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Detection of center vortices in the lattice Yang-Mills vacuum
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We discuss the implementation of the ‘‘direct’’ maximal center gauge~a gauge which maximizes the lattice
average of the squared-modulus of the trace of link variables!, and its use in identifyingZ2 center vortices in
Yang-Mills vacuum configurations generated by lattice Monte Carlo calculations. We find that center vortices
identified in the vacuum state account for the full asymptotic string tension. Scaling of vortex densities with
lattice coupling, change in vortex size with cooling, and sensitivity to Gribov copies are discussed. Preliminary
evidence is presented, on small lattices, for center dominance in SU~3! lattice gauge theory.
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I. INTRODUCTION

In a number of recent articles and conference proceed
@1–3# we have presented numerical evidence in favor of
center vortex theory of confinement, which was put forwa
in the late 1970s@4–8#. Our most important tool is the use o
the maximal center gauge, which, combined with ‘‘cen
projection,’’ allows us to identify the locations of center vo
tices in thermalized lattice gauge-field configurations. It h
been found that these vortices, by themselves, accoun
the entire asymptotic string tension~‘‘center dominance’’!.
We have also found evidence@2# that the monopoles of the
maximum Abelian gauge lie along the center vortices in
monopole-antimonopole chain, and that their non-Abel
field strength, above the vacuum average, is almost ent
oriented in the vortex direction. This opens the way to e
plain Abelian dominance, and monopole condensation
terms of more fundamental underlying vortex configuratio
Finally, in Ref. @9#, we argued that the Casimir scaling
higher representation string tensions, formerly a very str
argumentagainst the center vortex theory, can in fact b
understood in terms of center vortices. Independent a
ments in favor of the center vortex theory have been p
sented by Kova´cs and Tomboulis@10#, who follow a rather
different approach but reach similar conclusions.

In this paper we will explain, in Sec. II, the actual impl
mentation of the ‘‘direct’’ maximal center gauge, which u
derlies much of our work, and review the evidence, in
direct gauge, that center vortices are responsible for qu
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confinement.1 We go on to study~Sec. III! how vortex con-
figurations are affected by cooling the lattice, and then ta
up issues related to Gribov copies~Sec. IV!. Some prelimi-
nary evidence for center dominance in SU~3! lattice gauge
theory is presented in Sec. V, followed by a summary of o
results in Sec. VI.

II. CENTER VORTICES AND CONFINEMENT

Our procedure for locating center vortices in thermaliz
lattice configurations was inspired by an earlier work
Abelian projection in maximal Abelian gauge@11#. The idea
is to fix a gauge~the maximal center gauge! which, in the
case of SU~2! gauge theory, reduces the full SU~2! gauge
symmetry to the center subgroupZ2 . ‘‘Center projection’’ is
a mapping of the full gauge field configurationUm(x) onto a
configurationZm(x)561, transforming as aZ2 gauge field
under the residualZ2 symmetry. The excitations of aZ2
gauge field are~thin! center vortices, and these are used
locate thick center vortices in the full, unprojected gaug
field configurationUm(x), as explained below.

In fact we have introduced two versions of the maxim
center gauge; an ‘‘indirect’’ version, in Refs.@12,1#, and a
‘‘direct’’ maximal center gauge in Ref.@2#. The indirect
gauge is a further gauge-fixing within maximal Abelia
gauge, which reduces the residual U~1! gauge symmetry to
Z2 . One begins by fixing to maximal Abelian gauge, defin
as the gauge which maximizes

Q5(
x,m

Tr@Um~x!s3Um
† ~x!s3#, ~1!

leaving a residual U~1! symmetry. This gauge makes the lin
variables as diagonal as possible. Abelian link variables

1Some of this evidence was obtained previously in a slightly d
ferent, ‘‘indirect,’’ version of maximal center gauge@1,2#.
© 1998 The American Physical Society01-1
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L. DEL DEBBIO et al. PHYSICAL REVIEW D 58 094501
extracted from the diagonal elements of the full link va
ables, rescaled to restore unitarity:

A5
diag@U11,U22#

AU11U11* 1U22U22*
5Feiu

e2 iuG . ~2!

These variables transform under the residual symmetry
U~1! gauge field link variables. The indirect maximal cen
gauge uses this residual symmetry to bring theA-link vari-
ables as close as possible to SU~2! center elements6I , by
maximizing the lattice average of cos2(u). Center projection
is then achieved by identifying

Zm~x!5sgn@cos„um~x!…#. ~3!

The gauge is ‘‘indirect’’ in the sense that the center is ma
mized in the Abelian link variableA, rather than directly in
the full link variable U. String tensions can be extracte
from the center-projected configurations and, although ag
ment with the asymptotic string tension of the full config
rations is not too bad, significantly better results are obtai
in the direct maximal center gauge, as will be seen belo

The direct maximal center gauge, in SU~2! gauge theory,
is defined as the gauge which brings the full link variablesU
as close as possible to the center elements6I , by maximiz-
ing the quantity

R5(
x,m

Tr@Um~x!#2, ~4!

with center projection defined by

Zm~x!5sgn@Tr Um~x!#. ~5!

Again, the projectedZm(x) field transforms as a gauge fie
under the residualZ2 symmetry. Before going on to discus
numerical results obtained in this gauge, we must first d
cuss how to implement it.

