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We study a Yukawa theory with spontaneous chiral symmetry breaking and with a large nhndfer
fermions near the finite temperature phase transition. Critical properties in such a system can be described by
the mean field theory very close to the transition point. We show that the width of the region where non-trivial
critical behavior sets in is suppressed by a certain powerhf Qur Monte Carlo simulations confirm these
analytical results. We discuss implications for the chiral phase transition in Q&II356-282(98)08819-5

PACS numbgs): 11.10.Wx, 05.70.Jk, 12.38.Gc

I. INTRODUCTION which sets in wher¢ exceeds 1V, is given by mean field
theory, rather than by arguments based on dimensional re-
The transition in QCD separating the high temperatureduction and universality as {r1]. The critical behavior given
quark-gluon plasma phase from the low temperature haddy these latter arguments sets in much later, clos€r to
ronic phase has been studied intensively in the last decad@hen the correlation lengtl§ exceedsN*/T.. Below we
Understanding the properties of this transition is becominghall determine the value of the positive exponent
increasingly important in view of recent experimental The phenomenon of non-trivial critical region suppression
progress in the physics of ultrarelativistic heavy ion colli- has been observed in the Yukawa moig] and in the
sions. Gross-Nevetimodel[4] using a largeN expansion and was
Since theu andd quark masses are small, the dynamicsconfirmed by lattice Monte Carlo calculations[i4]. These
of the finite temperature transition is affected by the phenomlargeN results predicting mean-field critical behavior were
enon of chiral symmetry restoration which occurs in the limitin an apparent contradiction with the general arguments of
when the quark masses are put to zero. In this limit QCO1]. In this paper we show that both critical regimes are
with two massless quarks has a global SY@BU(2); realized in the vicinity ofT., but in separate scaling win-
symmetry which is spontaneously broken to SU(2} low  dows, one following the other.
temperatures. It can be argued that if the restoration of this

spontaneously broken symmetry proceeds through a second- Il. LARGE N YUKAWA THEORY NEAR T,
order phase transition, the critical properties of this transition ) . ) )
are in the universality class of the classicd4Dspin model In this section we consider a general Yukawa theoryl in

in three dimensionEL,2]. This means that the leading singu- dimensions, 2d<4, with a large numbeN of fermion spe-

lar behavior of thermodynamic quantities can be predicted€ies and at finite temperatur®. As argued in[5], in the

i_e_, it is given by universal @) critical exponents_ How- continuum limit both Yukawa model and GrOSS'NeVeU, or

ever, universality does not answer more detailed questionf§ambu—Jona-Lasinio, models with a four-fermion interac-

such as how this criticality is approached and what is thdion define the same theory. In the absence of a bare fermion

width of the region of parameters in which this singular be-mass there is échiral) symmetry, which can be broken spon-

havior sets in. These questions require more detailed knowfaneously at low temperature with a suitable choice of cou-

edge of the dynamics of the theory. plings. This symmetry is restored at some finite temperature
In this paper we discuss a phenomenon which is related tac . We are interested in the nature of this phase transition.

the way the critical behavior sets in for a certain class of In the absence of fermiorisr when the Yukawa coupling

theories with a second-order chiral symmetry restoratiorS zerg the nature of the transition is rather well known. It

transition at finite temperatur@, . These are theories with a depends on the symmetry of the model which is restored at

large number of fermion specids, On general grounds, one

could expect that the universal critical, or scaling, behavior

nearT, sets in as soon as the correlation lengthof the !In this paper we shall use the terms “Gross-Neveu model” and

fluctuations of the chiral condensate exceeds 1However,  “Nambu-Jona-Lasinio model” interchangeably, especially when it

as we show in this paper, if the number of fermions involvedconcerns a theory with a four-fermion interaction ir-2 dimen-

in the chiral symmetry breaking is large, the critical behaviorsions.
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T.. In this paper, for simplicity, we consider a model with scalar field andZ, symmetry ind dimensional Euclidean

Z, symmetry. Similar results will also apply to theories with space:

other symmetry groupl®.g., SU2)XSU(2), as in QCD with

2 massless quarksas long as the temperature driven sym- 1 , 1, ., 4 N

metry restoration transition is of second order. L=5(0) "+ Su ¢ TN ¢ +]Zl pe(d+gd)gpe. (1)
One can argue that the critical behavior of a quantum

theory of a scalar field nedr; is the same as in a classical e regularize the model by some momentum cutaff,

scalar theory with the same symmetry. The argument iShe cutoff can be removed if<4 but we shall keep it finite

based on two expected properties of the model: dimensiong}, compare with a corresponding lattice theory. There are

reduction and universality. In the Euclidean formulation theyyg other important scales in the theory: the temperatlye,

quantum scalar field is defined indadimensional box with 514 the physical mass), which we identify with the mass

the extent in the imaginaryMatsubara time dimension ot thermal excitations of the scalar field. NeBy this mass,

equal to 1. When the diverging correlation length, be- 1, i significantly different from the zero temperature mass

comes much larger thanTl/long wavelength fluctuations of " since m vanishes at the critical temperature. It is the

the field become effectivelyd—1)-dimensional: i.., On asem, or the correlation length i, which is important for

their scale the box looks like ad¢-1)-dimensional “pan- e critical behavior. The mass is a natural measur@nore

