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I have performed scaling tests using quenched spectroscopy of a family of fermion actions which have a
hypercubic kinetic term, gauge connections built of smeared links, and an anomalous magnetic moment term.
These actions show improved rotational invariance compared to the standard Wilson action and to the tadpole-
improved clover action. Hyperfine splittings are improved compared to the standard Wilson(atttoa level
of a factor of three in the lattice spacin@nd are about the same as for the tadpole-improved clover action.
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[. INTRODUCTION which are uncontaminated by extrapolations in volume or to
the chiral limit. Thus | compare only simulations in fixed

| report on tests of a family of fermion actions for lattice :
. . 4 . . hysical volume. Any volume would do, and so | choose a
gauge theory simulations, which are designed to improve th : . ;
Small one simply because these actions are expensive to

scaling of hadron spectroscopy. While very expensive to .

) 4 . imulate. To set the scale | use a gluonic observable because
simulate, they appear to more than repay their computation . . . .
. : . ese are quenched simulations. As a choice of gluonic ob-
cost with better scaling behavior.

The actions which | tested were inspired by the fiXedservables, one has., the critical temperature for deconfine-

point (FP) action prograni1,2] for fermions[3—10]. How- ment, the string tensioa or the.Sommer radius, . Glueball
ever, they are not FP actions. They are Wilson-fermion like O" torelon measurements are just too costly. Of these observ-
’ ' ables, the ones associated with the poteritiahndr,) re-

in the sense that they have four component spinors on aft>, . . . s
y b b ire a fit to a functiorV(r); the choice of the fitting func-

sites and there are no manifest symmetries which protect th{%u fect th its. At latti .
bare quark mass from being additively renormalized. lon can ariect the results. a very coarse fattice spacing

The new features which | tested include this problem becomes more serious. Thus | Tigéo set the

(2) a hypercubic kinetic energy term. Each fermion in thescgle, and do simulations on lattices of fixed size2/T..
action communicates with 3-1=80 nearest neighbors. With \o=440 MeV and Jo/T;=1.60, the scales aré.
This term improves the hadron dispersion relation compared 27_5 MeV,L=1.45fm, and Z/L=860 MeV. Lattice
to that from actions using a standard on-axis nearest neigrgplac'”gsaTc:1/2'1/3’1/4 correspond ®=0.36, 0.24, and

bor coupling. 8 fm. _ ,
(2) Gauge connections built of very fat gauge links, links All the tests are performed at fixed physical quark mass

built by averaging the fundamental link variables over a local(defined either by interpolating lattice data to a fixed value of

region and re-projecting them back onto the gauge grougl=/M, or to a fixed value om,, /T.). At very coarse lattice
This construction removes short distance fluctuations frontPacings, and with heavithough still relativistig quarks,

the correlators during the simulation process, rather than acaling violations from conventional actions are very large.
tempting to divide them out at the end. This results in an]hUS only modest statistics are required to identify
observed, very small, additive mass renormalization of bar&MProvements—or lack thereof—compared to them. .
quantities, and | conjecture that all perturbative corrections B€Sides spectroscopy, | measure the meson or baryon dis-

to observables are considerably reduced. To include very f ersion relati_on. In lattices of fixed ph_y sical volur_ne set by
links in a simulation with dynamical fermions using known "¢’ the physmal momenta cor.respondlngéto th%dlﬁerept al-
technology might be quite expensive, but in quenched simulowed lattice modes are multiples %, ap=2mn/L or p
lations the cost is minimal. =aTn, if L=2/T., and one can compare data with differ-

| also tested a complicated lattice anomalous magnetient lattice spacings at the same physical momentum. Wilson
momentum term in which the quark and antiquark are nofnd clover fermions gB<6.0 (using the Wilson gauge ac-
fixed to the same site. Some kind of term is needed to corredton) exhibit bad scaling or rotational invariance violations.
the lattice free quark magnetic moment and to improve meThe new actions are rotationally invariant even at
son and baryon hyperfine splittings. However, my tests show=0.36 fm.
that the standard “clover” term, suitably normalized, im-  The outline of the paper is as follows: In Sec. Il | present
proves scaling as much as the complicated Pauli term neededgeneral discussion of the construction of a FP fermion ac-
to satisfy the FP equations. tion. In Sec. Il | describe the new features of these actions.

The scaling tests in this paper are a bit non-standar&ection IV is devoted to scaling tests, and | make some ten-
(when compared to other studies of spectros¢a@nyd de- tative conclusions in Sec. V. | describe ttreew) FP gauge
serve some explanation. | am interested in scaling testaction used in these simulations in the Appendix.
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II. FINDING FIXED-POINT FERMION ACTIONS . o
SF=XEy P(x)| (AQ(x—y))

The main problem in doing simulations with actions con-
taining many parameters is that one has to have some orga-
nizational scheme which keeps track of them, and it may be +i AD(x—v.z— VA (z (2.6
useful to understand the theoretical background of the ac- gg ; p XY ZTYIAUD YY) (26
tions (if any) before proceeding to tests. _ _ _

To find a FP action for QCD, | begin with a set of fermi- This has been presented in R, 7] for a particular RGT.
onic (. ) and gauge fieldU ,(n)) variables defined on a Having a parameterization of the FP vertex which appears to

fine lattice (or perhaps in the continuuml assume a fine be valid fpr smooth gauge configurations, one can the.n at-
action tempt to find a FP action appropriate to rough configurations.

