where the non-trivial critical behav
sets in (j@LtN

x).

IV. MONTE CARLO SIMULATIONS

We performed Monte Carlo simulations of the Gros
Neveu model ind5211 dimensions at finite temperature
test the results of the analysis of the previous section.
chose theZ2 four-fermion model because it is relatively ea
to simulate. We used a hybrid Monte Carlo method d
scribed in @11#, which proved to be very efficient for ou
purposes. Since the chiral symmetry is discrete, we were
to simulate the model directly in the chiral limit, i.e., settin
the bare fermion mass to zero. This allowed a particula
accurate determination of the critical properties. The act
is that of the Yukawa lattice theory~7! with k5l50, and
we tunedb to reach criticality. The long-wavelength~con-
tinuum limit! behavior of such a theory is determined by t
infrared fixed point, which is the same@5,10# in the more
general Yukawa model~7! and in the Gross-Neveu model.

We used the following two methods to optimize the pe
formance of the hybrid Monte Carlo procedure. The fi
method consisted of tuning the effective number of ferm
flavorsN8, which is used during the integration of the equ
tions of motion along a microcanonical trajectory, so as
maximize the acceptance rate of the Monte Carlo proced
for a fixed microcanonical time-stepdt. As the lattice size
was increased, the time stepdt had to be taken smaller an
the optimalN8 approachedN. For example, for anN54
theory on a 63362 lattice the choicesdt50.15 andN8
54.036 gave acceptance rates greater than 95% for all
plings of interest. To maintain this acceptance rate on
3602 lattice we useddt50.11 andN854.016, while on a
63802 lattice we useddt50.10 andN854.012. In the sec-
ond method the Monte Carlo procedure was optimized
choosing the trajectory lengtht at random from a Poisson
distribution with the mean equal tot̄. This method of opti-

he FIG. 3. The same phase diagram as in Fig. 2~b! for a Yukawa
theory with largeN. The trajectory ABC corresponds to changin
some lattice parameter to approach criticality on a lattice with
given Lt[1/Ta. The point A corresponds to the correlation leng
j[1/ma;1, j(B)5Lt , j(D)5LtN

x, and j(C)5`. In d53, x
51/2.
1-4
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CRITICAL REGION OF THE FINITE TEMPERATURE . . . PHYSICAL REVIEW D 58 096001
mization, which guarantees ergodicity, was found to
crease autocorrelation times dramatically@12#. For most of
our runs we used the average trajectory lengtht̄.2.0. As
usual, the errors were calculated by the jackknife blocki
which accounts for correlations in a raw data set.

As will be seen below, we used values of the lattice co
pling b sufficiently close to the critical value,bc , so that we
are close to the continuum limitL@m, wherem is the ther-
mal mass, and the scaling behavior is not affected by lat
artifacts. In addition, we verified that also another import
physical parameter, the zero-temperature mass,m0 , is suffi-
ciently smaller than the cutoffL. We ran on lattices with
large Lt , such as 203 with N54 for b50.600– 0.750, and
163 with N524 for b50.725– 0.875, and determined th
value of the scaling exponentbm . ForN512 we can use the
results from@11#. We found values in agreement with th
analytical predictionbm511O(1/N2) for the T50 scaling
@11#. This confirms that for our values of the couplingb the
lattice theory remains in the scaling window for all range
temperatures down toT50 and effects of the lattice ar
negligible.

A. Exponents from finite size scaling

The finite size scaling~FSS! analysis is a well-establishe
tool for studying critical properties of phase transitions@13#.
The critical, singular behavior in a statistical system
caused by the divergence of the correlation lengthj. On a
finite lattice the correlation length is limited by the size
the system and, consequently, no true criticality can be
served. However, if the size,Ls , of the lattice is large, a
qualitative change in the behavior of the system occurs w
j;Ls . For 1!j!Ls the behavior of the system is almo
the same as in the bulk (Ls5`). However, whenj;Ls the
behavior of the system reflects the size and the shape o
box to which it is confined. The dependence of a given th
modynamic observable,P, on the size of the box,Ls , is
singular and, according to the FSS hypothesis, is given

P~ t,Ls!5Ls
rP /nQP~ tLs

1/n!, ~9!

where t is the distance from the critical point,t5(bc
2b)/bc ; n is the standard exponent of the correlati
length, j;t2n; and QP is a scaling function, which is no
singular at zero argument. The exponentrP is the standard
critical exponent for the quantityP: P;t2rP. Studying the
dependence on the size of the box,Ls , and using Eq.~9! one
can determine such exponents.