_cak_e.” Since such fluctuations determine the <_:ritica| _beha"'natural than, sayl — T,) of the distance from the criticaIiI?y.
ior in the model, one can expect that, by universality,

" k : : theTherefore, near the finite temperature phase transition we
critical exponents are the same as inda-(1)-dimensional

) , : : have the following hierarchy of scaled>T>m.
theory with the same symmetry. Thisl{ 1)-dimensional

. X ! : o Let us consider the renormalization gro(RG) evolution
theory is obviously a classical field theory at finite tempera-o¢ the couplings from the scale df down to the scale of

ture. One can also understand this realizing that classical,q then fromT down tom. We focus on the quartic self-
thermal fluctuations whose energy@kgT) dominate over .o pling of the scalar fieldy. The evolution from the scale

quantum fluctuations with energy(#i ) for soft modes of 4 i3 the scaleT is governed by the RG equations of the

the field. - _ _ d-dimensional quantum Yukawa model. After that, at the

Another common way of describing this phenomenon ingaje off | we pass through a crossover region due to the fact
perturbation theory is to consider Fourier decomposition oyt the fermions and non-zero Matsubara frequencies of the
the field into discrete Matsubara frequency components. Aq|ar fields do not contribute to the evolution befowithe

fon-zero frequgncy acts as a mass term .Of ordErfor th_e decoupling. The evolution belowT is governed by the RG
(d—1)-dimensional components of the field. NeByr this equations of the scalap® theory ind— 1 dimensions.

mass is much larger than the mass of a component with zero If the window of scales betweeh andT is wide enough
Matsubara frequency. The dimensional reduction is theraas it is in the continuum limitA— ), the value of the

equivalent to the decoupling of the modes with NON-2€1%enormalized coupling at the scal&, \(T), is close to the

frequencies. . : . ; ;
. . infrared fixed point of thel-dimensional Yukawa theory. In
We want to understand what happens in this theory nea,q largeN Iimliot one can calculate this valyd]: y

T. when one turns on the Yukawa coupling. Dimensional
reduction and universality arguments suggest that the critical (4—d)T4 ¢
behavior of the theory should not change. This is based on NT)~———F— for 2<d<4. 2
the observation that there is no zero Matsubara frequency for N
the fermion fields due to antiperiodic boundary condition in . _ . , o
the Euclidean time. Thereforg all fermion mod):as should de] N€ cased=4 is special. The infrared f'xe‘?' point is trivial
couple atT, . In other words, the fermion fields do not have and is approached logarithmically AST—c:
a classical limit and do not survive quantum-to-classical re-
duction atT, [6]. ANT)~
However, as was demonstrated [, the fermions do N In(A/T)
affect the behavior nedr. in a certain way. We shall show _ i ) _
that this happens when there are “too many” of them. TheThis value provides the starting p0|.mtd_1='l;)\(T), for the
theory can be solved in the limit when the number of fermi-€volution of this coupling below in the ¢* theory ind
ons,N, is large. In this limit the theory has mean-field criti- —1 dimensions. For largdl this coupling is small. As we
cal behavior neaf . [4,3]. This is different from the critical Shall see shortly, this is the reason why the critical region
behavior of the corresponding classical scalar field theory‘.’"here one observes non-trivial cr_lt_lcal behavior is reached
The mean-field behavior was also observed in numerica®nly very close to the phase transition. _
Monte Carlo calculations nedr, [4]. Thg _phenp_menon _of the suppression of the width of a
Here we show that such mean-field behavior can be redlon-trivial critical region is common in condensed matter
onciled with the standard arguments of dimensional reduc-
tion and universality. The phenomenon which leads to an
apparent contradiction is the suppression of the width of the ?The whole theory of critical scaling is based on this observation.
non-mean-field critical region by a power of\L/ We shall also use this fact more explicitly when we consider a
We consider the following model with one-component lattice theory.

for d=4. 3)
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physics[8]. BCS superconductors provide the most well- o
known example of a system where criticality n8aris de- N S
scribed by the Landau-Ginzburg mean-field theory. The /‘\\ R
width, AT, of the region around’; where the mean-field ST

description breaks down is tiny. There are systems where the

width of the non-trivial critical region is small but measur-  FIG. 1. An example of a graph whose contribution breaks the
able. In such systems one can observe the crossover betwemnan field approximation and the larbleexpansion neaf..

a mean-field and a non-trivial scaling.

