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Detection of center vortices in the lattice Yang-Mills vacuum
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We discuss the implementation of the “direct” maximal center gaiagggauge which maximizes the lattice
average of the squared-modulus of the trace of link varigbéesl its use in identifyin@, center vortices in
Yang-Mills vacuum configurations generated by lattice Monte Carlo calculations. We find that center vortices
identified in the vacuum state account for the full asymptotic string tension. Scaling of vortex densities with
lattice coupling, change in vortex size with cooling, and sensitivity to Gribov copies are discussed. Preliminary
evidence is presented, on small lattices, for center dominance ii(3)Slattice gauge theory.
[S0556-282(98)00419-9

PACS numbegs): 11.15.Ha, 12.38.Aw

I. INTRODUCTION confinement. We go on to studySec. Ill) how vortex con-
figurations are affected by cooling the lattice, and then take

. . up issues related to Gribov copié€Sec. I\V). Some prelimi-
In a number of recent articles and conference proceedmgﬁary evidence for center dominance in (SUlattice gauge

[1-3] we have presented numerical evidence in favor of thqheory is presented in Sec. V, followed by a summary of our
center vortex theory of confinement, which was put forwardegits in Sec. V.

in the late 1970§4—8]. Our most important tool is the use of
the maximal center gauge, which, combined with “center
projection,” allows us to identify the locations of center vor-
tices in thermalized lattice gauge-field configurations. It has Our procedure for locating center vortices in thermalized
been found that these vortices, by themselves, account foattice configurations was inspired by an earlier work on
the entire asymptotic string tensigficenter dominance).  Abelian projection in maximal Abelian gaud&1]. The idea
We have also found eviden¢g] that the monopoles of the is to fix a gaugethe maximal center gaugevhich, in the
maximum Abelian gauge lie along the center vortices in acase of SW2) gauge theory, reduces the full 8) gauge
monopole-antimonopole chain, and that their non-Abeliarsymmetry to the center subgrodp. “Center projection” is
field strength, above the vacuum average, is almost entirelg mapping of the full gauge field configuratibh,(x) onto a
oriented in the vortex direction. This opens the way to ex-configurationZ ,(x) = =1, transforming as &, gauge field
plain Abelian dominance, and monopole condensation, ininder the residuaZ, symmetry. The excitations of &,
terms of more fundamental underlying vortex configurationsgauge field arethin) center vortices, and these are used to
Finally, in Ref.[9], we argued that the Casimir scaling of locate thick center vortices in the full, unprojected gauge-
higher representation string tensions, formerly a very strond€ld configurationU ,(x), as explained below. _
argumentagainstthe center vortex theory, can in fact be In fact we have introduced two versions of the maximal

understood in terms of center vortices. Independent arglf€nter gauge; an “indirect” version, in Refgl2,1], and a

ments in favor of the center vortex theory have been pre-direct” maximal center gauge in Ref2]. The indirect

sented by Koves and Tombouli§10], who follow a rather gauge is a further gauge—fix[ng within maximal Abelian
different approach but reach similar conclusions. gauge, which reduces the residugllijgauge symmetry to

In this paper we will explain, in Sec. Il, the actual imple- Z,. One begins by fixing to maximal Abelian gauge, defined

mentation of the “direct” maximal center gauge, which un- as the gauge which maximizes
derlies much of our work, and review the evidence, in the
direct gauge, that center vortices are responsible for quark sz% Tr[UM(X)O'gLJL(X)O'3], (1)

II. CENTER VORTICES AND CONFINEMENT

leaving a residual 1) symmetry. This gauge makes the link
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extracted from the diagonal .ele.m(.ents of the full link vari- UM(X—,&)=d4(M+4)| —i&(,u+4)-&,
ables, rescaled to restore unitarity: (7)
diagd U;;,Uo] e'? where the choice of signs in front of the various terms pro-
= Ju 11U’1‘1+U22U§2: e ib]" 2 portional toi is made for convenience. Then
8 / 4 2
. . 1

These variables transform under the residual symmetry as R,»== 2 ( dek(U) . (8)
U(1) gauge field link variables. The indirect maximal center 2=\ k=1

gauge uses this residual symmetry to bring #xénk vari-
ables as close as possible to (8Ucenter elements: |, by
maximizing the lattice average of &6). Center projection
is then achieved by identifying

Z,(x)=sgrcoq,(x))]. 3

The gauge is “indirect” in the sense that the center is maxi-Then the conditions for a maximum satisfying the constraint,
mized in the Abelian link variablé, rather than directly in  obtained by diﬁerentiatinﬁgk, are

the full link variable U. String tensions can be extracted
from the center-projected configurations and, although agree-
ment with the asymptotic string tension of the full configu-

We have to maximize this quantity subject to the constraint
thatg is unitary. To this end, introduce a Lagrange multiplier

~ 1
R= Rx+ 57\

4
1-> gﬁ). (9)

8
> di(hd;(g;=\g;,

rations is not too bad, significantly better results are obtained =it
in the direct maximal center gauge, as will be seen below. 4
The direct maximal center gauge, in @Jgauge theory, E g2=1 (10)
is defined as the gauge which brings the full link varialles & T
as close as possible to the center elemerits by maximiz-
ing the quantity This can be written as an eigenvalue equation
DG=\G, (12)
R=2 TrU,(x)]% )
X, i
where
with center projection defined by 8
Dij=2, di(hd;(1) (12
Z,(x)=sgr Tr U ,(x)]. (5 R R

Again, the projected ,(x) field transforms as a gauge field and the unitarity constraint is the normalization condition

under the residuaf, symmetry. Before going on to discuss L.

numerical results obtained in this gauge, we must first dis- G-G=1. (13

cuss how to implement it.

