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Nonperturbative determination of anisotropy coefficients in lattice gauge theories
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We propose a new nonperturbative method to compute the derivatives of gauge coupling constants with
respect to anisotropic lattice spacin@sisotropy coefficienjswhich are required in an evaluation of thermo-
dynamic quantities from numerical simulations on the lattice. Our method is based on a precise measurement
of the finite temperature deconfining transition curve in the lattice coupling parameter space extended to
anisotropic lattices by applying the spectral density method. We test the method for the casd€)adrsU
SU(3) gauge theories at the deconfining transition point on lattices with the lattice size in the time direction
N;=4-6. In both cases, there is a clear discrepancy between our results and perturbative values. A long
standing problem, when one uses the perturbative anisotropy coefficients, is a nonvanishing pressure gap at the
deconfining transition point in the $B8) gauge theory. Using our nonperturbative anisotropy coefficients, we
find that this problem is completely resolved: we obtAip/T4=0.001(15) and-0.003(17) orN,=4 and 6
lattices, respectivel\{.S0556-282(98)05521-Q

PACS numbsgs): 11.15.Ha, 05.70.Ce, 12.38.Gc, 12.38.Mh

I. INTRODUCTION NfT4 s 9B,
P=—a a_g(<Ps>_<P>O)+§5_§((Pt>_<P>0) :
In order to study the nature of the quark-gluon plasma in
heavy ion collisions and in the early Universe, it is important (4)

to evaluate the energy densigyand the pressurp near the
transition temperature of the deconfining phase transitio
These quantities are defined by derivatives of the partiti
function in terms of the temperatuiieand the physical vol-
umeV of the system:

where(Pg)) is the spacettime-)like plaguette expectation
"Value and(P), the plaquette expectation value on a zero-
Orfemperature lattice. Here, for later convenience, we have
chosena; and¢=ag/a,; as independent variables to vary the
lattice spacings, instead af, and ¢ adopted in Ref]2].
In order to computes and p from Egs.(3) and(4) using
_ l d1Inz p:-r‘9 InZ (1) numerical results from simulations, the values for the deriva-
VvV ooT 1 Vv tives of gauge coupling constants with respect to the aniso-
tropic lattice spacings,
The lattice formulation of QCD provides us with a nonper-
turbative way to compute these quantities by numerical ‘9_'85 a ‘9_'3t (7_55 &_'B)t (5)
simulations. On a lattice with a siZé3xN,, V and T are Yoa,' Tloa  af’ ¢’

given by V=(Nsa5)” and T=1/(N.a,), with a anda, the which we call the anisotropy coefficients, are required. They

lattice spacings in spatial and temporal directions. Becausgy pe computed from a requirement that, in the scaling re-

_NS andN; are discrete paramete_rs, the parti_al differentiationsgion’ the effects of anisotropy in the physical observables
in Eq. (1) are performed by varyings anda, independently  can e absorbed by a renormalization of the coupling param-
on anisotropic lattices. eters. Similar to the case of the renormalization group beta-
The anisotropy on a lattice is realized by introducing dif- function, the anisotropy coefficients do not depend on the
ferent coupling parameters in temporal and spatial directiongemperature, because the renormalization is independent of
For an SUN.) gauge theory, the standard plaquette actiorthe temperature.
on an anisotropic lattice is given by The calculation of these anisotropy coefficients in the
lowest order perturbation theory has been done by Karsch
[2]. However, the perturbative coefficients are known to lead
S= _Bsx i;¢4 Pij(x)_ﬁtxg£4 Pia(x), 2 to pathological results such as a negative pressure and a non-
] ' vanishing pressure gap at the deconfining transition ifBpU
gauge theory. Therefore, nonperturbative values of the an-

€=

where Po.(X)= (UNc)Re THU,(x)U,,(x+ i) U, (X isotropy coefficients are required in order to study the ther-
+1)UT(x)} is the plaquette in théu,v) plane. With this modynamic quantities near the phase transition wNelis
action, the energy density and pressure are givefillg} not sufficiently large.
We are interested in the values of the anisotropy coeffi-
3N§‘T4 dBs Bs cients for isotropic lattices ;= B:=p8, i.e., §£=1) where
€=— ?( ata_ng)(<Ps>_<P>O) most simulations are performed. In this case, we have
P s\ (0| _ _dp _  dg?
+ até,_i:_ ai? ((Pt>—<P>o)], () %%, e oA Agq~ 2Ne@ 45
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wherea(dg~?/da) is the beta function a§=1, whose non-
perturbative values are well studied both in(8Juand SU3)
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cients near the transition poif@].
In this paper, we propose a new method to directly com-

