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Perturbative and nonperturbative studies of the SU„2…-Higgs model on lattices
with asymmetric lattice spacings
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We present a calculation of theO(g2,l) perturbative corrections to the coupling anisotropies of the SU~2!-
Higgs model on lattices with asymmetric lattice spacings. These corrections are obtained by a one-loop
calculation requiring the rotational invariance of the gauge and Higgs boson propagators in the continuum
limit. The coupling anisotropies are also determined from numerical simulations of the model on appropriate
lattices. The one-loop perturbation theory and the simulation results agree with high accuracy. It is demon-
strated that rotational invariance is also restored for the static potential determined from space-space and
space-time Wilson loops.@S0556-2821~98!05519-2#

PACS number~s!: 11.15.Ha, 12.15.2y
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I. INTRODUCTION

At high temperatures electroweak symmetry is restor
Since baryon violating processes are unsuppressed at
temperatures, the observed baryon asymmetry of the
verse has finally been determined at the electroweak p
transition@1#.

In recent years quantitative studies of the electrow
phase transition have been carried out by means of
summed perturbation theory and lattice Monte Carlo simu
tions @2–17#. In the SU~2!-Higgs model for Higgs boson
masses (mH) below 50 GeV, the phase transition is predict
by perturbation theory to be of first order. However, it
difficult to give a definite perturbative statement for phy
cally more interesting masses, e.g.,mH.80 GeV. Because
of the bad infrared properties of the theory, the perturba
approach breaks down in this parameter region. A system
and fully controllable treatment is necessary, which can
achieved by lattice simulations.

For smaller Higgs boson masses (mH,50 GeV) the
phase transition is quite strong and relatively easy to st
on the lattice. For largermH ~e.g.,mH580 GeV) the phase
transition gets weaker, and the lowest excitations h
masses small compared to the temperatureT. From this fea-
ture one expects that a finite temperature simulation on
isotropic lattice would need several hundred lattice points
the spatial directions even for anLt52 temporal extension
These kinds of lattice sizes are out of the scope of the pre
numerical resources.

One possibility to solve the problem of these differe
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scales is to integrate out the heavyO(T) modes perturba-
tively, and analyze the obtained theory on the lattice. T
strategy turned out to be quite successful, and both its
turbative and lattice features have been studied by sev
groups @6–11#. Even more, Ref.@18# predicts that some-
where above 80 GeV Higgs boson mass the first order ph
transition does not take place anymore, and the two pha
can be continuously connected. Reference@19# gives esti-
mates of the end point of the phase transition in the fram
work of the reduced three-dimensional~3D! approach.

With this paper we follow another approach@analytic and
Monte Carlo ~MC! calculations# to handle this two-scale
problem. We will use the simple idea that finite temperatu
field theory can be conveniently studied on asymmetric
tices, i.e., lattices with different spacings in temporal (at)
and spatial (as) directions. This method solves the two-sca
problem in a natural way@20#. Another advantage is—wel
known and used in QCD—that this formulation makes
independent variation of the temperature (T) and volume
(V) possible. The perturbative corrections to the coupl
anisotropies are known in QCD~see Refs.@21,22#!. Perform-
ing a similar analysis for the SU~2!-Higgs model, we have
presented in our earlier paper@23# perturbative corrections to
the coupling anisotropies for this case, too. Here we g
details of the perturbative calculation of@23# and by numeri-
cal simulation on lattices with anisotropic lattice spacin
calculate the coupling asymmetries for the practically r
sonable parameters of the SU~2!-Higgs model. As we will
show at mH'80 GeV the one-loop perturbative and th
nonperturbative coupling asymmetries agree very well.

There is an essential difference between pure gauge t
ries and the SU~2!-Higgs model. In the former case an
value~within a certain range! of the space and time couplin
constant ratio does correspond to a meaningful theory;
actual value of the ratio corresponds to a definite value of
ratio of the space and time lattice spacings. On the ot
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F. CSIKOR, Z. FODOR, AND J. HEITGER PHYSICAL REVIEW D58 094504
hand, in case of the SU~2!-Higgs model for a fixed value o
the space and time gauge coupling ratio~determining the
ratio of the space and time lattice spacings! one has to fix the
ratio of the space and time hopping parameters to a defi
value, in order to ensure that the theory makes sense
convenient way to do this is to require that the ratio of sp
and time gauge boson masses should be equal to the ra
space and time Higgs boson masses. Such a choice o
parameters is a precondition to both the perturbative ca
lations and the numerical simulations.

The plan of this paper is as follows. Section II deals w
the perturbative analysis. In Sec. II A we give the latti
action of the model on asymmetric lattices and discuss
turbation theory in the anisotropic lattice case. Section I
contains the calculation of the critical hopping parameter
of the wave function quantum correction terms, which g
the quantum corrections to the anisotropy parameters. In
II C a discussion of the finite temperature continuum limit
given. The optimal choice of the ratio of space and tim
lattice spacings is determined by perturbative techniqu
Section III contains our nonperturbative analysis. Sect
III A gives the basic points of our MC simulations. Sectio
III B deals with the mass determinations from the correlat
functions. In Sec. III C we present the results on Wilson lo
simulations and the static potential. In Sec. III D we fina
evaluate the nonperturbative asymmetries and compare
with the perturbative results. Section IV is a summary a
outlook.

II. LATTICE ACTION AND PERTURBATION THEORY

In this section we discuss lattice perturbation theo
Since we did not find the Feynman rules for the anisotro
lattice spacing case in the literature, we present some de
of lattice perturbation theory. After that we determine t
critical hopping parameter and the anisotropies in one-l
perturbation theory. The continuum limit and the optim
choice of the ratio of spacelike and timelike lattice spacin
are also discussed.

A. Action in continuum notation, gauge fixing, propagators

For simplicity, we use equal lattice spacings in the th
spatial directions (ai5as , i 51,2,3) and another spacing i
the temporal direction (a45at). The asymmetry of the lat
tice spacings is characterized by the asymmetry factoj
5as /at . The different lattice spacings can be ensured
different coupling strengths in the action for timelike a
spacelike directions. The action reads

S@U,w#5bs(
sp

S 12
1

2
Tr UspD1b t(

tp
S 12

1

2
Tr UtpD

1 (
xPL

H 1

2
Tr~wx

1wx!1lF1

2
Tr~wx

1wx!21G2

2ks(
m51

3

Tr~wx1m̂
1

Ux,mwx!2k tTr~wx14̂
1

Ux,4wx!J ,

~1!
09450
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whereL stands for the lattice points,Ux,m denotes the SU~2!
gauge link variable, andUsp and Utp are the path-ordered
product of the fourUx,m around a space-space and spa
time plaquette, respectively. The symbolwx stands for the
Higgs field.

The values of anisotropies defined as

gb
25

b t

bs
, gk

25
k t

ks
~2!

are chosen to correspond to given values of the asymm
j. In perturbation theory this can be ensured order by or
in the loop expansion, requiring that in the limitas ,at→0
with the ratio j5as /at fixed, certain physical quantitie
show rotation symmetry on submanifolds of the bare c
pling space satisfyinggb5const,gk5const. This procedure
leads to a formal double expansion ing2 and l of the
anisotropies:

gb
25j2@11cb~j!g21bb~j!l1O~g4,l2!#,

gk
25j2@11ck~j!g21bk~j!l1O~g4,l2!#. ~3!

Here g is the bare gauge coupling of the theory with sym
metric lattice spacings in standard notation.@Note that
cb(1)5ck(1)5bb(1)5bk(1)50.] In this double expansion
we use the formal power countingl;g2. In general, fixing
gb(j) and gk(j) to ensure rotation symmetry should b
done nonperturbatively. In the nonperturbative framewo
the definition ofj is given as the ratio of space and tim
direction lattice unit correlation lengths. This nonperturb
tive analysis will be the topic of Sec. III, where we choo
the values of the bare copuling ratios~2! to ensure that the
Higgs and gauge boson correlation lengths in physical u
are the same in the different directions. This idea can
applied in perturbation theory as well~see, e.g.,@22#!, and
we will follow this method in our analysis, too.

Elaborating perturbation theory we follow the usual ste
@see e.g.,@24,25# for the isotropic SU~2!-Higgs model#. The
only complication is that we have to keep track of the d
ferent lattice spacings and couplings.