A. Fixing to direct maximal center gauge

The gauge-fixing is accomplished by over-relaxation@13#.
Beginning with a thermalized but nongauge-fixed lattice,
sweep through the lattice site by site. At each sitex, one
needs to find the gauge transformationg which maximizes
the local quantity

Rx5
1

4 H(
m

Tr@g~x!Um~x!#2

1(
m

Tr@Um~x2m̂ !g†~x!#2J . ~6!

Denote

g~x!5g4I 2 igW •sW ,

Um~x!5d4~m!I 1 idW ~m!•sW ,
09450
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Um~x2m̂ !5d4~m14!I 2 idW ~m14!•sW ,
~7!

where the choice of signs in front of the various terms p
portional toi is made for convenience. Then

Rx5
1

2 (
l 51

8 S (
k51

4

gkdk~ l !D 2

. ~8!

We have to maximize this quantity subject to the constra
thatg is unitary. To this end, introduce a Lagrange multipli

R̃5Rx1
1

2
lS 12 (

k51

4

gk
2D . ~9!

Then the conditions for a maximum satisfying the constra
obtained by differentiatingR̃, are

(
j 51

4

(
l 51

8

di~ l !dj~ l !gj5lgi ,

(
k51

4

gk
251. ~10!

This can be written as an eigenvalue equation

DGW 5lGW , ~11!

where

Di j 5(
l 51

8

di~ l !dj~ l ! ~12!

and the unitarity constraint is the normalization condition

GW •GW 51. ~13!

At this point, the problem of findingg boils down to finding
the eigenvectors of a 434 real symmetric matrix, which is
achieved by standard methods. There are four eigenvec
corresponding to four stationary points. The eigenvector w
the largest eigenvalue corresponds to the gauge transfo
tion g maximizingRx at sitex.

The next step is to apply the over-relaxation algorith
We transform the links touching sitex not by g(x) but by
gv(x), where

g5g4I 2 igW •sW

5cos~f!I 2 inW •sW sin~f!

gv5cos~vf!I 2 inW •sW sin~vf!
~14!

and we usev51.7 @13#. This procedure is applied at eac
site of the lattice, sweeping through the lattice several h
dred times. The algorithm stops when a convergence c
1-2



DETECTION OF CENTER VORTICES IN THE LATTICE . . . PHYSICAL REVIEW D 58 094501
FIG. 1. Ratio of the 1-vortexW1 to the 0-vortexW0 Wilson loops,W1(C)/W0(C), vs loop area atb52.3.

FIG. 2. Ratio of the 2-vortexW2 to the 0-vortexW0 Wilson loops,W2(C)/W0(C), vs loop area atb52.3.

FIG. 3. Fractions of link configurations containing even~or zero! and odd numbers ofP vortices, atb52.3, piercing loops of various
areas.
094501-3



L. DEL DEBBIO et al. PHYSICAL REVIEW D 58 094501
FIG. 4. Wilson loopsWevn(C), Wodd(C), andW(C) at larger loop areas, extracted from configurations with even~or zero! numbers of
P vortices, odd numbers ofP vortices, and any number ofP vortices, respectively, piercing the minimal loop area, again atb52.3.
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rion is satisfied. Our criterion is that the lattice average

( 1
2 Tr U)2 changes by less than 0.00015 after 50 gau

fixing sweeps.
Finally, it must be noted that maximal center gauge, l

the Coulomb, Landau, and maximal Abelian gauges, is
flicted with Gribov copies. To alleviate the problem, w
make several gauge copies of the original configuration
applying random gauge transformations, and then gauge
each copy. The gauge-fixed copy with the largest value oR
is chosen for data taking. In practice, three gauge co
seems sufficient, in the sense that we do not improve
average value ofR very much~or change the final results! by
making more copies.

All of the data reported below was obtained in the dire
maximal center gauge. A portion of those results, displa
in Figs. 1–7, are similar to results obtained previously in
indirect version of maximal center gauge@1#.

B. Projection vortices locate center vortices

Having fixed to the direct maximal center gauge by t
procedure, we obtain the corresponding center-projec
configuration~a Z2 lattice gauge field!, from Eq. ~5!. The
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excitations of anyZ2 gauge field are linelike (D53) or sur-
facelike (D54) vortices on the dual lattice. We refer t
these excitations, in the center-projected configurations
‘‘projection vortices’’ or just ‘‘P vortices.’’ The question is
whetherP vortices in the projected configuration are in a
way related to the existence of center vortices in the f
unprojected lattice configuration.

In order to study this question, we introduce the conc
of vortex-limited Wilson loopsWn(x). We say that a
plaquette is pierced by aP vortex if, upon going to maximal
center gauge and center projecting, the projected plaqu
has the value21. Likewise, a given lattice surface is pierce
by n P vortices if n plaquettes of the surface are pierced
P vortices. As a Monte Carlo simulation proceeds, the nu
ber ofP vortices piercing any given surface will vary. Defin
Wn(C) to be the Wilson loop evaluated on a subensemble
configurations, selected such that preciselyn P vortices, in
the corresponding center-projected configurations, pierce
minimal area of the loop. It should be emphasized here
the center projection is used only to select the data set.
Wilson loops themselves are evaluated using the full,un-
projectedlink variables. In practice, to computeWn(C), the
procedure is to generate thermalized lattice configurations
FIG. 5. Creutz ratiosx0(R,R) extracted from loops with noP vortices, as compared to the usual Creutz ratiosx(R,R) at b52.3.
1-4



DETECTION OF CENTER VORTICES IN THE LATTICE . . . PHYSICAL REVIEW D 58 094501
FIG. 6. Creutz ratiosxevn(R,R) extracted from loopsWevn(C), taken from configurations with even~or zero! numbers ofP vortices
piercing the loop. The standard Creutz ratios at this coupling (b52.3) are also shown.
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the usual Monte Carlo algorithm, and fix to maximal cen
gauge as described above. For each independent confi
tion one then examines each rectangular loop on the la
of a given size; those withn P vortices piercing the loop are
evaluated, the others are skipped.