gauge theorief3-6]. Furthermore, a combination of the re- pute the anisotropy coefficients at the deconfining transition
maining two anisotropy coefficients is known to be related topoint. Our method is described in Sec. Il. We test the method
the beta functiori2] by* in the cases of S(2) gauge theory in Sec. Ill. The more
realistic case of S[B) gauge theory is studied in Sec. IV. As
( 3_,35 n (7_/3’t an application of our nonperturbative anisotropy coefficients,
€ 0¢ we study the gaps foe and p at the SUW3) deconfining
transition forN;=4 and 6. A summary is given in Sec. V.
Therefore, only one additional input is required to determine
the anisotropy coefficients for isotropic lattices.

A nonperturbative determination of the anisotropy coeffi-
cients was attempted in Ref§—10] using a method that we Our method is based on an observation that, in the scaling
call “the matching method” in the following. One first de- region, the transition temperatufg=1{N.a(5s,5;)} must
termines¢ as a function of3s and 8, by matching spacelike be independent of the anisotropy of the lattice. Therefore,
and timelike Wilson loops on anisotropic lattices, and thenwhen we change the coupling constants along the transition
numerically determinesiylo¢ at é=1, where y=\B/B,.  Curve in the ;.8 plane as Bs,B)—(BstdBs.B
Interpolation of the Wilson loop data at different sizes or +dB;) on a lattice with fixed\,, the lattice spacing in the
interpolation ofé at differenty’s using an Ansatz is required time directiona; does not change:
to evaluatedy/o¢ at £=1.

Alternatively, we can evaluate a nonperturbative value of
pressure directly from the Monte Carlo data by “the integral
method” [11]: Assuming homogeneity expected when the

spatial lattice size is sufficiently large, we obtain the relationyye denote the slope of the transition curvetatl byr,,
p=—f, wheref=— (T/V)In Z is the free energy density,
=1 /

3 dg
=-a— —.

2 da ©)

)at .fixed,£=1

IIl. METHOD

dat d’83+&_ﬁtdﬁt:0

aay
= 2B, (7)

which can be evaluated by numerically integrating the
plaquette differencéPg)+(P;)—2(P), in terms of 8 on
isotropic lattices. The resulting value of the pressure, in turn,

. _dBs
Cdp

da
By

oay
9Bs

=1

provides us with a nonperturbative estimate of an anisotropy B B
coefficient [4,5]. In actual numerical simulations, as the =(—s) / (—t) , (8)
value of p in the confining phase and near the deconfining 29 &=1 9€ é=1
transition point is quite small compared with the magnitude
of errors, it is difficult to determine the anisotropy coeffi- where we used an identity
|
Bs 9By ok
day da | 1 By 9PBs ©
IPBs 9Bt (9&13By)(9a/aBs) — (9€ldBs)(daildBy) _da dag
& 9 IPBr  IPs

Hence, the derivatives g8 and B, in terms of¢ are ex-  Introducing the conventional notatiog=+/3;/8s and 8

pressed as =/BsB:, we obtain
JE— = —a_’ —_— =| — = —_—.
(9§ £=1 2(1+rt) da (95 a, -fixed,¢=1 (95 ay fixed,¢=1 4’8 1+rt da
(11
eJen 3 dg , . .
2 RETEETR) ad—. (10 Finally, the customarily used forms for the anisotropy coef-
£,y 2(1+4ry “da ficients (Karsch coefficients[2] are given by
) (agj) 1 { . r—2 dp
In Ref. [2], a corresponding equation is given for s o0& 3y 2N B 2(1+r, “da
(8,Bs(t)/‘?§)as:fixed- 35 :fixed.£=1
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.

whereB,=2N.g; 2¢~* and B;=2N.g, %¢. Therefore, when

Jg; ?
23

1
2Ne|

2(1+r,) 2dal’
(12

ayfixed,¢=1

the value for the beta function is available, we can determine

these anisotropy coefficients by measuringrom the finite
temperature transition curve in thgg,3,) plane?