The quantitative relation between the size of the nonwhere we integrated over fluctuations in the window be-
trivial, non-mean-field critical region, the Ginzburg region, tweenT andm with m<T. Thus, this one-loop contribution,
and certain parameters of a given system is known as th&\, is negligible compared ta(T) if TA(T)<m®~ 9, which
Ginzburg criterion. In superconductors such a parameter is thgether with Eq(2) leads to Eq(4). Note also that, since
small ratioT/Eg: i.e., the width of the Ginzburg region is \(T)~1/N, the contribution of the graph in Fig. 1 should be
suppressed by a power of this parameter. In this paper, waubleading in the larght expansion. Therefore, the larde-
show that in a field theory with large number of fermions, expansion breaks down when Hd) is violated.
such as Eq(1), the width of the Ginzburg region is sup-  The Ginzburg criterion tells us that for masgasinside
pressed by a power of N/ the windowT> m>T/N* the mean-field scaling holds, while

The Ginzburg criterion can be obtained by estimating thefor smaller massesi<T/N* (i.e., closer to the transitigrihe
effects of fluctuations within the mean-field approximation.non-trivial d— 1 Ising scaling sets in. We see that the size of
When the fluctuations become large the mean-field approxithis latter, non-trivial critical region is suppressed at large
mation breaks down because of self-inconsistency. A meaN.°
sure of the importance of the fluctuations, or the size the
corrections to the mean-field, is the value of the effective lIl. LATTICE THEORY
selfcoupling of the scalar field. If the coupling\ is small,
the effect of the fluctuations is also small and the theory can In this section we analyze how the effect of the suppres-
be described by the mean-field approximation very well.sion of the non-trivial critical region manifests itself in the
However, for the¢* theories in less than four dimensidns lattice formulation of the theory. For simplicity, we shall
fluctuations always become important close enough to théliscuss the cased=3. The generalization to arbitrarg,
phase transition. This happens roughly when the coupling<d<4, can be done as in the previous section. We con-
Ag_1 on the scale ofn is not small anymore. Since,_, has sider the following lattice discretization of the thedr) in
nonzero dimension equal to-4d, it should be compared to d=3:
m°~9. In this way, and with the help of E¢2), one arrives BN
at the foIonvmg Glrjzb.urg criterion for the applicability of S:Z (—KZ ¢§+,1¢}+)\|at¢§+ [ ¢;2()
the mean-field scaling: x o 4

N/2
T 1
>— X=—:. +

— o1 —
2 Myt g 2 XX dfx), @
X,y X (X,X)
In the special case af=4, using Eq.(3) one finds where y! and; are Grassmann-valued staggered fermion
T fields defined on the lattice sites; the scalar figlds defined
M AT for d=4. (5 on the dual lattice sites, and the symbpjx) denotes the set
of 8 (i.e., 2%) dual lattice sitex surrounding the direct lattice
Alternatively, one can compare the size of the one-loogsite x. The fermion kinetichopping matrix M is given by
correction in the effectivep* theory ind— 1 dimensions to

the bareny_,. The loop correction becomes important when 1 i i
Eq. (4) is violated? Indeed, consider the contributiof), of Mxy=5 % 7u(X)[ By, xt = By x—pl, ®
a graph such as in Fig. 1 to the effective quartic coupNng
This contribution diverges whem— 0: where 7,(x) are the Kawamoto-Smit phases
5 (—1)* - *Xu-1 The cubic lattice hak lattice spacings.
N~ TIAMT)] 6) in spatial directions andl, lattice spacings in the temporal
m>-d direction. The cutoff scale can be defined A&s1/a, the

®Here again the case of four dimensions is special. However, we 5Note that there is no proportionality constant in the Ginzburg
are now discussing theories @1 dimensions and £d—1=<3. criterion (4). This constant would depend on the definition of the

“In fact, the criterion(5) is well-known in the form\ T, /m<1 [9] boundary of the mean-field region which is naturally ambiguous.
as the criterion for the applicability of perturbation theory near aThe Ginzburg criterion tells us how this boundary moves as a func-
finite temperature phase transition. tion of N.
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EFLt E=cc &th classical stat. ’m=T T=mN"*
1/L¢ ; Ta scalar theory/x’ Ta | 2 dim. / T=m
indl .~ Ising /' mean field .~
.~ quantum Yukawa ' g
broken symmetric ind dimensions , .
0 i e —» )
0 C /D .-~ B A
Be B ma 3 dim. Yukawa
FIG. 2. A schematic phase diagraf@ of a lattice Yukawa 0 ma

theory in the plane oTa=1/L, and the lattice action parametgr ] o

The solid line is the phase boundary. The dashed lines show the FIG. 3. The same phase diagram as in Fig) Zor a Yukawa
location of points where the correlation lengthreached . The  theory with largeN. The trajectory ABC corresponds to changing
same phase diagrafib) but the distance from the critical line is Some lattice parameter to approach criticality on a lattice with a
expressed in terms of a natural variabl@= 1/¢ and only one side givenL,=1/Ta. The point A corresponds to the correlation length
(either symmetric or brokéris shown. Various continuum limits §=1/ma~1, §B)=L, {(D)=LN" and {(C)=. In d=3, x
correspond to approaching the origin(in). The slope determines =1/2.

the ratioT/m in the resulting continuum theory. The valueslgf i ) ) ) _
and thus ofTa are discrete, but this is of no importance to our ~L{N", with x=1/2 in d=3, according to the Ginzburg cri-
discussion. terion (4).

