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We present a calculation of th@(g?,\) perturbative corrections to the coupling anisotropies of th€28U
Higgs model on lattices with asymmetric lattice spacings. These corrections are obtained by a one-loop
calculation requiring the rotational invariance of the gauge and Higgs boson propagators in the continuum
limit. The coupling anisotropies are also determined from numerical simulations of the model on appropriate
lattices. The one-loop perturbation theory and the simulation results agree with high accuracy. It is demon-
strated that rotational invariance is also restored for the static potential determined from space-space and
space-time Wilson loop$S0556-282198)05519-2

PACS numbsdps): 11.15.Ha, 12.15:y

l. INTRODUCTION scales is to integrate out the hea@(T) modes perturba-
tively, and analyze the obtained theory on the lattice. This
At high temperatures electroweak symmetry is restoredstrategy turned out to be quite successful, and both its per-
Since baryon violating processes are unsuppressed at higlirbative and lattice features have been studied by several
temperatures, the observed baryon asymmetry of the ungroups[6—11]. Even more, Ref[18] predicts that some-
verse has finally been determined at the electroweak phasghere above 80 GeV Higgs boson mass the first order phase
transition[1]. transition does not take place anymore, and the two phases
In recent years quantitative studies of the electrowealkan be continuously connected. Referefit@] gives esti-
phase transition have been carried out by means of ramates of the end point of the phase transition in the frame-
summed perturbation theory and lattice Monte Carlo simulawork of the reduced three-dimension(8D) approach.
tions [2-17]. In the SU2)-Higgs model for Higgs boson  with this paper we follow another approafmnalytic and
massesrfy,;) below 50 GeV, the phase transition is predictedMonte Carlo (MC) calculationd to handle this two-scale
by perturbation theory to be of first order. However, it is problem. We will use the simple idea that finite temperature
difficult to give a definite perturbative statement for physi-field theory can be conveniently studied on asymmetric lat-
cally more interesting masses, e.g,>80 GeV. Because tices, i.e., lattices with different spacings in temporal) (
of the bad infrared properties of the theory, the perturbativeind spatial &) directions. This method solves the two-scale
approach breaks down in this parameter region. A systematigroblem in a natural way20]. Another advantage is—well
and fully controllable treatment is necessary, which can b&nown and used in QCD—that this formulation makes an
achieved by lattice simulations. independent variation of the temperatuf€) (and volume
For smaller Higgs boson massem{<50 GeV) the (V) possible. The perturbative corrections to the coupling
phase transition is quite strong and relatively easy to studgnisotropies are known in QC@ee Refs[21,27)). Perform-
on the lattice. For largemy (e.g.,my=80 GeV) the phase ing a similar analysis for the S@)-Higgs model, we have
transition gets weaker, and the lowest excitations haveresented in our earlier papé@3] perturbative corrections to
masses small compared to the temperalurérom this fea- the coupling anisotropies for this case, too. Here we give
ture one expects that a finite temperature simulation on adetails of the perturbative calculation [#3] and by numeri-
isotropic lattice would need several hundred lattice points ircal simulation on lattices with anisotropic lattice spacings
the spatial directions even for dn=2 temporal extension. calculate the coupling asymmetries for the practically rea-
These kinds of lattice sizes are out of the scope of the presesbnable parameters of the &YHiggs model. As we will
numerical resources. show atmy~80 GeV the one-loop perturbative and the
One possibility to solve the problem of these differentnonperturbative coupling asymmetries agree very well.
There is an essential difference between pure gauge theo-
ries and the S(2)-Higgs model. In the former case any
*On leave from Institute for Theoretical Physics,té&s Univer-  value(within a certain rangeof the space and time coupling

sity, H-1088 Budapest, Hungary. constant ratio does correspond to a meaningful theory; the
"Present address: DESY Zeuthen, Platanenallee 6, D-1573actual value of the ratio corresponds to a definite value of the
Zeuthen, Germany. ratio of the space and time lattice spacings. On the other
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hand, in case of the SB)-Higgs model for a fixed value of whereA stands for the lattice pointtl, , denotes the S(2)

the space and time gauge coupling ratitetermining the gauge link variable, antls, and Uy, are the path-ordered

rat@o of the space and time Iattice.spacmgse has to fix the' _product of the fourU, , around a space-space and space-

ratio of the space and time hopping parameters to a definitgme plaquette, respectively. The symhp] stands for the

value, in order to ensure that the theory makes sense. figgs field.

convenient way to do this is to require that the ratio of space The values of anisotropies defined as

and time gauge boson masses should be equal to the ratio of

space and time Higgs boson masses. Such a choice of the

parameters is a precondition to both the perturbative calcu- B

lations and the numerical simulations. 'ygz !
The plan of this paper is as follows. Section Il deals with

the perturbative analysis. In Sec. IlA we give the lattice ,
action of the model on asymmetric lattices and discuss pe@'® chosen to correspond to given values of the asymmetry

turbation theory in the anisotropic lattice case. Section Il B- In perturbation theory this can be ensured order by order
contains the calculation of the critical hopping parameter andn the loop expansion, requiring that in the linsif,a;—0

of the wave function quantum correction terms, which givewith the ratio {=as/a; fixed, certain physical quantities
the quantum corrections to the anisotropy parameters. In Seghow rotation symmetry on submanifolds of the bare cou-
Il C a discussion of the finite temperature continuum limit is pling space satisfying ;= const, y,=const. This procedure
given. The optimal choice of the ratio of space and timeleads to a formal double expansion gf and A of the
lattice spacings is determined by perturbative techniquesanisotropies:

Section 1l contains our nonperturbative analysis. Section

[Il A gives the basic points of our MC simulations. Section

Il B deals with the mass determinations from the correlation 3,%: 52[1+CB(§)92+ ba(E)N+ O(g* \d)],

functions. In Sec. Il C we present the results on Wilson loop

simulations and the static potential. In Sec. Il D we finally

evaluate the nonperturbative asymmetries and compare them

2Kt

ﬁ_sl 7K:K_S (2)

2_ g2 2 452
with the perturbative results. Section IV is a summary and Y= 11+ ¢ (£)g7+ b (HN+O(g"\)]. (€
outlook.

Il. LATTICE ACTION AND PERTURBATION THEORY Hereg is the bare gauge coupling of the theory with sym-

. . . _ _ metric lattice spacings in standard notatidiNote that
.In this section we discuss lattice pert“rbat'on_the°r¥'03(1)=c,<(l)=bﬁ(l):bk(1)=0.] In this double expansion
Since we did not find the Feynman rules for the anlsotroperve use the formal power counting~g?. In general, fixing
lattice spacing case in the literature, we present some details . : y
of lattice perturbation theory. After that we determine theyg;é;) ri)nnd gft(ugr)b:;t(i)vglnsulae t;}(gaggr? Z?’S;S;% Sf?;)rly{llgwt:)?k
critical hopping parameter and the anisotropies in one-loo he defi 'tp fE i Y- th ‘: f d ti
perturbation theory. The continuum limit and the optimal 1€ definition o § IS given as the ratio of space and ime
choice of the ratio of spacelike and timelike lattice spacing lirection Ia_ttlce_ unit correla_tlon lengths. This nonperturba-
tive analysis will be the topic of Sec. Ill, where we choose

are also discussed. : .
the values of the bare copuling rati(® to ensure that the

A. Action in continuum notation, gauge fixing, propagators Higgs and gauge boson correlation lengths in physical units
are the same in the different directions. This idea can be

F(_)r si_mplipity, we use gqual lattice spacings in thg th,reeapplied in perturbation theory as webee, e.g.[22]), and
spatial directionsg;=as, i=1,2,3) and another spacing in e \ill follow this method in our analysis, too.
the temporal directiond,=a;). The asymmetry of the lat-  g|aporating perturbation theory we follow the usual steps
tice spacings is characterized by the asymmetry faétor [see e.g.[24,25 for the isotropic SWR)-Higgs mode]. The

=as/a;. The different lattice spacings can be ensured byon|y complication is that we have to keep track of the dif-
different coupling strengths in the action for timelike and fgrent lattice spacings and couplings.

