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Tests of hypercubic fermion actions

T. DeGrand
Physics Department, University of Colorado, Boulder, Colorado 80309
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I have performed scaling tests using quenched spectroscopy of a family of fermion actions which have a
hypercubic kinetic term, gauge connections built of smeared links, and an anomalous magnetic moment term.
These actions show improved rotational invariance compared to the standard Wilson action and to the tadpole-
improved clover action. Hyperfine splittings are improved compared to the standard Wilson action~at the level
of a factor of three in the lattice spacing!, and are about the same as for the tadpole-improved clover action.
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I. INTRODUCTION

I report on tests of a family of fermion actions for lattic
gauge theory simulations, which are designed to improve
scaling of hadron spectroscopy. While very expensive
simulate, they appear to more than repay their computatio
cost with better scaling behavior.

The actions which I tested were inspired by the fix
point ~FP! action program@1,2# for fermions@3–10#. How-
ever, they are not FP actions. They are Wilson-fermion li
in the sense that they have four component spinors on
sites and there are no manifest symmetries which protec
bare quark mass from being additively renormalized.

The new features which I tested include
~1! a hypercubic kinetic energy term. Each fermion in t

action communicates with 3421580 nearest neighbors
This term improves the hadron dispersion relation compa
to that from actions using a standard on-axis nearest ne
bor coupling.

~2! Gauge connections built of very fat gauge links, lin
built by averaging the fundamental link variables over a lo
region and re-projecting them back onto the gauge gro
This construction removes short distance fluctuations fr
the correlators during the simulation process, rather than
tempting to divide them out at the end. This results in
observed, very small, additive mass renormalization of b
quantities, and I conjecture that all perturbative correctio
to observables are considerably reduced. To include very
links in a simulation with dynamical fermions using know
technology might be quite expensive, but in quenched sim
lations the cost is minimal.

I also tested a complicated lattice anomalous magn
momentum term in which the quark and antiquark are
fixed to the same site. Some kind of term is needed to cor
the lattice free quark magnetic moment and to improve m
son and baryon hyperfine splittings. However, my tests sh
that the standard ‘‘clover’’ term, suitably normalized, im
proves scaling as much as the complicated Pauli term ne
to satisfy the FP equations.

The scaling tests in this paper are a bit non-stand
~when compared to other studies of spectroscopy! and de-
serve some explanation. I am interested in scaling t
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which are uncontaminated by extrapolations in volume or
the chiral limit. Thus I compare only simulations in fixe
physical volume. Any volume would do, and so I choose
small one simply because these actions are expensiv
simulate. To set the scale I use a gluonic observable bec
these are quenched simulations. As a choice of gluonic
servables, one hasTc , the critical temperature for deconfine
ment, the string tensions or the Sommer radiusr 0 . Glueball
or torelon measurements are just too costly. Of these obs
ables, the ones associated with the potential~s and r 0) re-
quire a fit to a functionV(r ); the choice of the fitting func-
tion can affect the results. At a very coarse lattice spac
this problem becomes more serious. Thus I useTc to set the
scale, and do simulations on lattices of fixed sizeL52/Tc .
With As.440 MeV andAs/Tc.1.60, the scales areTc

5275 MeV, L51.45 fm, and 2p/L5860 MeV. Lattice
spacingsaTc51/2,1/3,1/4 correspond toa50.36, 0.24, and
0.18 fm.

All the tests are performed at fixed physical quark ma
~defined either by interpolating lattice data to a fixed value
mp /mr or to a fixed value ofmp /Tc). At very coarse lattice
spacings, and with heavy~though still relativistic! quarks,
scaling violations from conventional actions are very larg
Thus only modest statistics are required to ident
improvements—or lack thereof—compared to them.

Besides spectroscopy, I measure the meson or baryon
persion relation. In lattices of fixed physical volume set
Tc , the physical momenta corresponding to the different
lowed lattice modes are multiples ofTc , apW 52pnW /L or pW

5pTcnW , if L52/Tc , and one can compare data with diffe
ent lattice spacings at the same physical momentum. Wil
and clover fermions atb,6.0 ~using the Wilson gauge ac
tion! exhibit bad scaling or rotational invariance violation
The new actions are rotationally invariant even ata
50.36 fm.

The outline of the paper is as follows: In Sec. II I prese
a general discussion of the construction of a FP fermion
tion. In Sec. III I describe the new features of these actio
Section IV is devoted to scaling tests, and I make some
tative conclusions in Sec. V. I describe the~new! FP gauge
action used in these simulations in the Appendix.
© 1998 The American Physical Society03-1
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II. FINDING FIXED-POINT FERMION ACTIONS

The main problem in doing simulations with actions co
taining many parameters is that one has to have some o
nizational scheme which keeps track of them, and it may
useful to understand the theoretical background of the
tions ~if any! before proceeding to tests.

To find a FP action for QCD, I begin with a set of ferm
onic (cn ,c̄n) and gauge field„Um(n)… variables defined on a
fine lattice ~or perhaps in the continuum!. I assume a fine
action

S5bSg~U !1c̄ iD~U ! i j c j . ~2.1!

Sg is the gauge action,i , j label sites, andD(U) is the fer-
mion action. I then integrate out these degrees of freedom
construct an action involving coarse-grained variab

Cnb
, C̄nb

andVm(nb). This is done using a renormalizatio
group kernel

T5bTg~U,V!1k(
nb

~C̄nb
2c̄nVn,nb

† !~Cnb
2Vnb ,n8cn8!.

~2.2!

Tg is the blocking kernel for the gauge fields andV is some
local averaging function, andk is a parameter of the renor
malization group theory~RGT!. The renormalization group
equation

e2S85E dcdc̄dUe2~T1S! ~2.3!

has a pure gauge FP atg250 (b→`). In that limit the
gauge action dominates the integral; its RG equation is gi
by the same steepest-descent equation as for a pure g
model

SFP~V!5min
$U%

„SFP~U !1T~U,V!…, ~2.4!

while the fermions sit in the gauge-field background. Th
action remains quadratic in the field variables, and the tra
formation of the fermion action is given most easily in term
of the propagator

„D8~V!…nb ,n
b8

21
5

1

k
dnb ,n

b8
1V~U !nb ,n„D~U !…n,n8

21 V~U !n8,n
b8

T

~2.5!

where $U% is the field configuration which minimizes Eq
~2.4! for a given$V%.