Thus the line of a crossover with a slofe/ma=N*
temperature is given byf=1/(L,a) and the mass isn  divides the regionT>m, of a 2-dimensional, or classical,
=1/(éa), where¢ is the correlation length of the scalar field. behavior into two subregions, or windows: one window,
To reach a continuum limit one has to satisfy the followingwhere the mean-field approximation workis, & é¢<LN*),
two conditions:A>T and A>m. The conditionA>T re-  and another window, where the non-trivial critical behavior
quires a lattice with sufficiently large;>1. The parameters sets in €>LN%).
of the action should then be tuned towards their critical val-

ues where the correlation lenggs-1. This satisfies the con- IV. MONTE CARLO SIMULATIONS
dition A>m.
The condition &1, or ma=1/é—0, specifies a 2- We performed Monte Carlo simulations of the Gross-

dimensional critical surface in the space of 3 parameters Neveu model ird=2+1 dimensions at finite temperature to
Mt and B. One expects that a continuum limit taken at anytest the results of the analysis of the previous section. We
generic point of this surface defines the same th¢byy0].  chose the&Z, four-fermion model because it is relatively easy
(This is the meaning of the equivalence between Yukawd0 simulate. We used a hybrid Monte Carlo method de-
and four-fermion theories. Therefore we can fix two out of scribed in[11], which proved to be very efficient for our
three bare parameters=X\ =0, and tune a single param- purposes. Since the chiral symmetry is discrete, we were able
eter B to criticality: 1/£—0. to simulate the model directly in the chiral limit, i.e., setting

The phase diagram as a function®andTa=1/L, looks  the bare fermion mass to zero. This allowed a particularly
like in Fig. 2(a). A natural measure of the distance from the accurate determination of the critical properties. The action
criticality is ma=1/¢. Trading the lattice parametgd for  is that of the Yukawa lattice theor§7) with k=X=0, and
ma we obtain the phase diagram of Figb® we tunedp to reach criticality. The long-wavelengilton-

The lineT=m Separates the regions of quantum and C|aSIinUUm ||m|t) behavior of such a theory is determined by the
sical behavior or, equivalently, the regionscbtlimensional ~ infrared fixed point, which is the sani§,10] in the more
and (d- 1)-dimensional behavior. Below this line, whan  general Yukawa moddl7) and in the Gross-Neveu model.
<m, the correlation lengtf is smaller than the extent in the = We used the following two methods to optimize the per-
time directionL, and the system behaves as a quantunformance of the hybrid Monte Carlo procedure. The first
Yukawa model in 21 dimensions. Above the line, when method consisted of tuning the effective number of fermion
T>m, the correlation lengtl is much larger thar.,, the f!avorsN’, vv_hich is used dgring the i.ntegrat_ion of the equa-
system looks like a “pancake” and behaves as a 2-fions of motion along a microcanonical trajectory, so as to
dimensional classical statistical theory of a scalar field. ~ Maximize the acceptance rate of the Monte Carlo procedure

Now consider changing the paramef@ion a given lat- for a fixed microcanpnical time-stepr. As the lattice size
tice, i.e., at fixedTa=1/L,, so that we move along a trajec- Was mc_reased, the time stelp had to be taken smaller and
tory such as ABC in Fig. 3. The effectiidong distancg  the optimalN’ approachedN. For example, for arN=4
coupling M(&) follows the evolution governed by the RG theory on a & 36" lattice the choicesir=0.15 andN’
equations of the Yukawa model from A to B. Near the point=4.036 gave acceptance rates greater than 95% for all cou-
B it reaches some valug(L,), which, if L, is large enough, Plings of interest. To maintain this acceptance rate on a 6
is given by the infrared fixed point and B(1/N). As we <60 lattice we usedi7=0.11 andN’=4.016, while on a
continue to increasé from B to C the coupling\(é) evolves 6% 80 lattice we usediz=0.10 andN’=4.012. In the sec-
according to the RG equations of the 2-dimensiogdl ond method the Monte Carlo procedure was optimized by
theory. Sincex(L,)~1/N, in order to reach the non-trivial Cchoosing the trajectory length at random from a Poisson
critical region one needs to go to the correlation length distribution with the mean equal ta This method of opti-
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mization, which guarantees ergodicity, was found to de- TABLE I. Simulations for the FSS analysis with=6 andN
crease autocorrelation times dramaticall?]. For most of =12