However, the FP vertices are quite complicated, and at the
— couplings appropriate to real simulations, a naive exponen-
S=BSy(U) + A (V)¢ - (2.1)  tiation of the FP vertex does not result in a good solution to
a FP action. Instead, | short-cut the procedure by going di-
Sy is the gauge actiori, j label sites, and\(U) is the fer-  rectly to a nonperturbative construction.
mion action. | then integrate out these degrees of freedom to | test actions by generating coarse configuratifvis and
construct an action involving coarse-grained variablessolving Eq.(2.4) to form a set of fine link§U}. | assume
\Ifnb,\lf andV,(n,). This is done using a renormalization some functional form for the fine fermion actiak;(U),
group kernel then find the propagator on the coarse configuration from a
test sourceS by solving the RG equation E@2.5):

T=BTo(UNV)+ K2 (W = a0 (W =Dy ot lpnb:(AI(v));b{nésqé. 2.7
Np
(2.2

T4 is the blocking kernel for the gauge fields afids some
local averaging function, and is a parameter of the renor-
malization group theoryRGT). The renormalization group

| use a source of Gaussian random numbers distributed over
the lattice.

| then parametrize the coarse actiap(V) with a set of
parameters multiplying operators and minimize the “good-

equation ness of fit”
2_ 2
e*S’zf dydydUe (TS (2.9 =2 [A-$ 28
or
has a pure gauge FP gt=0 (B—x). In that limit the
gauge action dominates the integral; its RG equation is given rfr=x?/s's 2.9
by the same steepest-descent equation as for a pure gauge
model [the latter is the familiar normalize@quaredl residue mini-
mized by all sparse matrix invertdrBy varying parameters
SFP(V)=min(STP(U) + T(U,V)), (2.4) in A;. Some fits let the free field kinetic parameters be free
vy parameters. Typically, however, | have had more success by

fixing the overall normalization of the parameters in the ac-
while the fermions sit in the gauge-field background. Theirtion to their free field values and tuning parameters in the
action remains quadratic in the field variables, and the trandrial gauge connections.

formation of the fermion action is given most easily in terms ~ As the reader can see, it is necessary to parametrize both
of the propagator A¢ andA.. At the FP,A;=A.. Because the fine link vari-

ables are smooth at short d|stancA$ naively resembles
some gauge invariant extension of the free action and the FP
Q(U) vertex, and this fact can motivate an initial choice for the fine
(2 5) action. Because blocking carries the action towards its FP,

(A’(V)) nt is a better approximation to the FP propagator

n,n’

- 1
(A" (V) =2 oy g+ U, AU, 0

where {U} is the field configuration which minimizes Eq. than At |s One can pick an initiak;, test many param-
(2.4) for a given{V}. etrizations ofA., choose the best, ar{th principle) iterate
In all my work | have focused on a scale factor 2 RG towards a solution.
transformation, for gauge fields the so-called “Type-1" As an example of a test, compare Fig. 1. On the fine
transformation of Ref[2]. lattice the bare mass imy=0.04. The input bare mass of the
One can determine the FP vertex by expanding(2dl)  coarse action is varied along each curi&n exact param-
in a power series in the gauge coupliggand keeping only  etrization of a FP action would put the minimum gf at a
the lowest order term coarse mass whose value is twice the fine madse coarse
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FIG. 1. A test of the fixed point structure of a candidate FP  FIG. 2. Dispersion relatiofe(p) vs |p| for my=0 for the hy-
action. The curves correspond to a fine action with a bare masgercubic action.
my=0.04. The bare mass of the coarse action is tuned. The families

of curves correspond to decreasif as they ascend. If the bare There are many good parametrizations, resulting in fairly
mass were doubling under an RGT, the optimal coarse action WOUIH)Ca| FP actions. However, one ultimately wants to use these
have bare mass 0.08. actions in simulations, and the action must be somehow trun-
] . ] . ) cated. There are a number @ubjective criteria to select a
and fine actions are |d§nt|cethey are action C of Sec. v ~good RGT, based on the properties of the truncated action
The curves represent different coarse couplings: in ascendingnich the RGT does not know abgut good dispersion
order, they aref=20, 10, 5 3.70(B(Ni=4)), 3.50 (oaion, E(p)=|p| out to large |p| with no complex

(Bc(N;=3)), and 3.0925¢(N;=2)). roots, good free-field thermodynamid@=1/30T* even at

tic éA‘S" g“forTr“;,“SEgg;z;izTSr%easculorz];gnra\o?ci)r?c(:alu?jr:edsﬁzltlalna-t-Iarge discretization, etc. | tuned the RGT to optimize these
’ ' criteria, and my choice is given byc(1,0,0,0)

ton configurations in any fitting. The fit to a FP action gradu-zolog’ ¢(1,1,0,00.01, ¢(1,1,1,0=0.005, c(1,1,1.1)

ally worsens as one moves towards stronger couplings, and 0.0025, andc— 44.0.

the fits become less sensitive to the particular choice of pa- The couplings of the EP action for my RGor massless

rametrization. Presumably all the parametrizations | hav : . .
tested are leaving out some common feature which is impo?—ermlons fall off exponentially withr = y= ,x,,. The largest

tant for rough configurations. It is also the case that the&N{ries at distance =2 are at locationx=(=+1,~1,x1,

gauge action is a bad parametrization of a FP actiongfor —1). The smallest truncation which accurately reproduces
<Bo(N=3) the main features of this FP action is to an action which sits
. .

on a hypercube—that is, the free field action is to be param-

[Il. INGREDIENTS OF THE ACTIONS 6

A. Hypercubic kinetic term

The fermionic free field action has the generic form - .

Ao<x>=x<x>+i§ Vb u(X). (3.2) I ]

E(p)

It is constructed by finding some free FP actiB+6]. | = .
begin with a continuum action for fermions which has no 2 ooe —]
doublers and is chirally symmetric. | construct an action on a B 7
coarser distance scale’ by iterating the free field limit of
the FP equatiori2.5). | select a blocking kernel, iterate the
RGT to find a fixed point action, and then tune parameters in

() to make the action maximally local. | have used a factor- 0 5 4 6

of-two rescaling in whicH1 is restricted to a hypercubgy;; b

is nonzero only ifj=ixu,itu*vy, ...ituxvENto,

and Qj=c((i—j)1,(i—])2,(i—]j)3,(i—]j)a). Each site FIG. 3. Dispersion relatiorE(p) vs |p| for massless Wilson
communicates to 8- 1=80 neighbors. fermions.
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etrized with five nonzera'’s and four nonzerg’s, corre- large mass which is not short range. To avoid this, | take an
sponding to each of the nonzero offsets. An example of &G transformation whose parameters are functions of the
dispersion relation for this hypercubic action is compared tanass and tune the paramégerto insure a local action at
the Wilson action in Figs. 2 and 3. | show both branches ofach blocking step. The resultings and p's are smooth
the hypercubic action’s dispersion relation; all roots are realfunctions of the mass. Again, the dispersion relation for hy-
The non-truncated FP action has a perfect dispersion relatigmercubic approximations to RT actions are well behaved out
E=|p| for all p. to large|p|.