In all my work I have focused on a scale factor 2 R
transformation, for gauge fields the so-called ‘‘Type-1
transformation of Ref.@2#.

One can determine the FP vertex by expanding Eq.~2.4!
in a power series in the gauge couplingg and keeping only
the lowest order term
09450
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SF5(
x,y

c̄~x!F ~D~0!~x2y!!

1 ig(
z

(
m

Dm
~1!~x2y,z2y!Am~z!Gc~y!. ~2.6!

This has been presented in Refs.@6, 7# for a particular RGT.
Having a parameterization of the FP vertex which appear
be valid for smooth gauge configurations, one can then
tempt to find a FP action appropriate to rough configuratio
However, the FP vertices are quite complicated, and at
couplings appropriate to real simulations, a naive expon
tiation of the FP vertex does not result in a good solution
a FP action. Instead, I short-cut the procedure by going
rectly to a nonperturbative construction.

I test actions by generating coarse configurations$V% and
solving Eq.~2.4! to form a set of fine links$U%. I assume
some functional form for the fine fermion actionD f(U),
then find the propagator on the coarse configuration from
test sourceS by solving the RG equation Eq.~2.5!:

cnb
5„D8~V!…nb ,n

b8
21

Sn
b8
. ~2.7!

I use a source of Gaussian random numbers distributed
the lattice.

I then parametrize the coarse actionDc(V) with a set of
parameters multiplying operators and minimize the ‘‘goo
ness of fit’’

x25( uDcc2Su2 ~2.8!

or

r †r 5x2/S†S ~2.9!

@the latter is the familiar normalized~squared! residue mini-
mized by all sparse matrix inverters# by varying parameters
in Dc . Some fits let the free field kinetic parameters be fr
parameters. Typically, however, I have had more succes
fixing the overall normalization of the parameters in the a
tion to their free field values and tuning parameters in
trial gauge connections.

As the reader can see, it is necessary to parametrize
D f andDc . At the FP,D f5Dc . Because the fine link vari-
ables are smooth at short distances,D f naively resembles
some gauge invariant extension of the free action and the
vertex, and this fact can motivate an initial choice for the fi
action. Because blocking carries the action towards its
„D8(V)…nb ,n

b8
21

is a better approximation to the FP propaga

than D f
21 is. One can pick an initialD f , test many param-

etrizations ofDc , choose the best, and~in principle! iterate
towards a solution.

As an example of a test, compare Fig. 1. On the fi
lattice the bare mass ism050.04. The input bare mass of th
coarse action is varied along each curve.~An exact param-
etrization of a FP action would put the minimum ofx2 at a
coarse mass whose value is twice the fine mass.! The coarse
3-2
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TESTS OF HYPERCUBIC FERMION ACTIONS PHYSICAL REVIEW D58 094503
and fine actions are identical~they are action C of Sec. IV!.
The curves represent different coarse couplings: in ascen
order, they areb520, 10, 5, 3.70 „bc(Nt54)…, 3.50
„bc(Nt53)…, and 3.092„bc(Nt52)….

All of my studies testing actions are done on small l
tices, 34 or 44 ~coarse! volumes. I have not included instan
ton configurations in any fitting. The fit to a FP action grad
ally worsens as one moves towards stronger couplings,
the fits become less sensitive to the particular choice of
rametrization. Presumably all the parametrizations I h
tested are leaving out some common feature which is imp
tant for rough configurations. It is also the case that
gauge action is a bad parametrization of a FP action fob
,bc(Nt.3).

III. INGREDIENTS OF THE ACTIONS

A. Hypercubic kinetic term

The fermionic free field action has the generic form

D0~x!5l~x!1 i(
m

gmrm~x!. ~3.1!

It is constructed by finding some free FP action@3–6#. I
begin with a continuum action for fermions which has
doublers and is chirally symmetric. I construct an action o
coarser distance scaleD8 by iterating the free field limit of
the FP equation~2.5!. I select a blocking kernel, iterate th
RGT to find a fixed point action, and then tune parameter
V to make the action maximally local. I have used a fact
of-two rescaling in whichV is restricted to a hypercube:V i j
is nonzero only if j 5 i 6m, i 6m6n, . . . i 6m6n6l6s,
and V i j 5c„( i 2 j )1 ,(i 2 j )2 ,(i 2 j )3 ,(i 2 j )4…. Each site
communicates to 3421580 neighbors.

FIG. 1. A test of the fixed point structure of a candidate
action. The curves correspond to a fine action with a bare m
m050.04. The bare mass of the coarse action is tuned. The fam
of curves correspond to decreasingb’s as they ascend. If the bar
mass were doubling under an RGT, the optimal coarse action w
have bare mass 0.08.
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There are many good parametrizations, resulting in fa
local FP actions. However, one ultimately wants to use th
actions in simulations, and the action must be somehow tr
cated. There are a number of~subjective! criteria to select a
good RGT, based on the properties of the truncated ac
~which the RGT does not know about!: a good dispersion
relation, E(p)5upW u out to large upW u with no complex
roots, good free-field thermodynamics,P51/3sT4 even at
large discretization, etc. I tuned the RGT to optimize the
criteria, and my choice is given byc(1,0,0,0)
50.03, c(1,1,0,0)50.01, c(1,1,1,0)50.005, c(1,1,1,1)
50.0025, andk544.0.

The couplings of the FP action for my RGT~for massless
fermions! fall off exponentially withr 5A(mxm

2 . The largest
entries at distancer 52 are at locationx5(61,61,61,
61). The smallest truncation which accurately reprodu
the main features of this FP action is to an action which
on a hypercube—that is, the free field action is to be para

FIG. 2. Dispersion relationE(p) vs upu for m050 for the hy-
percubic action.