We simulated the model withN512 fermion flavors atb
close to the critical couplingbc . The lattice sizes range
from Ls512 to 40 forLt54, andLs518 to 50 forLt56.
Periodic boundary conditions in the spatial directions w
used. Details of theLt56 runs are listed in Table I. To
perform our study most effectively we used the histogr
reweighting method@14# which enables us to calculate th
observables in a region ofb around the simulation coupling
bsim.
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1. Exponentn

We used the following thermodynamic observables@15#
to determine the values ofn and the critical couplingbc :

V1[4@f3#23@f4#, V2[2@f2#2@f4#,

V3[3@f2#22@f3#, ~10!

where

@fn#[ ln
]^fn&

]b
. ~11!

One can easily find that

Vj'~1/n!ln Ls1Vj~ tLs
1/n!, ~12!

for j 51,2,3. Atbc , i.e., t50, the last term on the right-han
side ~RHS!, Vj (0), is a constant independent ofLs . Scan-
ning over a range ofb’s and looking for the value ofb at
which the slope ofVj versus lnLs is j -independent, as it is in
Fig. 4, we foundn51.00(3) andbc50.7762(15) forLt
56, andn51.00(2) andbc50.682(2) forLt54.

These values ofn are in a very good agreement with th
two-dimensional Ising valuen51. This confirms that the
behavior of the system sufficiently close to criticality is no

TABLE I. Simulations for the FSS analysis withLt56 andN
512.

Ls bsim Trajectories

18 0.7744 130,000
18 0.7763 100,000
24 0.7744 100,000
24 0.7764 80,000
30 0.7744 120,000
30 0.7764 130,000
40 0.7754 140,000
50 0.7754 152,000

FIG. 4. Finite size dependence ofVj at b50.7762 forLt56. All
three lines have almost equal slopes.
1-5
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FIG. 5. Left: the best linear fit for lnS vs lnLs in the minimum ofx2 (b50.7747). Right: the same for lnx vs lnLs (b50.7753).
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trivial ~in the mean field theory,n51/2) and is given by the
arguments of dimensional reduction and universality.

2. Exponentsbm and g

In this subsection we consider the following two exp
nents: the exponentbm of the order parameter,S[^f&
;tbm, and the exponentg of the susceptibility,x;t2g. Ac-
cording to Eq.~9!, at the critical point,t50, the order pa-
rameter,S, and its susceptibility,x, scale with Ls as S
;Ls

2bm /n andx;Ls
g/n .

At each value ofb we made a linearx2-fit for ln S and
ln x versus lnLs. The locations of the minima ofx2/DOF as
a function ofb provide estimates ofbc . We estimated the
error inbc and the critical exponents by looking at the valu
of b that increasex2/DOF by 1. An estimate of the error in
bc is min(x2/DOF)11, which also gives the error on th
critical exponents. Fits atLt56 for the order parameter an
susceptibility gavebm /n50.12(6), bc50.7747(15) and
g/n51.66(9), bc50.7750(15) respectively. Similar resul
at Lt54 are bm /n50.16(7), bc50.6805(15) andg/n
51.57(9), bc50.6817(15).

The critical exponents which we found are in good agr
ment with the two-dimensional Ising exponents:bm /n
50.125 andg/n51.75 ~in the mean field theory:bm /n51
andg/n52). The values ofbc extracted from this analysi
are also consistent with the estimate ofbc50.7765(15)
evaluated from the analysis ofVj . Figure 5 shows the bes
linear fits of finite size dependence of lnS and lnx at b
50.7747 andb50.7753 respectively.

B. Scaling in the broken phase

Our task in this section is to check the analytical result
Eq. ~4!, which is equivalent to

j!LtN
x, x51/2. ~13!