The test for whether~thin! P vortices in the projected
configuration correspond to~thick! center vortices in the full,
unprojected SU~2! gauge-field configuration is whether th
behavior

Wn~C!

W0~C!
→~21!n ~15!

is found in the limit of large loop area. The reasoning beh
this test has been given elsewhere@1,2#, but for completeness
we repeat the argument here.

Vortices are created by discontinuous gauge transfor
tions. Suppose loopC, parametrized byxm(t), tP@0,1#,
encirclesn vortices. At the point of discontinuity

g„x~0!…5~21!ng„x~1!…. ~16!

The corresponding vector potential, in the neighborhood
loop C can be decomposed as

Am
~n!~x!5g21dAm

~n!~x!g1 ig21]mg, ~17!

with the inhomogeneous term dropped at the point of disc
tinuity. Then

Wn~C!5 K Tr expF i R dxmAm
~n!G L

5~21!nK Tr expF i R dxmdAm
~n!G L .

~18!

In the region of the loopC, the vortex background look
locally like a gauge transformation. If all other fluctuatio
dAm

(n) are basically short-range, then they should be obl
ous, in the neighborhood of the loopC, to the presence o
09450
r
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absence of vortices in the middle of the loop. In that case
we have correctly identified the vortex contribution, then

K Tr expF i R dxmdAm
~n!G L ' K Tr expF i R dxmdAm

~0!G L
~19!

for sufficiently large loops, and Eq.~15! follows immedi-
ately. The validity of Eq.~15! then constitutes a test o
whetherP vortices, which we are using to select the su
script n of Wn(C), actually locate center vortices in the un
projected configurations.

Figure 1 shows the ratioW1 /W0 , with the singleP vortex
associated withW1 located at~or touching! the center of the
loop. Likewise, Fig. 2 shows the ratioW2 /W0 , with the two
P vortices forW2 located near the center of the loop. Bo
figures were obtained from a simulation on a 144 lattice at
b52.3 ~400 configurations separated by 100 sweeps!, and
both appear to be quite consistent with the limiting behav
~15!.2

For very large loops, the fraction of configurations
which no vortex pierces the loop~the subensemble used t
computeW0) becomes very small. So as a further che
using all the configurations, we defineWevn(C) to be the
Wilson loop evaluated in subensemble in which only ev
~including zero! numbers ofP vortices pierce the minima
area, whileWodd(C) is the corresponding quantity for od
numbers ofP vortices. For a very large loop, the fraction o
configurations used to evaluateWevn(C), denotedPevn(C),
and the fractionPodd(C) used to evaluateWodd(C), should
each approach 50% of the total configurations. This is in f
the case, as seen in Fig. 3. IfP vortices in the projected
lattice are associated with center vortices in the unprojec
lattice, then we would expect, by the same argument lead
to Eq. ~15!, that

2Qualitatively similar results were found in the indirect maxim
center gauge@1#.
1-5
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L. DEL DEBBIO et al. PHYSICAL REVIEW D 58 094501
Wodd~C!→2Wevn~C! ~20!

in the limit of large loop area. That also appears to be
case, as seen in Fig. 4.

The conclusion is thatP vortices in center-projected lat
tice configurations obtained in direct maximal center gau
serve to locate thick center vortices in the full, unproject
lattice gauge field configuration. It is good to bear in min
however, that we have no real understanding ofwhy this
technique finds center vortices; our confidence is based
tirely on the numerical results shown in this and the follo
ing sections.

C. No vortices means no area law

The fact that center vortices can be identified in t
gauge-field vacuum does not necessarily imply that vorti
are important for the confinement mechanism. There is, h
ever, a simple test of their relevance. Let us definexn(I ,J) as
the Creutz ratio extracted from the vortex-limited loo
Wn(C). If the presence or absence of center vortices cro
ing the minimal spanning surface of a loop is unrelated to
area-law falloff, then we would naturally expect, at least
large loops, that

x0~ I ,J!'x~ I ,J!, ~21!

wherex(I ,J) is the usual Creutz ratio with no restriction o
numbers of vortices. In fact, the above equation is entir
wrong, as seen in Fig. 5. When Wilson loops are evaluate
subensembles in which no vortices cross the minimal are
the loop, the string tension vanishes.

As a further test, we may consider loops pierced by e
~or zero! numbers of vortices. According to the center vort
theory, the asymptotic string tension is entirely due to flu
tuations in the number of center vortices piercing the surf
of the loop. The asymptotic effect of creating a vortex pie

FIG. 7. Creutz ratios from center-projected lattice configu
tions, in the direct maximal center gauge.
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ing ~once or an odd number of times! the loop surface is to
multiply the loop by a center element, i.e., in SU~2!