First we consider the gauge part of the action. We will u
the same notation as applied by the calculation@21# for the
pure gauge theory,

Ux,m5expS iamgm

t r

2
Am

r ~x! D , ~4!

where r is summed over 1,2,3, whilem is not summed;
moreover,am5as , gm5gs for m51,2,3 anda45at , g4
5gt . We have also

bs5
4

j

1

gs~j!2
, b t54j

1

gt~j!2
~5!
4-2
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as the connection to the lattice parameters. The expans
for gs , gt read

gs~j!25g2@12cs~j!g22bs~j!l1O~g4,l2!#, ~6!

gt~j!25g2@11ct~j!g21bt~j!l1O~g4,l2!#, ~7!

where g25gt
2(j51)5gs

2(j51) and cb(j)5ct(j)2cs(j),
bb(j)5bt(j)2bs(j).

We write

Ux,m5am
0 ~x!1 i t ram

r ~x!, ~8!

where

am
0 ~x!5cosS amgmuAm~x!u

2 D ,
09450
ns
am

r ~x!5
Am

r ~x!

uAm~x!u
sinS amgmuAm~x!u

2 D , ~9!

with uAm(x)u5AAm
r (x)Am

r (x). The expansion is given by

am
0 ~x!512

~amgm!2

8
Am

r Am
r 1

~amgm!4

384
Am

r Am
r Am

s Am
s 1O~g6!,

~10!

am
r ~x!5

amgm

2
Am

r 2
~amgm!3

48
Am

r Am
s Am

s 1O~g5!. ~11!

Inserting Eq.~8! into the plaquette parts of the lattic
action we get the parts of the action containing odd numb
of gauge boson fields (Spl

odd) and even numbers of gaug
boson fields (Spl

even). They read
Spl
odd52 (

xPL
(
m,n

bmn$eprs@an
0~x1m̂am!am

p ~x!1am
0 ~x!an

p~x1m̂am!#am
r ~x1 n̂an!an

s~x!

2eprsam
p ~x!an

r ~x1m̂am!@an
0~x!am

s ~x1 n̂an!1am
0 ~x1 n̂an!an

s~x!#%, ~12!

Spl
even52 (

xPL
(
m,n

bmn$am
0 ~x!an

0~x1m̂am!am
0 ~x1 n̂an!an

0~x!2am
0 ~x!an

0~x1m̂am!am
r ~x1 n̂an!an

r ~x!

2am
0 ~x1 n̂an!an

0~x!am
r ~x!an

r ~x1m̂am!1am
r ~x!an

r ~x1m̂am!an
s~x1 n̂an!an

s~x!

1@an
0~x1m̂am!am

r ~x!1am
0 ~x!an

r ~x1m̂am!#@an
0~x!am

r ~x1 n̂an!1am
0 ~x1 n̂an!an

r ~x!#

1~2dpsd rt1dptd rs!am
p ~x!an

r ~x1m̂am!am
s ~x1 n̂an!an

t ~x!%, ~13!

wherep,r ,s,t51, . . . ,3 andbmn is equal tobs for space indices and equal tob t for one space and one time index.
The integration measure for the gauge variables also contributes to the action:

d3Ux,m5
1

p2
d4am

S~x!d„am
T~x!am

T~x!21…→d3Am
r ~x!expF logS sin2S gmam

2
uAmu D

1
4 gm

2 am
2 uAmu2

D G , ~14!

where capital letters run from 0 to 3 and a sum overT50, . . . ,3 isunderstood. The contribution to the action reads

Sm52 (
xPL

(
m51

4

logS sin2S gmam

2
uAmu D

1
4 gm

2 am
2 uAmu2

D 5 (
xPL

(
m51

4 gm
2 am

2

12
Am

r ~x!Am
r ~x!1O~g4!. ~15!

Next we consider the pure scalar part of the action. Introducing the notation

wx5H0~x!1 i t rp r~x!, ~16!

it reads

SH5(
x

H H0~x!21p r~x!p r~x!1l@H0~x!21p r~x!p r~x!21#222ks(
m51

3

@H0~x1m̂am!H0~x!2p r~x1m̂am!p r~x!#

22k t@H0~x14̂a4!H0~x!2p r~x14̂a4!p r~x!#J . ~17!
4-3
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Assuming that theH0 field has a nonzero vacuum expectation valuev, we write

H0~x!5H~x!1v. ~18!

Moreover, we introduce the notation

g056l
1

ks
2

at

as
, lc5

g0

24
~19!

and the continuum fields

Hc~x!5S 2ks

asat
D 1/2

H~x!, pc
r ~x!5S 2ks

asat
D 1/2

p r~x!, vc5S 2ks

asat
D 1/2

v. ~20!

Using these we find the scalar part of the action using continuum variables to be

SH5as
3at (

xPL

1

2H (i 51

3

@¹ iHc~x!¹ iHc~x!1¹ ipc
r ~x!¹ ipc

r ~x!#1
gk

2

j2
@¹4Hc~x!¹4Hc~x!1¹4pc

r ~x!¹4pc
r ~x!#

1m0
2@~Hc~x!1vc!

21pc
r ~x!pc

r ~x!#1
g0

12
@~Hc~x!1vc!

21pc
r ~x!pc

r ~x!#2J , ~21!

where

as
2m0

25
122l

ks
2622gk

2 ~22!

and

¹m f ~x!5
f ~x1m̂am!2 f ~x!

am
~23!

is the lattice derivative.
Puttingvc50 above corresponds to the symmetric phase, in this casem0

2.0. Determiningvc from the nontrivial minimum
of the scalar potential one gets

vc
252

6m0
2

g0
for m0

2,0. ~24!

IntroducingmH,0
2 522m0

2 we obtain finally

SH5as
3at (

xPL

1

2H (i 51

3

@¹ iHc~x!¹ iHc~x!1¹ ipc
r ~x!¹ ipc

r ~x!#1
gk

2

j2
@¹4Hc~x!¹4Hc~x!1¹4pc

r ~x!¹4pc
r ~x!#

1mH,0
2 Hc~x!21

g0

12
@Hc~x!21pc

r ~x!pc
r ~x!#21

g0vc

3
Hc,0~x!@Hc,0

2 ~x!1pc
r ~x!pc

r ~x!#J . ~25!

Now we consider the gauge-scalar interaction

Si5 (
xPL

H 2ks(
i 51

3

Tr@wx1 î ai

1
~Ux,i21!wx#2k tTr@wx14̂at

1
~Ux,421!wx#J . ~26!

Introducing continuum variables we obtain
094504-4
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Si5as
3at (

xPL
H (

i 51

3

@ai
0~x!21#S 2

1

as
2 @vc

212vcHc~x!1Hc~x!Hc~x!1pc
r ~x!pc

r ~x!#2
vc

as
¹ iHc~x!

2
1

as
@Hc~x!¹ iHc~x!1pc

r ~x!¹ ipc
r ~x!# D 1

gk
2

j2
@a4

0~x!21#S 2
1

at
2 @vc

212vcHc~x!1Hc~x!Hc~x!1pc
r ~x!pc

r ~x!#

2
vc

at
¹4Hc~x!2

1

as
@Hc~x!¹4Hc~x!1pc

r ~x!¹4pc
r ~x!# D

1
1

as
(
i 51

3

ai
r~x!@e rstpc

s~x!¹ ipc
t ~x!1pc

r ~x!¹ iHc~x!2~Hc~x!1vc!¹ ipc
r ~x!#

1
at

as
2
gk

2a4
r ~x!@e rstpc

s~x!¹4pc
t ~x!1pc

r ~x!¹4Hc~x!2~Hc~x!1vc!¹4pc
r ~x!#J . ~27!

In perturbation theory the gauge has to be fixed. We use as the gauge-fixing function

f r~x!5(
i 51

3 ai
r~x!2ai

r~x2 î ai !

ai
2

1
gk

2@a4
r ~x!2a4

r ~x24̂at!#

at
2

1
avcg

2pc
r

4
, ~28!

which is a lattice version of the well-known continuumRj gauge-fixing function. In Eq.~28! a is the gauge parameter. Th
choice ensures that the mixed second-order term inAm

r (x) and pc
r (x) will drop out from the sum of the gauge-scal

interaction and the gauge-fixing parts of the action. We obtain

Sg f52
2

ag2
as

3at (
xPL

f r~x! f r~x!, ~29!

SFP5as
3at (

xPL
(
i 51

3 H 1

as
2 $@ c̄r~x!2 c̄r~x1 î ai !#ai

0~x!@cr~x!1cr~x1 î ai !#1e rst@ c̄r~x!1 c̄r~x1 î ai !#ai
s~x!@ct~x!2ct~x1 î ai !#%

1
gk

2

j2at
2 $@ c̄r~x!2 c̄r~x14̂at!#a4

0~x!@cr~x!1cr~x14̂at!#1e rst@ c̄r~x!1 c̄r~x14̂at!#a4
s~x!@ct~x!2ct~x14̂a4!#%

2a
g2vc

4
$c̄r~x!cr~x!@Hc~x!1vc#1e rstc̄r~x!cs~x!pc

t ~x!%J . ~30!
y

a

The final form of the continuum notation action reads

Scont5Spl
odd1Spl

even1Sm1SH1Si1Sg f1SFP , ~31!

where the individual terms are given in Eqs.~12!, ~13!, ~15!,
~25!, ~27!, ~29!, ~30!. The vertices of perturbation theory ma
be easily obtained from Eq.~31!. As usual in lattice pertur-
bation theory we have new vertices proportional togn for
n>2.