our runs we used the average trajectory length2.0. As

usual, the errors were calculated by the jackknife blocking, Ls Bsim Trajectories
which accounts for correlations in a raw data set. 18 0.7744 130,000
As will be seen below, we used values of the lattice cou- 18 0.7763 100,000
pling B sufficiently close to the critical valug.., so that we 24 0.7744 100,000
are close to the continuum limit>m, wherem is the ther- 24 0.7764 80,000
mal mass, and the scaling behavior is not affected by lattice 30 0.7744 120,000
artifacts. In addition, we verified that also another important 30 0.7764 130,000
physical parameter, the zero-temperature matgs,is suffi- 40 0.7754 140,000
ciently smaller than the cutofA. We ran on lattices with 50 0.7754 152,000

largeL,, such as 2dwith N=4 for 3=0.600-0.750, and
16> with N=24 for 8=0.725-0.875, and determined the
value of the scaling exponept,,. ForN=12 we can use the 1. Exponentr
results from[11]. We found values in agreement with the
analytical prediction3,,= 1+ O(1/N?) for the T=0 scaling
[11]. This confirms that for our values of the coupligghe

We used the following thermodynamic observadl&s]
to determine the values ofand the critical coupling,:

lattice theory remains in the scaling window for all range of V=4[ 31— 3[4, V.,=2[ $2]1—[ &
temperatures down td=0 and effects of the lattice are 1=4L¢T1-3067, Vo=2 4] e,
negligible. V=3[ ¢?]-2[ ¢°], (10)
where
A. Exponents from finite size scaling
n

The finite size scalingFS9 analysis is a well-established [¢"]=In ") . (11)

tool for studying critical properties of phase transiti¢ts]. B

The critical, singular behavior in a statistical system is o
caused by the divergence of the correlation lengtion a  Oneé can easily find that
finite lattice the correlation length is limited by the size of _ Uy

the system and, consequently, no true criticality can be ob- Vi~ (1v)In Le+Vi(tLs™), (12
serv'ed.. However, .'f the S'Zd’sf of the lattice is large, a for j=1,2,3. AtgB,, i.e.,t=0, the last term on the right-hand
qualitative change in the behavior of the system occurs when.d RHS o0 i ind dent af.. S
é~L,. For 1<¢<<L 4 the behavior of the system is almost side ( ), V;(0), Is aconstant independent &f;. Scan-

the same as in the bulk(==). However, wheré~L . the ning over a range ofs's and looking for the value oB at

behavior of the system reflects the size and the shape of tkvl._éhmh the slope oW; versus InLis j-independent, as itis in

box to which it is confined. The dependence of a given ther-_'g' :r,]dwe_ Iogg(dzv):a}]'g[g(f)o gggéc):fg'”?_?gi( 15) forl,
modynamic observableR, on the size of the box,.., is ve v v

. : LTS These values of are in a very good agreement with the
singular and, according to the FSS hypothesis, is given by two-dimensional Ising valuez:i/. gThis c?)nfirms that the

behavior of the system sufficiently close to criticality is non-

P(t,Ly=LL""Qp(tLE"), (©) »
V1 e
) ) » ) 40| V2
where t is the distance from the critical point= (. V3 =
—B)/B.; v is the standard exponent of the correlation al
length, é~t™7; and Qp is a scaling function, which is not
singular at zero argument. The exponegtis the standard 38
critical exponent for the quantiti?: P~t~?pP. Studying the > ’
dependence on the size of the bhy, and using Eq(9) one 36 |
can determine such exponents.
We simulated the model withN =12 fermion flavors a8 34 |
close to the critical coupling3.. The lattice sizes ranged
from Lg=12 to 40 forL;=4, andL,=18 to 50 forL;=6. 32}
Periodic boundary conditions in the spatial directions were
used. Details of thd.,=6 runs are listed in Table I. To 3 :
perform our study most effectively we used the histogram 28 8 32 84 36 38 4

Ln(L
reweighting method14] which enables us to calculate the nts)

observables in a region @ around the simulation coupling FIG. 4. Finite size dependence\¢f at =0.7762 forL,= 6. Al
Bsim- three lines have almost equal slopes.
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FIG. 5. Left: the best linear fit for IX vs InLg in the minimum ofy? (8=0.7747). Right: the same for fpvs InLg (8=0.7753).

trivial (in the mean field theoryy=1/2) and is given by the A straightforward way to do this is to study the depen-

arguments of dimensional reduction and universality. dence of the order parametét, on 8. SinceZ, vanishes at
the critical point, it can be thought of as a measure of the
2. Exponentsg,, and y distance from the criticality. We expect that for sufficiently

small 3, i.e., close toB., this dependence should be given
by a power-law scaling with the exponesy,= 1/8 of the 2D
Ising model:S ~ (const- )8 This corresponds to the re-
gion CD in the diagram in Fig. 3, i.e¢>LN*. For larger,
farther away from criticality, the MF scaling holds