Tr@UU . . . U#→~21!3Tr@UU . . . U# ~22!

and therefore the area-law falloff is due, asymptotically, t
delicate cancellation between configurations with even~or
zero! numbers of vortices piercing the loop~which gives a
positive average contribution!, and configurations with odd
numbers of vortices piercing the loop~which gives a nega-
tive average contribution!. In fact, we have already see
some evidence of this cancellation in Fig. 4, where the va
of the full loop W(C) is much smaller than the magnitude
of either the even or the odd componentsWevn(C),Wodd(C).
More quantitatively, if we evaluate Creutz ratiosxevn(I ,J)
evaluated from the even-vortex (Wevn) contribution alone,
the vortex theory predicts that

xevn~ I ,J!→0 ~23!

in the limit of large loop area. Once again, from Fig. 6, th
appears to be exactly what happens.

D. Center vortices generate the full asymptotic string tension

From the previous results, we deduce that the confin
properties of lattice gauge-field configurations are stron
correlated with distribution of center vortices. The fin
check is whether these vortices account for theentire
asymptotic string tension, as predicted by the center vo
theory. We have already seen that the asymptotic effect on
vortices piercing the middle of a large loop is to contribute
factor (21)n to the loop value. In that case, the expectati
value of a large Wilson loop can be factored into two co
ponents:~i! a factor Wvor(C) due to the effect of vortices
crossing the minimal area, far from the perimeter of the lo
and~ii ! a factorWper(C) due to short-range fluctuations@de-
noteddA(n) in Eq. ~17!# around the vortex background, ne
the loop perimeter. Asymptotically, for large-area loops, t
vortex theory predicts that

W~C!→Wvor~C!Wper~C!,

Wvor~C!5^~21!n&,

n5no. of vortices piercingC. ~24!

SinceWper(C) should behave asymptotically likeWevn(C) or
uWodd(C)u, it does not have an area-law falloff, and the ent
string tension must be due toWvor(C). But if, as we have
seen in the previous section,P vortices locate center vorti
ces, then

Wvor~C!5^ZZZ. . . Z& ~center-projected loop value!,
~25!

where the product of linksZZ . . . Z on the projected lattice is
taken around loopC. Therefore,if P vortices locate cente
vortices, andif the center vortex theory is correct,then the
string tension of center projected loops should exactly ma
the asymptotic string tension of the full theory.

Figure 7 is a Creutz ratio plot, extracted from cente
projected Wilson loops@i.e., from loops of theZm(x) link

-

1-6
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DETECTION OF CENTER VORTICES IN THE LATTICE . . . PHYSICAL REVIEW D 58 094501
FIG. 8. Center-projection Creutz ratiosx(R,R) vs R atb52.3, 2.4, 2.5. Triangles are our data points. The solid line shows the valu~at
eachb! of the asymptotic string tension of the unprojected configurations, and the dashed lines show the associated error bars, quo
@14#.
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variables# in direct maximal center gauge. The straight so
line is the usual two-loop expression (s5string tension,a
5 lattice spacing!

sa25
s

L2 S 6p2

11
b D 102/121

expF2
6p2

11
b G , ~26!

with s/AL558. There are two aspects of this plot which a
worth noting in particular. First, unlike a standard plot in t
unprojected theory, the Creutz ratios almost fall on top
one another, starting atR52. This is not so surprising, from
the point of view of the vortex theory. The short range g
onic fluctuations which give rise to the Coulombic potent
09450
f
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l

have been eliminated@these would contribute toWper(C)#;
only the fluctuations in vortex numbers, which give rise to
linear potential, remain. Second, evenx~1,1!, which is just
the logarithm of the center-projected plaquette, appears t
scaling. This fact, as we will see, is related to the scaling
the vortex density.

Scaling of the center-projected string tension is not su
cient for our purposes; what is necessary is that the ac
valueof the string tension, at everyb, agrees with the value
for the asymptotic string tension of the unprojected config
rations. This is also what we find. Figure 8 shows our d
~triangles! in the scaling region, for Creutz ratiosx(R,R) of
center-projected Wilson loops, as compared to the value
the full theory of the asymptotic string tension.3 The values
FIG. 9. Center-projected Wilson loops vs the strong-coupling expansion~solid lines! in SU~2! lattice gauge theory.

3This data was taken, forb52.3 andb52.4, on 164 lattices with 30 configurations separated by 100 sweeps. A 224 lattice and 20
configurations separated by 100 sweeps was used forb52.5.
1-7
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L. DEL DEBBIO et al. PHYSICAL REVIEW D 58 094501
for the full theory ~solid lines!, with associated error bar
~dashed lines!, are taken from Baliet al. @14#. This agree-
ment of the center-projected and full asymptotic string t
sion persists into the strong coupling regime~see Fig. 9!.

E. Scaling of the center vortex density

Finally, we consider the density of vortices. In the vort
theory of confinement, vortices must be ‘‘condensed’’ in t
sense that the average extension of a vortex is on the ord
the lattice size itself. It is easy to see why. Suppose
opposite were true, i.e., that there were some upper limi
vortex extension, and that almost all vortices, in a very la
lattice, would fit inside a hypercube of side lengthL. Now
considerR3T Wilson loops withR,T@L. Then only vorti-

FIG. 10. Evidence for asymptotic scaling of theP-vortex den-
sity, defined as the fractionp of plaquettes pierced byP vortices
~one-sixth the average area occupied byP vortices per unit lattice
volume!. The solid line is the asymptotic freedom prediction of E
~27!, with constantAr/(6L2)550.
09450
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ces within a distanceL of the loop perimeter could be linke
to the loop, and this would lead asymptotically to
perimeter-law, rather than area-law, falloff.