The formulas to compute the Fourier transforms are
follows. For the gauge field,

ãk,m
R 5as

3at (
xPL

expS 2 i ~k,x!2
iam

2
kmDam

R~x!, ~32!

where (k,x)52p(n1l 1 /L11•••1n4l 4 /L4), R50,1,2,3,
and
09450
s

km5
2p

Lmam
nm , xm5aml m ; ~33!

moreover, the integersnm , (l m) take the values
0,1, . . . ,Lm21.

The inverse relation is

am
R~x!5

1

L1L2L3L4

1

a1a2a3a4
(
nm

expS i ~k,x!1
iam

2
kmD ãk,m

R .

~34!

For a lattice infinite in all directions we have

am
R~x!5

1

~2p!4 )
r51

4 E
2p/ar

p/ar
dpr exp~ ip•x1 ipmam!ãk,m

R ,

~35!
4-5
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andp•x5(n51
4 pnxn .

For scalar fields we have similar formulas; however,
second terms are missing in the exponents of Eqs.~32!, ~34!,
~35!.

Our aim is to perform perturbative calculations. The fi
step is to write down the propagators of the fields from pa
quadratic in the fields of the action. We want to determ
the tree-level propagators, which are zeroth order ing andl.
Sincegb andgk do depend on the couplings, we usej in the
propagators as their tree-level values. The remaining cor
tion terms fromgb and gk are quadratic in the fields an
give two particle vertices similarly to the measure term in
action in the isotropic case. These will be absorbed by
kinetic parts of the propagators@see later in Eqs.~44!–~47!#.

The inverse tree-level propagators in momentum sp
have the following forms. For the Higgs boson,

D̃H,0~p!215(
i 51

4

p̂i
21mH,0

2 ; ~36!

for the Goldstone bosons,

D̃p
r
c,0~p!215(

i 51

4

p̂i
22amW,0

2 ; ~37!

for the gauge boson,

D̃W,0,mn
ab ~p!215dabdmnFmW,0

2 1(
i 51

4

p̂i
2G2 p̂mp̂n

11a

a
;

~38!
for the ghost,

D̃FP,0~p!215(
i 51

4

p̂i
22amW,0

2 , ~39!

where

p̂i5
2

as
sin

aspi

2
, p̂45

2

at
sin

atp4

2
. ~40!

The masses have the following expressions in terms of o
parameters:

mH,0
2 52

2

as
2F122l

k
j2622j2G , mW,0

2 5
mH,0

2 k2

2ljb
5

vc
2g2

4
.

~41!

B. Critical hopping parameter and anisotropy parameters

The main goal of the paper is to perform aO(g2,l)
analysis of the theory defined by Eq.~1!. This means first the
determination of the mass counterterms. One wants to
the bare parameters in a way to ensure that the one-
renormalized masses are finite in the continuum limit~how-
ever, their values in lattice units do vanish,asmren50 for
as→0, at→0, j5fixed). At the same time the vacuum e
pectation value of the scalar field will be also zero in latt
units (asvc50); i.e., we are at the phase transition po
between the spontaneously broken Higgs phase and
SU~2!-symmetric phase. The condition is satisfied by an
propriate choice of the hopping parameter~critical hopping
parameter!. The ratios of the couplings (gb andgk) are still
09450
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free parameters and can be fixed by two additional con
tions. We demand rotational~Lorenz! invariance for the sca-
lar and gauge boson propagators on the one-loop level.
ensures that the propagators with one-loop corrections h
the same form in thez and t directions. Clearly, arbitrary
couplings for different directions in Eq.~1! would not lead to
such rotationally invariant two-point functions.

The most straightforward method to determine the tran
tion point is the use of the effective potential. The conditi
d2Ve f f(F50)/dF250 gives a simple, gauge-invariant ex
pression for the value of the critical hopping paramet
which is exact in the continuum limit. The relevant formul
are given in Landau gauge in@23#. Here we present the gen
eral Rj effective potential

Ve f f~F!5
m0

2

2
F21lcF

41E
k
F1

2
log~ k̂21m0

2112lcF
2!

1
24lc

16lc2ag2log~ k̂21m0
214lcF

22ag2F2/4!

16log~ k̂21g2F2/4!1
3

2
logS k̂22ag2F2/4

k̂21g2F2/4
D

2
3

2
log~ k̂22ag2F2/4!G , ~42!

where

E
k
[

1

~2p!4E
2p/as

p/as
d3kE

2p/at

p/at
dk4 . ~43!

Alternatively, one may calculate the one-loop corrections
the masses and require that the renormalized masses be
in lattice units in the limit of zero lattice spacing and fixe
j5as /at , as explained above.

First we consider the corrections arising from the tw
point interaction vertices. In addition to these there are
one-loop corrections, which we evaluate later on. Includ
the two-point interaction vertex corrections the moment
squared sums in Eqs.~36!, ~37!, ~39! modify to

(
i 51

4

p̂i
2→(

i 51

3

p̂i
21

gk
2

j2
p̂4

2 ~44!

for the Higgs, Goldstone, and ghost propagators. The ga
boson inverse propagator becomes more complicated:

D̃W,i j
ab ~p!215dabF d i j S vc

2gs
2

4
1(

i 51

3

p̂i
21

gb
2

j2 p̂4
2D

2 p̂i p̂ j S 11
gs

2

ag2D G , ~45!

D̃W,i4
ab ~p!215D̃W,4i

ab ~p!2152dabp̂i p̂4Fgb

j
1

gsgt

ag2

gk
2

j2G ,

~46!
4-6
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D̃W,44
ab ~p!215dabFvc

2gt
2

4

gk
2

j2
1(

i 51

3

p̂i
22 p̂4

2
gt

2

ag2

gk
4

j4G .

~47!

Let us now consider the self-energy corrections to
Higgs boson mass. The relevant diagrams are shown in
1. Evaluating all graphs we obtain at zero Higgs fou
momentum, independent of the gauge choosen~i.e., indepen-
dent ona),

as
2~mH

R!25as
2mH

2 2S 2g01
9

2
g2D J1~j,0!, ~48!

where we used the notation

Jn~j,mas!5
as

422n

~2p!4 )
r51

4 E
2p/ar

p/ar
dkr

1

~m21 k̂2!n
. ~49!

Inserting

as
2mH

2 522S 122l

k
j2622j2D ~50!

for the one-loop corrected bare mass and using the nota
l5k2g0 /(6j)54k2lc /j together with as

2(mH
R)250, we

get, solving perturbatively fork,

kc5
j

2~31j2!
1

1

~31j2!2F6jJ1~j,0!2
j2

~31j2!Glc

1
9jJ1~j,0!

16~31j2!2 g2. ~51!

This result coincides with thed2Ve f f(F50)/dF250 condi-
tion of Eq.~12! of @23#. For the reader’s convenience we pl
J1(j,0) of Eq. ~49! in Fig. 2 as a function of 1/j. For the
special case of symmetric lattice spacings,j51, our quan-
tum corrections to the critical hopping parameter reprod
the known result of the isotropic SU~2!-Higgs model@24,26#.
An eight-term Chebishev polynomial approximation with
31026 accuracy to the function reads

J1~j,0!50.227673420.000175561/j20.1452559/j2

20.03593908/j310.3487585/j420.4128226/j5

10.2187872/j620.04609285/j7. ~52!

FIG. 1. Higgs boson self-energy graphs. Solid lines stand
Higgs bosons, dashed lines for Goldstone bosons, curly lines
vector bosons, and wavy lines denote ghosts.
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It is instructive to check that the same result is obtain
starting from the symmetric phase perturbation theory, wh
some graphs are absent, and one is led to

052as
2m0

22S g01
9

4
g2D J1~j,0!. ~53!

Let us now consider the self-energy corrections to
gauge boson mass. The relevant diagrams are shown in
3. The inverse propagator@Eqs. ~45!–~47!# at zero momen-
tum has a specific structure: namely,

D̃W,i j
ab ~0!215dabd i j mW

2
gs

2

g2
,

D̃W,44
ab ~0!215dabmW

2
gt

2

g2

gk
2

j2
. ~54!