FIG. 3. Dispersion relationE(p) vs upu for massless Wilson
fermions.
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T. DeGRAND PHYSICAL REVIEW D 58 094503
etrized with five nonzerol’s and four nonzeror’s, corre-
sponding to each of the nonzero offsets. An example o
dispersion relation for this hypercubic action is compared
the Wilson action in Figs. 2 and 3. I show both branches
the hypercubic action’s dispersion relation; all roots are re
The non-truncated FP action has a perfect dispersion rela
E5upW u for all pW .

For massive fermions, I need an action which is on
renormalized trajectory~RT! for some RGT~with the mass
scaling at each step with the ratio of lattice spacings!. To
reach the RT, one can begin with an action which has a v
small mass but is otherwise close to a FP action, perfor
series of blockings, and follow it out.

One complication with this procedure is that an acti
which is local for a small mass can block into an action
l
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u
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f

t
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large mass which is not short range. To avoid this, I take
RG transformation whose parameters are functions of
mass and tune the parameter~s! to insure a local action a
each blocking step. The resultingl’s and r’s are smooth
functions of the mass. Again, the dispersion relation for h
percubic approximations to RT actions are well behaved
to largeupW u.

Plots of the variation of the parameters—or the tables
numbers corresponding to them—are by themselves not
useful for calculation. Rather than give them, I will immed
ately present a simple parametrization of the couplings.

My choice of parametrization is to regard all ther’s and
l8s as linear functions of the bare mass and to determ
l~0,0,0,0! for a positive bare mass by solving the dispersi
relation for it: defining
R52r0~1,0,0,0!112r0~1,1,0,0!124r0~1,1,1,0!116r0~1,1,1,1! ~3.2!

As52l~1,0,0,0!112l~1,1,0,0!124l~1,1,1,0!116l~1,1,1,1! ~3.3!

D58l~1,0,0,0!124l~1,1,0,0!132l~1,1,1,0!116l~1,1,1,1! ~3.4!
a
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the pole of the propagator@l2(p)1(mrm
2 (p)50 at pm

5( im0,0,0,0)] is at

l~0,0,0,0!52As„cosh~m0!21…2R sinh~m0!2D ~3.5!

~with the convention that allr j8s are negative!. My linear
parametrization runs over 0,m0,0.32, which is the usefu
range of mass for light hadron spectroscopy for lattice sp
ings aTc51/2 to 1/4.

The big problem in parametrizing an approximate act
is that the additive renormalization of the quark mass
g2Þ0 drives the critical quark massmq

c negative, outside the
region where the solution of the FP equation is meaning
With Wilson fermions, and one free parameter~k! this is not
a problem~one just tunesk abovekc without otherwise al-
tering the action! but with these complicated actions there
not a clear cut way to proceed. In principle, all the para
eters in the action should depend on properties of the ga
field ~for example, on the local value of the plaquette!. To
circumvent this, I make an arbitrary choice: I assume that
parameters continue to vary linearly with the bare mass,
I determinel~0,0,0,0! by continuing the low-mass limit o
Eq. ~3.5! to a negative mass.

l~0,0,0,0!52Rm02D. ~3.6!

Since mq
c.20.4 at bc(Nt54) and moves toward zero a

biggerb’s, l~0,0,0,0! is basically a linear function ofm0 .
This parametrization is not appropriate for studyi

charm with this action~wheream052 to 4 depending on the
lattice spacing!. The parameters of the action on the RT a
c-

n
r

l.

-
ge

e
d

smooth functions ofm0 , so one could probably construct
more complicated~polynomial or exponential! fit to them.

Table I gives the parameters of the linear fit.

B. Very fat links

Measurements of pure gauge observables~the potential or
glueball masses! suffer from noise arising from the sho
distance fluctuations of the gauge fields. A good cure for t
problem has been known for many years: define new l
variables which do not couple to the UV sector of the latt
variables, and which have the same IR properties as
original variables. An example of such a variable is an AP
blocked link @11#

Vm
n11~x!5~12a!Vm

n ~x!

1a/6(
nÞm

„Vn
n~x!Vm

n ~x1 n̂ !Vn
n~x1m̂ !†

1Vn
n~x2 n̂ !†Vm

n ~x2 n̂ !Vm
n ~x2 n̂1m̂ !… ~3.7!

@with Vm
0 (x)5Um(x) and Vm

n11(x) projected back onto
SU~3!#. It is also known that for best results, botha and the
maximum number of blocking stepsN should increase as th
lattice spacing decreases.

Fermions also suffer from bad UV behavior, and th
symptoms include the breaking of flavor symmetry~for stag-
gered fermions!, large additive renormalization of the bar
mass~for Wilson fermions!, and large renormalizations o
currents~for any kind of fermion!. The tadpole improvemen
program@12# was originally designed to estimate or compu
these large UV effects and subtract~or divide! them out dur-
ing the conversion from the lattice calculation to continuu
number.
3-4



m
om
o

ac
f.

it
in
ire
nd

UV
ce

t

n
.
use
the
cou-

-
s I
gh-
e
t

P
ct-

the
N

a

the
ec-
at
be
w

in-

is
m-

an
l

i-

r-

TESTS OF HYPERCUBIC FERMION ACTIONS PHYSICAL REVIEW D58 094503
However, recent evidence suggests that it may in so
cases be better to remove the UV fluctuations directly fr
the simulations. This evidence is the partial restoration
flavor symmetry breaking for staggered fermions by repl
ing the link by anN51 APE-blocked link, as shown by Re
@13# and ~with a slightly different averaging! by Ref. @14#.
These authors restrict themselves toN51, presumably be-
cause they wish to use their actions for simulations w
dynamical fermions. However, if one is interested
quenched simulations, one can APE-block to any des
level, with a tiny overhead, simply by pre-computing a
storing the APE-blocked links. Then ifN.1 improves UV
behavior, one is free to use it.

It is easy to understand why the fat links suppress
fluctuations@15#. Each term in the action in coordinate spa

LI5
1

2a (
x,y,z

c̄~x!G . . . Um~x1y! . . . c~x1z! ~3.8!

can be expanded as a power series ing

LI5
1

2a (
x,y,z

c̄~x!G . . . F11 igaAm~x1y1a/2m̂ !