At this point, the problem of finding boils down to finding

the eigenvectors of axX4 real symmetric matrix, which is

T . achieved by standard methods. There are four eigenvectors
The gauge-fixing is accomplished by over-relaxafid8l.  corresponding to four stationary points. The eigenvector with

Beginning with a thermalized but nongauge-fixed lattice, weyne |argest eigenvalue corresponds to the gauge transforma-

sweep through the lattice site by site. At each sifeone  tjon g maximizingR, at sitex.

needs to find the gauge transformatigrwhich maximizes The next step is to apply the over-relaxation algorithm.

the local quantity We transform the links touching site not by g(x) but by

g“(x), where

A. Fixing to direct maximal center gauge

1
Re=7 12 TH()U,(x)]?
M

9=04l—ig-o
+2 TU,(x—w)g"(0]?}. (6) =cog )l —in-o sin(¢)
M
Denote g“=cogwa)l—in-o sin(we)
(14
9(x)=g4l —ig-o, and we usew=1.7 [13]. This procedure is applied at each
R _ site of the lattice, sweeping through the lattice several hun-
U, (X)=dg(p)l +id(u)- o, dred times. The algorithm stops when a convergence crite-
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FIG. 1. Ratio of the 1-vortexV, to the 0-vorteXW, Wilson loops,W,(C)/Wy(C), vs loop area aB=2.3.
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FIG. 2. Ratio of the 2-vortexV, to the 0-vortex\W, Wilson loops,W,(C)/Wy(C), vs loop area aB=2.3.
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FIG. 3. Fractions of link configurations containing ev@n zerg and odd numbers d? vortices, at3=2.3, piercing loops of various
areas.
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FIG. 4. Wilson loopsWe,{C), Wye(C), andW(C) at larger loop areas, extracted from configurations with éeerzerg numbers of
P vortices, odd numbers d? vortices, and any number &f vortices, respectively, piercing the minimal loop area, agaig=ag.3.

rion is satisfied. Our criterion is that the lattice average ofexcitations of anyZ, gauge field are linelikel =3) or sur-

(3 Tr U)2 changes by less than 0.00015 after 50 gaugefacelike D=4) vortices on the dual lattice. We refer to
fixing sweeps. thesg excitatior]s, in thg center-pr(_)jected configurqtion_s, as
Finally, it must be noted that maximal center gauge, like Projection vortices” or just “P vortices.” The question is
the Coulomb, Landau, and maximal Abelian gauges, is afwhetherP vortices in the projected configuration are in any
flicted with Gribov copies. To alleviate the problem, we Way related to the existence of center vortices in the full,

make several gauge copies of the original configuration byinProjected lattice configuration. .
applying random gauge transformations, and then gauge fix 1N order to study this question, we introduce the concept
each copy. The gauge-fixed copy with the largest valug of ©Of vortex-limited Wilson loopsW,(x). We say that a
is chosen for data taking. In practice, three gauge copieBlaquette is pierced by B vortex if, upon going to maximal
seems sufficient, in the sense that we do not improve thgenter gauge and center projecting, the projected plaquette
average value dR very much(or change the final resujtey ~ has the value-1. Likewise, a given lattice surface is pierced
making more copies. by n P vortices ifn plaquettes of the surface are pierced by
All of the data reported below was obtained in the directP vortices. As a Monte Carlo simulation proceeds, the num-
maximal center gauge. A portion of those results, displayeder ofP vortices piercing any given surface will vary. Define
in Figs. 1-7, are similar to results obtained previously in the/Va(C) to be the Wilson loop evaluated on a subensemble of
indirect version of maximal center gauff. configurations, selected such that precisely? vortices, in
the corresponding center-projected configurations, pierce the
minimal area of the loop. It should be emphasized here that
the center projection is used only to select the data set. The
Having fixed to the direct maximal center gauge by thisWilson loops themselves are evaluated using the furk
procedure, we obtain the corresponding center-projectedrojectedlink variables. In practice, to comput,(C), the
configuration(a Z, lattice gauge field from Eq. (5). The  procedure is to generate thermalized lattice configurations by

B. Projection vortices locate center vortices
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FIG. 5. Creutz ratioxo(R,R) extracted from loops with n® vortices, as compared to the usual Creutz rati6R,R) at 3=2.3.
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FIG. 6. Creutz ratioye,(R,R) extracted from loopdV,,(C), taken from configurations with eveor zerg numbers ofP vortices
piercing the loop. The standard Creutz ratios at this couplifvg 2.3) are also shown.