One therefore has to determine both the diagonal space-s
and time-time components in order to check for consisten
Since the bare mass squared turns out to beO(g2), we may

r
or

FIG. 2. The lattice integralJ1(j,0) ~see text! on asymmetric
lattices as a function of 1/j.

FIG. 3. Vector boson self-energy graphs. Solid lines stand
Higgs bosons, dashed lines for Goldstone bosons, curly lines
vector bosons, and wavy lines denote ghosts.
4-7



s

d

n

iv

rs

of
he

by

m

s a

e
t

phs

F. CSIKOR, Z. FODOR, AND J. HEITGER PHYSICAL REVIEW D58 094504
safely putgs
2/g25gt

2/g25gk
2/j251 in Eqs.~54!. Finally we

obtain, after imposing zero renormalized lattice unit ma
squared,

as
2mW

2 5g2S 3

2
1

9

2

mW
2

mH
2 D J1~j,0!. ~55!

Inserting

mW
2 5mH

2 3g2

4g0
, ~56!

we get back Eq.~51! consistently. Again we have checke
that Eq.~55! holds in allRj gauges.

Next we discuss the anisotropy parametersgb and gk .
Following Karsch and Stamatescu@22# we determine them
from the requirement of rotational invariance in the co
tinuum limit as ,at→0 at fixedj5as /at . In particular we
consider the physical particle propagators, which rece
quantum corrections

D̃H,1~p!215D̃H~p!211SH,1~p!,

D̃W,1,mn
ab ~p!215D̃W,mn

ab ~p!211SW,1,mn
ab ~p!, ~57!

where D̃H(p)21 and D̃W,mn are the tree-level propagato
corrected with the two-point vertices.D̃H(p)21 is given by
09450
s

-

e

D̃H~p!215mH,0
2 1(

i 51

3

p̂i
21

gk
2

j2 p̂4
2 , ~58!

while D̃W,mn is given by Eqs.~45!–~47!.
The corrections to the anisotropies in the kinetic parts

Eqs. ~57! should be cancelled by the kinetic parts of t
self-energies. For the Higgs boson this can be achieved
requiring

11
1

2

]2SH,1~p!

]pi
2 U

p50

5
gk

2

j2
1

1

2

]2SH,1~p!

]p4
2 U

p50

, ~59!

where i 51,2,3. The graphs contributing are the momentu
dependent ones of Fig. 1.

For the gauge boson there are several possibilities. A
simple one we choose

11
1

2

]2SW,1,i i ~p!

]pj
2 U

p50

5
gb

2

j2
1

1

2

]2SW,1,i i ~p!

]p4
2 U

p50

,

~60!

where iÞ j 51,2,3. This is easily calculated, since only th
d i , j term ofD̃W,i j

ab (p)21 contributes on the left-hand side. No
all the self-energy graphs contribute, but only those gra
of Fig. 3, which depend on the momentum.

Our results for infinite lattices are
bb~j!50, bk~j!50, ~61!

cb~j!5E
2p/as

p/as E
2p/as

p/as E
2p/as

p/as E
2p/at

p/at
d4q

as
2

( q̂m
2H F S 12

1

j2D 31cos~q1a1!

4
2

cos~q3a3!2cos~q4a4!

4 G
1

1

as
2( q̂m

2
F2S 12

1

j2D sin2~q1a1!1
9

2
cos2S q1a1

2 D @cos~q3a3!2cos~q4a4!#G

1S 8 sin2~q1a1!

S as
2( q̂m

2 D 2 1

2 cos2S q1a1

2 D
as

2( q̂m
2
D S sin2~q3a3!2j2sin2~q4a4!

as
2( q̂m

2
2

cos~q3a3!2cos~q4a4!

2 D
1

sin2~q1a1!

S as
2( q̂m

2 D 2S sin2~q3a3!2j2 sin2~q4a4!

as
2( q̂m

2
2cos~q3a3!1cos~q4a4!D J , ~62!

ck~j!5
3

4E2p/as

p/as E
2p/as

p/as E
2p/as

p/as E
2p/at

p/at
d4q

as
2

( q̂m
2 H S 12

1

j2D 16

S as
2( q̂m

2 D 2 @j2 sin2~q4a4!2sin2~q1a1!#J , ~63!
4-8
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where the sums are overm51, . . . ,4. Theabove expression
are easily seen to be finite and independent ofas andat . We
have also checked that they are gauge independent. Th
pendence onj is plotted in Fig. 4.

A six-term Chebishev polynomial approximation with
31025 accuracy to the functions reads

cb~j!520.168724910.124013/j10.08608489/j2

20.04715295/j320.0002526438/j4

10.006038775/j5, ~64!

ck~j!520.0569158220.0001275536/j10.07582766/j2

20.003112956/j320.0265274/j4

10.01085953/j5. ~65!

We also have to equateD̃W,1,13 and D̃W,1,14:

11
gs

2

ag2
2

]2SW,13

]p1]p3
U

p50

5
gb

j
1

gsgt

ag2

gk
2

j
2

]2SW,14

]p1]p4
U

p50

.

~66!

This is a nontrivial constraint, which our previous expre
sions do satisfy.

There are several important features of the anisotropy
rameter result, which should be mentioned.

~a! Masses in the propagators. A consistent perturbative
procedure on the lattice determines the bare parameters
which the renormalized masses vanish; cf. Eq.~51!. With
these bare couplings other quantities, e.g., asymmetry pa
eters, are determined. However, using the one-loop re
malized masses (asmH

R5asmW
R 50) in the propagators in

stead of the bare ones leads to changes in the results, w
are higher order ing2 and l. Therefore, all our results ar
given by the integrals with renormalized masses.

FIG. 4. cb(j) andck(j) as functions of 1/j.
09450
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~b! g2 and l corrections. In Fig. 4 we have given only
cb(j) andck(j). As shown by Eq.~61! the functionsbb(j)
and bk(j) vanish; thus there are no corrections ofO(l) to
the anisotropy parameters. It is easy to understand this re
qualitatively, since only graphs with two or more scalar se
interaction vertices have a nontrivial dependence on the
ternal momentum. This feature is connected with the w
known fact that theF4 theory does not have any wav
function correction in first order in the scalar self-coupling.
is worth mentioning that there is only one type of two-loo
graph~the setting sun! which should be combined with th
one-loop graphs, in order to obtain the wholeO(l2) correc-
tion.

~c! Pure gauge theory. A number of graphs of Fig. 3
~namely, those containing only vector boson and ghost lin!
are identical to those of the pure gauge theory. Evalua
the momentum-dependent ones from these diagrams, on
produces the result of Ref.@21# @the functioncb(j) of the
present paper corresponds toct(j)2cs(j) of Ref. @21##. The
most important contribution comes from the self-ener
graph with gauge boson four-coupling. Inclusion of the s
lar particles gives only small changes. The relative differen
between thecb(j) functions for the pure SU~2! theory and
for the SU~2!-Higgs model is typically a few percent.

~d! Quantum corrections to the hopping parameter. The
contributions to the hopping parameter come from
momentum-dependent graphs of Fig. 1. This correction
the same sign and order of magnitude as that of the ga
anisotropy parameter; however, it is somewhat smaller. I
possible to combine the anisotropiescb8 (j)5cb(j)2ck(j).
For this choice in the gauge sector and withgk5j the rota-
tional invariance can be restored on the one-loop lev
choosing the appropriate value for the lattice spacing as
metryas /at . Thus, the masses in both directions will be t
same. However, the obtained lattice spacing asymmetry
then slightly differ from the originalj. One getsas /at
5j„12g2ck(j)/2…1O(g4,l2).

~e! For later use we specify cb(4)520.13308,ck(4)
520.052353; thuscb8 (4)520.080727, gb8 (4)53.9193,
as /at54.05235.

~f! Asymmetry parameters away from the critical lin.
Following the procedure outlined above one may determ
the asymmetry parameters away from the critical line. In t
case tree-level masses are nonvanishing and are in
O(1). Therefore one has to keep them in the propaga
denominators. Thus the final results become more com
cated. We do not reproduce the formulas here, only note
numerically the results are very close to the previous ca
Thus the asymmetries determined near the critical line
universally applicable.

~g! Finite lattice results. The above formulas are valid fo
infinite lattice sizes; however, replacing the lattice integr
with the appropriate lattice sums, one gets results valid
finite lattices.