For massive fermions, | need an action which is on a Plots of the variation of the parameters—or the tables of
renormalized trajectoryRT) for some RGT(with the mass numbers corresponding to them—are by themselves not very
scaling at each step with the ratio of lattice spacind®  useful for calculation. Rather than give them, | will immedi-
reach the RT, one can begin with an action which has a vergtely present a simple parametrization of the couplings.
small mass but is otherwise close to a FP action, perform a My choice of parametrization is to regard all tp's and
series of blockings, and follow it out. \’s as linear functions of the bare mass and to determine

One complication with this procedure is that an actionA(0,0,0,0 for a positive bare mass by solving the dispersion
which is local for a small mass can block into an action forrelation for it: defining

R=2p(1,0,0,0 +1200(1,1,0,0 + 24p(1,1,1,0 + 16p(1,1,1,3 (3.2
A=2)(1,0,0,0+12\(1,1,0,0 + 24\ (1,1,1,0 + 16\ (1,1,1,D (3.3
D=8\(1,0,0,0+24\(1,1,0,0+32\(1,1,1,0+ 16\(1,1,1,] (3.9

the pole of the propagato[rxz(p)+EMpi(p)=0 at p, smooth functions ofny, so one could probably construct a
=(im,,0,0,0)] is at more complicatedpolynomial or exponentialfit to them.
Table | gives the parameters of the linear fit.

7(0,0,0,0=—A,(cosmg)—1)—R sinhmy)—D (3.5 B. Very fat links

Measurements of pure gauge observaliles potential or
(with the convention that alp/s are negative My linear ~ glueball massessuffer from noise arising from the short
parametrization runs over<Om,<0.32, which is the useful distance fluctuations of the gauge fields. A good cure for this

range of mass for light hadron spectroscopy for lattice spad®roPlem has been known for many years: define new link
ingsaT,=1/2 to 1/4 variables which do not couple to the UV sector of the lattice
. .

The big problem in parametrizing an approximate actionvar".”‘blfs’ ant()jl which have lthefsamhe IR pr%pl)e(t|es as the
is that the additive renormalization of the quark mass forglr(')%?:dﬁ:l'(?lﬁs' An example of such a variable is an APE-
g2+ 0 drives the critical quark mamssf1 negative, outside the

region where the solution of the FP equation is meaningful. VZ+1(X)=(1_Q)VZ(X)
With Wilson fermions, and one free parametey this is not

a problem(one just tunesc abovex, without otherwise al- n a/GE (VD(X)VZ(X-F ;)Vg(Xﬂl)T

tering the actiohbut with these complicated actions there is sEp
not a clear cut way to proceed. In principle, all the param- R A L
eters in the action should depend on properties of the gauge +V(x= )V (x= )V} (x=v+u)) (3.7)

field (for example, on the local value of the plaqugtt€o
circumvent this, | make an arbitrary choice: | assume that th
parameters continue to vary linearly with the bare mass, an
| determineA(0,0,0,0 by continuing the low-mass limit of
Eg. (3.5 to a negative mass.

fwith V2 (x)=U,(x) and V},"*(x) projected back onto
§U(3)]. It is also known that for best results, bathand the
maximum number of blocking stepé should increase as the
lattice spacing decreases.

Fermions also suffer from bad UV behavior, and their
symptoms include the breaking of flavor symmeigr stag-
gered fermiong large additive renormalization of the bare
mass(for Wilson fermiong, and large renormalizations of
Since mg=—0.4 at B,(N;=4) and moves toward zero at currents(for any kind of fermion. The tadpole improvement
bigger 8's, A(0,0,0,0 is basically a linear function afn,. program[12] was originally designed to estimate or compute

This parametrization is not appropriate for studyingthese large UV effects and subtrgot divide) them out dur-
charm with this actiofwhereamy=2 to 4 depending on the ing the conversion from the lattice calculation to continuum
lattice spaciny The parameters of the action on the RT arenumber.

7(0,0,0,0= —Rm,—D. (3.6
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TABLE I. Linear parametrization of the couplings of the hyper-

cubic action: \(Xg,X1,X2,X3) = Na+ Moy, po(Xo:X1,X2,X3) = pa AM(k)—>E H,, (KA, (kje'vra2=mi (313

+Mopy - o
offset N Ao P ob (and a similar formula forC ,2) where the form factor is

HM(k)zErhM(r)e”‘r. Essentially any smearing function

0000 2.256756  —0.9863 suppresses the vertex Rt m/ry. In the language of Ref.
1000 —0.1122 0.0741 —-0.1464  0.1300 [12], tadpoles contribute beyond their naive strength because
1100 —0.0323 0.0271 —-0.0329  0.0303  the UV divergence of the gluon loop compensates for the
1110 —0.0144 0.0141 -0.0101 0.0096 a-dependence of the vertex; smearing suppresses the cou-
1111 —-0.0072 0.0076 —0.0035 0.0033 pling of the fermion to high momentum gluons.

The reader might b§ustifiably) concerned about the ex-
istence of a transfer matrix for these actions. As far as |
However, recent evidence suggests that it may in somgnow, no FP action has a transfer matrix connecting neigh-
cases be better to remove the UV fluctuations directly fromhoring time sliceg andt+ 1. This can be seen even for free
the simulations. This evidence is the partial restoration okcalar field theory[1]: the couplings of spins on different
flavor symmetry breaking for staggered fermions by replacsites, the analogues of th#s and\'s of Eq. (3.1), die away
ing the link by anN=1 APE-blocked link, as shown by Ref. exponentially with distance. Any finite truncation of a FP
[13] and (with a slightly different averagingby Ref.[14].  action(for r<L) presumably has a transfer matrix connect-
These authors restrict themselvesNe-1, presumably be- ingt andt+L. For the free field hypercubic actioh=1,
cause they wish to use their actions for simulations withjust like the usual Wilson or staggered actions. Fattening the
dynamical fermions. However, if one is interested inlinks makes the range of the action much greater. With N
quenched simulations, one can APE-block to any desiregvels of APE blocking, the action extends over a rangé
level, with a tiny overhead, simply by pre-computing andsites before it cuts off. Because this blocking is basically a
StOfihg_ the APE-blOCkEd ||nkS Then N>1 improves uv random walk, the effective range of the acti0n0$a\/ﬁ)
behavior, one is free to use it. _ ~1.2 sites for the particular parameters | used. Except at the
It is easy to understand why the fat links suppress UViargest lattice spacing, a standard fitting procedure for spec-
f|uctuati0n5[15]. EaCh term in the aCtion in Coordinate Spacetroscopy sees an apparent p|ateau in effective masseés at
=3 lattice spacings’ separation of source and sink. It may be
EF% 2 Z(X)F UYL g(xt2) (3.8 that _the_right thing to do is to be more care_ful, but_I saw
XY,z nothing in any of my spectroscopy computations which in-
dicated any problems with a naive approach.
can be expanded as a power serieg in