the usual Monte Carlo algorithm, and fix to maximal centerabsence of vortices in the middle of the loop. In that case, if
gauge as described above. For each independent configurge have correctly identified the vortex contribution, then
of a given size; those with P vortices piercing the loop are
evaluated, the others are skipped. <Tr ex;{i #; dxugA(n)}>%<Tr exp{i 3§ dx#SA®
The test for whethelthin) P vortices in the projected a a
configuration correspond {hick) center vortices in the full,
behavior for sufficiently large loops, and Eq15) follows immedi-
ately. The validity of Eqg.(15) then constitutes a test of
W,(C) (=1 (15) whetherP vortices, which we are using to select the sub-
Wy(C) scriptn of W,(C), actually locate center vortices in the un-
is found in the limit of large loop area. The reasoning behind  Figure 1 shows the ratio/, /W, with the singleP vortex
this test has been given elsewhgte], but for completeness  associated wittv, located at(or touching the center of the
we repeat the argument here. loop. Likewise, Fig. 2 shows the ratiy, /W, with the two
Vortices are created by discontinuous gauge transformas yortices forw, located near the center of the loop. Both

tion one then examines each rectangular loop on the lattice
(19
unprojected S(2) gauge-field configuration is whether the
projected configurations.
tions. Suppose lool, parametrized by*(7), 7€[0,1],  figures were obtained from a simulation on & l4ttice at

encirclesn vortices. At the point of discontinuity B=2.3 (400 configurations separated by 100 sweepsad
both appear to be quite consistent with the limiting behavior
g(x(0)=(~1)"g(x(1)). 0 qmz " a 9

The corresponding vector potential, in the neighborhood ofN hli:c%r nvselo:g)?e i:aorggz’ trt]gelgg%ﬂ('aogug‘;ﬁgg;%?éagsgj tlc?
loop C can be decomposed as P

computeW,) becomes very small. So as a further check,
Myy—q-1sa(M -1 using all the configurations, we defing/,,(C) to be the
Aw ()= oA, (X)G TG 0,0, @n Wilson loop evaluated in subensemble in which only even
with the inhomogeneous term dropped at the point of discon(including zerg numbers ofP vortices pierce the minimal
tinuity. Then area, whileW,q{C) is the corresponding quantity for odd
numbers ofP vortices. For a very large loop, the fraction of
configurations used to evaluat¥,,(C), denotedP,,(C),
Wn(C)=<Tf exp{i jg dxf‘Aﬁf)D and the fractionP 4 C) used to evaluat®V,,{C), should
each approach 50% of the total configurations. This is in fact
the case, as seen in Fig. 3. Bf vortices in the projected
(—1)“<Tr exr{i fﬁ dx“(SAiL“)D. lattice are associated with center vortices in the unprojected
(19) lattice, then we would expect, by the same argument leading
to Eq. (15), that

In the region of the loopC, the vortex background looks

locally like a gauge transformation. If all other fluctuations

5A§Ln) are basically short-range, then they should be oblivi- 2Qualitatively similar results were found in the indirect maximal
ous, in the neighborhood of the lodp, to the presence or center gaugél].
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AR RN ERRNRARRE RN ing (once or an odd number of timethe loop surface is to
2.00— — multiply the loop by a center element, i.e., in QU
100 - ] TI{UU...U]—(—-1)XTr{UU...U] (22)
L ] and therefore the area-law falloff is due, asymptotically, to a
0501~ ] delicate cancellation between configurations with even
= L ‘ zerg numbers of vortices piercing the lodpvhich gives a
S g0l | positive average contributipnand configurations with odd
S numbers of vortices piercing the lodgprhich gives a nega-
N 010 - B tive average contribution In fact, we have already seen
FooxoxD ] some evidence of this cancellation in Fig. 4, where the value
T Xﬁg B of the full loop W(C) is much smaller than the magnitudes
UL . ’;[4°4] . of either the even or the odd componews, (C),W4(C).
- < x(5.5) . More quantitatively, if we evaluate Creutz ratiqs,(I,J)
0.02— & x(6,6) — evaluated from the even-vorte¥\,,) contribution alone,
the vortex theory predicts that
I I Y I
000 05 10 15 2.0 2.5 3.0 Xewr(1,J)—0 (23
BETA

_ . . _ in the limit of large loop area. Once again, from Fig. 6, this
FIG. 7. Creutz ratios from center-projected lattice conflgura-appears to be exactly what happens.

tions, in the direct maximal center gauge.

D. Center vortices generate the full asymptotic string tension

Wodd €)= = Wey C) (20 From the previous results, we deduce that the confining

. - roperties of lattice gauge-field configurations are strongly

in the limit of large loop area. That also appears to be th‘?E:)orrelated with distribution of center vortices. The final

caser; as seeln n F!g. ﬁ . . . dq1 check is whether these vortices account for thetire
The conclusion is thal vortices in center-projected lat- asymptotic string tension, as predicted by the center vortex

tice configurations obtained in direct maximal center gauggpeqry e have already seen that the asymptotic effent of
serve to locate thick center vortices in the full, unprOjectedvortiCeS piercing the middle of a large loop is to contribute a

lattice gauge field configuration. It is good tq bear in mind’factor (= 1)" to the loop value. In that case, the expectation
howeyer, that we have no real understgndmgv@[y this value of a large Wilson loop can be factored into two com-
technique finds center vortices; our confidence is based erb'onentS'(i) a factorW,,(C) due to the effect of vortices

tirely on the numerical results shown in this and the fOIIOW'crossing. the minimal e;/roéa, far from the perimeter of the loop