C. Perturbative study of the continuum limit of the finite
temperature theory and optimal choice of the parameterj

The approach to the continuum limit of the finite tempe
ture theory may be studied in the approximation of one-lo
4-9
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perturbation theory. The relevant physical quantities
study are the ratio of the critical temperature (Tc) and the
Higgs boson mass and the ratio of the Higgs and ve
boson masses. To calculate them in perturbation theory
first determine the bare Higgs boson mass parameter u
the analogue of Eq.~48! for a lattice with finite extension
(Lt) in the t direction, i.e., at finite temperatureT
51/(Ltat), by imposing the conditionas

2(mH
R)250. This

choice corresponds to the lowest point of the metastab
region with Tc51/(Ltat), i.e., when the derivative of the
effective potential at zero field first becomes negative. Us
the same bare coupling parameters in the action we
determine the physical Higgs and vector boson masses
T50 lattice@i.e., using a lattice with equal~infinite! physical
dimensions in space and time directions#.

More precisely, the bare quantityas
2mH

2 is determined
from Eq.~48! with as

2(mH
R)250, replacing, however,J1(j,0)

with JT(Lt ,j,0), where

JT~Lt ,j,mas!5
j

Lt
(

nt50

Lt21
as

~2p!3)r51

3 E
2p/as

p/ar
dkr

1

~m21 k̂2!
,

~67!

and in the denominatork̂4 is given by

k̂45
2

at
sin

2pnt

Lt
. ~68!

@It is straightforward to write down the finite lattice versio
of Eq. ~67!, too.# The T50 renormalized Higgs mas
(asmH

R) is then determined from the unmodified equati
~48! using the already known value of the bare parame
as

2mH
2 and the infinite volumeT50 integralJ1(j,0). Using

Tc51/(atLt)5j/(asLt) we finally obtain the simple formula
for a givenLt :

Tc /mH
R5

j

Lt

1

$~2g019g2/2!@JT~Lt ,j,0!2J1~j,0!#%1/2
.

~69!

In the same approximation (mH
R/mW

R )2 equals the tree-leve
value 4g0 /(3g2).

The result, Eq.~69!, refers to infinitely large lattices~i.e.,
infinite in both the spacelike and timelike directions for t
T50 case and infinite in only the spacelike direction for t
TÞ0 case!. The continuum limit~realized asLt→`) is well
defined. In lattice simulations, however, we always have
nite lattices. We have to choose minimal lattice volum
large enough to ensure a reasonable precision. This choi
course does depend onj; therefore we may also look for th
optimal choice ofj ensuring a reasonable precision~say
0.1%! of the physical mass determinations using the smal
possible lattices or shortest simulation times. This probl
may be studied in lattice perturbation theory.

To obtain the optimal choice ofj we first determine the
Lt→` ~i.e., the continuum! limit value of Tc /mH

R as a func-
tion of j using Eq.~69!. We obtain that—as expected—th
limit of Tc /mH

R does not depend onj within errors.
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Next we take into account that in practice we simulate
lattices with finite extensions. In order to fit in the releva
modes we have to deal with a given physical volume

Vphys5Ltat~Lsjat!
35

1

T
~Ls /Lt•j/T!3. ~70!

Thus the number of the lattice points~which determines the
memory required! is expressed as

LtLs
35VphysT

4Lt
4/j3. ~71!

To get a correct estimate of the simulation time we have
take into account the autocorrelation times as well. Sin
these are proportional to the squares of the correla
lengths for a local updating algorithm~see @27#!, i.e., to
(Lt /j)2, the time necessary for simulation on a given phy
cal volume and temperature will be proportional to

VphysT
4Lt

6/j5. ~72!

Next we choose a lattice extension in temporal directionL̄ t
so that by Eq.~69! we obtain an approximation of the prev
ously determined continuum limitTc /mH

R value to a given
~say, 0.1%! precision.Tc /mH

R as determined from Eq.~69! as
a function ofLt approaches the limiting value from below fo
largeLt for all j values. However, forj>2 it decreases for
increasing, smallLt values. Thus specific smallLt values
may better approximate the limiting value ofTc /mH

R than
larger intermediate values. It is clear that this is an accide
agreement only; therefore in our considerations we have
termined the smallestLt̄ value giving Tc /mH

R with the re-
quired precision, which does not deteriorate for largerLt .

More precisely we compare the true continuum limit
Tc /mH

R with an approximate value obtained from an extrap
lation to Lt5` of the Tc /mH

R values determined from fou

subsequentLt values. We chooseLt̄ to be the minimalLt ,
which ~together with the three largerLt values! already gives
the required precision. Having determinedLt̄ we calculate
the corresponding simulation time for finite lattice size usi
Eq. ~72!. Figure 5 shows the simulation time normalized
the j51 value as a function of 1/j for 0.1% precision in
Tc /mH

R . The normalized simulation time as a function ofj
has a broad minimum nearj52. The number of lattice
points ~71! ~normalized to thej51 value! is quite a similar
function of j with a broad minimum nearj52. In our nu-
merical simulations we have chosenj.4, which is a good
choice both from the point of view of simulation time an
fitting in the relevant modes into a practically accessible
tice.

III. NONPERTURBATIVE ANALYSIS
OF THE ANISOTROPIES

This section of the paper deals with our nonperturbat
determination of the anisotropy parameters by means of
merical simulations. Besides a mere confirmation of the o
loop calculations in the previous part, it could give estima
of possible corrections, which go beyond perturbati
4-10
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theory. This is an important step towards future studies of
finite temperature electroweak phase transition in the fra
work of the four-dimensional SU~2!-Higgs model on aniso-
tropic lattices. Namely, if the deviation from the perturbati
results turns out to be so small that its influence on expe
tion values in a numerical simulation is negligible with
their typical statistical errors, the one-loop perturbat
anisotropiesgb , gk , andj can be used without any furthe
~nonperturbative! fine-tuning. At first sight this may no
seem very surprising, because the zero-temperature theo
weakly coupled (g2.0.5). But owing to the fact that the
corrections in the parameterl—entering only at two-loop
level—whose size essentially determines the value of
Higgs boson mass, are not exactly known, such an inve
gation is necessary, particularly in view of Higgs bos
masses around 80 GeV or larger, which is the physic
allowed region determined by the CERNe1e2 collider LEP
experiments.

As already discussed above, the tree-level values of
anisotropies receive quantum corrections, which in gen
have to be determined nonperturbatively. A physically mo
vated idea for their estimation is to impose the restoration
the space-time interchange symmetry as a remnant of
entz invariance after discretization of the continuum theo
In practice this is to be realized by the requirement t
Higgs and gauge boson correlation lengths in physical u
should be equal in spacelike and timelike directions. Furth
more, we include in the analysis the length scale of the st
potential derived from space-time and space-space Wi
loops.

The following subsections describe our numerical stud
in more detail. After some brief remarks on the simulati
techniques and parameters used, we present the results o
physical observables under consideration and propose
they can serve to extract the coupling and lattice spac

FIG. 5. Simulation time necessary to reach 0.1% precision
termination ofTc/mH

R ~normalized to thej51 point! versus 1/j.
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anisotropies nonperturbatively. Finally, the values obtain
in this way are confronted with perturbation theory.

A. Monte Carlo simulation and its parameters

In our Monte Carlo simulations we apply an optimize
combination of heatbath and overrelaxation algorithm
which has been extensively discussed for the isotropic mo
in Refs. @13,14,28#, and their implication carries ove
straightforwardly to an anisotropic lattice. The action~1! is
easily arranged toS@U,w#5(xPLSx , and the lattice action
per point,

Sx56bPp,x1Rx1lQx28kLw,x , ~73!

consists of the length variables of the Higgs field

Rx[
1

2
Tr~wx

1wx!5rx
2 , Qx[~rx

221!2, ~74!

of the weighted sum of the plaquette contributionsUx;mn

[Ux,mUx1m̂,nUx1 n̂,m
1

Ux,n
1 lying in the space-space and th

space-time planes

Pp,x5
1

6S 3

gb
Pp,s,x13gbPp,t,xD , ~75!

Pp,s,x[
1

3 (
1<m,n<3

S 12
1

2
Tr Ux;mnD ,

Pp,t,x[
1

3 (
m51,3;n54

S 12
1

2
Tr Ux;mnD , ~76!

and of the weighted sum of the spacelike and timelike co
ponents of thew-link operatorLw;xm[ 1

2 Trwx1m̂
1

Ux,mwx :

Lw,x5
1

4S 3

gk
Lw,s,x1gkLw,t,xD , ~77!

Lw,s,x[
1

3 (
m51

3

Lw;xm , Lw,t,x[Lw;x4 . ~78!

For j5gb5gk51 this action simplifies to its well-known
form on isotropic lattices. Equations~73!–~78! already cover
most of the observables, whose expectation values are ca
lated by numerical simulations.

The updating scheme per sweep, a sequence of
Ux,m—and one wx—heat bath step, succeeded by o
Ux,m—and threewx—overrelaxation step, has been tak
over from Refs.@14,28#. There it was observed that the in
clusion of the overrelaxation algorithms@15# reduced the au-
tocorrelation times substantially, in particular for the ope
tors r2 and Lw , whose expectation values show the larg
autocorrelations.