2
1

2
~ag!2Am~x1y1a/2m̂ !2 . . . G . . . c~x1z!

~3.9!

which in momentum space becomesLI5L I
11L I

2 with

L I
15 i

g

2 E
p,q

c̄~p!GE
k
d4~k1q2p!Am~k!

3ei ~y1a/2m̂ !kc~q!eiqz ~3.10!

L I
25

g2a

2 E
p,q

c̄~p!GE
k1 ,k2

d4~k11k21q2p!Am~k1!

3Am~k2!ei ~y1a/2m̂ !~k11k2!c~q!eiqz. ~3.11!

Smearing the link over a distancer 0 makes the replacemen

AmS r 1
a

2
m̂ D→(

m,n
(
w

hmn~w!AnS r 1w1
a

2
n̂ D ~3.12!

or

TABLE I. Linear parametrization of the couplings of the hype
cubic action: l(x0 ,x1 ,x2 ,x3)5la1m0lb , r0(x0 ,x1 ,x2 ,x3)5ra

1m0rb .

offset la lb ra rb

0 0 0 0 2.256756 20.9863
1 0 0 0 20.1122 0.0741 20.1464 0.1300
1 1 0 0 20.0323 0.0271 20.0329 0.0303
1 1 1 0 20.0144 0.0141 20.0101 0.0096
1 1 1 1 20.0072 0.0076 20.0035 0.0033
09450
e

f
-
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d

Am~k!→(
m,n

Hmn~k!An~k!ei ~y1a/2~ n̂2m̂ !k! ~3.13!

~and a similar formula forL I
2) where the form factor is

Hmn(k)5( rhmn(r )eikr . Essentially any smearing functio
suppresses the vertex atk.p/r 0 . In the language of Ref
@12#, tadpoles contribute beyond their naive strength beca
the UV divergence of the gluon loop compensates for
a-dependence of the vertex; smearing suppresses the
pling of the fermion to high momentum gluons.

The reader might be~justifiably! concerned about the ex
istence of a transfer matrix for these actions. As far a
know, no FP action has a transfer matrix connecting nei
boring time slicest andt11. This can be seen even for fre
scalar field theory@1#: the couplings of spins on differen
sites, the analogues of ther’s andl’s of Eq. ~3.1!, die away
exponentially with distance. Any finite truncation of a F
action ~for r ,L) presumably has a transfer matrix conne
ing t and t1L. For the free field hypercubic action,L51,
just like the usual Wilson or staggered actions. Fattening
links makes the range of the action much greater. With
levels of APE blocking, the action extends over a range6N
sites before it cuts off. Because this blocking is basically
random walk, the effective range of the action isO(aAN)
.1.2 sites for the particular parameters I used. Except at
largest lattice spacing, a standard fitting procedure for sp
troscopy sees an apparent plateau in effective massesT
>3 lattice spacings’ separation of source and sink. It may
that the right thing to do is to be more careful, but I sa
nothing in any of my spectroscopy computations which
dicated any problems with a naive approach.

C. Nonlocal Pauli term

Lattice fermions have a magnetic moment which
anomalously small due to lattice artifacts. One can para
etrize the vertex through the interaction of a fermion with
infinitesimal magnetic fieldB: the pole in the propagator wil
be atE5m01B/2mB , wheremB is the so-called magnetic
mass. I write the momentum-space interaction term as

c̄~p!iDm
1 ~p,2p8!Am~p2p8!c~p8! ~3.14!

and expand the vertex in Dirac space as

Dm
1 ~k,2p!5 f m,0~k,2p!1 f m,n~k,2p!gn

1 (
r,n

f m,rn~k,2p!grgn

1 f m,5~k,2p!g51 f m,n5~k,2p!gng5 ~3.15!

~with an identical labeling for the decomposition in coord
nate space!. A lot of algebra@5# gives

mB52
l~ im0!@l8~ im0!2r08~ im0!#

r28~ im0! f 1,1~ im0!2 ic12
1 ~ im0!l~ im0!

~3.16!

where
3-5
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T. DeGRAND PHYSICAL REVIEW D 58 094503
l~ im!5(
n

emn0l~n! ~3.17!

l8~ im!5(
n

n0emn0l~n! ~3.18!

r08~ im!52 i(
n

n0emn0r0~n! ~3.19!

r28~ im!52 i(
n

n2emn0r2~n! ~3.20!

f 1,1~ im!5(
xy

emxf 1,1~x,y! ~3.21!

ic12
1 ~ im!5(

xy
~x22y!2emxf 1,12~x,y! ~3.22!

are all real.
All approximate FP vertices I have seen have a com

cated Pauli term with sizable contributions when the qu

FIG. 4. mr /Tc vs mp /Tc for the Wilson action. Data are labele
with octagons foraTc51/2, diamonds foraTc51/3, crosses for
aTc51/4, squares foraTc51/8, and fancy crosses foraTc

51/12.

TABLE II. Nonlocality of the Pauli termic12
1 (x,im) for actions

along the RT.

x m050.08 m050.16 m050.32 m050.64

0 0 0 0 20.0913 20.0840 20.0709 20.0527
1 0 0 0 20.2490 20.2269 20.1883 20.1278
1 1 0 0 20.2980 20.2710 20.2253 20.1479
1 1 1 0 20.1641 20.1493 20.1248 20.0816
1 1 1 1 20.0318 20.0291 20.0246 20.0167

Sum in hypercube: 20.8343 20.7604 20.6340 20.4269
Total: 20.8974 20.8182 20.6837 20.4807
09450
i-
k

and antiquark do not sit on the same lattice site. As an
ample, Table II shows the contribution of various fermio
offsets toic12

1 (x,im) for a vertex based on the RGT I hav
been using in this paper. The normalization appears to
reasonably well saturated by fermion offsets over a cu
The gauge connections are very complicated.

However, it is not clear how important the FP version
the Pauli term will be in spectroscopy. I therefore studi
three possibilities:

~1! No Pauli term at all. This turns out to give hyperfin
interactions which are too small.