In order to determine the transition curve in the coupling

parameter space, we compute the rotated Polyakov loop

1 1_ M
L=z —3 > — Tr[] Usxt) (13)
N3 X Ne i1
as a function of Bs,8;), wherez is aZ(N;) phase factor
(z2Ne=1) such that ard() e(—m/N;,7/N.]. We define the
transition point as the peak position of the susceptibility
=N3((L?)—(L)?) in B for each fixedy.
We compute the coupling parameter dependencg iof
the (Bs,B:) plane by applying the spectral density method

PHYSICAL REVIEW D 58 094505
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FIG. 1. Polyakov loop susceptibility in the $2) gauge theory
on a 16x4 lattice aty=0.995, 1.0, and 1.005. Errors are esti-
mated by a jackknife method.

[13] extended to anisotropic lattices. This enables us to comsimylations also on several anisotropic lattices fof3LOn
pute the anisotropy coefficients directly from simulations aty; 18x4 |attice. we perform simulations at 8¢, 3,)

&~1 without introducing an interpolatioAnsatz Another
good feature of the spectral density method is that th

time histories of the Polyakov loop and spacelike and time
like plaquettes are available near the transition point.
Fitting the transition curve with a polynomial

nmax
Be(y)= 2 fuly=1)", (14)
with f, the fitting parameters, the slopgis given by
:<d(ﬂc/7)> :(dﬁc/d7)§=l_ﬂc (15)
! d(Bcy) e=1 (dBC/d7)§:1+BC,

where dB./dy).-,=f;. The range of3 andy in which the
spectral density method is reliable is estimated by the cond
tion that the statistical error for the reweighting factahich

is (€72%) when the number of simulation points i$ i$ less
than 0.5%. We confirm that the results are completely stabl
under a variation oh,,, when we restrict ourselves to the
range discussed above. Choosing a range afound 1 in

=(2.300,2.300),(2.302, 2.302, (2.296, 2.308 and(2.307,

©.209. 26x5 latti imul
method works well even with data obtained only on isotropic 99. On a 20x5 latice, we simulate at 4.8)

lattices. Therefore, we can use data from previous high staz—
tistic simulations performed on isotropic lattices, when the”"

(2.373,2.373) (2.375, 2.375 (2.380, 2.370) and(2.368,
378. At each (Bs,8;) on theN,=4 (5) lattice, we accu-
mulate 500 000(1 250 000 configurations, each separated

by 10 heat-bath sweeps, after thermalization. The statistical
errors are estimated using the jackknife method with the bin
size of 1000 configurations. We confirm that the errors are
stable under a wide variation of the bin size around this
value.

Computing the susceptibility in theg¢,8;) plane using
data at each simulation point, we check that the results agree
well with each other, i.e., the results for the susceptibility
from isotropic lattices coincide with the results from aniso-
tropic lattices. For the rest of this section, we combine the
results for all four B¢, 8;) combinations to compute the sus-
ceptibility with the spectral density method. In Fig. 1, we
iplot the susceptibility forN;=4 at y=0.995, 1.000, and
1.005. The results for the peak positigy of the suscepti-
bility computed at various values of are summarized in
€ig. 2 forN;=4 and 5.

Fitting the results for the transition curve, we obtain the
values forB; andr, at £=1, as summarized in Table I.

such a way that the transition curve is almost straight, we usgombining the values of, with a result of the S() beta

Nmax=3 for the final results.

lll. RESULTS FOR SU(2)

We first test the method for the case of @Ugauge
theory at the transition poing; for N;=4 and 5. Although
the method should work well with data only from isotropic
lattices, in order to confirm it, we perform Monte Carlo

2A similar approach was proposed in REfZ].

function [4] at B.(¢£=1), we obtain the anisotropy coeffi-
cients(11) and(12). The results are summarized in Table I
Because no errors for the beta function are given in Rif.

we disregard their contribution to the errors of the anisotropy
coefficients.

In Fig. 3, we compare our results for the Karsch coeffi-
cients with the results of the perturbation the@upt-dashed
curves [2] and the integral metho@otted curves[4]. We
find significant discrepancies between our results and the re-
sults of the perturbation theory. On the other hand, our re-
sults are consistent with the results from the integral method.
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TABLE II. SU(2) anisotropy coefficients a=1 using the beta
functionadg ?/da obtained by the Bielefeld groujg].

lattice Iyl & Cs C adg ?/da
16°x 4 0.68321) 0.20312 —0.161(12) —0.08439
20°%x 5 0.72535  0.18321) —0.144(21) —0.07544

IV. RESULTS FOR SU(3)

Let us now study the more realistic case of the(3U
gauge theory. We analyze the high statistic data for the
SU(3) gauge theory obtained by the QCDPAX Collaboration
[14]. Simulations were performed at the deconfining transi-
tion point for N;=4 and 6. ForN,=4, the lattice sizes are
24°x36x4 and 13x24x4, with 712000 and 910 000
pseudo-heat-bath iterations, respectively. Rpr 6, data on
36°x 48%x6, 24x6, and 26x6 lattices with 1 112 000,
480 000, and 376 000 iterations are available. The Polyakov
loop and the plaquettes are measured every iteration. Details
of the simulation parameters are given in Rdf4]. For the
bin size in the jack-knife analysis, we adopt the same values
as in Ref.[14].