As pointed out in the Introduction, the anisotropic versi
of the SU~2!-Higgs model is believed to provide quantitativ
insights into the electroweak phase transition at large Hi
boson masses ofmH>80 GeV, at which the typical excita
tions with small masses~i.e., large correlation lengths! would

-

4-11
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F. CSIKOR, Z. FODOR, AND J. HEITGER PHYSICAL REVIEW D58 094504
demand very large isotropic lattices exceeding any prese
accessible computer resources. In principle a rough res
tion in the spatial directions by moderate lattices combin
with accordingly large lattice anisotropiesj could handle
this situation. However, forT.0 a small temporal extensio
Lt sets the ~very large! temperature scale throughT
51/atLt , and hence it is more sensible to ensure a la
enough lattice cutoff by employingj.Lt ; thus in our nu-
merical work we take

j.4, ~79!

which is also strongly motivated by the result of Sec. III
Since this makes the correlation lengths in time directio
smaller than in space directions, it seems to be reasonab
satisfyLt.jLz in order to restore the symmetry of the phys
cal extensions and to enable a precise mass determina
We consider two lattices of sizes 82312348 and 82316
364, where the spatial correlation lengths correspond to
lattice units and the finite-volume effects are expected to
small.

The T50 simulations are generically intended to fix th
physical parameters, i.e., renormalized couplings
masses. Consequently, the lattice parameters in this stud
chosen to reach the interesting region ofmH.80 GeV or a
Higgs to gauge boson mass ratio of

RHW[
mH

mW
.1, ~80!

with the experimental inputmW580 GeV setting the overal
physical scale. This is~at least approximately! achieved by
the valuesb58.0 andl50.000178. The scalar hopping p
rameter, which has to comply with the condition that theT
.0 system be at a phase transition point for a certain t
poral lattice extension, is calculated from the discretized v
sion of Eq. ~51!.1 Referring to Lt54 this amounts tok
50.10662. The nonperturbative corrections usually tend
decrease the tree-level mass ratio

RHW,0[
mH,0

mW,0
5A2ljb

k2
. ~81!

Our strategy for the determination of the coupling anisot
pies is as follows. In the numerical simulation we have
find those couplings of Eq.~1!, for which the space-time
symmetry is restored. Therefore, we fix one of the coupl
anisotropies to its tree-level value, ignoring its quantum c
rections, and tune the other one to produce identical ratio
~decay! masses in spacelike and timelike directions for a
of two or more~particle! channels. The mass ratios dete
mine the actual lattice anisotropy, which will then slight

1Knowledge of the more accurate, nonperturbative value of
critical hopping parameter, which has to be determined numeric
is not relevant here.
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differ from the originalj of Eq. ~79!. In this spirit we choose
three pairs of coupling anisotropies, denoted as ‘‘tree
‘‘low,’’ and ‘‘perturbative,’’

t : gk54.0, gb54.0,

l: gk54.0, gb53.8, ~82!

p: gk54.0, gb53.919,

and calculate the corresponding lattice spacing anisotro
from different physical quantities as described compreh
sively in the subsequent subsections. Assuming that they
pend linearly ongb in this small interval, we can interpolat
to a matching point (gb

~np! ,j~np!), at which allj values coin-
cide within errors. These estimates are quoted as our non
turbative results.

All numerical simulations have been done independen
on the APE-Quadrics computers at DESY-IfH in Zeuthe
Germany, and—to a smaller extent—on the Cray Y-M
and T90 of HLRZ in Ju¨lich, Germany, which offer 64-bit
floating point precision. In contrast to some quantities, e
the critical hopping parameter inT.0 simulations, the 32-
bit arithmetics of the APE-Quadrics is sufficient for the ca
culation of allT50 quantities, especially for particle mass
and the static potential.

B. Correlation functions and masses

We now turn to the determination of the Higgs and gau
boson masses. As in Refs.@13,14#, they were obtained from
suitable correlation functions of gauge-invariant, local ope
tors integrated over time~space! slices. Those areRx and
Lw;xm for the Higgs boson mass, and the composite l
fields

Wx;rk[
1

2
Tr~t rax1 k̂

1
Ux,kax !,

t r : Pauli matrices, r ,k51,2,3, ~83!

for the gauge (W-boson! mass.
The connected correlation functionsGO of these operators

have been measured in the timelike and in one space
direction. For the Higgs massmH the functionsGO(t) and
GO(z) were calculated fromt- andz-slice averages ofRx and
the weightedw-link Lw,x of Eq. ~77!. Since these functions
cannot be regarded as uncorrelated, we have avera
them—after an appropriate normalization of the correlatio
at distance zero—before performing the mass fits. The s
prescription holds for the gauge boson massmW , but with
two major differences: First, thet- and z-slice correlation
functions of Wx;rk have been measured separately for
combinations ofr andk, and second, in place ofk53 in Eq.
~83! actually we have to takek54 for the correlations in the
z direction ~i.e., all directions inWx;rk are orthogonal to the
direction of propagation!. Again the individual correlation
functions are averaged to one function per direction as in
Higgs channel.

e
y,
4-12
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TABLE I. Summary of the numerical simulations for the mass and static potential computations. The other parameters areb58.0, l
50.000178, andk50.10662.

Correlation functions Wilson loops
Index Lattice gk gb Sweeps Subsamp. Subsamp. Indep. sweeps

t1 82312348 4.0 4.0 100000 50 50 100
l1 82312348 4.0 3.8 100000 50 50 100
p1 82312348 4.0 3.919 576000 192

t2 82316364 4.0 4.0 192000 64 64 150
l2 82316364 4.0 3.8 192000 64 64 150
p2 82316364 4.0 3.919 704000 256 128 150
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As lowest energies the particle masses are extracted
one-exponential least squares fits to shapes of the form

GO~ l !5A@e2ml1e2m~L2 l !#1C, l 50,1, . . . ,
L

2
,

LP$Lt ,Lz%, ~84!

with mP$atmH,t ,atmW,t% or mP$asmH,s ,asmW,s%, respec
tively. The constant terms in the vector channel are hi
suppressed so that a two-parameter fit is mostly suffic
Each full data sample has been divided into subsamples
the statistical errors on the masses originate from jackk
analyses. All simulation parameters and lattice sizes are
lected in Table I.

Our fitting procedure consists of correlated fits, so
times with eigenvalue smoothing, and simple uncorrel
fits. For the former we use the Michael-McKerrel meth
@29#, whose features and application in the SU~2!-Higgs
model have been sketched in Ref.@14#. Its main purpose is t
select the most reasonable fit interval in data sets, whic
strongly correlated in the fitted direction. Uncorrelated
which ignore these correlations, are often plagued with
small values ofx2 per degree of freedom~DOF! for nearly
all fit intervals in question, whereas in correlated fits
emergence ofx2/DOF.1 for some fit intervals represents
safe criterion to select reasonable fit intervals. This
works well for data sets of lower statistics, if the smal
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eigenvalues of the correlation matrix are smeared via rep
ing them by their average. All resulting mass estimates
lattice units are shown in Tables II and III. We chose t
largest fit interval with a reasonablex2/DOF from the cor-
related fit and the results of the uncorrelated fit along t
interval as the final fit parameters. Both fits were alwa
consistent within errors, and other fit intervals with comp
rable or even lowerx2/DOF did not cause any significan
changes.

As emphasized above, the space-time symmetry rest
tion, which implicitly establishesj~np!, becomes apparent in
equal physical correlation lengthsas5atj of the theory.
Thus we introduce anisotropy parameters in the Higgs
vector channels by calculating the ratios

jH[
asmH,s

atmH,t
, jW[

asmW,s

atmW,t
~85!

within the jackknife samples of the spacelike and timeli
masses. These are displayed again in Tables II and III.
cause of the compatibility of the results from the two lattice
one concludes that the finite-size effects are quite small.

C. Wilson loops and static potentials

Another approach to thej determination is based on th
static potential, which has the physical interpretation as
energy of an external pair of static charges brought into
system. To this end we have measured rectangular on-
spacing
TABLE II. Fit intervals and Higgs and gauge boson masses in timelike and spacelike directions, and the resulting lattice
anisotropies for the smaller lattice.

Quantity t1 l1 p1

atmH,t 4218 : 0.1408~22! 4222 : 0.1370~27! 4224 : 0.1387~15!

asmH,s 126 : 0.5635~31! 126 : 0.5611~62! 126 : 0.5603~30!

jH 4.002~67! 4.097~86! 4.041~55!

atmW,t 8224 : 0.1523~13! 8222 : 0.1538~13! 8224 : 0.1554~25!

asmW,s 126 : 0.6225~29! 226 : 0.6066~40! 226 : 0.6307~22!

jW 4.091~30! 3.945~32! 4.059~44!