1 C. Nonlocal Pauli term
Li=5 RT3 N

Py 1+igaA,(x+y+al2u) Lattice fermions have a magnetic moment which is

anomalously small due to lattice artifacts. One can param-
1 ~ etrize the vertex through the interaction of a fermion with an
- E(ag)ZAM(x+y+ al2p)’ . . } cP(X+2) infinitesimal magnetic field: the pole in the propagator will
be atE=my+B/2mg, wheremg is the so-called magnetic
(3.9 mass. | write the momentum-space interaction term as

which in momentum space becomég= L+ £Z with HP)IAL(p, —p)A,(p—p')i(p') (3.14
£|1=i 9 J(p)rf S (k+q—p)A,(K) and expand the vertex in Dirac space as
2 Jpa k .

. Ap(k,=p)=f, ok, =p)+f,(k=p)y,
X ei(y+a/2,u,)k¢(q)eiqz (3.10) m m 'u

+ 2 f(k,—P)Y,7,

p<v

+f,u,5(k’_p)75+f,u,1/5(k’_p)7v75 (313

ga [ —
ct=55 | werr fkl,kzﬁ“(kﬁkﬁq—P)Au(kl)

i(y+ar2m) (kg +ky) i
XA, (kp)e'YTaEmtaT 2y () el (3.19 (with an identical labeling for the decomposition in coordi-

Smearing the link over a distancg makes the replacement nate spade A lot of algebra[5] gives

;;) (312 g — —— oM “PolMall__ 5 1

 p(imo)f 1 y(img)—ickimg)A(imo)

r+w+

a .
AuT+5 u)%% 2 hy WA,
or where
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TABLE II. Nonlocality of the Pauli termici,(x,im) for actions B I I LN I
along the RT. L |
8 — —
X my=0.08 my=0.16 my=0.32 my=0.64 - x .
L X i
0000 —0.0913 —0.0840 —-0.0709 -—0.0527 L & |
1000 —0.2490 —-0.2269 -0.1883 —0.1278 ot xEFE@@ .
1100 —0.2980 —0.2710 —0.2253 -0.1479 6 he —
1110 —0.1641 —0.1493 -0.1248 —0.0816 gt m&X%Q 1
1111 —0.0318 —0.0291 -0.0246 -—0.0167 i & ]
Sum in hypercube: —0.8343 —0.7604 —0.6340 —0.4269 r %0 .
Total: —0.8974 -0.8182 —-0.6837 —0.4807 4— O ]
7I | - ‘ L 111 | | ‘ | - ‘ L1 I7
. 0 1 2 3 4 5
A(im)=>, €"ox(n) (3.17) T
n v c
FIG. 5. my/T. vs. m_/T, for the Wilson action. Data are la-
)\’(im)=2 noem”O)\(n) (3.19 beled as in Fig. 4.
n
and antiquark do not sit on the same lattice site. As an ex-
. . ample, Table Il shows the contribution of various fermion
! == — nO . -
polim) '; No€™"po(N) (319 ifsets toick,(x,im) for a vertex based on the RGT | have

been using in this paper. The normalization appears to be
reasonably well saturated by fermion offsets over a cube.

pa(im)=—i>, ne€™op,(n) (320  The gauge connections are very complicated.

n However, it is not clear how important the FP version of
the Pauli term will be in spectroscopy. | therefore studied
Y X three possibilities:

Faalim) xzy 1a00) (32 (1) No Pauli term at all. This turns out to give hyperfine

interactions which are too small.
(2) Keep only the on-site part of the Pauli tefthe stan-

.1, _ B
|012(|m)—X2y (X=2y)2€™F 114 %.Y) (322 gard clover term but choose its normalization so thiats
=mg. This is not a FP action. The gauge links will be fat-
are all real. tened like the rest of the links in the action.

All approximate FP vertices | have seen have a compli- (3) Restrict the Pauli term to offsets which span a cube.

cated Pauli term with sizable contributions when the quark-or each offset, sum over all the minimum-length paths
(with their sign factors which contribute to the Pauli term.

6 LI ‘ 1T | T 17T ‘ LI ‘ T T
[ N 3 T T ‘ T T T T ‘ T T T T | T T T |
I v ] I m |
L o X i L o i
4 — 2 — L 4
L % >&)O i T2 L ]
o O] E
= L Lhh x © i s L m i
L 3,0 , w ® ,
21— o © — Eg = o XA
_ - S 1 | — @ b e —
L | L . X i
L | L < i
O [ | ‘ [ | [ ‘ [ | ‘ [ L . I? o [ o gz S? X | _
O 1 2 3 4 5 O | | | | | | | 1 | | 1 | 1 1
m, /T, -0.4 -0.2 0.0 0.2
My
FIG. 4.m,/T.vsm, /T for the Wilson action. Data are labeled
with octagons foraT.=1/2, diamonds foraT.=1/3, crosses for FIG. 6. Bare squared pion ma@spper set of curvesand quark
aT.=1/4, squares foraT,=1/8, and fancy crosses foaT, mass from Eq(4.5 (lower set of curvesvs bare quark mass for
=1/12. action A, atgB. for N;=2 (squares 3 (diamond$, 4 (crosses
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3 ‘ T 1 1 ‘ T 1 1 | LI | [T T 1T T T T | T 1T ‘ T T 11 ‘ T
L i 8 ; ;
L B i . |
g2 - B - . 1
© [ m b © L (Dm B
E‘
s5 r * \z 68— %@ _
SR m 1 g ¢ 1
&

| ] - o0 .
B = - i e ]
~ L P X _ | o ) |
L o X | e B
L o X i | |

L o] _
O | | ‘ | I I I I‘E|m‘ <>‘ <F><|®><‘S2l><l | 7I | - ‘ L 111 | | ‘ | - ‘ L1 I7
—-0.4 —-0.2 0.0 0.2 0 1 2 3 4 5

mg m,/T,

FIG. 7. Bare squared pion ma&sper set of curvésand quark FIG. 9. my/T. vs m, /T, for action A.