~2! Keep only the on-site part of the Pauli term~the stan-
dard clover term! but choose its normalization so thatmB
5m0 . This is not a FP action. The gauge links will be fa
tened like the rest of the links in the action.

~3! Restrict the Pauli term to offsets which span a cu
For each offset, sum over all the minimum-length pa
~with their sign factors! which contribute to the Pauli term

FIG. 5. mN /Tc vs. mp /Tc for the Wilson action. Data are la
beled as in Fig. 4.

FIG. 6. Bare squared pion mass~upper set of curves! and quark
mass from Eq.~4.5! ~lower set of curves! vs bare quark mass fo
action A, atbc for Nt52 ~squares!, 3 ~diamonds!, 4 ~crosses!.
3-6
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Choose the relative normalization of the terms to match
FP vertex and the overall normalization to fixmB5m0 . Fat-
ten the links if necessary. This choice~hereafter called a
‘‘full Pauli action’’ ! is a much better approximation to a F
action than the second choice~‘‘clover action’’!, but if the
clover action performs as well in a test, it is the action
choice. It is still only loosely related to a true FP action.

For m0.0 the constraintmB5m0 fixes the normalization
of the Pauli term. I find that the normalization varies rough
linearly with the bare quark mass. I choose~arbitrarily! to
keep the same linear dependence withm0 even for a negative
bare mass. This would be equivalent in the standard clo
action to making the size of the clover term a function of t
hopping parameterk, rather than a function ofb. From a
practical point of view the difference is slight: as one var
the gauge coupling in a simulation, the value of the b
quark corresponding to a particular physical hadron m
shifts, becoming~typically! more negative asb decreases
The input coefficient of the clover term becomes larger ab

FIG. 7. Bare squared pion mass~upper set of curves! and quark
mass from Eq.~4.5! ~lower set of curves! vs bare quark mass fo
action C, atbc for Nt52 ~squares!, 3 ~diamonds!, 4 ~crosses!.

FIG. 8. mr /Tc vs mp /Tc for action A.
09450
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decreases, so the net result is that one can as well say tha
clover term tracks the bare quark mass, as to say that th
tracks the bare coupling. At zero gauge coupling FP acti
do not have a mass-independent Pauli normalization an
the standard practice of making the normalization mass
dependent is unnatural. Presumably one could do simulat
with a standard action, such as the Wilson-plus-clover
tion, tuningmB to equalm0 , although it is hard to see th
point of doing this as long as the dispersion relation is i
perfect.

The linear parametrization reproducesmB5m0 to within
five per cent form0,0.4. For the clover hypercubic action
could have simply setmB5m0 for m0.0 by inverting Eq.
~3.16!, although I did not do that.

IV. SCALING TESTS

A. Survey of actions tested

Most of the quenched spectroscopy has been done us
new parametrization of a FP gauge action for SU~3!. In the
Appendix I tabulate the critical temperature, string tensi

FIG. 9. mN /Tc vs mp /Tc for action A.

FIG. 10. mr /Tc vs mp /Tc for action C.
3-7
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T. DeGRAND PHYSICAL REVIEW D 58 094503
and Sommer parameters for the gluonic action, so the re
can convert to his favorite scaling variable. One test has b
done using the original parametrization of the action p
sented in Ref.@16#, and some tests use the SU~3! gauge
action of our recent work on instantons@17#. I have made
rough measurements of itsbc(Nt) for deconfinement to se
the scale.

FIG. 11. mN /Tc vs mp /Tc for action C.
09450
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en
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All the fermionic actions are made gauge-invariant by
placing the offsets by an average over the shortest dista
gauge paths. For example,

c̄~x!c~x1m̂1 n̂ !→
1

2
c̄~x!@Vm~x!Vn~x1m̂ !

1Vn~x!Vm~x1 n̂ !#c~x1m̂1 n̂ ! ~4.1!

whereVm(x) is either one of the original links or an APE
blocked link.

The cost of a hypercubic action per iteration step dur
matrix inversion is about 20 times as expensive as the u
Wilson action, since there are more neighbors and the D
connections are not projectors. Actions with the complica
Pauli term are about 56 times as expensive as the usual
son action. All the gauge connections are pre-computed
there are startup and storage costs, as well. I used the s
lized biconjugate gradient~biCGstab! algorithm for matrix
inversion@18#.

The two actions which were tested most extensively b
have a hypercubic kinetic term and APE-blocked links w
N57 anda50.3. Action A has a full Pauli term. It is the
best approximation to a FP action I found. It used the v
expensive gauge action of Ref.@17#. Action C has only the
clover term but is otherwise identical. The particular cho
e
FIG. 12. A scaling test for new actions~squares action C, octagons action A! vs Wilson actions on lattices of fixed physical siz
~diamonds! and larger volumes~crosses!, and the nonperturbatively improved~bursts! and tadpole improved~fancy crosses! clover actions.
Data are interpolated top/r50.84 ~a!, 0.80 ~b!, 0.75 ~c! and 0.70~d!.
3-8
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TABLE III. Table of best-fit masses, action C,b53.092 (aTc

51/2).

amq PS V N D

0.30 1.883~8! 2.066~8! 3.332~17! 3.450~21!

0.15 1.623~9! 1.861~10! 3.002~20! 3.156~25!

0.10 1.535~9! 1.796~11! 2.891~22! 3.061~27!

0.05 1.446~9! 1.733~12! 2.781~24! 2.967~30!

0.00 1.363~9! 1.672~14! 2.670~27! 2.875~33!

20.05 1.251~10! 1.575~20! 2.526~37! 2.770~46!

20.10 1.159~10! 1.551~20! 2.432~39! 2.687~43!

20.15 1.039~12! 1.491~26! 2.303~54! 2.591~49!

20.20 0.899~16! 1.429~35! 2.147~70! 2.505~64!

TABLE IV. Table of best-fit masses, action C,b53.50 (aTc

51/3).

amq PS V N D

0.15 1.156~7! 1.363~11! 2.077~21! 2.258~28!