RHW,t 0.925~15! 0.891~20! 0.892~18!

RHW,s 0.905~6! 0.925~12! 0.888~7!
4-13
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TABLE III. The same quantities as in Table II for the larger lattice.

Quantity t2 l2 p2

atmH,t 4232 : 0.1408~22! 4232 : 0.1370~27! 4232 : 0.1378~11!

asmH,s 128 : 0.5590~42! 127 : 0.5586~40! 128 : 0.5550~40!

jH 3.969~73! 4.078~80! 4.027~36!

atmW,t 8232 : 0.1499~31! 8230 : 0.1599~42! 6232 : 0.1525~15!

asmW,s 128 : 0.6318~40! 328 : 0.607~11! 228 : 0.6133~27!

jW 4.23~10! 3.80~13! 4.021~48!

RHW,t 0.940~24! 0.857~26! 0.904~11!

RHW,s 0.885~8! 0.921~20! 0.905~5!
Th
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Wilson loopsWi j (Ri ,Rj ) of extensions 1<Ri<Li /2 and 1
<Rj<L j /2, lying in space-time and space-space planes.
gauge configuration was transformed to temporal gauge
space-time and toA3

r (x)50 gauge for space-space Wilso
loops, and every loop with two sides in thet or z direction,
respectively, was included in the statistics.

As a generalization of the isotropic lattice case we dis
guish between static potentials

Vi j ~Ri !52 lim
Rj→`

1

ajRj
ln Wi j ~Ri ,Rj ! ~86!

in spacelike (i j 5st,ss) and timelike (i j 5ts) directions, ac-
cording to theRj→` extrapolation in the second argume
of Wi j , which is supposed to be done first. The shape of
potential, which is governed by a massiveW-boson ex-
change@30#, is known to be Yukawa-like, and calculatin
09450
e
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e

along the lines of Refs.@31,32# lowest order~tree-level! lat-
tice perturbation theory yields

Vi j ~Ri !5
3g2

2 )
nÞ j

E
2p/an

p/an dkn

2p

sin2~Riaiki /2!

(
nÞ j

k̂n
21mW,0

2
1O~g4!, ~87!

with lattice momentak̂n52an
21sin(ankn/2), n51, . . . ,4. In

the continuum limit this expression reflects the usual scre
ing behavior, i.e., modulo a constant,

2
3g2

4

e2mW,0r

4pr
, r[Riai , ~88!

independent ofi and j . After substitutingpn5ankn with
pn52p l n /Ln and l n50,1, . . . ,Ln21 on a finite lattice, one
obtains, from Eq.~87!,

aiVi j ~Ri !5
3g2

16p
@ I i j ~mV,i j ,0!2I i j ~mV,i j ,Ri !#1O~g4!, ~89!

wheremV,i j 5aimW,0 and
I i j ~mV,i j ,Ri ![
2p

LiLkLl
(

pi ,pk ,pl

cos~Ripi !

akal /ai
2mV,i j

2 1(
nÞ j

4akal /an
2 sin2S 1

2
pnD , ~90!
-
l-
wherek andl are different from each other and fromi and j .
Sinceg25gR

21O(gR
4), the simulation results forVi j are

fitted with the ansatz

aiVi j ~Ri !52
Ai j

Ri
e2mV,i j Ri1Ci j 1Di j Gi j ~mV,i j ,Ri !,

~91!

where Gi j is a term correcting for finite-lattice~size and
spacing! artifacts, andAi j , mV,i j , Ci j , Di j are the param-
eters to be fitted.Gi j reads
Gi j ~mV,i j ,Ri !5
1

Ri
e2mV,i j Ri2I i j ~mV,i j ,Ri !. ~92!

By definition the ‘‘global’’ renormalized coupling is ob
tained by identifying the coefficient of the contribution re
evant at short distances:

gR
25

16p

3
Ai j . ~93!

Note thatmV,i j /ai and alsogR
2 as determined from Wilson
4-14
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TABLE IV. All Yukawa fit parameters of the static potentials, calculated from space-time (i j 5st and i j 5ts) and space-space (i j
5ss) Wilson loops. The renormalized couplinggR

2(1/mV,i j ) is explained in the text.

Index Ai j mV,i j Di j Ci j gR
2[

16p

3
Ai j

gR
2(1/mV,i j )

t1, Wst 0.0335~12! 0.626~67! 0.044~10! 0.0832~4! 0.561~19! 0.575~38!

t1, Wts 0.0346~3! 0.1479~55! 0.0401~15! 0.02763~6! 0.5800~43! 0.605~17!

t1, Wss 0.0358~7! 0.639~27! 0.0238~81! 0.1105~2! 0.600~12! 0.592~20!

l1, Wst 0.0354~8! 0.593~37! 0.0292~68! 0.0873~4! 0.592~14! 0.582~28!

l1, Wts 0.0351~3! 0.1651~41! 0.0372~7! 0.02768~5! 0.5881~50! 0.603~20!

l1, Wss 0.0360~7! 0.623~29! 0.0269~56! 0.1111~2! 0.602~12! 0.597~21!

t2, Wst 0.0336~2! 0.594~26! 0.0332~65! 0.0833~1! 0.5622~35! 0.562~15!

t2, Wts 0.0343~1! 0.1401~19! 0.0390~9! 0.02776~2! 0.5739~14! 0.5932~78!

t2, Wss 0.0345~3! 0.594~13! 0.0346~29! 0.1110~1! 0.5781~54! 0.5781~72!

l2, Wst 0.0347~2! 0.555~19! 0.0284~56! 0.0878~1! 0.5821~29! 0.570~14!

l2, Wts 0.0338~1! 0.1429~12! 0.0342~9! 0.02792~2! 0.5657~11! 0.5621~64!

l2, Wss 0.0344~4! 0.557~16! 0.0303~28! 0.1117~2! 0.5761~69! 0.574~12!

p2, Wst 0.0339~1! 0.576~13! 0.0322~36! 0.0851~1! 0.5679~21! 0.5645~92!

p2, Wts 0.0343~1! 0.1428~11! 0.0362~2! 0.02780~1! 0.5742~12! 0.5845~50!

p2, Wss 0.0345~3! 0.5810~98! 0.0307~19! 0.1112~1! 0.5780~43! 0.5756~77!
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loops with different indices have to be independent of
indices for properly choosen coupling anisotropies.

In a first step of the analysis we performed multiexpon
tial fits Wi j (Ri ,Rj )5(n50

N cne2VnRj in order to get the po-
tential for fixedRi as the ground state energyV0 from the
largeRj asymptotics of the Wilson loops in Eq.~86!. Starting
at distancesRj58 –11 orRj51,2 in dependence of the avai
able range in the fitted direction, a sum of two exponent
gave always stable fits with an optimal compromise betw
acceptablex2/DOF and statistical errors, and withV0 well
separated from higher excitations by a large energy g
Subsequently, the resulting potentials2 were carefully fitted
to Eq. ~91!, and the values of the best fit parameters with
errors from jackknife analyses of the data subsamples
listed in Table IV.

We only used uncorrelated fits in the present context,
cause the size of the Wilson loop extensions does not a
much variation in the fit intervals. In some cases the smal
distancesRi51 or Ri51,2 were omitted to have a satisfa
tory x2/DOF. This supports the experiences from earl
work @14# that the lattice correctionGi j may be not adequat
enough for our data. A more thorough inspection of the
results hints at a renormalization ofg250.5 on theO(15%)
level, and from the validity ofAi j .Di j one can judge, how
good the assumption of a one-gauge-boson exchange r
is. The spacelike potentials fromWst and Wss lead to con-
sistent numbers, but the discrepancy between the scree
massesmV,i j P$mV,st ,mV,ss,mV,ts% and the gauge masses
the preceding subsection is often larger than expected. W

2More precisely, the potentials have to be rendered dimension
before; i.e., in view of Eqs.~86! and~91! one has to attach a facto
ai /aj .
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comparing the two lattices, we observe only small fini
volume effects ingR

2 , but themV,i j still differ outside their—
even larger—standard deviations. However, as we will
below, these effects seem to cancel to a great extent in
mass ratios we are mainly interested in.

For the sake of completeness we also discuss a local
nition of the renormalized gauge coupling, which goes ba
to Refs.@30,33# and has been applied to the isotropic SU~2!-
Higgs model in@13,14#. Since the short-distance potentia
turn out to deviate from a pure Yukawa ansatz, we set

gR
2~Ri ![

16p

3

aiVi j ~Ri !2aiVi j ~Ri2d!