A. Anisotropy coefficients

The results for the susceptibility on the largest spatial lat-
tices are given in Figs. 4 and 5. Because the transition is of
first order for SU3), the peak of the susceptibility is quite
clear when the spatial lattice size is large enough, as shown
in Figs. 4 and 5(Note the difference in the vertical scales
between Figs. 1 and .

0.3

02 | \‘}\-—-n-.f ________________ ]

01

FIG. 2. Polyakov loop susceptibility in the $2) gauge theory
as a function of Bs,3,) obtained on(a) 164 and(b) 20°x5
lattices. Simulation points are shown by filled circles. The bold
lines represent the peak position of the susceptibility and the dashed
lines their errors. The magnitude of the susceptibility is shown by
tone for the rangéa) 8.2<y<10.4 and(b) 9.0< y<11.2, respec-
tively, where different tone corresponds to a differedge=0.2.

TABLE I. Results forg3. and the slopes af=1 in the SU2)
gauge theory. The columny‘range” is for the range ofy used in
the fit for the slopedB./d7y.

lattice Be y range dg./dy re

2.301779) 0.995-1.005 —0.370(12) —1.384(14)
2.374308) 0.995-1.005 —0.312(15) —1.303(17)

16°x 4
20°%x 5
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FIG. 3. Anisotropy coefficientss andc, for the SU2) gauge
theory. Our nonperturbative results are given by filled circles. The
dot-dashed curves are the results of the perturbation th&aryhe
dotted curves are the results from the integral mefdddNo errors
are published for these curves.
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FIG. 4. Polyakov loop susceptibility in the $8) gauge theory
obtained (a) on the 24x36x4 lattice at y=0.9975, 1.0, and FIG. 5. The same as Fig. 2 for the &)Y gauge theory orta)
1.0025, and(b) on the 36x48x 6 lattice aty=0.999, 1.0, and 24°Xx36x 4 and(b) 36°x 48X 6 lattices. The range of plotted and
1.001. the widthAy for a tone arda) 0.0-45.0, 5.0 an¢b) 2.5-22.5, 2.5,
respectively.

Our results for the slope, are summarized in Table lIl.

Except for the case of the 246 lattice where the simula- M€ by about one standard deviation. However, because the

tion point is slightly off the transition point, the errors be- volume dependence is not uniform, we consider that it is

come larger with decreasing spatial volume, because th%aused by statlstlca_ll quct_uatlons. We use the values obtained

peak of the susceptibility becomes less clear on small lat®" the largest spatial Iat.tlces for our fnjal results. .
Our results for the anisotropy coefficients are summarized

tices. From Table lll, we find that the slopeshyt=4 with . ' ;
. . .’ . n Table IV. For our final results, we adopt the beta function
different spatial lattice volumes completely agree with eaCHcomputed from a recent string tension data by the SCRI

gitl?tir'fopr‘strlogv ?slregslgssﬁ:;;r;grgb;?: dp\?v?}nlr(\ ?kf] ;F;zmsgicemléroup[ﬂ. See a subsection below for a discussion about the
= -

with the same relative spatial volumél{/N,)? due to the influence on the results from the choice of the beta function.

fact that the transition is weaker fof,=6 [14]. Therefore,
with comparable statistics; has a larger statistical error for
N;= 6. Unlike in the case of;= 4, the central values for the As an application of our nonperturbative anisotropy coef-
slope forN;=6 given in Table Il vary with the spatial vol- ficients, we reanalyze the thermodynamic quantiéesd p

B. Pressure gap and latent heat

094505-5
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TABLE lll. The same as Table | for S@) using the data by the QCDPAX Collaboratifitv].

lattice Be v range dg./dy re

282X 36X 4 5.69245%23) 0.9975-1.0025 —0.5193(23) —1.2008(10)
122X 24X 4 5.6914942) 0.995-1.005 —0.5183(52) —1.2004(22)
362X 48X 6 5.8937934) 0.999-1.001 —0.5844(83) —1.2201(35)
243%6 5.8929287) 0.999-1.001 —0.542(33) —1.202(14)
20°% 6 5.892414) 0.9975-1.0025 —0.622(34) —1.236(14)

at the deconfining transition point using the plaquette data bWe find that the problem of nonzero pressure gap is com-
the QCDPAX Collaboratiorf14]. In terms of the slope, pletely resolved with our nonperturbative anisotropy coeffi-
and the beta function, the conventional combinatians cients.