In other words, we want to determine the position of t
crossover from the mean-field~MF! critical behavior to the
non-trivial 2D Ising critical behavior as a function ofN.
09600
-

f

A straightforward way to do this is to study the depe
dence of the order parameter,S, on b. SinceS vanishes at
the critical point, it can be thought of as a measure of
distance from the criticality. We expect that for sufficient
small S, i.e., close tobc , this dependence should be give
by a power-law scaling with the exponentbm51/8 of the 2D
Ising model:S;(const2b)1/8. This corresponds to the re
gion CD in the diagram in Fig. 3, i.e.,j@LtN

x. For largerS,
farther away from criticality, the MF scaling holds:S
;(const2b)1/2 ~with some other value of const!. This is the
region DB in Fig. 3, i.e.,Lt!j!LtN

x. For even largerS we
should see scaling corresponding to the fixed point of the
Gross-Neveu model@11#: S;(const2b)1. In this region 1
!j!Lt .

Since we are interested in the boundary of the mean-fi
scaling region, we can findj from S using a well-known
relation between them,j51/(2S) @16#, which holds inside
the mean-field region. Thus we avoid direct measurement

TABLE II. The data for the scaling ofS in the broken phase
N54.

b S Ls Trajectories

0.595 0.5008~4! 36 30,000
0.600 0.4871~4! 36 40,000
0.605 0.4724~4! 36 40,000
0.610 0.4578~4! 36 40,000
0.615 0.4426~4! 36 50,000
0.620 0.4268~4! 36 54,000
0.625 0.4106~3! 36 70,000
0.630 0.3928~4! 36 64,000
0.635 0.3736~7! 36 70,000
0.640 0.3524~5! 36 110,000
0.645 0.3297~8! 36 130,000
0.6475 0.3162~9! 36 150,000
0.650 0.3016~10! 48 54,000
0.652 0.2858~15! 60 41,000
0.654 0.2647~26! 80 25,400
0.656 0.2398~30! 80 30,000
1-6
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j, which are much harder than measurements ofS.
We studied the dependence ofS on b at three different

values ofN54,12,24 on lattices with fixedLt56. Ideally, in
order to resolve all three critical scaling regions, or window
we need to provide 1!Lt!LtN

x!Ls . For finiteLt , Ls , and

TABLE III. The data for the scaling ofS in the broken phase
N512.

b S Ls

0.640 0.5112~2! 30
0.650 0.4911~3! 30
0.660 0.4701~2! 30
0.670 0.4490~3! 30
0.680 0.4276~2! 30
0.690 0.4061~3! 30
0.700 0.3836~2! 30
0.710 0.3608~4! 30
0.720 0.3368~4! 30
0.730 0.3119~4! 30
0.740 0.2847~4! 30
0.750 0.2557~8! 30
0.755 0.2393~5! 30
0.760 0.2199~5! 30
0.764 0.2048~2! 60
0.766 0.1951~3! 60
0.768 0.1844~3! 60
0.770 0.1725~3! 60
0.772 0.1575~5! 60
0.774 0.1388~7! 60

TABLE IV. The data for the scaling ofS in the broken phase
N524.

b S Ls Trajectories

0.6700 0.4756~4! 24 3,000
0.6800 0.4560~4! 24 3,000
0.6900 0.4359~4! 24 3,000
0.7000 0.4162~4! 24 3,000
0.7100 0.3963~4! 24 3,000
0.7200 0.3760~5! 24 3,000
0.7300 0.3551~5! 24 3,000
0.7400 0.3325~5! 24 3,000
0.7500 0.3101~5! 24 3,000
0.7600 0.2866~3! 24 8,000
0.7700 0.2617~4! 24 8,000
0.7800 0.2345~5! 24 8,000
0.7900 0.2035~5! 24 10,000
0.7950 0.1874~3! 36 15,000
0.8000 0.1676~3! 36 20,000
0.8025 0.1568~4! 36 20,000
0.8050 0.1437~4! 48 24,000
0.8075 0.1267~10! 60 12,000
0.8100 0.1074~15! 60 22,000
0.8112 0.0914~28! 72 10,000
09600
,

Nx these regions are squeezed, but for the values we u
one can clearly resolve the MF region with the crosso
towards the 2D Ising region.