mass from Eq(4.5 (lower set of curvesvs bare quark mass for .
action C, atg, for N,=2 (squarel 3 (diamond, 4 (crosses decreases, so the net result is that one can as well say that the

clover term tracks the bare quark mass, as to say that the it
Choose the relative normalization of the terms to match thdracks the bare coupling. At zero gauge coupling FP actions
FP vertex and the overall normalization to ﬁ)é: my. Fat- do not have a mass-independent Pauli normalization and so
ten the links if necessary. This Choi¢bereaﬁer called a the standard praCtice of making the normalization mass in-
“full Pauli action”) is a much better approximation to a FP dependent is unnatural. Presumably one could do simulations
action than the second choi¢éclover action”), but if the ~ With a standard action, such as the Wilson-plus-clover ac-
clover action performs as well in a test, it is the action oftion, tuningmg to equalmy, although it is hard to see the
choice. It is still only loosely related to a true FP action. ~ point of doing this as long as the dispersion relation is im-

Formy>0 the constrainimg=mj fixes the normalization Perfect.

of the Pauli term. | find that the normalization varies roughly ~ The linear parametrization reprodua@g=m, to within
linearly with the bare quark mass. | choogebitrarily) to  five per cent formy<<0.4. For the clover hypercubic action |
keep the same linear dependence witheven for a negative could have simply setng=mg for my>0 by inverting Eq.
bare mass. This would be equivalent in the standard clovel3.16), although I did not do that.
action to making the size of the clover term a function of the
hopping parametek, rather than a function o. From a IV. SCALING TESTS
practical point of view the difference is slight: as one varies
the gauge coupling in a simulation, the value of the bare
quark corresponding to a particular physical hadron mass Most of the quenched spectroscopy has been done using a
shifts, becoming(typically) more negative ag decreases. new parametrization of a FP gauge action for(3UIn the
The input coefficient of the clover term becomes largegas Appendix | tabulate the critical temperature, string tension,

A. Survey of actions tested

6 LI ‘ 1T | T 17T ‘ LI ‘ T T 6 LI ‘ 1T | T 17T ‘ LI ‘ T T

I < I |
X
- ¥ i - X i
41— X, S — 41— '@ © —
@ xg O
o [ o ] o T ¢ @ T
= | @ i = | ¢ 00 o) i
\Q [ | \Q [ D |
g | © | g | |
2 — 2 —
O i | —— ‘ I 11 1 | | ‘ I 11 | ‘ I 11 1 | O i | —— ‘ I 11 1 | | ‘ I 11 | ‘ I 11 1 |
0 1 2 3 4 5 0 1 2 3 4 5
mﬁ/TC mﬁ/TC
FIG. 8. m,/T. vs m_ /T, for action A. FIG. 10.m, /T, vs m_ /T for action C.
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FIG. 11. my /T, vs m_ /T, for action C.
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All the fermionic actions are made gauge-invariant by re-
placing the offsets by an average over the shortest distance
gauge paths. For example,

— “ - 1 A
YOO P+ pt )= 5 YOIV L()V,(X+ )

+V,(OV,(x+ ) Jg(x+pn+7v)  (4.2)
whereV ,(x) is either one of the original links or an APE-
blocked link.

The cost of a hypercubic action per iteration step during
matrix inversion is about 20 times as expensive as the usual
Wilson action, since there are more neighbors and the Dirac
connections are not projectors. Actions with the complicated
Pauli term are about 56 times as expensive as the usual Wil-
son action. All the gauge connections are pre-computed, so
there are startup and storage costs, as well. | used the stabi-
lized biconjugate gradientbiCGstab algorithm for matrix

and Sommer parameters for the gluonic action, so the readémversion[18].

can convert to his favorite scaling variable. One test has been The two actions which were tested most extensively both
done using the original parametrization of the action pre-have a hypercubic kinetic term and APE-blocked links with
sented in Ref[16], and some tests use the @Jgauge N=7 anda=0.3. Action A has a full Pauli term. It is the
action of our recent work on instantop$7]. | have made best approximation to a FP action | found. It used the very
rough measurements of iB.(N;) for deconfinement to set expensive gauge action of R¢lL7]. Action C has only the

the scale. clover term but is otherwise identical. The particular choice

2.0

L $ i i ]

1.8 — i 5 ]

I o @ ] 18—~ (b) 7

I 6] X d i < i ]
N Oz ] z i 2 1
+ . 2 @ - i @ 1
RS ) 1.6 — &i % 5% fx —

L ] r M (0] 1

1.4 (a) L E ]
S I I I P I B I

00 05 1.0 15 20 00 05 10 15 20

amp amp

TR T T T T

1.8 — — 1.8 (d) —

i (c) ] i ]

o I 3¢ % 1 o $ :
~ 1.6 % f — ~ 1.6 —
= ¥ o & | T S : :
ke il : i %1 0 1

1.4 — 1.4 —
PR PR RPN B Eev ol | o 1

0.0 05 1.0 15 20 00 05 10 15 20
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FIG. 12. A scaling test for new actior{squares action C, octagons action ¥s Wilson actions on lattices of fixed physical size
(diamond$ and larger volumegcrosseys and the nonperturbatively improvédurstg and tadpole improvefancy crossesclover actions.