In this subsection we consider the following two expo-
nents: the exponenB,, of the order parameter¥ =(¢)
~tAm and the exponeng of the susceptibilityy~t~ 7. Ac-
cording to Eq.(9), at the critical pointt=0, the order pa-

TT?;iD'VEAnanN'S,VS usceptibility y, scale withLs as = ~(const- ,8_)1’2 (with some other value of consfThis is the

s X~Lks - . . region DB in Fig. 3, i.e.L<&<L;N*. For even largek we

At each value ofg we made a lineay"-fit forzln X and  should see scaling corresponding to the fixed point of the 3D
In x versus InLs. The locations of the minima of*/DOF as  Gross-Neveu moddl11]: 3~ (const-B)% In this region 1
a function of 8 provide estimates oB.. We estimated the <¢<L,.
error in/3; and the critical exponents by looking at the values since we are interested in the boundary of the mean-field
of B that increasey”/DOF by 1. An estimate of the error in  scaling region, we can fing from 3 using a well-known
Bc is min(}*/DOF)+ 1, which also gives the error on the relation between themg=1/(25) [16], which holds inside
critical exponents. Fits dt;=6 for the order parameter and the mean-field region. Thus we avoid direct measurements of
susceptibility gavepB,,/v=0.146), B.=0.7747(15) and
ylv=1.6§9), B.=0.7750(15) respectively. Similar results  TABLE II. The data for the scaling oF in the broken phase.
at L,=4 are B8,,/v=0.17), B.=0.6805(15) andy/v N=4.
=1.579), B.=0.6817(15).

The critical exponents which we found are in good agree py Ls Trajectories
ment with the two-dimensional Ising exponents;,/v

=0.125 andy/v=1.75 (in the mean field theorys,,,/v=1 0.595 0.50084) 36 30,000
and y/v=2). The values of3, extracted from this analysis ©-600 0.48714) 36 40,000
are also consistent with the estimate Bf=0.7765(15) 0-605 0.47264) 36 40,000
evaluated from the analysis &;. Figure 5 shows the best 0-610 0.45784) 36 40,000
linear fits of finite size dependence of3nand Iny at 8 0.615 0.44264) 36 50,000
=0.7747 and8=0.7753 respectively. 0.620 0.42684) 36 54,000
0.625 0.41063) 36 70,000
. 0.630 0.3928%) 36 64,000
B. Scaling in the broken phase 0.635 0.37367) 36 70,000
Our task in this section is to check the analytical result 0f0.640 0.352¢6) 36 110,000
Eqg. (4), which is equivalent to 0.645 0.329®) 36 130,000
0.6475 0.316®) 36 150,000
§<LNY, x=1/2. (13 0.650 0.301610) 48 54,000
0.652 0.2858L5) 60 41,000
In other words, we want to determine the position of theg.e54 0.264726) 80 25,400
crossover from the mean-fieldMF) critical behavior to the (56 0.239830) 80 30,000

non-trivial 2D Ising critical behavior as a function bf.
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TABLE lll. The data for the scaling ok in the broken phase. TABLE V. Goodness of linear fits a2 vs 8 for various ranges

N=12. of B. N=4.

B py L No. of points B range Goodness

0.640 0.511) 30 4 0.595-0.610 0.92

0.650 0.4911B3) 30 5 0.595-0.615 0.95

0.660 0.47002) 30 6 0.595-0.620 0.98

0.670 0.449(B) 30 7 0.595-0.625 0.99

0.680 0.427€2) 30 8 0.595-0.630 0.96

0.690 0.406(3) 30 9 0.595-0.635 0.21

0.700 0.383@) 30 10 0.595-0.640 10

0.710 0.3608%) 30 11 0.595-0.645 1ot

0.720 0.3368%) 30

0.730 0.311%%) 30 ]

0.740 0.2841) 30 N, these regions are squeezed, but.for the values we used
0.750 0.255%) 30 one can clearly resolve the MF region with the crossover
0.755 0.239%) 30 towards the 2D Ising region.

0.760 0.2196%) 30 In contrast to the FSS analysis whefe-Lg, now we
0.764 0'204&) 60 need to keeg<Lg since we are studying bulk critical be-
0'766 0'19503) 60 havior. We monitored each simulation run for vacuum tun-
0'768 0'18443) 60 neling events, which signal that, is not big enough. Away
0'770 0.17253) 60 from the critical point such events were so rare that good
0'772 0'157 60 measurements & and its susceptibilityy were possible. At
0'774 0'1383 60 couplings near the phase transition we incredsgtb sup-

press tunneling. A large numbé, such asN=24, sup-
presses fluctuations and allows an accurate study within rea-
sonable amount of computer resources. On the other hand,
for smallerN, such asN=4, the simulations were also very
efficient because the crossover to the 2D Ising behavior starts
at a smaller correlation length. The data from these simula-
tions is shown in Tables I, Ill, and V.