If vortices are physical objects, their density should sc
with b in some appropriate way.P vortices are located
somewhere near the middle of ‘‘thick’’ center vortices in th
unprojected lattice, and theseP vortices have the topology o
surfaces inD54 dimensions. If center vortices scale co
rectly, P vortices should also scale. The proper asympto
scaling ofP vortex densities in theindirect maximal center
gauge was reported recently by Langfeldet al. @15#. We can
also observe this scaling in the direct center gauge in a ra
simple way: we first definep to be the fraction, andNvor to
be the total number, of center projected plaquettes with va
21. Nvor is also the total area of allP vortices on the dual
lattice, and we denote byNT the total number of all
plaquettes on the lattice. Then

p5
Nvor

NT
5

Nvora
2

NTa4 a2

5
Total Vortex Area

63Total Volume
a2

5
1

6
ra2

5
1

6

r

L2 S 6p2

11
b D 102/121

expF2
6p2

11
b G , ~27!

wherea is the lattice spacing. The upshot is thatp, which is
the fraction of plaquettes pierced byP vortices ~equals the
probability that any given plaquette is pierced by aP vortex!
should scale like the string tension.

.

FIG. 11. Variation of the ratioW1 /W0 with the number of cooling steps.
1-8



DETECTION OF CENTER VORTICES IN THE LATTICE . . . PHYSICAL REVIEW D 58 094501
FIG. 12. Zero vortex Creutz ratiox0(R,R) and the full Creutz ratiox(R,R) vs R, after 5 cooling steps.
r-

r-

is

e
l,
ts
or

o
ct
m
n

o
ld

he
for

ens

ter

us-

ura-
of
n

e
ult,

ich

4
is
ds,

er

e
lly
is
tly

loff

m-
off
As
area
er
Return now to the Creutz ratio plot in Fig. 7, and in pa
ticular the data for the center-projectedx~1,1!, where

x~1,1!52 log Wcp~1,1!, ~28!

where the ‘‘cp’’ subscript indicates that this is the cente
projected Wilson loop. It is easy to see that

Wcp~1,1!5~12p!1p3~21!5122p ~29!

so for smallp ~largeb! we have

x~1,1!'2p. ~30!

From the behavior ofx~1,1!, which seems to~at least
roughly! parallel the straight line shown, we see thatp does
appear to scale correctly. However, since Eq.~30! is approxi-
mate, it is better to plot the precise value of theP-vortex
density

p5 1
2 „12Wcp~1,1!… ~31!

versus couplingb, as shown in Fig. 10. The straight line
the asymptotic freedom expression@last line of Eq.~27!#,
with the choiceAr/(6L2)550. The scaling ofP-vortex
densities, at the largerb values, is rather compelling. Ther
seems little doubt thatP-vortices are locating physica
surface-like objects in the full Yang-Mills vacuum; objec
which we have identified, in Sec. II B above, as center v
tices.

III. COOLED VORTICES

It has been argued persuasively by Teper@16# that the
lattice cooling procedure can never, in a finite number
cooling steps, remove the asymptotic string tension extra
from sufficiently large Wilson loops. However, as the nu
ber of cooling steps increases, the area-law falloff sets i
increasingly large loop sizes; this means that for a lattice
any fixed volume, confinement is eventually lost. We wou
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like to understand, in the vortex picture, how it is that t
area law is lost for smaller loops while being preserved
larger loops, after a finite number of cooling steps.

To answer this question, we need to know what happ
to vortices as the lattice is cooled. As before, we useP
vortices found on the uncooled lattice to locate the cen
vortices, and to count the number of timesn that vortices
pierce a given lattice surface. The lattice is then cooled,
ing the constrained cooling procedure of Campostriniet al.
@17#, and we can study what has happened to the config
tions identified on the uncooled lattice. The first quantity
interest isW1 /W0 , where the Wilson loops are evaluated o
subensembles of the cooled, unprojected lattice, and thP
vortices are identified on the uncooled lattice. The res
from 0–20 cooling steps atb52.3, is shown in Fig. 11~all
data in this section were obtained on a 164 lattice!. A rough
guide to the thickness of a vortex is the loop size for wh
W1 /W0'0. According to Fig. 11, this happens for 233
loops at cooling step 0, 334 loops at cooling step 5, and
35 loops at cooling step 10. The simplest interpretation
that the vortices become thicker as the cooling procee
with W1 /W0 reaching its asymptotic value at ever larg
distance scales.

The thickening of vortices with cooling explains how th
area law is lost for smaller loops, but retained asymptotica
for sufficiently large loops. The asymptotic string tension
only obtained for loops whose dimensions are significan
larger than the vortex thickness; there is no area-law fal
for loops whose size is very muchsmaller than the vortex
thickness.4 Thus, as cooling begins, loops whose size is co
parable to the vortex thickness lose their area-law fall
while the string tension of larger loops is unchanged.
cooling proceeds, vortex thickness increases, and the
law is lost for still bigger loops. However, after any numb

4This point is discussed in much more detail in Ref.@9#.
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FIG. 13. Same as Fig. 12, after 10 cooling steps.
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of cooling steps, there will always be loops~on a sufficiently
large lattice! whose extension is large compared to t
cooled vortex thickness, and whose asymptotic string ten
is untouched.