spacelike directions. The action reads First we consider the gauge part of the action. We will use
1 1 the same notation as applied by the calculafiai)] for the
JU,¢]=B>, (1— STrUsp + B>, (1— STr utp) pure gauge theory,
sp tp
) T
nyﬂ=ex;<|aﬂg#5'A;L(x)), %)

1 1 2
+2 |§Tr<¢:¢x>+x §Tr<<p:<px)—1}
xed wherer is summed over 1,2,3, whilge is not summed,;
moreover,a,=as, 9,=0s for u=1,2,3 andas=a;, g4
S . 4 =g,;. We have also
- KSMZl Tr( @XJr;LUx,M(Px) =k T1( ‘»DX+Z1UX,4QDX)J )
4

(1) P o

Bi=4¢& ©)

1
%(6)?
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?s the connegtion to the lattice parameters. The expansions o ()= Al (X) o a,0,/A, (x| ©
of Ge GuTea OTRePN T2 )
2_ 211 _ 2_ 442
95(8)7 =01~ c(HG =DM+ O(@AD], (6) with [A,(X)|= VAL(X)A,(x). The expansion is given by
(&’ =g L+e(HGTDONTOG' NI, (D (8,0,)? (8,9,)" 6
a,(x)=1-———ATA' + ————A" A" A A® + O(g°),
where g?=g2(¢=1)=g2(é=1) andey()=c(O-c(d, 8 Wt Tage AMAATODY
bs(£)=Dbi(£) —bs(£). (10)
We write ag (,9.)°
r _ _HIR AT Lk r ASAS 5
Uy u=a50x) +i7al,(x), 8 3,00 = "5 A" g  AAALTOE). (1D
where Inserting Eq.(8) into the plaquette parts of the lattice

action we get the parts of the action containing odd numbers
of gauge boson fieldssgf‘d) and even numbers of gauge
' boson fields §;{°"). They read

a9l ALX)]

S —EA ,; B eprd (x+ pa,)abl (x) +al (x)ab(x+ pa,) 1al,(x+ va,)aj(x)

— eprsab(X)al(x+ pa,)[an(x)as(x+va,) +ad(x+va,)a3(x) ]}, (12)

0 0 -~ 0 - 0 0 0 - -
Sll)en: _)ZA Ev Bua,(X)a,(x+pa,)a,(x+va,)a,(x) —a,(x)a,(x+ ,ua#)a;i(x+ va,)al(x)

—ad(x+va,)ad(x)al(x)a,(x+ ua,) +al,(x)a,(x+ pa,)a(x+ va,)aj(x)
+[al(x+ pa,)al(x) +ad(x)al(x+pa,) [ad(x)al,(x+va,) +ad(x+ va,)a)(x)]
+ (= SO+ Spidrs)ab(x)al(x+ pa,)al (x+ va,)al(x)}, (13

wherep,r,s,t=1,...,3 andg,, is equal tog; for space indices and equal & for one space and one time index.
The integration measure for the gauge variables also contributes to the action:

sinz(g“a“|AM|)

3 1 4,S T T 3AT 2
d*U, ,=—d"a (x)d(a,(x)a,(x) —1)—d A, (x)exy log 5 5 , 14
where capital letters run from 0 to 3 and a sum oVerO, . . . ,3 isunderstood. The contribution to the action reads
a
4 Slr]2<gM2 M|A,u,|) 4 gzaz
Si==2 2 log| — 55— ] =2 2 “EALNALX+O(gY. (15)
XxeA pu=1 Zg,U-a,U«|AP~| xeA pu=1
Next we consider the pure scalar part of the action. Introducing the notation
ox=Ho(X) + 17, (X), (16

it reads

3
Su=2>, Ho(X)2+Wr(X)Wr(X)"‘)\[Ho(X)Z"'Wr(X)Wr(X)_l]z_ZKsEI [Ho(x+ pa, ) Ho(X) = m, (x+ pa,) m (X)]
X w=

— 21 Ho(x+dag)Ho(X) — 7, (x+4a,) m, (X)] | . (17)
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Assuming that théH, field has a nonzero vacuum expectation valueve write

Ho(X)=H(x)+wv. (18
Moreover, we introduce the notation
1 & Yo
go—GkK—ga—S, )\c_ﬂ (19

and the continuum fields

’ B ZKS 1/2H ) B 2KS 1/2 ) B ZKS 1/2 20
C(X)_ asat (X)v 77-(;(X)_ asat m (X)r V= asat ( )
Using these we find the scalar part of the action using continuum variables to be
1[ 3 yz
Sy=ada 2, 5{ 2, [ViHL(OVH0 + Vim0 Vim (0] + 2L V00 VaHe00 + Vo) Ve ()]
g
+ ML (He(x) +v0) 2+ () () ]+ 1—‘;[<Hc<x>+vc>2+wL(x)wL(x)]Z], (21)
where
1-2\
aZmi= -6—292 (22)
S
and
f(x+pa,)—f(x)
Vv, f(x)= = (23)

a,

is the lattice derivative.
Puttingv =0 above corresponds to the symmetric phase, in thismésaO. Determiningv ;. from the nontrivial minimum
of the scalar potential one gets

6m3
vgz—g—oo for m3<0. (24)

Introducingm o= —2mj we obtain finally

1 2
Sy=ada 2, 5[ 2, [ViH(OVH) + Vim0 Vim (0] + ?[WHc(mec(x)+v4w2<x>v4w2<x>]

g aou
o+ H (024 Tl He(0 2+ i) mhO0 TP+ =5 Ho 0T HE 00 + wz(xm’c(x)]} : (25
Now we consider the gauge-scalar interaction
3
S=2 [ —xs2 Tley 5, (Ui Deud = kiTrley g0 (Uya~ 1><px]] : (26

Introducing continuum variables we obtain
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3

S=aga >, ‘21 [a?(x)—l]( - 102+ 20He00 + HAOOHL00 + 00 001 - Vi)

Xe = aS S
1 Y2 1

~ gl HOViHe() + m00Vime(0] | + 518800 = 1| = S5l08+ 20eHe00 + HoGOHL00 + mi(0 me(x)]

s t

259 0~ S THOOVaHA0 + (0 V4]
t S

3
# 3, 00 00T 00 + TO0THe00 ~ (Hex) 0] ¥,r)]

sI=

S

a
+ a_; Va0 €rsime(X) Vame(X) + () V4Hc () = (He(X) + UC)V4WL(X)]] : (27)

In perturbation theory the gauge has to be fixed. We use as the gauge-fixing function

3 r

f(x=2

= a2 a2 4

x)—al(x—ia;) vi[aZ(X)—aL(x—Zlat)] . av g,

(28)

which is a lattice version of the well-known continuuRp gauge-fixing function. In Eq(28) « is the gauge parameter. This
choice ensures that the mixed second-order ternA\;l(lx) and mr{(x) will drop out from the sum of the gauge-scalar
interaction and the gauge-fixing parts of the action. We obtain

2
Syr=— —aza 2, () f (%), (29)
ag Xxe A

Sep= aatE 2 —{[C (0= ¢ (x+1a)1aP()[ 6 (%) + ¢ (x+Ta) ]+ e € () + ¢, (x+Ta) 1A c(x) — cy(x+ia)]}

2

+ 52;5{[€<x)—E(x+21at>]a2<x>[cr<x>+cr<x+21at>]+erst[?mx)+E<x+21at>]az<x>[ct(x>—ct(x+21a4>]}
9%v, — _
—a=—={C () C (O H(X) +v ]+ €rsCr(X)Cs(X) Te(X)} [ - (30)
[
The final form of the continuum notation action reads 2
Sconi= SpI+SHM St S+ S+ Syt Sk, (31) e e >

where the individual terms are given in E@$2), (13), (15), moreover, the integersv,, (I,) take the values
(25), (27), (29), (30). The vertices of perturbation theory may ~'~ '.LM_ 1. L

be easily obtained from Eq31). As usual in lattice pertur- ~ 1he inverse relation is

bation theory we have new vertices proportionalgtb for

n=2. ah(x)= ! 2 exp i(k,x)+ —"“k ag
The formulas to compute the Fourier transforms are as” Lilolsls a1@283a4% "
follows. For the gauge field, (34)