Since B,=1/2 in the MF region, we fitte®? with a
linear function ofB. The linearity made the fitting procedure
very efficient. We evaluated the goodness of fit for data in

¢, which are much harder than measurementX.of

We studied the dependence bfon B at three different
values ofN=4,12,24 on lattices with fixet;=6. Ideally, in
order to resolve all three critical scaling regions, or windows
we need to provide ¥L;<LN*<Lg. For finiteL,, L, and

TABLE IV. The data for the scaling ok in the broken phase.

N=24. various ranges B in order to find the boundaries of the MF

. . region(see Tables V, VI, and V]I The drop in the goodness
A > Ls Trajectories of%it vv(hen new data are add\gd implies Ft)hat thegnew points
0.6700 0.4756% 24 3,000 deviate from the MF behavior and they belong either to the
0.6800 0.456Q) 24 3,000 Gross-Neveu—MF crossover region or to the MF-2D-Ising
0.6900 0.435@%) 24 3,000 crossover region. Figure 6 shows the data3drversusp,
0.7000 0.416@) 24 3,000 where the straight lines represent the best linear fits in the
0.7100 0.396@)) 24 3,000 MF region. All three graphs show the MF-2D-Ising cross-
0.7200 0.376(5) 24 3,000 overs. The graphs fdd=12,24 also clearly show the Gross-
0.7300 0.355(5) 24 3,000 Neveu—MF crossover.
0.7400 0.3326) 24 3,000
0.7500 0.310() o4 3,000 TABLE VI. The same as Table V but fad=12.
0.7600 0.286@) 24 8,000 No. of points B range Goodness
0.7700 0.261@) 24 8,000
0.7800 0.2345) 24 8,000 5 0.70-0.74 &10°3
0.7900 0.2036) 24 10,000 6 0.70-0.75 %103
0.7950 0.187®) 36 15,000 5 0.71-0.75 0.20
0.8000 0.167®) 36 20,000 4 0.72-0.75 0.67
0.8025 0.15681) 36 20,000 5 0.72-0.755 0.77
0.8050 0.143@) 48 24,000 6 0.72-0.760 0.60
0.8075 0.126{L0) 60 12,000 7 0.72-0.762 0.40
0.8100 0.107dL5) 60 22,000 8 0.72-0.764 %104
0.8112 0.09148) 72 10,000 9 0.72-0.766 X105
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TABLE VII. The same as Table V but fdl=24. i T T i

A1t
No. of points B range Goodness

7 0.74-0.795 &104 A2

8 0.74-0.800 121038 =

6 0.75-0.795 0.28 2 st

7 0.75-0.800 0.24 g

3 0.76—0.780 0.68 € sl

4 0.76-0.790 0.91 -

5 0.76-0.795 0.70 .l

6 0.76—-0.800 0.38

7 0.76-0.8025 0.17

8 0.76-0.8050 1.210°8 27 . . . .

9 0.76-0.8075 510716 15 2 2.5 3 3.5

Ln(N)

FIG. 7. The best power-law fiigoodness 0.26for the depen-

We used the histogram reweighting method in order tadence of the boundary of the mean-field regiBig,:, on the num-
extract the value of at the “border” of the MF region with  ber of fermionsN.
the 2D Ising region. The quality of the fit drops very sharply.
This allowed us to use a very conservative estimate of thavith a large number of fermiondy. This phenomenon ex-
error, such as the width of the region Bf in which the plains an apparent contradiction between the |&gexpan-
quality of the fit drops down to 1%from, e.g., 90% in the sion [3,4], predicting mean-field scaling, and more general
case ofN=4). The center of this region of the drop is taken arguments based on dimensional reduction and universality
as the boundary of the MF scaling window. We fidig,=  [1], predicting the non-trivial scaling of a scalar theorydn
=0.377(11) forN=4, X =0.213(4) forN=12, andX, —1 dimensions.
=0.168(20) forN=24. It is clear that the non-trivial 2D A tentative explanation of3] was based, somewhat im-
Ising region is squeezed Akincreases. In order to check the plicitly, on the expectation that the largéexpansion breaks
analytical prediction of Eq(4), or (13), we fitted our results down and cannot predict correct non-trivial exponents. Our
to the form X,,-=consXN~* (see Fig. 7. We foundx  key point is that we can sayhen and as a function of what

=0.51(3) which is in agreement with the analytical predic-parameter(i.e., as a function of the distance from the criti-
tion x=0.5. cality, m/T), the largeN expansion breaks down. What is,

perhaps, even more important, is that we show that there
does exist a region where the larieexpansionis valid.
This region(in the space of/T) of the mean-field behavior