Data are interpolated ta/p=0.84(a), 0.80(b), 0.75(c) and 0.70(d).
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TABLE Ill. Table of best-fit masses, action 3=3.092 @T, TABLE VII. Table of best-fit masses, action 8=2.85 @T,
=1/2). =1/3).

amy PS \Y, N A am; PS \% N A

0.30 1.8888) 2.0668) 3.33217) 3.45Q21) 0.10 1.1798) 1.35311) 2.14519) 2.24524)

0.15 1.6289) 1.86110 3.00220) 3.15625) 0.05 1.0728) 1.27512) 2.01021) 2.11527)

0.10 1.53%9) 1.79611) 2.89122) 3.06%27) 0.00 0.9569) 1.19413) 1.87024) 1.98932)

0.05 1.4469) 1.73312) 2.78124) 2.967130) —0.05 0.82910 1.11316) 1.72028) 1.85440)

0.00 1.36%9) 1.67214) 2.67027) 2.87533)
—0.05 1.25110) 1.57520) 2.52637) 2.77046)
—0.10 1.150100 1.55120) 2.43339) 2.68743) of fattening comes from performing the minimum in Eq.
~0.15  1.03912) 1.49126) 2.30354) 2.591(49) (2.9. My scaling tests of it used the new gauge action pre-

~020 0.89916) 142935 2147700 250564  Sented inthe Appendix. _
| tested several other actions. All the variants of tadpole

improvement | studied had large mass renormalizations. A
pure hypercube action with no Pauli term had a good disper-
sion relation at the coarsest lattice spacing, but its hyperfine
splittings were basically identical to those of the Wilson ac-

TABLE IV. Table of best-fit masses, action @3=3.50 @T,

~1/3). tion.
amy PS \% N A B. Spectroscopy
0.15 1.1567) 1.36311) 2.07721) 2.25828) Lattice volumes were #< 16 ataT,=1/2 (excessively
0.10 1.06615 1.32820) 2.09033  2.277151) long in the time direction, in retrospect6x 16 at aT,
0.05  0.93%3) 1.21815  1.81630)  2.04931) =1/3, and 8 16 (dangerously shortand & x 24 (safej at
0.00 0.82%9)  1.15319 168838  1.95941) aT.=1/4. . _ _
—0.05 0680100 1.12418  1.60327)  1.94133 The data set for action A consists of 80 latticesad,

=1/2, 50 lattices ataT,=1/3 and 36 8x16 lattices at
aT.=1/4. The data set for action C consists of 80 lattices at
aT,=1/2 and aT,=1/3 and 60 8x24 lattices ataT,
=1/4.

The spectroscopy measurement is entirely straightfor-
ward. | gauge fixed to a Coulomb gauge and used a Gaussian

TABLE V. Table of best-fit masses, action 3=3.70 @T,.

=1/4). independent particle source wave functionj(r)
. bs v N A =exp(—y?) with y=1, 0.5, and 0.25 @ T,=2,3,4. | used
M pointlike sinks projected onto low momentum states. | used
0.15  0.94%)  1.1189) 1.722100  1.853149 naive currents §ysy, etc) for interpolating fields. The
0.10 0.83¢4) 1.04411) 1.59212) 1.74317) spectra appeared to be asymptds shown by goodcor-
0.07 0.7685) 0.99712) 1.51414) 1.67819) related fits to a single exponentipbeginning att=2 (at

0.03 0.6725) 0.93415) 1.41Q198) 1.59822) aT.,=1/2), 3-5(at aT.=1/3) and 5-7(at aT.=1/4) and
the best fits were selected using the old HEMCGC criterion
[19].

My fiducial for comparison, simply because there are ex-
tensive data sets, is Wilson-action quenched spectroscopy. |
have tried to restrict the data | used for comparison to lattices

TABLE VI. Table of best-fit masses, action /8=2.38(@T.  with the proper physical volume. | constructed my own
=1/2). aT.=1/2 andaT,=1/3 Wilson data setsd=5.1 and 5.5%
since | could not find any results for these. | also ran off 40

amy PS \Y N A

0.15 1.81611) 1.97218) 3.27436) 3.35544) TABLE VIII. Table of best-fit masses, action .8=3.05@T,
010 172711 1.90319) 3.16137) 3.30949 4

005 163711 1.83521) 3.04739  3.23747)

PS v N A

000 154611 176922 2.93043  3.15851) Ay

~010 1358100 1.58420) 2.59644)  2.82543) 015  1.1005)  1.22898) 1.90320)  1.99827)
~0.15 1246100 1.50224) 245344  2.71849 010  0998)  1.1449) 178318)  1.87530)
~020 112811 141729 229745  2.60557) 005  0.8806) 106611  1.64020)  1.78826)
~025 09823  1.32237) 2.15842)  2.48371) 000 07587 100012 150425  1.66229)
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using up=(Tr U,/3)"* where U, is the average plaquette.
Data are ataT,=1/2 andaT.=1/3, whereuy=0.802 and
0.844. This data set was 180 and 60 lattices at the two cou-
plings.

I show first plots ofm, /T, and my/T; vs m_/T. with
Wilson fermions. These plots are scaling tests by themselves,
or one can interpolate in the curves to fixed valuemgf T,
(equivalent to fixed quark masand plot the variation in the
observable vaT,;. Figure 4 shows the rho mass and Fig. 5
shows the nucleon mass. Notice that the rho mass has the
worst scaling violations of the three particles.

| can roughly estimate the critical bare quark maast
which the pion is masslesby linearly extrapolatingn,zT to
zero inmq. Figure 6 shows the squared pion mass vs bare
guark mass for action A, @, for N;=2, 3, 4, and the same
plot, but for action C, is shown in Fig. 7. Both actions have
small bare mass renormalization. This is important from the
point of view of principle because a true FP action would

=0.36 fm) from action C. The curves are the continuum dispersiorhave no additive mass renormalization. It is important in
relation for the appropriatémeasureghadron mass.

practice because we only really know the kinetic parameters
by solving the RG equation for positive bare mass; they must

Wilson lattices at3=5.7 (N;=4) to measure a dispersion be extrapolated in some artistic way if one needs to go to
relation. At that coupling my masses were within a standarchegative bare mass.
deviation of the much superior data set of Bug¢ral. [20].

To compare with the more standard improved actions, khe partially conserved axial-vector curréCAC) relation
also performed a fiducial study using the clover actifil-

son fermion action plus on-site clover terin a background
of Wilson action gauge fields. | tadpole-improved the action

of ] ERE +

0.5 — (a)

0.0 —

Another way to estimate the critical bare mass is to use

V- (bysp(0) drysy (X)) = 2me( rysth(0) drysih(X)).