~ ia For a lattice infinite in all directions we have
ap ,=ada, > exp —i(kx)— >k,
' XxeA 2

ay(x), (32 \

1 wla

a(x)= f dp, explip-x+ip,a,)al |

where  KX)=2m(vily/Li+---+wylylly), R=0,123, ) (2m)*p=1 J-mia, Py EXRUIP P2u)Bis
and (39
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andp-x=2ﬁ:1p,,xv. free parameters and can be fixed by two additional condi-
For scalar fields we have similar formulas; however, thetions. We demand rotationéloren2 invariance for the sca-

second terms are missing in the exponents of 28, (34), lar and gauge boson propagators on the one-loop level. This

(35). ensures that the propagators with one-loop corrections have

Our aim is to perform perturbative calculations. The firstthe same form in the andt directions. Clearly, arbitrary
step is to write down the propagators of the fields from partsouplings for different directions in Eg1) would not lead to
quadratic in the fields of the action. We want to determinesuch rotationally invariant two-point functions.
the tree-level propagators, which are zeroth ordey &amd\ . The most straightforward method to determine the transi-
Sinceyg andy, do depend on the couplings, we usi the  tion point is the use of the effective potential. The condition
propagators as their tree-level values. The remaining corre@®Vqs(®=0)/d®?=0 gives a simple, gauge-invariant ex-
tion terms fromy, and y, are quadratic in the fields and pression for the value of the critical hopping parameter,
give two particle vertices similarly to the measure term in thewhich is exact in the continuum limit. The relevant formulas
action in the isotropic case. These will be absorbed by th@re given in Landau gauge j@3]. Here we present the gen-
kinetic parts of the propagatofsee later in Eqs44)—(47)].  eral R, effective potential

The inverse tree-level propagators in momentum space )

i i m, 1 "
have the following forms. Fc:r the Higgs boson, V(@)= 70q)2+)\cq)4+f Elog(k2+m§+12>\c<l>2)
k
Ro(p) 1= 2, PP+ mio; (36) ™
- c 2 2 2 242
for the Goldstone bosons, + 16)\C_agz|09(k + Mo+ 4N D" — ag D/4)
4
X RPN R : k2— ag?®?/4
Aco(p)"t=2 pP—amio; 37 £24 202 4 Sjog| K29 P4
r &~ Fi +6log(k“+g“d /4)+2log R2+gzd>2/4
for the gauge boson, 3
4 — —log(k?— ag?®?/4) |, (42)
< ab -1 b 2 o~ lta 2
AW,O,,u,v(p) =6 5/.“/ mW,0+ iZl Pi _p/.LpVT'
(39) where
for the ghost, 1 ala oo,
4 f = (ZT)4 dskf dk4 (43)
Repdp) =2, p—amiy,, (39 “ e
where Alternatively, one may calculate the one-loop corrections to
the masses and require that the renormalized masses be zero
A:Esi asPi - :Esi aiPs (40) in lattice units in the limit of zero lattice spacing and fixed
Pi ag 2 ' Pa a; 2 é=a.la,, as explained above.

_ _ _ First we consider the corrections arising from the two-
The masses have the following expressions in terms of othgjoint interaction vertices. In addition to these there are the

parameters: one-loop corrections, which we evaluate later on. Including
2112\ , mﬁ 0K2 vﬁgz the twod-point irjtelrzacti%n v:gertexggorrec(:jtﬁonf the momentum
—_ _G_0g2 o7 squared sums in , , modify to
mH,O_ gg K g 6 2§ }, mW’Q_ 2)\§B = 4 q qgg ) ( 7) ( ) fy
(41) ‘. SV
> pf—2 PPt 5P (44)
i=1 i=1 f

B. Critical hopping parameter and anisotropy parameters

The main goal of the paper is to perform @(g?\) for the _Higgs, Goldstone, and ghost propagators. The gauge
analysis of the theory defined by E@). This means first the POSON inverse propagator becomes more complicated:
determination of the mass counterterms. One wants to tune
the bare parameters in a way to ensure that the one-loop Z\ell\;)._(p)—lzaab
renormalized masses are finite in the continuum lignéw- !
ever, their values in lattice units do vanisiym,.,=0 for
a;,—0, a;,—0, £¢=fixed). At the same time the vacuum ex- -~
pectation value of the scalar field will be also zero in lattice ~PiP;
units (@w.=0); i.e., we are at the phase transition point

2.2 3 2
v2g vy Vo
5ij(%+i21 pi+ Ezpi)

2

14+ —
ag?

] , (45

between the spontaneously broken Higgs phase and the 9.0: 7
SU(2)_-symme_tr|c phase. The_condltlon is sg’qsfled by an ap- ZS\}’M(p)*l:Z\a}\f’m(p)*l: — 5°%p.p, EJF Is9t 7« '
propriate choice of the hopping parame(eritical hopping ’ ‘ & ag® &
parametex. The ratios of the couplingsy; andy,) are still (46)
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O ’/‘”\‘, Q T T T I T T T T T T | T T T I T T T
O — 022 1(£.0)
£y Q T ; ; i
ol 02
FIG. 1. Higgs boson self-energy graphs. Solid lines stand for
Higgs bosons, dashed lines for Goldstone bosons, curly lines for
vector bosons, and wavy lines denote ghosts. 0.18
2,2 2 3 2 4 r
~ veOt Y ~y o~ Ot Y L
ab —1_ cab| _¢9t “x 2_n2 9t Tk
AWadp) =67 2 52"‘;1 Pi p4a 2 g4 | |
(47 0.16 —
Let us now consider the self-energy corrections to the NI RTINS R R R
Higgs boson mass. The relevant diagrams are shown in Fig. 0 0.2 0.4 0.6 0.8 1
1. Evaluating all graphs we obtain at zero Higgs four- 1/¢
momentum, independent of the gauge chodsen indepen-
dent ona), FIG. 2. The lattice integral,(£,0) (see text on asymmetric
lattices as a function of &/
ag(mﬁ)zzagmﬁ—<290+ 592)31(5,0), (48) It is instructive to check that the same result is obtained
starting from the symmetric phase perturbation theory, where
where we used the notation some graphs are absent, and one is led to
4-2n 4 9
7T/ap 1 _ 2 2 2
I, (Emag = — dk,————. (49 0__asmo_(go+—9 )Jl<§,0). (53)
" % (277)4;1;[1 ~ala, ©(mM2+k?)" 4
Inserting Let us now consider the self-energy corrections to the

gauge boson mass. The relevant diagrams are shown in Fig.

- 1—2\ ) 3. The inverse propagat@Egs. (45)—(47)] at zero momen-
asmy=—2| ——§-6-2¢ (50 tum has a specific structure: namely,

for the one-loop corrected bare mass and using the notation ~ab 1 b 2 g2
N= K20/ (6£)=4k\ /€ together with a2(mR)?=0, we Awi(0) =6° 5iimW?-
get, solving perturbatively fok,

& 1 g2 PRI« o %

K= 23+ &) +(3+§2)2[6§Jl(§,0)— 30 N¢ A (0) 1=82 mWE ?. (54)
9£3,(£0) . .
+ mg . (52 One therefore has to determine both the diagonal space-space

and time-time components in order to check for consistency.

; 2
This result coincides with the?V;(®=0)/dd?=0 condi- > "ce the bare mass squared turns out tbg"), we may

tion of Eq.(12) of [23]. For the reader’s convenience we plot R
J1(£,0) of Eq.(49) in Fig. 2 as a function of ¥ For the
special case of symmetric lattice spacings;1, our quan- mf
tum corrections to the critical hopping parameter reproduce "“"Uw S
the known result of the isotropic $2)-Higgs mode[24,26|.