In this paper we demonstrated, using analytical argumentsdueezes out the region of the true non-trivial critical
and Monte Carlo simulations, that the width of the regionbehavior? .
near the finite temperature chiral phase transition where a One can also look at the whole problem as a question of

non-trivial critical behavior sets in is suppressed in theoriehe order of limits. If the limitN—c is taken beforem/T
—0, the non-trivial region disappears, and all critical behav-

ior is given by mean-field theory. If, on the other hand, the

V. DISCUSSION AND CONCLUSIONS

025 | limit m/T—0 is taken at fixedN, the true non-trivial scaling
' will hold. These effects can be clearly seen in our Monte
Carlo studies.
02} A helpful analogy can be drawn with the question of the
3 long distance behavior of the scalar field correlator in the
§ 015 | original 2-dimensional Gross-Neveu model with él)Jsym-
a metry at largeN [18]. The largeN expansion predicts spon-
E taneous symmetry breaking and long-range order, which is in
® 01} clear contradiction with the Mermin-Wagner theorem. As
was shown by Witter19], there is an “almost long-range
0.05 | order” in the system: i.e., the correlator falls off like N
Looking at this expression, one can easily see the interplay
0 ) ) . ) ) between the limitg —o~ andN— .
0.6 0.65 0.7 0.75 0.8 We applied our arguments to a specific example of a
Beta

FIG. 6. Order parameter squared gdor lattice theories with
N=4,12,24. The straight lines are the fits to the data in the mean- éit was conjectured ifi1 7] that the Ginzburg region of non-trivial
field regions. scaling could turn out to be small.

096001-8



CRITICAL REGION OF THE FINITE TEMPERATUIE . . . PHYSICAL REVIEW D 58 096001

Yukawa theory, but the mechanism responsible for this phepoint.” A true criticality is never reached nedy, because
nomenon is clearly more universal and may apply, in parm, plays the same role as the external ordering magnetic
ticular, to QCD, provided that the number of colod,, is  field in a ferromagnet. The largest thermal correlation length
large. The Yukawa or the Nambu—Jona-Lasinio theory ign units of 17T, T/m, can be estimated using the analogy to a
well-known to provide a very good description for the phe-ferromagnet and the mean-field value:d{35)=1/3, as’
nomenon of chiral symmetry breaking and restoration. One T [T\YB° (160 MeW\ 2
can then think of the theory we considered as an effective _N(_C) %(—V) ~3. (14)
description of the degrees of freedom participating in chiral m \mg 5 Mev
symmetry breaking.

As we have seen, the role of the fermions is to screen th
effective self-coupling of the scalar fieldl, The strength of

The fact that this number is not large could be guessed by
8bserving that the zero temperature pion masses, which are

. . ? driven by m,, are as large a3.. This largest correlation
this effe_ct depends on two factor§) a largeN and (i) a ._length may turn out to be smaller than the one required for
large window of scales between the cutoff of the effective

. . the crossover to non-trivial scalin region,T/m
theory, A, and the temperaturd, Let us see if these condi- 9 9

. P ~N, In(A/T.)~6, according to Eq.5). In this case, the
tions are satisfied in QCD. The scale of the spontaneous. ° . . S ; . '
symmetry breaking is of orderA~1GeV, while T, thear)critical behavior observed in the window allowed by

non-zero quark massdsaccording to Eq.14), roughly, 1

~160 MeV. Thus, there is almost an order of magnitude : : . P ,
window betweem\ andT, which is presumably sufficient to <T/m=3] will be given entirely by the mean-field scaling.

drive the effective self-coupling of the scalar field to its in- ACKNOWLEDGMENTS
frared fixed point at the scale @f.. How small this value is _ . _ . _ .
now depends on the number of the fermigosndition (i)]. Discussions with A. Kocic, R. Pisarski and T. Tran are

In QCD the valueN,=3, though not very large, can be con- greatly appreciated. We learned that a result similar to Eg.
sidered large in some cases. It would be interesting to see () had been independently derived by Pisafsdd]. This
this phenomenon could be rigorously shown to occur in thevork was supported in part by NSF grants PHY96-05199
limit N.— o0, which is very plausible. and PHY97-22101.

The effect of the suppression of the width of the non-
trivial critical region in QCD may lead to the following pre-
diction: only mean-fieldbut no non-trivialO(4)] scaling 1o make these estimates quantitative one needs to find numerical
behavior could be seen because of non-zero quark massegefficients, which are determined by non-universal dynamical

my. On the one hand, the mean-field scaling would holdproperties of QCD and by the definition of the boundary of the
until a relatively large thermal correlation length. On the mean-field region.

other hand, this correlation length in the real world is limited 3we use the definition of the exponenta~t”, S~t#, and3
by the quark masses), . ~mé’5, together with the central postulate of the scaling theory:
The following crude estimates can serve to illustrate thiscritical properties are determined by the correlation lengtm, 1/
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