4.2
- | I I ‘ I | ‘ I_
o] ol
: ¢ 1]
"o I i
0.5 - (b) 7
0.0l b L]
2 3 4
m/T,

"~

FIG. 14. Squared speed of light vs hadron mass in unit¥ qf for (a) pseudoscalargb) vectors and(c) protons, from action C.
Octagons, crosses, and diamonds labEl=1/2, 1/3 and 1/4.
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[ I ] [ \ | ]
L 4 L b 4
1.0 - (a% — 1.0 %() —
I % > I ¢ ]
[aV] r %X Xx 7 [at r X}K% @ |
Q L J Q L % i
0.5 g+@}+ — 0.5 —
»t T 0000 try
<) S A B 0o L]
2 3 4 2 3 4
m/T, m/T,

[T (Cl

1‘0—%% %—

N i % %

Q L i

0.5 —

¢} A A I

4 5 6 7

m/T

¢

FIG. 15. Squared speed of light vs hadron mass in unifs.offor (a) pseudoscalargh) vectors andc) protons, from the Wilson and
clover actions. Octagons, crosses, and diamonds &Ret 1/2, 1/3 and 1/4 for the Wilson action, and for the clover action the labels are
pluses foraT,=1/4 and fancy crosses faT.=1/3.

If I convert to lattice operators, sum over spatial slices, and | find for action A thatmg= —0.42,—0.20, and—0.14 at

measure distance in thedirection, this becomes aT.=1/2, 1/3, and 1/4, respectively. For action C, the corre-
P sponding numbers areng=—0.36,—0.16, and —0.095.
- m " These numbers should be compared to the analogous guan-
Y4 0 X
Aot X,Ey,z (ysp(Q)ysyol(x)) tities for Wilson fermions, usingng=1/(2«.) —4: —1.58 at

B=5.1(@T.,=1/2),—-1.04 at B=5.7(@T.=4), and stil
:2aquPE (Pysi(0) Phrysih(X)). (4.3  —0.70 atp=6.3[12]. In the latter case tadpole improved
4 perturbation theory can explain most of the mass shift.
| follow [21] by fitting the pseudoscalar source-pseudoscalaforFaocrtizr?g e'xa\hr;gngeét :nccl):rigzér;p éTigng?g ﬁc vs.my /e
sink to | can compare scaling violations in hyperfine splittings by
_ _ _ _ interpolating the data to fixee/p mass ratios and plotting
P()=Z[exp(—m,b) +exp—m,(N—t)] - (449 theN/p mass ratio vsn,a. | do this at fourr/p mass ratios,
and the pseudoscalar source-axial sink to 0.84, 0.80, 0.75 and 0.70, in Fig. 12. In these figure the
diamo43nds are Wilsog action dataégn lattices OE fi)jed ghysical
Zp 2my size (£ at B=5.1, 6 at 3=5.54, & at 3=5.7[20], 16° at
At)= Z, m, Z[exp—(mgt) —exp(—m, (N~ 1))] B=6.0[23] 24° at B=6.3[24]) and the crosses are data in
(4.5  various larger lattices: £6and 24 at 3=5.7 and 32 at 8
=6.17[20], 24° at 3=6.0[23]. When they are present the
to extractm, . | only use the naivépointlike) currents. | do  gata points from larger lattices illustrate the danger of per-
not know theZ-factors, but for finding the value ohj that  forming scaling tests with data from different volumes. The
does not matter. Extrapolating? or mq linearly inmg ig-  bursts are from the nonperturbatively improved clover action
nores all the well-known problems associated with extractingf Ref. [25] and the fancy crosses are the Tl clover action.
quark masses from lattice daf22], but the procedure is The other plotting symbols show the test actions A and C.
perfectly adequate to distinguish a small quark mass from a | give tables of masses from action C in Tables lll, IV,
large one. The quark masses are shown in Figs. 6 and 7. and V, and for action A in Tables VI, VII, and VIII.
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FIG. 16. Variation ofm, /T, andmy /T vsaT, at fixedm_/T.=2.75[(a) and(b)] and Eq.(3.15 [(c) and(d)], for actions A(octagons
C (squarey Wilson action(diamond$, and Tl clover actior(fancy crosses

C. Dispersion relations from the Wilson and clover actions in Figs. 14 and 15. Had-

There are two ways to look at dispersion relations. ThdOn masses are again scaled Dy to allow the display of
simplest is to ploE(p) the energy of the state produced with several lattice spacings at once. Action C bé§:1 for all

spatial momentunp, as a function ofip|. The result for observed hadrons even at=T. (860 MeVic) at aTe

action C at bare mass 0.15 is compared to the free dispersio:nllz'

relation ataT.=1/2 in Fig. 13. All of the test actions | have
studied have good dispersion relations evemdt=1/2. | D. Summary
believe that is a generic feature of the hypercubic kinetic It appears that these actions are members of a family of

term. actions which show improved scaling, even@&{(N,=2),
The signal to noise ratio for the nonzero momentum me-

son channels dies away at large like exd—(E(p) TABLE X. Critical couplings at finite volume and extrapolated
—m,)t]. This means that large statistics are required to go tao infinite volume for the FP action with parameters in Table I.

small quark mass or to higﬁ. However, it is possible to

extract a fittect2 ;= (E(p)?— m?)/p? for the lowest nonzero volume Ni=2 Ni=3 Ni=4
momentum mode, for larger masses. This was done by per- 43 3.02525)
forming a 4-parameter correlated fit to a pair of single expo- 63 3.061) 3.471)
nentials, one for theﬁ=(0,0,0) mode and the other trfe 83 3.091) 3.491) 3.671)
=(1,0,0) mode. | compare my results from action C and 10° 3.0855) 3.501) 3.691)
128 3.691)
TABLE IX. Couplings of the few-parameter approximate FP infinite 3.0927) 3.501) 3.7012)
action.co=—2.517. T /A 8.67 8.96 8.33
alo 0.565) .30216) .16403)
operator e c2 C ce JolIT, 1.507) 1.652) 1.622)
Cplag 3.248 —1.580 1257 .0576 ro/a 1.32) 2.192) 2.931)
Colink —.2810 .0051 00490 —.0096 roTe .65(10) .7307) 7333
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8 | ‘ My data by themselves do not suggest a unique way to
extrapolate t@=0. FP actions are classically perfect with no
a" scaling violations for anyr. With a Pauli term normal-
ized so thatmg=m,, any hypercube action is formally
O(a?), due to the same cancellation of graphs as for the
usual clover actiorj29]. With no Pauli term the action is
only O(a), just like the usual Wilson action.