This picture is supported by the data forx0(R,R) vs
x(R,R) after 5 cooling steps~Fig. 12!, and after 10 cooling
steps~Fig. 13!, again atb52.3. These figures should b
compared with Fig. 5 above, which shows the same qua
ties on an uncooled lattice. We notice, particularly after
cooling steps, that the Creutz ratios for small loops ha
been drastically reduced. However, asR increases, the stan
dard Creutz ratiox(R,R) rises and seems to level out ne
the usual value of the asymptotic string tension atb52.3.
On the other hand, the zero-vortex Creutz ratiox0(R,R) is
again tending to zero for large loops. At 0 cooling steps~Fig.
5!, x0(R,R)'0 at R55. At 5 and 10 cooling steps
x0(5,5).0, although the trend towards zero at increas
loop size is clear. A rough guess is thatx0(R,R)'0 for R
such thatW1 /W0'21.

The message of Figs. 11–13 is that the vortices are
present on cooled lattices, and are still essential to confi
ment. However, the asymptotic valuesW1 /W0→21 and
x0→0 are obtained only at an increasingly large loop ar
as the number of cooling steps increases. This behavio
well as the loss of area-law falloff for smaller loops wi
cooling, seems to be nicely explained as being due to
‘‘thickening’’ of the vortex core@which is the region of the
center vortex that cannot be represented by a gauge tran
mation with discontinuity~16!#.

As just explained, our strategy is to locate the configu
tions of interest on the uncooled lattice, and then study w
happens to these configurations as the lattice is cooled. B
is also interesting to ask whether our procedure for find
the center vortices, i.e., maximal center gauge combi
with center projection, also works on the cooled lattices. T
answer is ‘‘no.’’ In Fig. 14 we show how theP vortex den-
sity p of Eq. ~27! falls drastically with cooling, if theP
vortices are identified by gauge fixing and center project
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the cooled lattice. A corresponding falloff is found in th
Creutz ratiosxcp(R,R) of center-projected loops, with in
creasing cooling step, as seen, e.g., in Fig. 15 forR55.
There is no trace of the typical ‘‘plateau’’ in string tensio
over some finite number of cooling steps, found in plotti
the usual Creutz ratios. We have also computedxcp(R,R) on
lattices that have been ‘‘smoothed’’ according to the pro
dure in Ref.@18#, and find that the center-projected Creu
ratios are reduced by about a factor of three on the smoo
lattices, as compared to the original lattices.5 Very similar
phenomena have been reported in maximal Abelian gaug
Refs.@19,20#, where the loss of Abelian projected string te
sion in cooled lattices is interpreted as a sign that the mo
poles identified in Abelian projection gauge are unphysic
However, at least in the case of vortices, our view is som
what different: we interpret the drop in vortex density show
in Fig. 14 as simply reflecting a failure of the cente
projection method in locating vortices on a cooled lattic
rather than the actual disappearance of the vortices th
selves.

The main point is that center vortices are still present o
large, cooled lattice, and are still crucial for confineme
That fact seems evident in Figs. 11–13. Whatis lost on the
cooled lattice is the efficacy of center projection in findin
all of the vortices. This suggests that our procedure for
cating center vortices is sensitive not only to long-range fl
tuations ~which are preserved by cooling and smoothi
methods!, but also to short-range features of some kind t
are associated with these vortices. We have, in fact, fo
indications that there is a thin sheet of plaquettes, of ac
significantly higher than the background, in the middle
center vortices. This sheet of excess action, located at
plaquettes pierced byP vortices, is smoothed away by th

5We thank T. Kova´cs for kindly supplying us with 100 smoothe
lattice configurations.
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FIG. 14. The drop inP-vortex densityp, identified by center projection in maximal center gauge, on cooled lattices.
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cooling procedure, quite possibly destroying an essen
clue used by the center-projection method in identifying v
tices. These results will be presented in a future publicat

IV. GRIBOV COPIES

The over-relaxation method of gauge fixing, described
Sec. II, is not guaranteed to find the absolute maximum
the quantityR in Eq. ~4!; in general it will only find a local
maximum. This is the well-known ‘‘Gribov problem,’
which also afflicts the Coulomb, Landau, and maximal Ab
lian gauges. It was in order to alleviate the problem that
have made three random gauge copies of each configur
used for data taking, and gauge fixed each to obtain th
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‘‘Gribov copies.’’ We then used the Gribov copy with th
largest value ofR.

Since Gribov copies of a given lattice configuration a
not identical, it is interesting to study by how much, on a
erage, they differ. In particular, to what extent are the po
tions of P vortices correlated from copy to copy? If there
no correlation, then we can hardly rely onP vortices to
locate physical objects~i.e., the thick center vortices!. On the
other hand, some variation in the position ofP vortices, from
copy to copy, should be permissible. Center vortices
rather thick, extended objects, and the precise ‘‘middle’’ s
face of such configurations, whichP vortices are supposed t
locate, may be somewhat ill defined.

To investigate quantitatively the correlation of vortices
FIG. 15. The drop in the center-projected Creutz ratioxcp(5,5), corresponding to the drop inp, with cooling step.
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L. DEL DEBBIO et al. PHYSICAL REVIEW D 58 094501
different Gribov copies, we do the following: a Monte Car
simulation is run at a givenb, taking data every 100 sweep
and making four copies of each configuration chosen for d
taking. The two ‘‘best’’ Gribov copies~in the sense of hav
ing the largestR values! are center-projected, and we deno
the projected configurations byZm8 (x) andZm9 (x), with cor-
responding center-projected Wilson loops

W 8~C!5Z8Z8 . . . Z8

W 9~C!5Z9Z9 . . . Z9. ~32!