Ing sections. and(ii) a factorWye(C) due to short-range fluctuatiopde-
_ notedSA(™ in Eq. (17)] around the vortex background, near
C. No vortices means no area law the loop perimeter. Asymptotically, for large-area loops, the
The fact that center vortices can be identified in theVortex theory predicts that
gauge-field vacuum does not necessarily imply that vortices
are important for the confinement mechanism. There is, how- WI(C) =Wy C)Woe( C),
ever, a simple test of their relevance. Let us defip@ ,J) as Wyol(C)=((— 1),
the Creutz ratio extracted from the vortex-limited loops
W,(C). If the presence or absence of center vortices cross- n=no. of vortices piercingC. (24

ing the minimal spanning surface of a loop is unrelated to the . .
area-law falloff, then we would naturally expect, at least forSINc€Wpe(C) should behave asymptotically likde,(C) or
large loops, that |W,o4 C)|, it does not have an area-law falloff, and the entire

string tension must be due W,,,(C). But if, as we have

xo(1,3)=x(1,J), (21 seen in the previous sectioR, vortices locate center vorti-
ces, then
wherex(1,J) is the usual Creutz ratio with no restriction on W,o(C)=(ZZZ...Z) (center-projected loop valiie

numbers of vortices. In fact, the above equation is entirely (25)

wrong, as seen in Fig. 5. When Wilson loops are evaluated in

subensembles in which no vortices cross the minimal area offhere the product of link&Z. . . Z on the projected lattice is

the loop, the string tension vanishes. taken around loofC. Therefore,if P vortices locate center
As a further test, we may consider loops pierced by evewortices, andf the center vortex theory is corre¢henthe

(or zerg numbers of vortices. According to the center vortexstring tension of center projected loops should exactly match

theory, the asymptotic string tension is entirely due to fluc-the asymptotic string tension of the full theory.

tuations in the number of center vortices piercing the surface Figure 7 is a Creutz ratio plot, extracted from center-

of the loop. The asymptotic effect of creating a vortex pierc-projected Wilson loopsi.e., from loops of theZ,(x) link
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FIG. 8. Center-projection Creutz ratig¢R,R) vs R at3=2.3, 2.4, 2.5. Triangles are our data points. The solid line shows the {atlue
eachp) of the asymptotic string tension of the unprojected configurations, and the dashed lines show the associated error bars, quoted in Ref.
[14].

variabled in direct maximal center gauge. The straight solidhave been eliminatefthese would contribute t&V,(C)];
line is the usual two-loop expressiomr£ string tensiona  ©nly the fluctuations in vortex numbers, which give rise to a

= lattice spacing linear potential, remain. Second, evg(i,1), which is just
the logarithm of the center-projected plaquette, appears to be
o (672 102121 672 scaling. This fact, as we will see, is related to the scaling of
Uaz:P (H’B) ex[{ 3T } (26)  the vortex density.

Scaling of the center-projected string tension is not suffi-

with o/ /A =58. There are two aspects of this plot which areCient for our PUrpoSEs, what is necessary is_ that the actual
worth noting in particular. First, unlike a standard plot in the Y2IU€Of the string tension, at ever, agrees with the value

unprojected theory, the Creutz ratios almost fall on top Offor.the asymptotic string tension of the unprojected configu-
one another startir;g &= 2. This is not so surprising, from rations. This is also what we find. Figure 8 shows our data

: ; (triangles in the scaling region, for Creutz ratigd R,R) of
the point of view of the vortex theory. The short range glu- .o nter projected Wilson loops, as compared to the value for

onic fluctuations which give rise to the Coulombic potentialipq 11 theory of the asymptotic string tensidhe values

1.0 T T T T T T
L wW(1,1)  +
- Mo W(12) A
L v i
w(2,2
0.8~ B g p W22 ]
0.6 —
= [ ]
EY L |
0.4 —
0.2t —
ool s i
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Beta

FIG. 9. Center-projected Wilson loops vs the strong-coupling exparisaid lineg in SU(2) lattice gauge theory.

3This data was taken, foB=2.3 andB=2.4, on 18 lattices with 30 configurations separated by 100 sweeps. ‘Al&@fice and 20
configurations separated by 100 sweeps was use@+a2.5.
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ces within a distanck of the loop perimeter could be linked
to the loop, and this would lead asymptotically to a
perimeter-law, rather than area-law, falloff.

If vortices are physical objects, their density should scale
with B in some appropriate wayP vortices are located
somewhere near the middle of “thick” center vortices in the
unprojected lattice, and theBevortices have the topology of
surfaces inD=4 dimensions. If center vortices scale cor-
rectly, P vortices should also scale. The proper asymptotic
scaling of P vortex densities in théndirect maximal center
gauge was reported recently by Langfeldal.[15]. We can
also observe this scaling in the direct center gauge in a rather
simple way: we first defin@ to be the fraction, andl,,, to
be the total number, of center projected plaguettes with value
—1. Ny is also the total area of af vortices on the dual
lattice, and we denote by, the total number of all

beta plaguettes on the lattice. Then
FIG. 10. Evidence for asymptotic scaling of tRevortex den- Nyor N\,ora2 5
sity, defined as the fractiop of plaquettes pierced bl vortices p= Nt = NTa“ a

(one-sixth the average area occupiedPyortices per unit lattice
volume. The solid line is the asymptotic freedom prediction of Eq.