An eight-term Chebishev polynomial approximation with 6
X 10~ ® accuracy to the function reads WQ“ [
W e

J1(£,00=0.2276734-0.00017556 14— 0.1452559%¢>

—0.03593908/%+ 0.3487585¢* — 0.4128226¢° FIG. 3. Vector boson self-energy graphs. Solid lines stand for
Higgs bosons, dashed lines for Goldstone bosons, curly lines for
+0.2187872#°—0.04609285". (52)  vector bosons, and wavy lines denote ghosts.
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safely putg2/g®=g?/g?=y%/£?=1 in Eqgs.(54). Finally we 3 Yi
obtain, after imposing zero renormalized lattice unit mass AH(p) 1= mH 0+E pI §2p (58
squared,
m2 while Ay, ,, is given by Eqs(45)—(47).
agmfN: 0% =+ = w J1(£,0). (55) The corrections to the anisotropies in the kinetic parts of
2 2 ﬁ Egs. (57) should be cancelled by the kinetic parts of the
. self-energies. For the Higgs boson this can be achieved by
Inserting requiring
3 2
ma,= mai (56) 10%S44(p)| Ya  18%S4.4(p)
49o Wo—2 | "2tz 7 (59
2 ot |, & 2 s |,
we get back Eq(51) consistently. Again we have checked
that Eq.(55) holds in allR, gauges. wherei=1,2,3. The graphs contributing are the momentum
Next we discuss the anisotropy parametggsand y,. ~ dependent ones of Fig. 1. o
Following Karsch and Stamates¢d2] we determine them For the gauge boson there are several possibilities. As a

from the requirement of rotational invariance in the con-simple one we choose
tinuum limit ag,a,—0 at fixedé=ag/a;. In particular we 5
consider the physical particle propagators, which receive 1+£ I Zw,1ii(P)
guantum corrections 2 apj?

ZH,1(F))_1:ZH(FJ)_1“‘EH,l(p),

2 2
1 0% waii
ﬁ+ < w,1i(P)

2 2 ’
g 2 ap4 ‘ p=0
(60)

) L ~ab ) wherei#j=1,2,3. This is easily calculated, since only the
A1(P) T =A%, (P) T L(P), (57 & term of AZY, ;(p)~* contributes on the left-hand side. Not

B aII the seIf—energy graphs contribute, but only those graphs
where y(p)~* and 4,y ,, are the tree-level propagators of Fig. 3, which depend on the momentum.

corrected with the two-point verticed,(p) ~* is given by Our results for infinite lattices are

p=0

3+cogq;a;) C€O9Q3a;3) —COSq484)
4 2

(g) Jw/as J"n'/as Jﬂ'/as Jﬂ'/at 1 1
Cc = -
A wlagd —mlag) —mlag) —mla; §2

1

1 9
{ - ( 1- ?) sir(q,a;) + C052< )[COS(QSaS) €09 q,ay4)]

i1
. 2 cog . .
8 sirf(q,a,) 2 sin’(gsag) — £°sin(gsay)  COSg3as) — COY 04a4)
" _
- - . 2
al> o al> o al> o

N sir(q;a;) [ Sinf(dsag) — £ sin(qsa,)
2
23 2| 223 &

(&) 3 (7lag J’ﬂ'/aS fﬂ'/as fﬂn’/at 1 1
Cy =— I S
¢ 4)- wlagd —mlag) —mlag) —mla; 52
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L S B S s B S S S B BN (b) g% and \ corrections In Fig. 4 we have given only
- T cs(€) andc,(&). As shown by Eq(61) the functionsbg(§)
- ] andb,(¢&) vanish; thus there are no corrections@f\) to
r ] the anisotropy parameters. It is easy to understand this result
i T qualitatively, since only graphs with two or more scalar self-
-0.05 - . interaction vertices have a nontrivial dependence on the ex-
i (&) T ternal momentum. This feature is connected with the well-
i ] known fact that the®* theory does not have any wave
function correction in first order in the scalar self-coupling. It
is worth mentioning that there is only one type of two-loop
graph (the setting sunwhich should be combined with the
one-loop graphs, in order to obtain the whd¥\?) correc-
tion.
(c) Pure gauge theoryA number of graphs of Fig. 3
_0.15 |- 6 i (namely, _those containing only vector boson and ghost)lin_es
are identical to those of the pure gauge theory. Evaluating
¢ _ the momentum-dependent ones from these diagrams, one re-
0 0.2 0.4 0.6 0.8 1 produces the result of Ref21] [the functioncs(£) of the
1/¢ present paper correspondsct@é) — ¢, (£) of Ref.[21]]. The
most important contribution comes from the self-energy
FIG. 4. c4(£) andc,(£) as functions of X. graph with gauge boson four-coupling. Inclusion of the sca-
lar particles gives only small changes. The relative difference
where the sums are ovar=1, . . . ,4. Theabove expressions between thecz(é) functions for the pure S@) theory and
are easily seen to be finite and independertainda,. We  for the SU2)-Higgs model is typically a few percent.
have also checked that they are gauge independent. The de-(d) Quantum corrections to the hopping paramet&he

0.1 —

pendence off is plotted in Fig. 4. contributions to the hopping parameter come from the
A six-term Chebishev polynomial approximation with 2 momentum-dependent graphs of Fig. 1. This correction has
X 10" ° accuracy to the functions reads the same sign and order of magnitude as that of the gauge
anisotropy parameter; however, it is somewhat smaller. It is
Cp(§)=—0.1687249-0.124013¢+ 0.086084892 possible to combine the anisotropie(¢) =cz(&) —c.(£)-

3 For this choice in the gauge sector and wijth= ¢ the rota-
—0.04715295°~0.000252643g" tional invariance can be restored on the one-loop level,
+0.006038775F, (64) choosing the appropriate value.for the Igtticg spacing asym-
metryas/a;. Thus, the masses in both directions will be the

c — —0.05691582 0.0001275536/+ 0.0758276642 same. However, the obtained lattice spacing asymmetry will
&) ¥ ¢ then slightly differ from the originalé. One getsag/a;

—0.003112956— 0.0265274¢* =£(1—g%c,(&)/12)+ O(g*\?).
5 (e) For later use we specify g£4)=—0.13308,¢c,(4)
+0.01085953. (65 = _0.052353; thusc)(4)=—0.080727, y}(4)=3.9193,
~ -~ as/a,=4.05235.

We also have to equat®y, 13 and A 1,14: (f) Asymmetry parameters away from the critical line

5 ) . Following the procedure outlined above one may determine
1+ 9 9 %13 _ g 90t Vi 4 Ew,m‘ the asymmetry parameters away from'thg critical line. In this

ag?  IP19P; o0 £ ag? £ 9pLdpg S case tree-level masses are nonvanishing and are in fact

(66) O(1). Therefore one has to keep them in the propagator
denominators. Thus the final results become more compli-

This is a nontrivial constraint, which our previous expres-cated. We do not reproduce the formulas here, only note that

sions do satisfy. numerically the results are very close to the previous case.
There are several important features of the anisotropy pathus the asymmetries determined near the critical line are
rameter result, which should be mentioned. universally applicable.

(a) Masses in the propagataré\ consistent perturbative (g) Finite lattice results The above formulas are valid for
procedure on the lattice determines the bare parameters, fifinite lattice sizes; however, replacing the lattice integrals
which the renormalized masses vanish; cf. Esfl). With with the appropriate lattice sums, one gets results valid for
these bare couplings other quantities, e.g., asymmetry pararfinite lattices.
eters, are determined. However, using the one-loop renor-
malized massesa(;mﬁzasmffv:O) in the propagators in- _ :
stead of the bare ones leads to changes in the results, whicHemPerature theory and optimal choice of the parameterg
are higher order irg> and\. Therefore, all our results are The approach to the continuum limit of the finite tempera-
given by the integrals with renormalized masses. ture theory may be studied in the approximation of one-loop

C. Perturbative study of the continuum limit of the finite
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perturbation theory. The relevant physical quantities we Next we take into account that in practice we simulate on
study are the ratio of the critical temperatufg. and the lattices with finite extensions. In order to fit in the relevant
Higgs boson mass and the ratio of the Higgs and vectomodes we have to deal with a given physical volume
boson masses. To calculate them in perturbation theory we
first determine the bare Higgs boson mass parameter using
the analogue of Eq48) for a lattice with finite extension
(Ly) in the t direction, i.e., at finite temperaturd ) ] ] )
=1/(L,a,), by imposing the conditioraﬁ(mﬁ)zzo. This  Thus the number.of the lattice poingshich determines the
choice corresponds to the lowest point of the metastabilitf"€MOry requireflis expressed as
region with T.=1/(La,), i.e., when the derivative of the 3_ 4y 4) 43
effective potential at zero field first becomes negative. Using Libs=VonysT L/ &% (72)
the same bare coupling parameters in the action we nexty get a correct estimate of the simulation time we have to
determine the physical Higgs and vector boson masses onigke into account the autocorrelation times as well. Since
T=0 lattice[i.e., using a lattice with equéinfinite) physical  these are proportional to the squares of the correlation
dimensions in space and time directigns lengths for a local updating algorithiisee [27)), i.e., to
More precisely, the bare quantigimy is determined (L /¢£)2, the time necessary for simulation on a given physi-
from Eq.(48) with aZ(mf})?=0, replacing, howeved;(£,0)  cal volume and temperature will be proportional to
with J¢(L;,£&,0), where