V. CONCLUSIONS

The important ingredients of these actions which contrib-
ute to their improved scaling behavior are the hypercubic
kinetic term and the lattice anomalous magnetic moment
term. The very small additive renormalization of the bare
lattice mass is due to the use of fermion-gauge field cou-

T ' ' plings which are insensitive to the short-distance fluctuations
© of the gauge fields.

FIG. 17. The potential of the approximate FP action vs distance The specific implementation of these ideas in the actions |
scaled withT,. Octagons show data faT,=1/2, diamonds for have tested involves many arbitrary choices. | believe that
aT.=1/3, and squares faT.=1/4. essentially every choice | made for a particular parametriza-
tion could be replaced by another choice, which would give
an action which would have the same quality of scaling vio-

about 0.36 fm lattice spacing. While action A is a betterlat'ons Some chanaes should add some additional good fea-
approximation to a FP actiofbased on the solution of Eq. 1ons. ges shou : art 9 .
tures. For example, it might be possible to find a parametri-

(2.9)], it does not perform any better than action C, and is

. ... zation of a fat link which would lend itself to simple
much slower. The spectroscopy seems to be insensitive ﬁ?erturbation theory calculations
the choice of gauge action. .

; . . . There are several obvious extensions of this work. The
The hypercubic actions have much better dispersion relgg s jnyolves the kinetic term: It would be useful to find a

tions than either the clover or Wilson action. They share thigyarametrization of the kinetic term which extends from zero
improvement with the D234 family of actiof6] and with  mass to a very large mass. It would also be interesting to
the Hamber-WU27] action as tested in Reff28]. develop a fat link parametrization of the action which could

However, the hypercubic actions tested here seem to praye efficiently incorporated into one of the standard algo-
duce about the same level of improvement in hyperfine splitrithms for dynamical fermions. Next, is there a better param-
tings as the clover action, at heavier quark masses. Leavingtrization of the anomalous magnetic moment term which
out the Pauli term gives noticeable scaling violations with amight improve scaling?
too-largeN/p ratio; probably one needs to keep some kind of  Fixed point actions have many desirable formal properties
explicit Pauli or clover term in the lattice action to boost the[10]: they include scale invariant instanton solutions, the in-
hyperfine splittings. dex theorem, an absence of exceptional configurations, and a

The hyperfine splittings show worse scaling violationsparticular implementation of chiral symmet§0,31. These
than the dispersion relation. Controlling and approximating®roperties may not be present in an action which is a bad
the quark anomalous magnetic moment is the most difficul@PProximation to a FP action. | do not know how well they
part of the construction of a FP action, and that may be thé'e satisfied by these actiofwther than the apparent small
source of the scale violations. renormalization of the quark mass _ _ _

Of course, there is still the possibility that all the actions ndeed, the particular choice of a free field action which |

tested here are missing some other common physics ingred?j?de vvfatshm?tlvate(:. onIbey tEe Io<3[al|ty and jpeictral tP“?p'
ent, which is responsible for scaling of the hyperfine split-er es ot the Iree action. TR0 attempt was made 1o optimize
tings. the chiral properties of the approximate action. This is

Since thep meson is the particle which shows the IargestClearly the outstanding problem for future study.
scaling violations, the best way to quantify improvement is
by taking “sections” of them,/T, and my/T; vs m_ /T,
plots and displaying them \&T, at fixedm_ /T, in Fig. 16.
The improved actions aT,=1/2 seem to show the same  This work is an outgrowth of an ongoing project with A.
level of scaling violations as Wilson data at a lattice spacingHasenfratz, P. Hasenfratz, and F. Niedermayer to construct
a factor of 3 smaller. The smaller lattice spacing data seem twue FP actions for four-dimensional fermions. | am indebted
pick up about a factor of two improvement in lattice spacing,to them for many discussions about this work. | would also
although the uncertainty in the data is larger. Quenched calike to thank R. Brower, and U. Wiese for valuable conver-
culations are thought to scale in difficulty likeaf/ the cost  sations about FP actions, and S. Gottlieb, U. Heller, R. Sugar
of action C is about a factor of 20 compared to the Wilsonand D. Toussaint for advice on supercomputing. | would like
action. to thank the Colorado high energy experimental groups for
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allowing me to use their work stations. This work was sup- | have measured the critical couplings for the deconfine-
ported by the U.S. Department of Energy, with some com-ment transition aaT,=1/2, 1/3, and 1/4. The critical cou-
putations done on the T3E at the Pittsburgh Supercomputinglings on the measured spatial volumes and my extrapolation
Center through resources awarded to the MILC Collaborato infinite volume are shown in Table X. | have also mea-
tion. sured the string tension from Wilson loops at these values of
the coupling, on 8 lattices(at 8= 3.092) and 12lattices for
the other couplings. The data was fitted to a static potential
V(r) of the form

This work used a new few-parameter approximation to an
FP action for SW3) gauge theory. Using it, isolated instanton V(r)=Vg+or—EIr (A2)
configurations have constant actions to within 1.5 per cent.
Like the action of Ref[16], it is a superposition of powers of using the techniques of RéB2]. The fit to the largest lattice
the plaquette and the perimeter-6 “twisted” link,{,z, spacing data is very difficult. The signal from largés not
—X,—Y,—2). Like the action of Ref[17] it includes a con- good, and there is very little left of the Coulomb part of the
stant term. It is designed to be used for couplings such thajotential due to the coarseness of the lattice. Nevertheless, |
the lattice spacing iaT,=1/3 or 1/4 to 1/8 or so. Explicitly present the string tension and the Somi@3] parameter,

(rSdV(ro)/dr: —1.65) in Table X. | see scaling within er-

APPENDIX: PURE GAUGE ACTIONS

1 rors for both these parametdnss T.) ataT,=1/3 and 1/4.
S(V)=co+ N, ; €1 (C)(N—Tr(Vc)) There is a ten per cent scaling violation a&f.= 1/2. The
asymptotic value inferred from large scale Wilson simula-
+Ca(C)(Ng—Tr(Ve)) >+ ... (A1) tions[34] is Vo/T,=1.600(11).
Finally, | show a plot ofV(r)/T. vs rT for the three
with coefficients tabulated in Table 1X. lattice spacings in Fig. 17. The overall vertical shift in the
This action costs about a factor of 7 times the usual Wil-potentials is not physical, but it allows the reader to separate
son plaquette action to simulate. the different data sets by eye.
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