(27), with constanty/p/(6A2) =50. Total Vortex Area ,

~ xTotal Volume &

for the full theory (solid lineg, with associated error bars
(dashed lines are taken from Balet al. [14]. This agree-
ment of the center-projected and full asymptotic string ten- 1
sion persists into the strong coupling regifsee Fig. 9. = Epaz
1 p 67T2 102/121 6772

"6z (Hﬂ) exf{‘ﬁﬁ}’ @7
sense that the average extension of a vortex is on the order of
the lattice size itself. It is easy to see why. Suppose the
opposite were true, i.e., that there were some upper limit tavherea is the lattice spacing. The upshot is tipatwhich is
vortex extension, and that almost all vortices, in a very largehe fraction of plaquettes pierced I8 vortices (equals the

lattice, would fit inside a hypercube of side lendth Now  probability that any given plaquette is pierced bl aorteX
considerRX T Wilson loops withR,T>L. Then only vorti-  should scale like the string tension.

E. Scaling of the center vortex density

Finally, we consider the density of vortices. In the vortex
theory of confinement, vortices must be “condensed” in the

T T —— T

1.0~ . -

L Cooling Step |

i 20 ]
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L 15 4

=3 I ]
Zz 00

E LI

—05}- ° -

= 0 A
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FIG. 11. Variation of the ratiéW; /W, with the number of cooling steps.
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FIG. 12. Zero vortex Creutz ratigo(R,R) and the full Creutz ratiov(R,R) vs R, after 5 cooling steps.

Return now to the Creutz ratio plot in Fig. 7, and in par-like to understand, in the vortex picture, how it is that the
ticular the data for the center-projectgdl,1), where area law is lost for smaller loops while being preserved for
larger loops, after a finite number of cooling steps.

x(1,1)=—log Wcp(1,1), (28) To answer this question, we need to know what happens
where the ‘tp” subscript indicates that this is the center- ©© Vortices as the lattice is cooled. As before, we #se
projected Wilson loop. It is easy to see that vort!ces found on the uncooled lattice .to locate thg center
vortices, and to count the number of timesthat vortices
Wep(1,)=(1—p)+pX(—1)=1-2p (29 pierce a given lattice surface. The lattice is then cooled, us-

ing the constrained cooling procedure of Camposteinal.
[17], and we can study what has happened to the configura-
¥(1,1)~2p. (30) tions identified on the uncooled lattice. The first quantity of
interest isW,; /W, where the Wilson loops are evaluated on
From the behavior ofy(1,1), which seems to(at least subensembles of the cooled, unprojected lattice, andPthe
roughly) parallel the straight line shown, we see thadloes vortices are identified on the uncooled lattice. The result,
appear to scale correctly. However, since 8§) is approxi-  from 0—20 cooling steps @8=2.3, is shown in Fig. 11all
mate, it is better to plot the precise value of tRevortex  data in this section were obtained on & 14tice). A rough
density guide to the thickness of a vortex is the loop size for which
L W, /Wy=~0. According to Fig. 11, this happens forx3
p=3z (1—-Wcp(1,0) 31 loops at cooling step 0,34 loops at cooling step 5, and 4
X5 loops at cooling step 10. The simplest interpretation is
that the vortices become thicker as the cooling proceeds,
with W, /W, reaching its asymptotic value at ever larger
distance scales.

so for smallp (large B) we have

versus coupling3, as shown in Fig. 10. The straight line is
the asymptotic freedom expressiplast line of Eq.(27)],
with the choicep/(6A%)=50. The scaling ofP-vortex

densities, at the larges values, is rather compelling. There The thickening of vortices with cooling explains how the

seems I!ttle d(.)Ubt FhaP-vornces are'locatmg physpal, area law is lost for smaller loops, but retained asymptotically
surface-like objects in the full Yang-Mills vacuum; objects ¢, g ficiently large loops. The asymptotic string tension is
which we have identified, in Sec. Il B above, as center vorqy optained for loops whose dimensions are significantly
tices. larger than the vortex thickness; there is no area-law falloff
for loops whose size is very mugmallerthan the vortex

1. COOLED VORTICES thickness! Thus, as cooling begins, loops whose size is com-

; parable to the vortex thickness lose their area-law falloff
't has been argued persuasively by Tep8] that the thile the string tension of larger loops is unchanged. As

lattice cooling procedure can never, in a finite number o i 3 tex thick . d th
cooling steps, remove the asymptotic string tension extracteff®0'!Nd proceeas, vortex tnickness Increases, an € area
law is lost for still bigger loops. However, after any number

from sufficiently large Wilson loops. However, as the num-
ber of cooling steps increases, the area-law falloff sets in at
increasingly large loop sizes; this means that for a lattice of
any fixed volume, confinement is eventually lost. We would “This point is discussed in much more detail in Réf.
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FIG. 13. Same as Fig. 12, after 10 cooling steps.