1
Vphys= Ltat(l-sgat)3=f(|-s/|-t'§/T)3- (70

VpnysT ALY €5, (72
: Lil a. 3 j”/a” 1
J L , ’m — dk _, . . . . T
(L, &,may) Lii2o (2m)3021 Jomiag * (mP+K2) Next we choose a lattice extension in temporal direction

67) so that by Eq(69) we obtain an approximation of the previ-
ously determined continuum limif,/mf value to a given

and in the denominatdk, is given by (say, 0.1% precision.T./m}; as determined from E¢69) as
a function ofL; approaches the limiting value from below for
.2 2w largeL, for all ¢ values. However, foE=2 it decreases for
k4:§ts'”|__t- (68) increasing, smallL, values. Thus specific small, values

may better approximate the limiting value Et/mﬁ than
[It is straightforward to write down the finite lattice version larger intermediate values. It is clear that this is an accidental
of Eq. (67), too] The T=0 renormalized Higgs mass agreement only; therefore in our considerations we have de-
(asmf) is then determined from the unmodified equationtermined the smallest, value giving T./m? with the re-
(48) using the already known value of the bare parameteguired precision, which does not deteriorate for larger

aZm? and the infinite volumér =0 integralJ,(£,0). Using More precisely we compare the true continuum limit of
T.=1/(aL,)= &/ (asLy) we finally obtain the simple formula T,/mR with an approximate value obtained from an extrapo-
for a givenL,: lation to L,=o of the T./m} values determined from four
subsequent,; values. We choos?to be the minimal,,
T, /mE: E 1 . which (together with the three largér, valui already gives
Lt {(290+99%2)[ I1(L,£,00— 31(£,0 1112 the required precision. Having determined we calculate

(69  the corresponding simulation time for finite lattice size using
Eqg. (72). Figure 5 shows the simulation time normalized to
the £&=1 value as a function of &/for 0.1% precision in
Tc/m?. The normalized simulation time as a function éf
has a broad minimum neaf=2. The number of lattice
points(71) (normalized to th&€=1 value is quite a similar
function of £ with a broad minimum nea¢=2. In our nu-
defined. In lattice simulations, however, we always have ﬁ_mer_|cal simulations we have ch_os§#4,_wh|ch_ 'S a good

: ' ' choice both from the point of view of simulation time and

nite lattices. We have to choose mlnlmgl_ Iattlce. VO'U'T‘e itting in the relevant modes into a practically accessible lat-
large enough to ensure a reasonable precision. This choice fle

course does depend @ntherefore we may also look for the
optimal choice of¢ ensuring a reasonable precisigsay
0.19% of the physical mass determinations using the smallest
possible lattices or shortest simulation times. This problem
may be studied in lattice perturbation theory. This section of the paper deals with our nonperturbative
To obtain the optimal choice of we first determine the determination of the anisotropy parameters by means of nu-
L—o (i.e., the continuumlimit value of Tc/mﬁ as a func- merical simulations. Besides a mere confirmation of the one-
tion of ¢ using Eq.(69). We obtain that—as expected—the loop calculations in the previous part, it could give estimates
limit of Tclmﬁ does not depend oé within errors. of possible corrections, which go beyond perturbation

In the same approximatiom{X/mf)? equals the tree-level
value 4,/(392).

The result, Eq(69), refers to infinitely large lattice6.e.,
infinite in both the spacelike and timelike directions for the
T=0 case and infinite in only the spacelike direction for the
T+ 0 casé. The continuum limitirealized ad.;—«) is well

IIl. NONPERTURBATIVE ANALYSIS
OF THE ANISOTROPIES
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T T T T ] anisotropies nonperturbatively. Finally, the values obtained
14 F - in this way are confronted with perturbation theory.

A. Monte Carlo simulation and its parameters

In our Monte Carlo simulations we apply an optimized
combination of heatbath and overrelaxation algorithms,
which has been extensively discussed for the isotropic model
in Refs. [13,14,28§, and their implication carries over
straightforwardly to an anisotropic lattice. The actidn is
easily arranged t§[U,p]=2,.,S,, and the lattice action
per point,

S=6BPpxtRHTNQ—8kL, «, (73

consists of the length variables of the Higgs field

04 - -

1
T R=5Tre ) =pk, Q=(pi—17% (74

0.2 0.4

06
1/¢ . -
_ o N of the weighted sum of the plaquette contributiddsg,,,
FIG. 5. Simulation time necessary to reach 0.1% precision de— Ux,MUx+,1,VU+ U, lying in the space-space and the

. . R . _ . ! X+;,p,
termination ofT./m; (normalized to th&=1 poiny versus 1¢£. space-time planes

theory. This is an important step towards future studies of the = :}( i P +3v.P ) (75)
finite temperature electroweak phase transition in the frame- PX Bl yg PSX VB ptx |

work of the four-dimensional S@)-Higgs model on aniso-
tropic lattices. Namely, if the deviation from the perturbative
results turns out to be so small that its influence on expecta-
tion values in a numerical simulation is negligible within
their typical statistical errors, the one-loop perturbative
anisotropiesyg, y,, and¢ can be used without any further Pp.tx
(nonperturbative fine-tuning. At first sight this may not

seem very surprising, because the zero-temperature theoryasd of the weighted sum of the spacelike and timelike com-
Weakly_ coupled ¢°=0.5). But owing to the fact that the ponents of thep-link operatorL¢;XME%Trgo:ﬁtuxvﬂ(p,(:
corrections in the parametar—entering only at two-loop

level—whose size essentially determines the value of the _1/3

Higgs boson mass, are not exactly known, such an investi- L‘PvX_Z ZLMX"' Vikgitx | 77)
gation is necessary, particularly in view of Higgs boson

masses around 80 GeV or larger, which is the physically 123

allowed region determined by the CERNe™ collider LEP Losx=3 2—1 Loxus  Lotx=Leixa- (78)
experiments. -

As already discussed above, the tree-level values of theor ¢= ys=7,=1 this action simplifies to its well-known
anisotropies receive quantum corrections, which in genergorm on isotropic lattices. Equatiorig3)—(78) already cover
have to be determined nonperturbatively. A physically moti-most of the observables, whose expectation values are calcu-
vated idea for their estimation is to impose the restoration ofated by numerical simulations.
the space-time interchange symmetry as a remnant of Lor- The updating scheme per sweep, a sequence of one
entz invariance after discretization of the continuum theoryU, ,—and one ¢,—heat bath step, succeeded by one
In practice this is to be realized by the requirement thatJ, ,—and threep,—overrelaxation step, has been taken
Higgs and gauge boson correlation lengths in physical unitever from Refs[14,28. There it was observed that the in-
should be equal in spacelike and timelike directions. Furtherelusion of the overrelaxation algorithri5] reduced the au-
more, we include in the analysis the length scale of the statitocorrelation times substantially, in particular for the opera-
potential derived from space-time and space-space Wilsotors p? and L., whose expectation values show the largest
loops. autocorrelations.