Then we compute the expectation value of the loop prod

^W8~C!W 9~C!&. ~33!

If the correlation ofP vortices in the two Gribov copies wer
perfect, then

W8~C!5W 9~C!561 ~34!

and therefore

^W8~C!W 9~C!&51 perfect correlation. ~35!

At the other extreme, if there were no correlation at all b
tween theP-vortex positions in the two Gribov copies, the

^W8~C!W 9~C!&5^W8~C!&^W 9~C!&

5exp@22s Area~C!# no correlation,
~36!

wheres is the string tension of the center-projected loo
~same as the asymptotic tension of the unprojected loop!.

Small variations inP-vortex position among differen
Gribov copies are most likely to lead to a perimeter-law fa
off of the loop product~33!, at least in the limit of large loop
area. Consider, for example, the following simple mod
take anI 3J Wilson planar loop and assign to each of t
plaquettes in its plane, both inside and outside the loop
value11 with probability (12 f ), and21 with probability
f . Each such configuration is supposed to represent a
ticular ‘‘Gribov copy’’ of center-projected plaquettes in th
plane, and the value of the Wilson loop isWcp8 (I ,J)5

(21)n8, wheren8 is the number of negative plaquettes in t
minimal area. It is not hard to see, since the plaquettes
assumed to be uncorrelated, that, averaging over many
figurations gives

Wcp8 ~ I ,J!5^W8~ I ,J!&

5~122 f ! IJ5exp@2sIJ#, ~37!

where s52 log(122 f ) ~the assumption that nearb
plaquettes are completely uncorrelated is the main unreal
feature of this model!. From a given configuration of61
plaquettes, we construct a second ‘‘Gribov copy’’ by allo
ing negative plaquettes to change their position by, at m
one lattice spacing. Then only changes in position of ne
tive plaquettes bordering the loop perimeter can cause
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loop product to differ from 11. Assign to a negative
plaquette on the perimeter a probabilityq to crossinto the
loop, if it were outside, or to cross outside the loop, if it we
inside.6 The new value of the loop is (21)n9, wheren9 is
the number of negative plaquettes inside the loop in the s
ond ‘‘Gribov copy.’’ One then finds that in this model, de
fining N[4(I 1J),

^W8~ I ,J!W 9~ I ,J!&5 (
n50

N

~122q!nf n

3~12 f !N2n
N!

n! ~N2n!!

5~122q f !4~ I 1J!, ~38!

which is a perimeter-law falloff.
The above argument should also go through if t

P-vortex positions vary by more than one lattice spac
among Gribov copies, so long as the variation is small co
pared to the size of the loop. If the variation inP-vortex
position is comparable to the thickness of the center vor
then our best chance to see perimeter-law falloff in the lo
product ~33!, for comparatively small-size loops, will be a
smaller values of couplingb, where the vortex is relatively
thin in lattice units. We have therefore chosen to do o
simulation at a value ofb52.1 which is just past the strong
to-weak coupling crossover.

Figures 16 and 17 show our Monte Carlo results atb
52.1 on a 144 lattice, with data from 400 configuration
separated by 100 sweeps between configurations. Trian
show the data for loop products^W8(C)W 9(C)&, plotted vs
loop area, while the crosses are the values for no correla
i.e., ^W8(C)&^W 9(C)&. The loop products are clearly fa
above the uncorrelated value and, from Fig. 16, do not se
consistent with an area-law falloff. In Fig. 17 the loop pro
uct is plotted vs loop perimeter. The straight line is draw
somewhat arbitrarily, through data points at perimeter510,
18. It appears that the falloff in the loop product with perim
eter is quite compatible with perimeter-law falloff, as pr
dicted in our simple model.

These results indicate that the variation inP-vortex posi-
tion among different Gribov copies is relatively small—
perhaps on the order of the vortex thickness, although
have not quantified this—and leads asymptotically only t
perimeter-law falloff for the loop product̂W8(C)W 9(C)&,
indicating a strong correlation among Gribov copies.

V. FIRST RESULTS IN SU„3…

All results presented in the previous sections support
idea that thickZ2 vortices arethe configurations dominating
the SU~2! Yang-Mills vacuum. However, the vortex mech

6Plaquettes touching the corners of the loop should be treat
little differently from the other plaquettes along the perimeter, b
this is an inessential complication of the model, which we w
ignore.
1-12
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FIG. 16. Expectation value of products of center-projected Wilson loops~triangles!, evaluated in different Gribov copies, plotted vs loo
area. Crosses indicate the value for no correlation.
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nism should not be specific to the SU~2! gauge group. In
nature quarks appear in three colors, so a very urgent q
tion is whether the observed phenomena survive the tra
tion from SU~2! to SU~3!.

The maximal center gauge in SU~3! gauge theory is de
fined as the gauge which brings link variablesU as close as
possible to elements of its center Z3
5$e22ip/3I , I , e2ip/3I %. This can be achieved, e.g., by max
mizing the quantity

R5(
x,m

Re~@Tr Um~x!#3!, ~39!

or

R85(
x,m

uTr Um~x!u2. ~40!
09450
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We will concentrate here on the first choice. Center proj
tion then amounts to replacing full link variableUm(x) by
Zm(x), the closest center element. The residual unfixed lo
gauge symmetry is that ofZ3 .