of cooling steps, there will always be loofn a sufficiently  the cooled lattice. A corresponding falloff is found in the

large lattice whose extension is large compared to theCreutz ratiosy.,(R,R) of center-projected loops, with in-

cooled vortex thickness, and whose asymptotic string tensiogreasing cooling step, as seen, e.g., in Fig. 15Re¥5.

is untouched. There is no trace of the typical “plateau” in string tension
This picture is supported by the data f@p(R,R) VS  over some finite number of cooling steps, found in plotting

x(R,R) after 5 cooling stepgFig. 12), and after 10 cooling  the usual Creutz ratios. We have also compuigR,R) on

steps(Fig. 13, again atp=2.3. These figures should be |attices that have been “smoothed” according to the proce-

compared with Fig. 5 above, which shows the same quantig e in Ref.[18], and find that the center-projected Creutz

ties on an uncooled lattice. We notice, particularly after 104465 are reduced by about a factor of three on the smoothed

cooling ste_ps, that the Creutz ratlos'for small loops haVefattices, as compared to the original latticegery similar

been drastlcally_ reduced._However,Iﬁsncreases, the stan- phenomena have been reported in maximal Abelian gauge, in

?haerduscurzluz/zalrsgz(é It?k;s)agsfns S)Ti(i Ssttar??s t;?,slfgela(z;t 3near Refs.[19,20, where the loss of Abelian projected string ten-
ymp 9 nGat2.3. sion in cooled lattices is interpreted as a sign that the mono-

On the other hand, the zero-vortex Creutz raggfR,R) is . A . L .
. . . . poles identified in Abelian projection gauge are unphysical.
again tending to zero for large loops. At 0 cooling stépg. X . O
However, at least in the case of vortices, our view is some-

5, xo(R,R)=~0 at R=5. At 5 and 10 cooling steps, ) ) . . .
Xo(5,5)>0, although the trend towards zero at increasingWhatd'fferent' we interpret the drop in vortex density shown
' : n Fig. 14 as simply reflecting a failure of the center-

loop size is clear. A rough guess is thaf(R,R)~0 for R Lo ! ) 1 )
sucph thatW, /Wy~ — 1. g hes(R.R) projection method in locating vortices on a cooled lattice,

The message of Figs. 11-13 is that the vortices are stifiather than the actual disappearance of the vortices them-
present on cooled lattices, and are still essential to confineésélves. _ ,
ment. However, the asymptotic valu#%, /W,——1 and The main point is that center vortices are still present on a
Yo—0 are obtained only at an increasingly large loop arealarge, cooled lattice, and are still crucial for confinement.
as the number of cooling steps increases. This behavior, Adhat fact seems evident in Figs. 11-13. Wisalost on the
well as the loss of area-law falloff for smaller loops with cooled Iatt|ce.|s the e.fflcacy of center projection in finding
cooling, seems to be nicely explained as being due to théall pf the vortlceg. Th[s sugg.e.sts that our procedure for lo-
“thickening” of the vortex core[which is the region of the Cating center vortices is sensitive not only to long-range fluc-

center vortex that cannot be represented by a gauge transfdHations (which are preserved by cooling and smoothing
mation with discontinuity(16)]. method$, but also to short-range features of some kind that

As just explained, our strategy is to locate the configura-are associated with these vortices. We have, in fact, found

tions of interest on the uncooled lattice, and then study whafidications that there is a thin sheet of plaquettes, of action
happens to these configurations as the lattice is cooled. But¥gnificantly higher than the background, in the middie of
is also interesting to ask whether our procedure for findingFenter vortices. This sheet of excess action, located at the
the center vortices, i.e., maximal center gauge combine@l2quettes pierced b vortices, is smoothed away by the
with center projection, also works on the cooled lattices. The

answer is “no.” In Fig. 14 we show how thE vortex den-

sity p of Eq. (27) falls drastically with cooling, if theP We thank T. Kovas for kindly supplying us with 100 smoothed
vortices are identified by gauge fixing and center projectindattice configurations.
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FIG. 14. The drop irP-vortex densityp, identified by center projection in maximal center gauge, on cooled lattices.

cooling procedure, quite possibly destroying an essentidlGribov copies.” We then used the Gribov copy with the
clue used by the center-projection method in identifying vor-largest value oR.
tices. These results will be presented in a future publication. Since Gribov copies of a given lattice configuration are
not identical, it is interesting to study by how much, on av-
erage, they differ. In particular, to what extent are the posi-
tions of P vortices correlated from copy to copy? If there is
The over-relaxation method of gauge fixing, described inno correlation, then we can hardly rely dh vortices to
Sec. I, is not guaranteed to find the absolute maximum ofocate physical objects.e., the thick center vorticeésOn the
the quantityR in Eq. (4); in general it will only find a local other hand, some variation in the positionPof/ortices, from
maximum. This is the well-known “Gribov problem,” copy to copy, should be permissible. Center vortices are
which also afflicts the Coulomb, Landau, and maximal Abe-rather thick, extended objects, and the precise “middle” sur-
lian gauges. It was in order to alleviate the problem that weace of such configurations, whi¢hvortices are supposed to
have made three random gauge copies of each configuratidocate, may be somewhat ill defined.
used for data taking, and gauge fixed each to obtain three To investigate quantitatively the correlation of vortices in