The following subsections describe our numerical studies As pointed out in the Introduction, the anisotropic version
in more detail. After some brief remarks on the simulationof the SU2)-Higgs model is believed to provide quantitative
technigues and parameters used, we present the results on thsights into the electroweak phase transition at large Higgs
physical observables under consideration and propose holboson masses oh,=80 GeV, at which the typical excita-
they can serve to extract the coupling and lattice spacingions with small masses.e., large correlation lengthsvould

L 1 lT U
31,503 2 P

, (76)

L 1 1T U
3,-5F-a 2 P
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demand very large isotropic lattices exceeding any presentlgliffer from the original¢ of Eq. (79). In this spirit we choose
accessible computer resources. In principle a rough resoluhree pairs of coupling anisotropies, denoted as “tree,”
tion in the spatial directions by moderate lattices combined'low,” and “perturbative,”

with accordingly large lattice anisotropigs could handle

this situation. However, fofr >0 a small temporal extension t: y.=40, y3=40,
L, sets the (very large temperature scale througf
=1/a;L;, and hence it is more sensible to ensure a large I y,=4.0, y=3238, (82
enough lattice cutoff by employing=L,; thus in our nu-
merical work we take p: v.=4.0, y=3.919,
&=4, (79 and calculate the corresponding lattice spacing anisotropies

from different physical quantities as described comprehen-

which is also strongly motivated by the result of Sec. Ill C. sively in the subsequent subsections. Assuming that they de-
Since this makes the correlation lengths in time directiongend linearly ony in this small interval, we can interpolate
smaller than in space directions, it seems to be reasonable to a matching point {/g‘p) ,&MP) " at which all¢ values coin-
satisfyL,=£L, in order to restore the symmetry of the physi- cide within errors. These estimates are quoted as our nonper-
cal extensions and to enable a precise mass determinatiotirbative results.
We consider two lattices of sizes’812x48 and &x 16 All numerical simulations have been done independently
X 64, where the spatial correlation lengths correspond to fewon the APE-Quadrics computers at DESY-IfH in Zeuthen,
lattice units and the finite-volume effects are expected to b&ermany, and—to a smaller extent—on the Cray Y-MP8
small. and T90 of HLRZ in Jiich, Germany, which offer 64-bit

The T=0 simulations are generically intended to fix the floating point precision. In contrast to some quantities, e.g.,
physical parameters, i.e., renormalized couplings andhe critical hopping parameter ifi>0 simulations, the 32-
masses. Consequently, the lattice parameters in this study apé arithmetics of the APE-Quadrics is sufficient for the cal-
chosen to reach the interesting regionnnf=80 GeV or a culation of allT=0 quantities, especially for particle masses

Higgs to gauge boson mass ratio of and the static potential.
m B. Correlation functions and masses
Ruw=— =1, (80) . .
My We now turn to the determination of the Higgs and gauge

boson masses. As in Refd.3,14, they were obtained from

with the experimental inpuh,,=80 GeV setting the overall suitable correlation functions of gauge-invariant, local opera-
physical scale. This isat least approximatelyachieved by tors integrated over timg¢space slices. Those ar®, and
the values3=8.0 and\ =0.000178. The scalar hopping pa- L,.x, for the Higgs boson mass, and the composite link
rameter, which has to comply with the condition that the fields
>0 system be at a phase transition point for a certain tem-
poral lattice extension, is calculated from the discretized ver-
sion of Eq. (51).} Referring toL,=4 this amounts tox
=0.10662. The nonperturbative corrections usually tend to
decrease the tree-level mass ratio .. Pauli matrices, r,k=1,2,3, (83

+

x+|}Ux,kax)a

1
Wik = zTr( T

My o 2N EB for the gauge (V-boson mass.
Ruw o= m—W’O = . (81) The connected correlation functiohg, of these operators

2 . . - . .
K have been measured in the timelike and in one spacelike

direction. For the Higgs massy the functionsl'o(t) and
Our strategy for the determination of the coupling anisotroT",(z) were calculated fron andz-slice averages d®, and
pies is as follows. In the numerical simulation we have tothe weightede-link L., , of Eq. (77). Since these functions
find those couplings of Eq(1), for which the space-time cannot be regarded as uncorrelated, we have averaged
symmetry is restored. Therefore, we fix one of the couplinghem—after an appropriate normalization of the correlations
anisotropies to its tree-level value, ignoring its quantum corat distance zero—before performing the mass fits. The same
rections, and tune the other one to produce identical ratios erescription holds for the gauge boson masg, but with
(decay masses in spacelike and timelike directions for a sefyo major differences: First, the- and z-slice correlation
of two or more(particle channels. The mass ratios deter-fynctions of W,... have been measured separately for all
mine the actual lattice anisotropy, which will then slightly combinations of andk, and second, in place & 3 in Eq.

(83) actually we have to takk=4 for the correlations in the

z direction (i.e., all directions inW,., are orthogonal to the

Knowledge of the more accurate, nonperturbative value of thélirection of propagation Again the individual correlation

critical hopping parameter, which has to be determined numericallyfunctions are averaged to one function per direction as in the
is not relevant here. Higgs channel.
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TABLE I. Summary of the numerical simulations for the mass and static potential computations. The other paramgter8.@&
=0.000178, andc=0.10662.

Correlation functions Wilson loops

Index Lattice Ve Y Sweeps Subsamp. Subsamp. Indep. sweeps
t1 82X 12X 48 4.0 4.0 100000 50 50 100

11 82x12x 48 4.0 3.8 100000 50 50 100

pl X 12x 48 4.0 3.919 576000 192

t2 82X 16X 64 4.0 4.0 192000 64 64 150

12 82X 16X 64 4.0 3.8 192000 64 64 150

p2 82X 16X 64 4.0 3.919 704000 256 128 150

As lowest energies the particle masses are extracted fromigenvalues of the correlation matrix are smeared via replac-
one-exponential least squares fits to shapes of the form  ing them by their average. All resulting mass estimates in
lattice units are shown in Tables Il and Ill. We chose the
_ Cml, om(L—1) _ E largest fit interval with a reasonabjg/DOF from the cor-
Fo(h=Ale " +e I+C, 1=01,... PR related fit and the results of the uncorrelated fit along this
interval as the final fit parameters. Both fits were always
consistent within errors, and other fit intervals with compa-
rable or even lowen?/DOF did not cause any significant
with me {a,my ;,aMy,} or me{amy <,amy <), respec- Cchanges. _ _
tively. Th{e tcoHritsta:’]t Y[vétr}ms in th{e Sve?:'t?)r Zh;vhsiel areIO highly AS emphasized above, the space-time symmetry restora-

suppressed so that a two-parameter fit is mostly sufficiention Which implicitly est_ablishegmm, becomes apparent in
Each full data sample has been divided into subsamples, afgfiu@! physical correlation lengthe=a;{ of the theory.
the statistical errors on the masses originate from jackknifd NUS We introduce anisotropy parameters in the Higgs and
analyses. All simulation parameters and lattice sizes are col€Ctor channels by calculating the ratios
lected in Table I.

Our fitting procedure consists of correlated fits, some- én
times with eigenvalue smoothing, and simple uncorrelated
fits. For the former we use the Michael-McKerrel method
[29], whose features and application in the (8l-Higgs

Le{L,L,}, (84)

_ asmy s _ asMyy s
= , W=
amy ¢ aMyy ¢

(89

within the jackknife samples of the spacelike and timelike
masses. These are displayed again in Tables Il and Ill. Be-

Sr‘r;(l)gcetl tr;%vfnng?ezksi[ggte)ﬁa Ilt:tllqr[f:gvzlatls irrpg;apgggs\?vr'ﬁ;ﬁ arcause of the compatibility of the results from the two lattices,
' Sne concludes that the finite-size effects are quite small.

strongly correlated in the fitted direction. Uncorrelated fits,
which ignore these correlations, are often plagued with very
small values ofy? per degree of freedofDOF) for nearly

all fit intervals in question, whereas in correlated fits the Another approach to thé determination is based on the
emergence 0f%/DOF=1 for some fit intervals represents a static potential, which has the physical interpretation as the
safe criterion to select reasonable fit intervals. This als@nergy of an external pair of static charges brought into the
works well for data sets of lower statistics, if the smallestsystem. To this end we have measured rectangular on-axis

C. Wilson loops and static potentials

TABLE IlI. Fit intervals and Higgs and gauge boson masses in timelike and spacelike directions, and the resulting lattice spacing
anisotropies for the smaller lattice.

Quantity 1 11 pl

amy ¢ 4-18 0.140822) 4-22: 0.137027) 4-24: 0.138715)
asmy ¢ 1-6: 0.563%31) 1-6: 0.561162) 1-6: 0.560330)
&n 4.00267) 4.09786) 4.04155)

agMyy ¢ 8—-24 0.152813) 8-22: 0.153813) 8—-24: 0.155425)
asMy o 1-6 0.622%29) 2-6: 0.606640) 2-6: 0.630722)
w 4.091(30) 3.94532) 4.05944)

Ruw,t 0.92515) 0.89120) 0.89218)

Ruw,s 0.9056) 0.92512) 0.8887)
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TABLE lll. The same quantities as in Table Il for the larger lattice.