—3p and e+ p are given by

d . .
(e—3p)/T4= _3N:1ad_/; (PO +(PY—2(P)o}, (16) C. Choice of the beta function

In Table IV, we study the influence of the choice of the
dB r—1 beta function on the anisotropy coefficients. We comgare
— —— (P —(Py)}. the beta function computed from a recent string tension data
dar+1 by the SCRI groufd6], (i) that from a Monte Carlo renor-

17 malization group(MCRG) study by the QCDTARO Col-

At a first order transition point, we have a finite gap for laboration[3], and(iii) that from a study of8.(N,) by the
energy density, the latent heat, but expect no gap for preddielefeld group[5]. The SCRI beta function is computed
sure. It is known that the perturbative anisotropy coefficientgising a fit of the string tension for 568<6.5. We note that
have a difficulty which leads to a nonvanishing pressure gaphe QCDTARO beta function is based on a fit of mean-field
at the deconfining transition pointip/T4=—0.32(3) and improved gauge coupling constant using the results of
—0.14(2) atN;=4 and 6[14]. plaquette a3>5.8; i.e.,B.(N;=4)~5.69 is slightly off the
New values for the gaps iaandp using our nonpertur- range of validity [3,15]. Also the beta function by the
bative anisotropy coefficients are summarized in Table VBielefeld group seems to be problematic arou@g(N;

(e+p)/T*=3N{a

For the pressure gap, we obtain =4), because it is largely affected by the data@{N;
=3) where we cannot expect universal scaling. Accordingly,
ApITA= 0.00115 for Ni=4, (19  the beta-function of the Bielefeld group shows a systematic
—0.00317) for N,=6. deviation from the data of a MCRG study A6 [5].

TABLE IV. SU(3) anisotropy coefficients at= 1, using the values for the beta functiadg™ %/da by the
SCRI group 6], the QCDTARO Collaboratiofi3], and the Bielefeld groufb]. For our final results, we take
the values obtained on the largest spatial lattices using the SCRI beta function. Because the errors for the beta
function are not given in the papers, we disregard their contribution to the errors of the anisotropy coefficients
in this table. See text for details.

lattice vyl o€ Cs C adg ?/da

242X 36X 4 0.615927) 0.382226) —0.3466(26) —0.07108 SCRI
0.5575%25) 0.435923) —0.4037(23) —0.06434 QCDTARO
0.672830) 0.329928) —0.2910(28) —0.07764 Bielefeld

122X 24X 4 0.616162) 0.381959) —0.3464(59) —0.07097 SCRI
0.557356) 0.436Q53) —0.4039(53) —0.06418 QCDTARO
0.673868) 0.328864) —0.2900(64) —0.07761 Bielefeld

367X 48x 6 0.7068100 0.310998) —0.2650(98) —0.09179 SCRI
0.693698) 0.323596) —0.2784(96) —0.09008 QCDTARO
0.682696) 0.334@95) —0.2897(95) —0.08864 Bielefeld

243% 6 0.76247) 0.25746) —0.211(46) —0.09172 SCRI
0.74746) 0.27145) —0.226(45) —0.08999 QCDTARO
0.73645) 0.28245) —0.237(45) —0.08857 Bielefeld

20°%X 6 0.66336) 0.35435) —0.308(35) —0.09167 SCRI
0.651(35) 0.36635) —0.321(35) —0.08994 QCDTARO
0.64Q35) 0.37534) —0.331(34) —0.08853 Bielefeld
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TABLE V. Gaps for thermodynamic quantities in the QU
gauge theory at the deconfining transition point using our non-
perturbative anisotropy coefficients. Plaquette data are taken from
Ref. [14]. The low-temperature hadronic phase and the high-

temperature quark-gluon-plasma phase are separated as described in & g TUme-SoITs
Ref. [14]. We reanalyze —3p)/T* also, using the SCRI beta & ]
function. 0.2 brmrm ]

lattice 28X 36X 4 36°X 48X 6
B 5.6925 5.8936

0.0
A(e+p)/T* 2.07542) 1.56551)
A(e—3p)/T* 2.07243 1.57842)
AelT? 2.07434) 1.56940)
Ap/T* 0.00%(15) —0.003(17) -

These beta functions are plotted in Fig. 6. At(N; 04 |
=6), different beta functions coincide with each other within
5%, while, atB.(N;=4), they vary by about 20%. Because
only the SCRI beta function is reliable gt(N,=4) as dis- 5'5 6'0 6.5
cussed in the previous paragraph, we adopt the SCRI beta- ’ B ’ ’
function for our final results.