0.10 1.066~15! 1.328~20! 2.090~33! 2.277~51!

0.05 0.935~8! 1.218~15! 1.816~30! 2.049~31!

0.00 0.825~9! 1.153~19! 1.688~38! 1.959~41!

20.05 0.689~10! 1.124~18! 1.603~27! 1.941~33!

TABLE V. Table of best-fit masses, action C,b53.70 (aTc

51/4).

amq PS V N D

0.15 0.943~4! 1.118~9! 1.722~10! 1.853~14!

0.10 0.836~4! 1.044~11! 1.592~12! 1.742~17!

0.07 0.768~5! 0.997~12! 1.514~14! 1.678~19!

0.03 0.672~5! 0.934~15! 1.410~18! 1.598~22!

TABLE VI. Table of best-fit masses, action A,b52.38 (aTc

51/2).

amq PS V N D

0.15 1.816~11! 1.972~18! 3.274~36! 3.355~44!

0.10 1.727~11! 1.903~19! 3.161~37! 3.309~49!

0.05 1.637~11! 1.835~21! 3.047~39! 3.237~47!

0.00 1.546~11! 1.769~22! 2.930~43! 3.156~51!

20.10 1.358~10! 1.582~20! 2.596~44! 2.825~43!

20.15 1.246~10! 1.502~24! 2.452~44! 2.718~49!

20.20 1.123~11! 1.417~29! 2.297~45! 2.605~57!

20.25 0.982~13! 1.322~37! 2.155~42! 2.483~71!
09450
of fattening comes from performing the minimum in E
~2.9!. My scaling tests of it used the new gauge action p
sented in the Appendix.

I tested several other actions. All the variants of tadp
improvement I studied had large mass renormalizations
pure hypercube action with no Pauli term had a good disp
sion relation at the coarsest lattice spacing, but its hyper
splittings were basically identical to those of the Wilson a
tion.

B. Spectroscopy

Lattice volumes were 43316 at aTc51/2 ~excessively
long in the time direction, in retrospect!, 63316 at aTc
51/3, and 83316 ~dangerously short! and 83324 ~safer! at
aTc51/4.

The data set for action A consists of 80 lattices ataTc
51/2, 50 lattices ataTc51/3 and 36 83316 lattices at
aTc51/4. The data set for action C consists of 80 lattices
aTc51/2 and aTc51/3 and 60 83324 lattices ataTc
51/4.

The spectroscopy measurement is entirely straight
ward. I gauge fixed to a Coulomb gauge and used a Gaus
independent particle source wave functionc(r )
5exp(2gr2) with g51, 0.5, and 0.25 ataTc52,3,4. I used
pointlike sinks projected onto low momentum states. I us
naive currents (c̄g5c, etc.! for interpolating fields. The
spectra appeared to be asymptotic@as shown by good~cor-
related! fits to a single exponential# beginning att.2 ~at
aTc51/2), 3–5 ~at aTc51/3) and 5–7~at aTc51/4) and
the best fits were selected using the old HEMCGC criter
@19#.

My fiducial for comparison, simply because there are e
tensive data sets, is Wilson-action quenched spectrosco
have tried to restrict the data I used for comparison to latti
with the proper physical volume. I constructed my ow
aTc51/2 andaTc51/3 Wilson data sets (b55.1 and 5.54!
since I could not find any results for these. I also ran off

TABLE VII. Table of best-fit masses, action A,b52.85 (aTc

51/3).

amq PS V N D

0.10 1.179~8! 1.353~11! 2.145~19! 2.245~24!

0.05 1.072~8! 1.275~12! 2.010~21! 2.115~27!

0.00 0.956~9! 1.194~13! 1.870~24! 1.989~32!

20.05 0.829~10! 1.113~16! 1.720~28! 1.854~40!

TABLE VIII. Table of best-fit masses, action A,b53.05 (aTc

51/4).

amq PS V N D

0.15 1.100~5! 1.228~8! 1.903~20! 1.998~27!

0.10 0.993~6! 1.146~9! 1.783~18! 1.875~30!

0.05 0.880~6! 1.066~11! 1.640~20! 1.788~26!

0.00 0.758~7! 1.000~12! 1.504~25! 1.662~29!
3-9
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T. DeGRAND PHYSICAL REVIEW D 58 094503
Wilson lattices atb55.7 (Nt54) to measure a dispersio
relation. At that coupling my masses were within a stand
deviation of the much superior data set of Butleret al. @20#.

To compare with the more standard improved action
also performed a fiducial study using the clover action~Wil-
son fermion action plus on-site clover term! in a background
of Wilson action gauge fields. I tadpole-improved the act

FIG. 13. Dispersion relation for heavy hadrons ataTc51/2 (a
.0.36 fm) from action C. The curves are the continuum dispers
relation for the appropriate~measured! hadron mass.
09450
d

I

n

using u05(Tr Up/3)1/4 where Up is the average plaquette
Data are ataTc51/2 andaTc51/3, whereu050.802 and
0.844. This data set was 180 and 60 lattices at the two c
plings.

I show first plots ofmr /Tc and mN /Tc vs mp /Tc with
Wilson fermions. These plots are scaling tests by themsel
or one can interpolate in the curves to fixed values ofmp /Tc
~equivalent to fixed quark mass! and plot the variation in the
observable vsaTc . Figure 4 shows the rho mass and Fig.
shows the nucleon mass. Notice that the rho mass has
worst scaling violations of the three particles.

I can roughly estimate the critical bare quark mass~at
which the pion is massless! by linearly extrapolatingmp

2 to
zero in m0 . Figure 6 shows the squared pion mass vs b
quark mass for action A, atbc for Nt52, 3, 4, and the same
plot, but for action C, is shown in Fig. 7. Both actions ha
small bare mass renormalization. This is important from
point of view of principle because a true FP action wou
have no additive mass renormalization. It is important
practice because we only really know the kinetic parame
by solving the RG equation for positive bare mass; they m
be extrapolated in some artistic way if one needs to go
negative bare mass.