Quantity t2 12 p2

agmy ¢ 4-32: 0.140822) 4-32: 0.137027) 4-32: 0.137811)
asMy s 1-8: 0.559042) 1-7: 0.558640) 1-8: 0.555@40)
&n 3.96973) 4.07880) 4.027136)

agMyy ¢ 8—-32: 0.149931) 8-—-30: 0.159942) 6—32: 0.152515)
agMy s 1-8: 0.631840) 3-8: 0.60711) 2-8: 0.613327)
Ew 4.2310) 3.80(13) 4.021498)

Ruw,t 0.940249) 0.85726) 0.90411)

Ruw,s 0.8858) 0.92120) 0.9055)

Wilson loopsW; (R; ,R;) of extensions &£R;<L;/2 and 1 along the lines of Refs{S;,SZ lowest order(tree-level lat-
<R;=<L;/2, lying in space-time and space-space planes. Thice perturbation theory yields

gauge configuration was transformed to temporal gauge for 3g?
space-time and té\5(x) =0 gauge for space-space Wilson Vij(Ri):TH. J 5
loops, and every loop with two sides in ther z direction, MRS k2 Mo
respectively, was included in the statistics. n#i

As a generallzat!on of thg isotropic lattice case we d|st|n—With lattice momentek, =2a_ 'sin@ky2), n=1, ... ,4. In
guish between static potentials

the continuum limit this expression reflects the usual screen-
ing behavior, i.e., modulo a constant,

mlay dk, sirA(Ra;k/2) .
s ———————+0(g"), (87)

. 1 3g2 e~ Mw,of
Vij(Ri)—_F:lewﬁmwij(Ri-Rj) (86) T A

= Ri a;, (88)

independent of and j. After substitutingp,=a,k, with
p,=2mwl,/L,andl,=0,1,...L,—1 on afinite lattice, one
in spacelike {j =st,s9) and timelike {j =ts) directions, ac- °Ptains, from Eq(87),
cording to theR;—c extrapolation in the second argument 3¢g?
of W;; , which is supposed to be done first. The shape of thé Vij (Ri)=7£—[1ij(My,i;,0) = 1;j(My,; R)I+0(gY), (89
potential, which is governed by a massiVé-boson ex-
change[30], is known to be Yukawa-like, and calculating wherem,, ;;=ajmy o and

2 cogRip;i)
LiL kL p; px.py

L (myij R = (90)

L1
aay /afm ;; + gj 4a,a, /a2 smz( > pn)

wherek andl are different from each other and franandj. 1 .
Sinceg?=ga+O(gr), the simulation results fov;; are Gij(my,j R)=x¢ ™iRi— 1 (my g, R). (92
fitted with the ansatz '

By definition the “global” renormalized coupling is ob-
tained by identifying the coefficient of the contribution rel-

Aij _or
aiVij(Ri):_ﬁe e '+ Cij + Di; Gij (my,j . R, evant at short distances:

(92)
) 167
. . . o Or=—73Ajj - (93
where G;; is a term correcting for finite-latticésize and 3
spacing artifacts, andA;;, my ;;, Ci;, Dj; are the param-
eters to be fittedG;; reads Note thatmy ;; /a; and aI3092R as determined from Wilson
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TABLE IV. All Yukawa fit parameters of the static potentials, calculated from space-tijnegt andij =ts) and space-space;j(
=ss) Wilson loops. The renormalized coupli@(l/mv,”—) is explained in the text.

Index Ajj My jj Djj Cij , 16w ga(Lmy i)
9r= 73 Ajj
tl, Wy, 0.033512) 0.62667) 0.04410) 0.08324) 0.561(19) 0.57539)
tl, Wis 0.03463) 0.147955) 0.040115) 0.027636) 0.580043) 0.60517)
t1, Wy 0.03587) 0.63927) 0.023881) 0.1105%2) 0.60012) 0.59220)
11, Wy, 0.03548) 0.59337) 0.029268) 0.08734) 0.59214) 0.58228)
11, Wis 0.03513) 0.165141) 0.03727) 0.027685) 0.588150) 0.60320)
11, Wiq 0.03637) 0.62329) 0.026956) 0.11112) 0.60212) 0.59721)
t2, Wy 0.03362) 0.59426) 0.033265) 0.08331) 0.562235) 0.56215)
12, Wig 0.03431) 0.140119) 0.03939) 0.027762) 0.573914) 0.593279)
12, W 0.03453) 0.59413) 0.034629) 0.111G1) 0.578154) 0.578172)
12, Wy 0.03472) 0.55519) 0.028456) 0.08781) 0.582129) 0.570q14)
12, Wis 0.03381) 0.142912) 0.03429) 0.027922) 0.565711) 0.562164)
12, Wis 0.03444) 0.55716) 0.030329) 0.11172) 0.576169) 0.57412)
P2, Wy 0.03391) 0.57613) 0.032236) 0.08511) 0.567921) 0.564592)
P2, Wis 0.03431) 0.142811) 0.03622) 0.027801) 0.574%12) 0.584550)
P2, Wiq 0.03453) 0.581399) 0.030719) 0.11171) 0.578043) 0.575677)

loops with different indices have to be independent of thecomparing the two lattices, we observe only small finite-
indices for properly choosen coupling anisotropies. volume effects irg%, but them,, ;; still differ outside their—

In a first step of the analysis we performed multiexponeneven larger—standard deviations. However, as we will see
tial fits W;(R; ,Rj)=2§:0cne‘VnRi in order to get the po- below, these effects seem to cancel to a great extent in the
tential for fixedR; as the ground state enerdly from the  mass ratios we are mainly interested in.
largeR; asymptotics of the Wilson loops in E(B6). Starting For the sake of completeness we also discuss a local defi-
at distance®; =8-11 orR;=1,2 in dependence of the avail- nition of the renormalized gauge coupling, which goes back
able range in the fitted direction, a sum of two exponential¢o Refs.[30,33 and has been applied to the isotropic(3lJ
gave always stable fits with an optimal compromise betweeiliggs model in[13,14. Since the short-distance potentials
acceptabley?/DOF and statistical errors, and wit, well  turn out to deviate from a pure Yukawa ansatz, we set
separated from higher excitations by a large energy gap.

Subsequently, the resulting potent%vsere carefully fitted 167 aVi;(R)—aVj(Ri—d)

to Eq.(91), and the values of the best fit parameters with its GRR)=—F s ————— (99
: : 3 Ilj(mV,I]IRI d) IIJ(mV,IJ!RI)

errors from jackknife analyses of the data subsamples are

listed in Table IV. . . .
We only used uncorrelated fits in the present context, be2t distance’; with my ;; as screening masses from the large-
istance fits to Eq(91). R; is the solution of the equation

cause the size of the Wilson loop extensions does not admil

much variation in the fit intervals. In some cases the smallest

distancesR;=1 or R;=1,2 were omitted to have a satisfac- 1 _, = i+ _ L(my i, Ri—d) = 1 (my ;. R)

tory x?/DOF. This supports the experiences from earlier R R MV T d

work [14] that the lattice correctio®;; may be not adequate (95

enough for our data. A more thorough inspection of the fit

results hints at a renormalization gf=0.5 on the®(15%)  and is interpolated to the physical sc&lg;;=1/my;, giv-

level, and from the validity of\;; =D;; one can judge, how ing the typical interaction range of the potential. Equation

good the assumption of a one-gauge-boson exchange reallgs) is motivated by requiring the forcal(dR)a;V;;(R;) in

is. The spacelike potentials froVy, and W lead to con-  the continuum limit(88) to be equal to the finite difference

sistent numbers, but the discrepancy between the SCfeenilﬂGiVij(Ri)—aivij(Ri—d)]/d as would follow from Eq(89).

massesny j; € {My s, My ss,My s} and the gauge masses of This improves the naive choid® —d/2 to the tree level33],

the preceding subsection is often larger than expected. Wheiecause it compensates for lattice artifacts of order
O(a?/r?). The results fod=1 are collected in the last col-
umn of Table IV and agree witg",; from the global defini-

>More precisely, the potentials have to be rendered dimensionledéon. The errors contain the statistical errors of the potentials,
before; i.e., in view of Eqs(86) and(91) one has to attach a factor the (ever-dominating uncertainties in the masses, and sys-
aj/a;. tematic errors by accounting for the sensitivity to a quadratic
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TABLE V. Errors for the lattice spacing anisotropy obtained as ratios of the corresponding screening
masses are computed from their jackknife samples. The direct matching of the potentials is described in the

text.