In order to compare the anisotropy coefficients from dif- FIG. 7. Anisotropy coefficients in the $8) gauge theory. Our
ferent references, however, it is important to check the effeatonperturbative results are given by filled circles. The dot-dashed
of the beta-function on the results. From Table IV, we seecurves are the results of the perturbation thefy The open
that the results for the anisotropy coefficients using differensquares are those from a matching of Wilson lop@is Open tri-
beta-functions agree well with each otherNit=6. At N,  angles and thin lines are the results of a matching mefiod
:4’ however, the anisotropy coefficients depend very mucﬁombiHEd with the SCRI beta functic[ﬁ]. The dotted curves are
on the choice of the beta function. Accordingly, we find thatthe results from the integral meth@8l. No errors are published for
the results for the latent heat are consistent with each other Hte results from the integral method.

N,=6: Ae/T*=1.569(40), 1.53@9), and 1.51838) with

SCRI, QCDTARO, and Bielefeld beta functions, respec- D. Comparison with other methods

tively. At Ny=4, we find a si42ab|e dependence on the choice |, Fig 7, we summarize our results for the Karsch coef-
of the beta function:Ae/T"=2.074(34), 1.87®B0), and ficients together with previous values; the perturbative re-
2.26337) using SCRI, QCDTARO, and Bielefeld beta func- qjts[2], results from the integral methd8], and those from
tions. For _the pressure gap, on the other hand, because _th‘?e matching of Wilson loops on anisotropic lattid€s10].
beta function appears only as a common overall factor in\g errors are published for the results from the integral
Egs.(16) and(17), the conclusion thahp vanishes with our  method. We find that all nonperturbative methods give val-
anisotropy coefficients does not depend on the choice of th§es which deviate from the results in the perturbation theory.

beta function. Comparing the results from different nonperturbative
0.00 ‘ ‘ ‘ ‘ ‘ methods, we find that, although the deviations from the per-
SCRI turbation theory are roughly consistent with each other, the
_____ QCDTARO central values are different by more than three standard de-
. —-—- Bielefeld viations, when we take the published errors.

We think that one origin of the variation among different
methods atB.(N;=4) is the beta function. Note that the
results from Refs[9] (matching methodand[5] (integral
method are computed using the beta function of the
Bielefeld group, while our results and the results from Ref.
[10] (matching methodare using the SCRI beta function.
From Table IV, we note that, if we adopt the beta-function of
the Bielefeld group, our results are consistent with those of
Ref.[9] at B:(N;=4).

At B.(N;=6), on the other hand, the difference in the

-0.15 e 58 50 v v results is not due to the beta function, because the systematic
' ' l3 ' ' error due to the choice of the beta function is small as dis-
cussed in the previous subsection. In order to see this, we

FIG. 6. Nonperturbative beta functions in the @Ugauge Study dy/dé, which can be computed without using the beta
theory. function in the matching method. The values @i d¢ ob-

-0.05

adg®/da

-0.10 |
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tained in Ref[10] are reported to be consistent with thoseFig. 7 suggest that the Karsch coefficients converge to the
from the integral method5], but are different to another perturbative values slightly faster than that suggested by the
result from the matching methd@]. Performing a quadratic central values from Ref$5] and[10]. Applying the results
interpolation ing, we finddy/9¢é=0.64(1)[10], 0.662) [5], for SU(3), we reanalyzed the thermodynamic quantities at
and 0.742) [9] at B.(N;=6). Our result 0.70{L0) given in  the deconfining transition point d4;=4 and 6 lattices. We
Table IV is around the center of these values. A careful studybtain vanishing pressure gaps with our nonperturbative an-
of systematic errors in each method is required to understanidotropy coefficients, thereby solving a long standing prob-
the variation between different methods. lem of nonzero pressure gap with the perturbative coeffi-
cients.
V. CONCLUSIONS
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