IV. GRIBOV COPIES
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FIG. 15. The drop in the center-projected Creutz ratig(5,5), corresponding to the drop m with cooling step.
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different Gribov copies, we do the following: a Monte Carlo loop product to differ from+1. Assign to a negative
simulation is run at a givep, taking data every 100 sweeps, plaquette on the perimeter a probabilijyto crossinto the

and making four copies of each configuration chosen for datéoop, if it were outside, or to cross outside the loop, if it were
taking. The two “best” Gribov copiegin the sense of hav- jnsjde® The new value of the loop is<1)"", wheren” is

ing the largesR valueg are center-projected, and we denotethe number of negative plaquettes inside the loop in the sec-

14

the projected configurations %/ (x) andZ/,(x), with cor-  ond “Gribov copy.” One then finds that in this model, de-

responding center-projected Wilson loops fining N=4(1 +J),
w'C)y=z'z2"...2' N
W (LHW"(1,3))= 2, (1-2q)""
wW"C)=2"2"...2". (32 n=0
Then we compute the expectation value of the loop product $(1—f anL
( ) n!(N—n)!
W (CYW"(C)). (33
IVEmIe) =(1-2qf )4+, (39)
If the correlation ofP vortices in the two Gribov copies were o )
perfect, then which is a perimeter-law falloff.
The above argument should also go through if the
W (C)=W"(C)==x1 (39 P-vortex positions vary by more than one lattice spacing
among Gribov copies, so long as the variation is small com-
and therefore pared to the size of the loop. If the variation Rrvortex

position is comparable to the thickness of the center vortex,
then our best chance to see perimeter-law falloff in the loop

At the other extreme, if there were no correlation at all be-prOdUCt(33)’ for comparatively small-size loops, will be at

tween theP-vortex positions in the two Gribov copies, then S'T‘a'.'ef val_ues Of_ coupling, where the vortex is relatively
thin in lattice units. We have therefore chosen to do our

(W' (C)W"(C))=1 perfect correlation. (35

(W' (CYW"(C))=(W' (C)}{W"(C)) simulation at a value g8=2.1 which is just past the strong-
to-weak coupling crossover.

—exg —20 AreaC)] no correlation, Figures 16 and 17 show our Monte Carlo resultsBat

(3¢ =2.1ona 14 lattice, with data from 400 configurations

separated by 100 sweeps between configurations. Triangles

where o is the string tension of the center-projected loopsshow the data for loop produc®V’' (C)W"(C)), plotted vs
(same as the asymptotic tension of the unprojected Joops loop area, while the crosses are the values for no correlation,

Small variations inP-vortex position among different i.e., (W'(C))Y{W"(C)). The loop products are clearly far
Gribov copies are most likely to lead to a perimeter-law fall-above the uncorrelated value and, from Fig. 16, do not seem
off of the loop product33), at least in the limit of large loop consistent with an area-law falloff. In Fig. 17 the loop prod-
area. Consider, for example, the following simple model:uct is plotted vs loop perimeter. The straight line is drawn,
take anl XJ Wilson planar loop and assign to each of the somewhat arbitrarily, through data points at perimett®,
plaquettes in its plane, both inside and outside the loop, &8. It appears that the falloff in the loop product with perim-
value + 1 with probability (1—f ), and—1 with probability  eter is quite compatible with perimeter-law falloff, as pre-
f. Each such configuration is supposed to represent a padicted in our simple model.
ticular “Gribov copy” of center-projected plaquettes in the  These results indicate that the variationHrvortex posi-
plane, and the value of the Wilson loop 18/,(1,J)= tion among different Gribov copies is relatively small—
(—1)", wheren’ is the number of negative plaquettes in the Perhaps on the_ _order_ of the vortex thicknes_s, although we
minimal area. It is not hard to see, since the plaguettes ard@ve not quantified this—and leads asymptotically only to a
assumed to be uncorrelated, that, averaging over many coR€fimeter-law falloff for the loop produc®V'(C)W"(C)),

figurations gives indicating a strong correlation among Gribov copies.
Weo(1,9)=(W'(1,9)) V. FIRST RESULTS IN SU(3)
—(1-2f )V=exf —lJ] 37) All results presented in the previous sections support the

idea that thickZ, vortices arehe configurations dominating
where o=—log(1-2f) (the assumption that nearby the SU2) Yang-Mills vacuum. However, the vortex mecha-
plaquettes are completely uncorrelated is the main unrealistic
feature of this mod¢l From a given configuration of-1
plaquettes, we construct a second “Gribov copy” by allow- Spjaquettes touching the corners of the loop should be treated a
ing negative plaquettes to change their position by, at mostittle differently from the other plaquettes along the perimeter, but
one lattice spacing. Then only changes in position of negathis is an inessential complication of the model, which we will
tive plaquettes bordering the loop perimeter can cause thignore.
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FIG. 16. Expectation value of products of center-projected Wilson I¢imjasgles, evaluated in different Gribov copies, plotted vs loop

area. Crosses indicate the value for no correlation.

nism should not be specific to the &)Y gauge group. In

We will concentrate here on the first choice. Center projec-

nature quarks appear in three colors, so a very urgent quesen then amounts to replacing full link variablé,(x) by
tion is whether the observed phenomena survive the transg,(x), the closest center element. The residual unfixed local

tion from SU2) to SU3).