In contrast to the FSS analysis wherej;Ls , now we
need to keepj!Ls since we are studying bulk critical be
havior. We monitored each simulation run for vacuum tu
neling events, which signal thatLs is not big enough. Away
from the critical point such events were so rare that go
measurements ofS and its susceptibilityx were possible. At
couplings near the phase transition we increasedLs to sup-
press tunneling. A large numberN, such asN524, sup-
presses fluctuations and allows an accurate study within
sonable amount of computer resources. On the other h
for smallerN, such asN54, the simulations were also ver
efficient because the crossover to the 2D Ising behavior s
at a smaller correlation length. The data from these simu
tions is shown in Tables II, III, and IV.

Since bm51/2 in the MF region, we fittedS2 with a
linear function ofb. The linearity made the fitting procedur
very efficient. We evaluated the goodness of fit for data
various ranges ofb in order to find the boundaries of the M
region~see Tables V, VI, and VII!. The drop in the goodnes
of fit when new data are added implies that the new po
deviate from the MF behavior and they belong either to
Gross-Neveu–MF crossover region or to the MF–2D-Is
crossover region. Figure 6 shows the data forS2 versusb,
where the straight lines represent the best linear fits in
MF region. All three graphs show the MF–2D-Ising cros
overs. The graphs forN512,24 also clearly show the Gross
Neveu–MF crossover.

TABLE V. Goodness of linear fits ofS2 vs b for various ranges
of b. N54.

No. of points b range Goodness

4 0.595–0.610 0.92
5 0.595–0.615 0.95
6 0.595–0.620 0.98
7 0.595–0.625 0.99
8 0.595–0.630 0.96
9 0.595–0.635 0.21

10 0.595–0.640 1025

11 0.595–0.645 10211

TABLE VI. The same as Table V but forN512.

No. of points b range Goodness

5 0.70–0.74 431023

6 0.70–0.75 531023

5 0.71–0.75 0.20
4 0.72–0.75 0.67
5 0.72–0.755 0.77
6 0.72–0.760 0.60
7 0.72–0.762 0.40
8 0.72–0.764 531024

9 0.72–0.766 2310215
1-7
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We used the histogram reweighting method in order
extract the value ofS at the ‘‘border’’ of the MF region with
the 2D Ising region. The quality of the fit drops very sharp
This allowed us to use a very conservative estimate of
error, such as the width of the region ofS in which the
quality of the fit drops down to 1%~from, e.g., 90% in the
case ofN54). The center of this region of the drop is take
as the boundary of the MF scaling window. We findSMF
50.377(11) forN54, SMF50.213(4) forN512, andSMF
50.168(20) forN524. It is clear that the non-trivial 2D
Ising region is squeezed asN increases. In order to check th
analytical prediction of Eq.~4!, or ~13!, we fitted our results
to the form SMF5const3N2x ~see Fig. 7!. We found x
50.51(3) which is in agreement with the analytical pred
tion x50.5.

V. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated, using analytical argume
and Monte Carlo simulations, that the width of the regi
near the finite temperature chiral phase transition wher
non-trivial critical behavior sets in is suppressed in theor

FIG. 6. Order parameter squared vsb for lattice theories with
N54,12,24. The straight lines are the fits to the data in the me
field regions.

TABLE VII. The same as Table V but forN524.

No. of points b range Goodness

7 0.74–0.795 631024

8 0.74–0.800 1.231023

6 0.75–0.795 0.28
7 0.75–0.800 0.24
3 0.76–0.780 0.68
4 0.76–0.790 0.91
5 0.76–0.795 0.70
6 0.76–0.800 0.38
7 0.76–0.8025 0.17
8 0.76–0.8050 1.231028

9 0.76–0.8075 5310216
09600
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with a large number of fermions,N. This phenomenon ex
plains an apparent contradiction between the large-N expan-
sion @3,4#, predicting mean-field scaling, and more gene
arguments based on dimensional reduction and univers
@1#, predicting the non-trivial scaling of a scalar theory ind
21 dimensions.