Quantity t1 11 t2 12 p2
v=My /My o 4.2347) 3.5626) 4.2418) 3.8914) 4.03396)

Ey="My ss/My s 4.3224) 3.7620 4.2412) 3.8913 4.06880)

&y via matching 4.2507) 3.92362) 4.179398) 3.91552) 4.02831)

Rojj interpolation with three neighboring points instead of acontrast to the masses themselves, they show rather good
linear one with only two points. consistency and are hardly affected by the finite volume.
Rotational symmetry now implies that the renormalized The errors of¢,, &y, andéy are relatively large. This is
gauge coupling anthy ;; /a; should be independent ofand  caused by the fact that they are determined as ratios of
j. For g this is obviously true, and in analogy to Eq85)  masses with individual statistical errors. The jackknife errors
a further kind of lattice spacing anisotropy from the ratios ofquoted are obtained from the jackknife samples for the mass
screening masses is ratios themselves. Calculating the errors from the mass errors
using error propagation would result in even larger error es-
£,= My st or &= My,ss (96) timates. Inspired by a method found in REB4] one can
Vo My s Vo my s obtain even smaller errors insteadifs directly determined
by a matching of the spacelike and timelike secondary quan-
Its values in all simulation points are quoted in Table V. Intities, without any reference to the correlation lengths ex-

lattice: 8x8x16%x64, v,=4.0, v,=3.9192, £=8.0, A=0.000178, «=0.10662
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lattice: 8x8x12x48, y,=4.0, §=8.0, A=0.000178, «=0.10662 lattice: 8x8x16x64, ¥,=4.0, $=8.0, A=0.000178, «=0.1066:
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» 40T - o 40
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€ 38 s 2 381 -
o o
o foa)
£ £
Q o
g 371 - g 37 —
@ 3
[ ﬂ)
£ 215 5 410
5 35 o x(7,=3.83.919,4.0) 5 35 o éx(7,=3.8,3.919,40) |
4.10¢ a Ex(7,=3.8,3.919,4.0) 4.05 a Ex(7,=3.8,3.919,4.0)
53l 405} o §f7,=3.8,4.0) | sk o &{7=383919,40) |
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FIG. 7. Final ¢ evaluation for both lattices from the three simulation points, whose equal abscissas are slightly displaced for better
visualization. The insets show the average matching points and its error ellipses, which enclose both the numerical estjjpates at
=3.919 and the perturbative result.

tracted from them afterwards. We have realized this proposal The lattice spacing anisotropies from this potential match-
for the static potentials in spac¥ {;) and time {/,s) direc- ing resemble the screening mass ratios, but the errors from a
tion. To begin with, we calculated the corresponding con+epetition of this procedure with 1000 normally distributed
tinuum potentials random data are indeed smaller. Moreogr s fully com-
patible with &, and &, in the previous subsection at the
Veontjj (R =Vij(R) — Ci; — Dy Gjj(my i ,R), (970 perturbative values of the coupling anisotropies.

since the lattice suniy; in Eq. (90) is only meaningful for D. Evaluation of the nonperturbative asymmetries
integerR;. Constant and lattice correction terms in lowest and comparison with the perturbative result

order are found from Eq$89) and (91) to be ] ] . )
We have determined the lattice spacing anisotrogies

from Higgs (=H) and gauge i=W) boson correlation
Lij(my 5,00 — L (my 5, R) functions and static potentials €V) at different pairs of
coupling anisotropy parameters. Singe has been held
fixed, each¢; is looked upon as a function of;, and the
; (98) requirement of space-time symmetry restoration suggests the
existence of a unique coupling anisotrop§® , where all,
possess the same valg&P. This defines the nonperturba-
tive anisotropy parameters.
Therefore, we linearly interpolate the numbegs
Veontst(Re) =C-Veonus(Ri /&), Ey=&. 99  =&i(yg,) at the three' value.s/ﬁ,j of Eq. (82 wit.hi.n .th.eir
errorsA¢; to a matching point ¢, £) by minimizing
It was satisfied by fitting the spacelike continuum potential tothe sum of squares
a Yukawa shape-Ae ™Yx+C in imitation of Eq. (88), - (P71 2
equating the fit function at argumerig/ ¢ with the timelike x2=2 E &i— (™ +cilygi—vg D) (100
potential data times a constant, and solving every possible T g A '
equation pair for¢ andc. The final &, values given in the
last row of Table V are averages over all such solutionswith respect toc; and the common fit parametegé?p) and
along thatR; interval, in which the two potentials have their £™. We obtain the final results
characteristic slopes, and interchanging the role¥ @f;s:
andVonmys in Eq. (99) always enabled a useful cross-check.  82x12x48: y{?=3.91143), &"=4.04035);
As exemplarily reflected in the perturbative simulation pa- (101
rameters on the larger lattice in Fig. 6, the deviation between
the curves then becomes uniformly minimal in their whole ~ 82X 16x64: {?=3.92019), &"'=4.04Q26),
range. (102

30%
Cij +DijGij(my,ij . R) = 75—

1
+ —e Mv,ijRi
[

while solely in the subtraction stegﬁ andmy ;; were taken
from Table IV. Hence the matching condition reads
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with errors coming from 5000 normally distributed random with asymmetric lattice spacings R, gauges. We have de-
data. Figure 7 illustrates that both points agree with the simutermined the critical hopping parameter and the coupling
lated &; at the perturbativey, value as well as with the asymmetries in one-loop perturbation theory, as a function of
perturbative point itself, and finite-size effects appear to bdéhe asymmetry parametér We have proved by explicit cal-
remarkably small. culations the gauge independence of these result&.in

It remains to be mentioned that EG.02) includes thet, ~ 9auges. We have perturbatively studied the approach to the
values—which incidentally were not available g=3.919 continuum limit of the finite temperature theory and have
for the smaller lattice—from the matching of the potentials.détérmined the optimal choice gf ensuring the most eco-
Using the weighted averages of the two screening mass rg_omlcal lattice ;lmulat|on for a given precision determina-
tios in Table V in place of the former, we get the similar 10N Of the physical parameters. .
results "P=3.921(38), £M=4.038(29) and 5P To test the relevance of the pertqrbatlve results to nonper-
—3.021( 15) £"D—4.038(26), respectively B turbatllve stydles we ha_ve detgrmmed th_e nonperturbative

X o) L ! ) : coupling anisotropies using lattice simulations. Three chan-

A” estlmate(i)SIgnal a perf((ep():t confirmation of th? pertur-nels have been studied, namely, Higgs boson\Ahehasses
bative resultsy;"=3.919 and£'"'=4.052 calculated in Sec. 54 o)) as the static potential. For our parameters, i.e., Higgs
Il and quoted in item(e) at the end of Sec. 11 B. There is no

i ; ) N boson mass near 80 Gey2~ 0.5, andé=4, the perturbative
evidence that the unknown higher order correctiong“iand results agree with the nonperturbative determination within

\ could lead to any visible modifications, which would makethe(high) accuracy of the latter. This result opens the possi-

the applicability of one-loop perturbation theory to the an-pjin 1o perform lattice simulation using the perturbative

isotropy parameters doubtful. In conclusion, the nonperturg,njing anisotropies without the need of a nonperturbative

bative contributions cannot be resolved within the intrinsicyotermination. In particular our results are essential to study

errors of numerical simulations, and as a consequence, thRe electroweak phase transition for Higgs boson masses

perturbative choice of the anisotropy parameters in investiz o ng or above 80 GeV and determine the properties of the
gations with the S(2)-Higgs model with asymmetric lattice hot electroweak plasma.

parameters is justified also for Higgs boson massgs
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