Fixing to the maximal center gauge in SU~3! gauge theory
turns out to be much more difficult and computationally i
tensive than in the case of SU~2!. The reason is that we hav
not succeeded in reducing the maximization to an underly
linear algebra problem as in SU~2! ~see Sec. II A!. We thus
resorted to the method of simulated annealing@21,22#, which
was used for maximal Abelian gauge fixing by Baliet al.
@23#. However, this method of maximal center gauge fixi
converges to the maximum ofR, Eq. ~39!, very slowly,
which has forced us thus far to restrict simulations to sm
lattice sizes and to strong coupling. Tests of a more effici
maximization procedure are in progress.
rimeter.
FIG. 17. Expectation value of products of center-projected Wilson loops, evaluated in different Gribov copies, plotted vs loop pe
1-13
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FIG. 18. Center-projected Wilson loops vs the strong-coupling expansion~solid lines! in SU~3! lattice gauge theory.
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Before discussing the strong coupling results for SU~3!,
let us first recall the analogous data in SU~2! gauge theory.
In Fig. 9 we have plotted values of center-projected Wils
loops W(I ,J) in maximal center gauge forb<2.5. Broken
lines connecting data points are just meant to guide the
Solid lines represent results of the lowest-order stro
coupling expansion~for unprojected loops!

W~ I ,J!5S b

4 D IJ

. ~41!

Monte Carlo data for projected loops agree with the lowe
order strong coupling expansion up to aboutb51.5.

Our first results from SU~3! lattice gauge theory simula
tions come from an 84 lattice, forb values 1.0, 2.0, 3.0, 4.0
5.0, 5.4, and 5.6. Figure 18 shows center-projected Wil
loops together with the standard strong-coupling expans
to leading and next-to-leading order:

W~ I ,J!5S b

18D
IJX11

IJ

12
b1O~b2!C. ~42!

The data agree with lowest-order strong-coupling expans
up tob.2; when next-to-leading term is taken into accou
the agreement extends up tob54.

Qualitatively, the situation at strong coupling looks mu
the same in SU~2! and SU~3!: in both cases full Wilson loops
are well reproduced by those constructed from center
ments alone in maximal center gauge. Thus, center do
nance is seen also in SU~3! gauge theory at strong coupling

An immediate task for the near future is to repeat o
investigation of center dominance and the role of vortices
SU~3! lattice gauge theory for couplings in the scaling r
gion. An absolutely crucial check of the validity of the vo
tex mechanism is that the evidence for vortices found in
SU~2! lattice theory is also found for the SU~3! gauge group.

VI. SUMMARY

It may be worth summarizing the results reported here
P vortices locate center vortices.Vortex excitations in the
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center-projected configurations, in direct maximal cen
gauge, locate center vortices in the full, unprojected latti
The evidence for this comes from the fact th
Wn(C)/W0(C)→(21)n, and Wodd(C)→2Wevn(C) in the
limit of large loop area.

No vortices⇒ no confinement.When Wilson loops in
SU~2! gauge theory are evaluated in subensembles of c
figurations with no vortices~or only an even number of vor
tices! piercing the loop, the string tension disappears.

Vortices, by themselves, account for the full string te
sion.The string tension of the vortex contribution to Wilso
loops is found to match, quite accurately, the asympto
string tension extracted from the full Wilson loops.

Vortex density scales.The variation ofP-vortex density
with coupling b goes as expected for a physical quant
with dimensions of inverse area. This is additional eviden
that P vortices locate physical, surfacelike objects~center
vortices! in the Yang-Mills vacuum~see also Ref.@15#!.

Center vortices thicken as the lattice cools.This enables
us to explain how the area law falloff is lost, after a fini
number of cooling steps, for smaller loops, while the stri
tension remains unchanged for sufficiently large loops.

P-vortex locations are correlated among Gribov copie
There appears to be only modest sensitivity inP-vortex lo-
cation to the choice of Gribov copy.

SU(3). There is preliminary evidence, on small lattice
and strong couplings, of center dominance also in SU~3! lat-
tice gauge theory.

It is also worth mentioning some other results reported
Refs.@2,9#.

Monopole loops lie on P vortices [2].Monopoles, identi-
fied in the maximal Abelian gauge, lie along center vortic
found in the indirect maximal center gauge, in a monopo
antimonopole chain. The non-Abelian field strength
monopole cubes, above the lattice average, is directed alm
entirely along the associated center vortices. Monopoles
pear to be rather undistinguished regions of vortices,
may simply be artifacts of the Abelian projection, as e
plained in Ref.@2#.

Center vortices are compatible with Casimir scaling [9
The ‘‘Casimir scaling’’ of the string tension of higher repre
1-14
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DETECTION OF CENTER VORTICES IN THE LATTICE . . . PHYSICAL REVIEW D 58 094501
sentation Wilson loops, at intermediate distance scales,
long been considered incompatible with the center vor
theory. Very recently, however, it has been argued that
simir scaling is explained in terms of center vortices, if w
take into account the fact that center vortices, unlikeP vor-
tices, have a thickness which may be much greater than
lattice spacing.7

7Related work on the adjoint potential, in the context of a parti
lar model of center vortices, may be found in Ref.@24#; some
speculations about hedgehog solutions, in the same framework
found in Ref.@25#. The approach taken in Ref.@24# has some simi-
larities to ours in Ref.@9#, but also differs in a number of importan
respects. In particular there is no apparent Casimir scaling foun
the former approach, and there also seems to be an explicit co
with the large-N factorization property atNcolors→`.
m
.

e,
,
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These results support the view that center vortices
responsible for quark confinement.
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