I i j ~mV,i j ,Ri2d!2I i j ~mV,i j ,Ri !
~94!

at distanceRi with mV,i j as screening masses from the larg
distance fits to Eq.~91!. Ri is the solution of the equation

1

Ri
e2mV,i j RiF 1

Ri
1mV,i j G5

I i j ~mV,i j ,Ri2d!2I i j ~mV,i j ,Ri !

d
~95!

and is interpolated to the physical scaleR0,i j [1/mV,i j , giv-
ing the typical interaction range of the potential. Equati
~95! is motivated by requiring the force (d/dRi)aiVi j (Ri) in
the continuum limit~88! to be equal to the finite differenc
@aiVi j (Ri)2aiVi j (Ri2d)#/d as would follow from Eq.~89!.
This improves the naive choiceRi2d/2 to the tree level@33#,
because it compensates for lattice artifacts of or
O(ai

2/r i
2). The results ford51 are collected in the last col

umn of Table IV and agree withgR
2 from the global defini-

tion. The errors contain the statistical errors of the potenti
the ~ever-dominating! uncertainties in the masses, and sy
tematic errors by accounting for the sensitivity to a quadra

ss
4-15
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TABLE V. Errors for the lattice spacing anisotropy obtained as ratios of the corresponding scre
masses are computed from their jackknife samples. The direct matching of the potentials is describe
text.

Quantity t1 l1 t2 l2 p2

jV5mV,st /mV,ts 4.23~47! 3.56~26! 4.24~18! 3.88~14! 4.033~96!

jV5mV,ss/mV,ts 4.32~24! 3.76~20! 4.24~12! 3.89~13! 4.068~80!

jV via matching 4.250~77! 3.923~62! 4.179~38! 3.915~52! 4.028~31!
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R0,i j interpolation with three neighboring points instead o
linear one with only two points.

Rotational symmetry now implies that the renormaliz
gauge coupling andmV,i j /ai should be independent ofi and
j . For gR

2 this is obviously true, and in analogy to Eqs.~85!
a further kind of lattice spacing anisotropy from the ratios
screening masses is

jV[
mV,st

mV,ts
or jV[

mV,ss

mV,ts
. ~96!

Its values in all simulation points are quoted in Table V.
09450
f

contrast to the masses themselves, they show rather g
consistency and are hardly affected by the finite volume.

The errors ofjH , jW , andjV are relatively large. This is
caused by the fact that they are determined as ratios
masses with individual statistical errors. The jackknife err
quoted are obtained from the jackknife samples for the m
ratios themselves. Calculating the errors from the mass er
using error propagation would result in even larger error
timates. Inspired by a method found in Ref.@34# one can
obtain even smaller errors instead, ifj is directly determined
by a matching of the spacelike and timelike secondary qu
tities, without any reference to the correlation lengths e
r
s.
FIG. 6. Matching of the~sub-
tracted! lattice potentials at the
perturbative parameters. The erro
bars are smaller than the symbol
4-16
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FIG. 7. Finalj evaluation for both lattices from the three simulation points, whose equal abscissas are slightly displaced fo
visualization. The insets show the average matching points and its error ellipses, which enclose both the numerical estimagb

53.919 and the perturbative result.
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tracted from them afterwards. We have realized this propo
for the static potentials in space (Vst) and time (Vts) direc-
tion. To begin with, we calculated the corresponding co
tinuum potentials

Vcont,i j ~Ri ![Vi j ~Ri !2Ci j 2Di j Gi j ~mV,i j ,Ri !, ~97!

since the lattice sumI i j in Eq. ~90! is only meaningful for
integerRi . Constant and lattice correction terms in lowe
order are found from Eqs.~89! and ~91! to be

Ci j 1Di j Gi j ~mV,i j ,Ri !5
3gR

2

16pF I i j ~mV,i j ,0!2I i j ~mV,i j ,Ri !

1
1

Ri
e2mV,i j Ri G , ~98!

while solely in the subtraction stepgR
2 andmV,i j were taken

from Table IV. Hence the matching condition reads

Vcont,st~Rs!5c•Vcont,ts~Rt /j!, jV[j. ~99!

It was satisfied by fitting the spacelike continuum potentia
a Yukawa shape2A e2mx/x1C in imitation of Eq. ~88!,
equating the fit function at argumentsRt /j with the timelike
potential data times a constant, and solving every poss
equation pair forj and c. The finaljV values given in the
last row of Table V are averages over all such solutio
along thatRi interval, in which the two potentials have the
characteristic slopes, and interchanging the roles ofVcont,st
andVcont,ts in Eq. ~99! always enabled a useful cross-chec
As exemplarily reflected in the perturbative simulation p
rameters on the larger lattice in Fig. 6, the deviation betw
the curves then becomes uniformly minimal in their who
range.
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The lattice spacing anisotropies from this potential mat
ing resemble the screening mass ratios, but the errors fro
repetition of this procedure with 1000 normally distribute
random data are indeed smaller. Moreover,jV is fully com-
patible with jH and jW in the previous subsection at th
perturbative values of the coupling anisotropies.

D. Evaluation of the nonperturbative asymmetries
and comparison with the perturbative result

We have determined the lattice spacing anisotropiesj i
from Higgs (i 5H) and gauge (i 5W) boson correlation
functions and static potentials (i 5V) at different pairs of
coupling anisotropy parameters. Sincegk has been held
fixed, eachj i is looked upon as a function ofgb , and the
requirement of space-time symmetry restoration suggests
existence of a unique coupling anisotropygb

~np! , where allj i

possess the same valuej~np!. This defines the nonperturba
tive anisotropy parameters.

Therefore, we linearly interpolate the numbersj i j
[j i(gb, j ) at the three valuesgb, j of Eq. ~82! within their
errorsDj i j to a matching point (gb

~np! ,j~np!) by minimizing
the sum of squares

x25(
i

(
j

H j i j 2~j~np!1ci@gb, j2gb
~np!# !

Dj i j
J 2

, ~100!

with respect toci and the common fit parametersgb
~np! and

j~np!. We obtain the final results

82312348: gb
~np!53.911~43!, j~np!54.040~35!;

~101!

82316364: gb
~np!53.920~19!, j~np!54.040~26!,

~102!
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with errors coming from 5000 normally distributed rando
data. Figure 7 illustrates that both points agree with the sim
lated j i at the perturbativegb value as well as with the
perturbative point itself, and finite-size effects appear to
remarkably small.

It remains to be mentioned that Eq.~102! includes thejV
values—which incidentally were not available atgb53.919
for the smaller lattice—from the matching of the potentia
Using the weighted averages of the two screening mass
tios in Table V in place of the former, we get the simil
results gb

~np!53.921(38), j~np!54.038(29) and gb
~np!

53.921(19),j~np!54.038(26), respectively.
All estimates signal a perfect confirmation of the pert

bative resultsgb
~p!53.919 andj~p!54.052 calculated in Sec

II and quoted in item~e! at the end of Sec. II B. There is n
evidence that the unknown higher order corrections ing2 and
l could lead to any visible modifications, which would ma
the applicability of one-loop perturbation theory to the a
isotropy parameters doubtful. In conclusion, the nonper
bative contributions cannot be resolved within the intrin
errors of numerical simulations, and as a consequence
perturbative choice of the anisotropy parameters in inve
gations with the SU~2!-Higgs model with asymmetric lattice
parameters is justified also for Higgs boson massesmH
>80 GeV.

IV. SUMMARY

In summary, we have worked out the complete one-lo
perturbation theory of the SU~2!-Higgs model on lattices
s.
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with asymmetric lattice spacings inRj gauges. We have de
termined the critical hopping parameter and the coupl
asymmetries in one-loop perturbation theory, as a function
the asymmetry parameterj. We have proved by explicit cal
culations the gauge independence of these results inRj
gauges. We have perturbatively studied the approach to
continuum limit of the finite temperature theory and ha
determined the optimal choice ofj ensuring the most eco
nomical lattice simulation for a given precision determin
tion of the physical parameters.

To test the relevance of the perturbative results to nonp
turbative studies we have determined the nonperturba
coupling anisotropies using lattice simulations. Three ch
nels have been studied, namely, Higgs boson andW masses
as well as the static potential. For our parameters, i.e., Hi
boson mass near 80 GeV,g2'0.5, andj54, the perturbative
results agree with the nonperturbative determination wit
the ~high! accuracy of the latter. This result opens the pos
bility to perform lattice simulation using the perturbativ
coupling anisotropies without the need of a nonperturba
determination. In particular our results are essential to st
the electroweak phase transition for Higgs boson mas
around or above 80 GeV and determine the properties of
hot electroweak plasma.
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