Another way to estimate the critical bare mass is to u
the partially conserved axial-vector current~PCAC! relation

¹m•^c̄g5c~0!c̄g5gmc~x!&52mq^c̄g5c~0!c̄g5c~x!&.
~4.2!

n

FIG. 14. Squared speed of light vs hadron mass in units ofTc , for ~a! pseudoscalars,~b! vectors and~c! protons, from action C.
Octagons, crosses, and diamonds labelaTc51/2, 1/3 and 1/4.
3-10
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FIG. 15. Squared speed of light vs hadron mass in units ofTc , for ~a! pseudoscalars,~b! vectors and~c! protons, from the Wilson and
clover actions. Octagons, crosses, and diamonds labelaTc51/2, 1/3 and 1/4 for the Wilson action, and for the clover action the labels
pluses foraTc51/4 and fancy crosses foraTc51/3.
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If I convert to lattice operators, sum over spatial slices, a
measure distance in thet direction, this becomes

ZA

]

]t (
x,y,z

^c̄g5c~0!c̄g5g0c~x!&

52amqZP (
x,y,z

^c̄g5c~0!c̄g5c~x!&. ~4.3!

I follow @21# by fitting the pseudoscalar source-pseudosc
sink to

P~ t !5Z @exp~2mpt !1exp„2mp~Nt2t !…# ~4.4!

and the pseudoscalar source-axial sink to

A~ t !5
ZP

ZA

2mq

mp
Z @exp2~mpt !2exp„2mp~Nt2t !…#

~4.5!

to extractmq . I only use the naive~pointlike! currents. I do
not know theZ-factors, but for finding the value ofm0

c that
does not matter. Extrapolatingmp

2 or mq linearly in m0 ig-
nores all the well-known problems associated with extract
quark masses from lattice data@22#, but the procedure is
perfectly adequate to distinguish a small quark mass fro
large one. The quark masses are shown in Figs. 6 and 7
09450
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I find for action A thatm0
c520.42,20.20, and20.14 at

aTc51/2, 1/3, and 1/4, respectively. For action C, the cor
sponding numbers arem0

c520.36,20.16, and 20.095.
These numbers should be compared to the analogous q
tities for Wilson fermions, usingm0

c51/(2kc)24: 21.58 at
b55.1 (aTc51/2),21.04 at b55.7 (aTc54), and still
20.70 atb56.3 @12#. In the latter case tadpole improve
perturbation theory can explain most of the mass shift.

For a scaling test I comparemr /Tc andmN /Tc vs.mp /Tc
for actions A and C in Figs. 8, 9, 10, and 11.

I can compare scaling violations in hyperfine splittings
interpolating the data to fixedp/r mass ratios and plotting
theN/r mass ratio vsmra. I do this at fourp/r mass ratios,
0.84, 0.80, 0.75 and 0.70, in Fig. 12. In these figure
diamonds are Wilson action data in lattices of fixed physi
size (43 at b55.1, 63 at b55.54, 83 at b55.7 @20#, 163 at
b56.0 @23# 243 at b56.3 @24#! and the crosses are data
various larger lattices: 163 and 243 at b55.7 and 323 at b
56.17 @20#, 243 at b56.0 @23#. When they are present th
data points from larger lattices illustrate the danger of p
forming scaling tests with data from different volumes. T
bursts are from the nonperturbatively improved clover act
of Ref. @25# and the fancy crosses are the TI clover actio
The other plotting symbols show the test actions A and C

I give tables of masses from action C in Tables III, IV
and V, and for action A in Tables VI, VII, and VIII.
3-11



T. DeGRAND PHYSICAL REVIEW D 58 094503
FIG. 16. Variation ofmr /Tc andmN /Tc vs aTc at fixedmp /Tc52.75@~a! and~b!# and Eq.~3.15! @~c! and~d!#, for actions A~octagons!,
C ~squares!, Wilson action~diamonds!, and TI clover action~fancy crosses!.
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C. Dispersion relations

There are two ways to look at dispersion relations. T
simplest is to plotE(p) the energy of the state produced wi
spatial momentumpW , as a function ofupW u. The result for
action C at bare mass 0.15 is compared to the free disper
relation ataTc51/2 in Fig. 13. All of the test actions I hav
studied have good dispersion relations even ataTc51/2. I
believe that is a generic feature of the hypercubic kine
term.

The signal to noise ratio for the nonzero momentum m
son channels dies away at larget like exp@2„E(p)
2mp…t#. This means that large statistics are required to g
small quark mass or to highpW . However, it is possible to
extract a fittedce f f

2 5(E(p)22m2)/p2 for the lowest nonzero
momentum mode, for larger masses. This was done by
forming a 4-parameter correlated fit to a pair of single ex
nentials, one for thepW 5(0,0,0) mode and the other thepW
5(1,0,0) mode. I compare my results from action C a

TABLE IX. Couplings of the few-parameter approximate F
action.c0522.517.

operator c1 c2 c3 c4

cplaq 3.248 21.580 .1257 .0576
c6-l ink 2.2810 .0051 .00490 2.0096
09450
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from the Wilson and clover actions in Figs. 14 and 15. Ha
ron masses are again scaled byTc to allow the display of
several lattice spacings at once. Action C hasce f f

2 .1 for all
observed hadrons even atp5pTc (860 MeV/c) at aTc
51/2.

D. Summary

It appears that these actions are members of a family
actions which show improved scaling, even atbc(Nt52),

TABLE X. Critical couplings at finite volume and extrapolate
to infinite volume for the FP action with parameters in Table I.

volume Nt52 Nt53 Nt54

43 3.025~25!

63 3.06~1! 3.47~1!

83 3.08~1! 3.49~1! 3.67~1!

103 3.085~5! 3.50~1! 3.69~1!

123 3.69~1!

infinite 3.092~7! 3.50~1! 3.70~1!

Tc /L 8.67 8.96 8.33
a2s 0.56~5! .302~16! .164~3!