A tentative explanation of@3# was based, somewhat im
plicitly, on the expectation that the large-N expansion breaks
down and cannot predict correct non-trivial exponents. O
key point is that we can saywhen, and as a function of wha
parameter~i.e., as a function of the distance from the cri
cality, m/T), the large-N expansion breaks down. What i
perhaps, even more important, is that we show that th
does exist a region where the large-N expansionis valid.
This region~in the space ofm/T) of the mean-field behavio
squeezes out the region of the true non-trivial critic
behavior.6

One can also look at the whole problem as a question
the order of limits. If the limitN→` is taken beforem/T
→0, the non-trivial region disappears, and all critical beha
ior is given by mean-field theory. If, on the other hand, t
limit m/T→0 is taken at fixedN, the true non-trivial scaling
will hold. These effects can be clearly seen in our Mon
Carlo studies.

A helpful analogy can be drawn with the question of t
long distance behavior of the scalar field correlator in
original 2-dimensional Gross-Neveu model with a U~1! sym-
metry at largeN @18#. The large-N expansion predicts spon
taneous symmetry breaking and long-range order, which i
clear contradiction with the Mermin-Wagner theorem. A
was shown by Witten@19#, there is an ‘‘almost long-range
order’’ in the system: i.e., the correlator falls off liker 21/N.
Looking at this expression, one can easily see the interp
between the limitsr→` andN→`.

We applied our arguments to a specific example o

6It was conjectured in@17# that the Ginzburg region of non-trivia
scaling could turn out to be small.

n-

FIG. 7. The best power-law fit~goodness 0.26! for the depen-
dence of the boundary of the mean-field region,SMF , on the num-
ber of fermions,N.
1-8
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Yukawa theory, but the mechanism responsible for this p
nomenon is clearly more universal and may apply, in p
ticular, to QCD, provided that the number of colors,Nc , is
large. The Yukawa or the Nambu–Jona-Lasinio theory
well-known to provide a very good description for the ph
nomenon of chiral symmetry breaking and restoration. O
can then think of the theory we considered as an effec
description of the degrees of freedom participating in ch
symmetry breaking.

As we have seen, the role of the fermions is to screen
effective self-coupling of the scalar field,l. The strength of
this effect depends on two factors:~i! a largeN and ~ii ! a
large window of scales between the cutoff of the effect
theory,L, and the temperature,T. Let us see if these condi
tions are satisfied in QCD. The scale of the spontane
symmetry breaking is of orderL;1 GeV, while Tc
'160 MeV. Thus, there is almost an order of magnitu
window betweenL andT, which is presumably sufficient to
drive the effective self-coupling of the scalar field to its i
frared fixed point at the scale ofTc . How small this value is
now depends on the number of the fermions@condition ~i!#.
In QCD the valueNc53, though not very large, can be co
sidered large in some cases. It would be interesting to se
this phenomenon could be rigorously shown to occur in
limit Nc→`, which is very plausible.

The effect of the suppression of the width of the no
trivial critical region in QCD may lead to the following pre
diction: only mean-field@but no non-trivialO(4)# scaling
behavior could be seen because of non-zero quark ma
mq . On the one hand, the mean-field scaling would h
until a relatively large thermal correlation length. On t
other hand, this correlation length in the real world is limit
by the quark masses,mq .

The following crude estimates can serve to illustrate t
ev

e

a

-

c
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point.7 A true criticality is never reached nearTc , because
mq plays the same role as the external ordering magn
field in a ferromagnet. The largest thermal correlation len
in units of 1/T, T/m, can be estimated using the analogy to
ferromagnet and the mean-field value ofn/(bd)51/3, as:8

T

m
;S Tc

mq
D n/bd

'S 160 MeV

5 MeV D 1/3

;3. ~14!

The fact that this number is not large could be guessed
observing that the zero temperature pion masses, which
driven by mq , are as large asTc . This largest correlation
length may turn out to be smaller than the one required
the crossover to non-trivial scaling region,T/m
;Nc ln(L/Tc);6, according to Eq.~5!. In this case, the
~near-!critical behavior observed in the window allowed b
non-zero quark masses@according to Eq.~14!, roughly, 1
,T/m,3# will be given entirely by the mean-field scaling
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7To make these estimates quantitative one needs to find nume
coefficients, which are determined by non-universal dynam
properties of QCD and by the definition of the boundary of t
mean-field region.

8We use the definition of the exponents,m;tn, S;tb, and S
;mq

1/d , together with the central postulate of the scaling theo
critical properties are determined by the correlation length, 1/m.
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