The maximal center gauge in ) gauge theory is de-
fined as the gauge which brings link variablésas close as
possible to elements of its center Z,
={e 273, 1, e}, This can be achieved, e.g., by maxi-
mizing the quantity

gauge symmetry is that ofs.

Fixing to the maximal center gauge in &) gauge theory
turns out to be much more difficult and computationally in-
tensive than in the case of &). The reason is that we have
not succeeded in reducing the maximization to an underlying
linear algebra problem as in $2) (see Sec. Il A We thus
resorted to the method of simulated anneali2g,22), which
was used for maximal Abelian gauge fixing by Balial.
[23]. However, this method of maximal center gauge fixing
converges to the maximum @R, Eq. (39), very slowly,
which has forced us thus far to restrict simulations to small
lattice sizes and to strong coupling. Tests of a more efficient
maximization procedure are in progress.
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FIG. 17. Expectation value of products of center-projected Wilson loops, evaluated in different Gribov copies, plotted vs loop perimeter.
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FIG. 18. Center-projected Wilson loops vs the strong-coupling expatisaial lineg in SU(3) lattice gauge theory.

Before discussing the strong coupling results for(®U  center-projected configurations, in direct maximal center
let us first recall the analogous data in @WJgauge theory. gauge, locate center vortices in the full, unprojected lattice.
In Fig. 9 we have plotted values of center-projected WilsornThe evidence for this comes from the fact that
loops W(I,J) in maximal center gauge fgB<2.5. Broken W, (C)/Wy(C)—(—1)", and Wy4{C)— —W,,(C) in the
lines connecting data points are just meant to guide the eyéimit of large loop area.

Solid lines represent results of the lowest-order strong- No vortices= no confinementWhen Wilson loops in
coupling expansioitfor unprojected loops SU(2) gauge theory are evaluated in subensembles of con-
. f@guratipns_with no vorticesgor o_nly an even r)umber of vor-
W(I,J)= (E) 41) tices piercing the loop, the string tension d|sappear§.
' 4) Vortices, by themselves, account for the full string ten-
sion. The string tension of the vortex contribution to Wilson
Monte Carlo data for projected loops agree with the lowestioops is found to match, quite accurately, the asymptotic
order strong coupling expansion up to ab@st 1.5. string tension extracted from the full Wilson loops.

Our first results from SIB) lattice gauge theory simula- Vortex density scales’he variation ofP-vortex density
tions come from an 8lattice, for 8 values 1.0, 2.0, 3.0, 4.0, with coupling 8 goes as expected for a physical quantity
5.0, 5.4, and 5.6. Figure 18 shows center-projected Wilsomwith dimensions of inverse area. This is additional evidence
loops together with the standard strong-coupling expansiothat P vortices locate physical, surfacelike objectenter
to leading and next-to-leading order: vorticeg in the Yang-Mills vacuuni(see also Ref.15]).

Center vortices thicken as the lattice cool$is enables
B\" ) us to explain how the area law falloff is lost, after a finite
W(I,9)= 18 1+ 1_2'8+O(5 ))- (42 number of cooling steps, for smaller loops, while the string
tension remains unchanged for sufficiently large loops.
The data agree with lowest-order strong-coupling expansion P-vortex locations are correlated among Gribov copies.
up to 8=2; when next-to-leading term is taken into account, There appears to be only modest sensitivityPivortex lo-
the agreement extends up fo=4. cation to the choice of Gribov copy.

Qualitatively, the situation at strong coupling looks much ~ SU(3). There is preliminary evidence, on small lattices
the same in S(2) and SU3): in both cases full Wilson loops and strong couplings, of center dominance also iri3plat-
are well reproduced by those constructed from center elelice gauge theory.
ments alone in maximal center gauge. Thus, center domi- It is also worth mentioning some other results reported in
nance is seen also in $8) gauge theory at strong coupling. Refs.[2,9].

An immediate task for the near future is to repeat our Monopole loops lie on P vortices [2Monopoles, identi-
investigation of center dominance and the role of vortices irfied in the maximal Abelian gauge, lie along center vortices,
SU(3) lattice gauge theory for couplings in the scaling re-found in the indirect maximal center gauge, in a monopole-
gion. An absolutely crucial check of the validity of the vor- antimonopole chain. The non-Abelian field strength of
tex mechanism is that the evidence for vortices found in thénonopole cubes, above the lattice average, is directed almost
SU(2) lattice theory is also found for the $8) gauge group. entirely along the associated center vortices. Monopoles ap-

pear to be rather undistinguished regions of vortices, and
VI. SUMMARY may simply be artifacts of the Abelian projection, as ex-
plained in Ref[2].

It may be worth summarizing the results reported here.  Center vortices are compatible with Casimir scaling [9].

P vortices locate center vorticegortex excitations in the  The “Casimir scaling” of the string tension of higher repre-
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sentation Wilson loops, at intermediate distance scales, has These results support the view that center vortices are
long been considered incompatible with the center vortexesponsible for quark confinement.

theory. Very recently, however, it has been argued that Ca-
simir scaling is explained in terms of center vortices, if we
take into account the fact that center vortices, unkkgor-
tices, have a thickness which may be much greater than one
lattice spacind.
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