As/Tc 1.50~7! 1.65~2! 1.62~2!

r 0 /a 1.3~2! 2.19~2! 2.93~1!

r 0Tc .65~10! .730~7! .733~3!
3-12
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TESTS OF HYPERCUBIC FERMION ACTIONS PHYSICAL REVIEW D58 094503
about 0.36 fm lattice spacing. While action A is a bet
approximation to a FP action@based on the solution of Eq
~2.9!#, it does not perform any better than action C, and
much slower. The spectroscopy seems to be insensitiv
the choice of gauge action.

The hypercubic actions have much better dispersion r
tions than either the clover or Wilson action. They share t
improvement with the D234 family of actions@26# and with
the Hamber-Wu@27# action as tested in Ref.@28#.

However, the hypercubic actions tested here seem to
duce about the same level of improvement in hyperfine sp
tings as the clover action, at heavier quark masses. Lea
out the Pauli term gives noticeable scaling violations with
too-largeN/r ratio; probably one needs to keep some kind
explicit Pauli or clover term in the lattice action to boost t
hyperfine splittings.

The hyperfine splittings show worse scaling violatio
than the dispersion relation. Controlling and approximat
the quark anomalous magnetic moment is the most diffi
part of the construction of a FP action, and that may be
source of the scale violations.

Of course, there is still the possibility that all the actio
tested here are missing some other common physics ing
ent, which is responsible for scaling of the hyperfine sp
tings.

Since ther meson is the particle which shows the large
scaling violations, the best way to quantify improvement
by taking ‘‘sections’’ of themr /Tc and mN /Tc vs mp /Tc
plots and displaying them vsaTc at fixedmp /Tc in Fig. 16.
The improved actions ataTc51/2 seem to show the sam
level of scaling violations as Wilson data at a lattice spac
a factor of 3 smaller. The smaller lattice spacing data seem
pick up about a factor of two improvement in lattice spacin
although the uncertainty in the data is larger. Quenched
culations are thought to scale in difficulty like 1/a6; the cost
of action C is about a factor of 20 compared to the Wils
action.

FIG. 17. The potential of the approximate FP action vs dista
scaled withTc . Octagons show data foraTc51/2, diamonds for
aTc51/3, and squares foraTc51/4.
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My data by themselves do not suggest a unique way
extrapolate toa50. FP actions are classically perfect with n
an scaling violations for anyn. With a Pauli term normal-
ized so thatmB5m0 , any hypercube action is formally
O(a2), due to the same cancellation of graphs as for
usual clover action@29#. With no Pauli term the action is
only O(a), just like the usual Wilson action.

V. CONCLUSIONS

The important ingredients of these actions which contr
ute to their improved scaling behavior are the hypercu
kinetic term and the lattice anomalous magnetic mom
term. The very small additive renormalization of the ba
lattice mass is due to the use of fermion-gauge field c
plings which are insensitive to the short-distance fluctuati
of the gauge fields.

The specific implementation of these ideas in the action
have tested involves many arbitrary choices. I believe t
essentially every choice I made for a particular parametr
tion could be replaced by another choice, which would g
an action which would have the same quality of scaling v
lations. Some changes should add some additional good
tures. For example, it might be possible to find a parame
zation of a fat link which would lend itself to simple
perturbation theory calculations.

There are several obvious extensions of this work. T
first involves the kinetic term: It would be useful to find
parametrization of the kinetic term which extends from ze
mass to a very large mass. It would also be interesting
develop a fat link parametrization of the action which cou
be efficiently incorporated into one of the standard alg
rithms for dynamical fermions. Next, is there a better para
etrization of the anomalous magnetic moment term wh
might improve scaling?

Fixed point actions have many desirable formal proper
@10#: they include scale invariant instanton solutions, the
dex theorem, an absence of exceptional configurations, a
particular implementation of chiral symmetry@30,31#. These
properties may not be present in an action which is a
approximation to a FP action. I do not know how well the
are satisfied by these actions~other than the apparent sma
renormalization of the quark mass!.

Indeed, the particular choice of a free field action whic
made was motivated only by the locality and spectral pr
erties of the free action. No attempt was made to optim
the chiral properties of the approximate action. This
clearly the outstanding problem for future study.
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APPENDIX: PURE GAUGE ACTIONS

This work used a new few-parameter approximation to
FP action for SU~3! gauge theory. Using it, isolated instanto
configurations have constant actions to within 1.5 per c
Like the action of Ref.@16#, it is a superposition of powers o
the plaquette and the perimeter-6 ‘‘twisted’’ link (x,y,z,
2x,2y,2z). Like the action of Ref.@17# it includes a con-
stant term. It is designed to be used for couplings such
the lattice spacing isaTc.1/3 or 1/4 to 1/8 or so. Explicitly

S~V!5c01
1

Nc
(
C

c1~C!„Nc2Tr~VC!…

1c2~C!„Nc2Tr~VC!…21 . . . ~A1!

with coefficients tabulated in Table IX.
This action costs about a factor of 7 times the usual W

son plaquette action to simulate.
e

F

-
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I have measured the critical couplings for the deconfi
ment transition ataTc51/2, 1/3, and 1/4. The critical cou
plings on the measured spatial volumes and my extrapola
to infinite volume are shown in Table X. I have also me
sured the string tension from Wilson loops at these value
the coupling, on 84 lattices~at b53.092) and 124 lattices for
the other couplings. The data was fitted to a static poten
V(r ) of the form

V~r !5V01sr 2E/r ~A2!

using the techniques of Ref.@32#. The fit to the largest lattice
spacing data is very difficult. The signal from larger is not
good, and there is very little left of the Coulomb part of th
potential due to the coarseness of the lattice. Neverthele
present the string tension and the Sommer@33# parameterr 0

(r 0
2dV(r 0)/dr521.65) in Table X. I see scaling within er

rors for both these parameters~vs Tc) at aTc51/3 and 1/4.
There is a ten per cent scaling violation ataTc51/2. The
asymptotic value inferred from large scale Wilson simu
tions @34# is As/Tc51.600(11).

Finally, I show a plot ofV(r )/Tc vs rTc for the three
lattice spacings in Fig. 17. The overall vertical shift in th
potentials is not physical, but it allows the reader to sepa
the different data sets by eye.
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