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Running coupling in nonperturbative QCD: Bare vertices andy-max approximation
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A recent claim that in quantum chromodynamiesthe Landau gaugehe gluon propagator vanishes in the
infrared limit, while the ghost propagator is more singular than a simple pole, is investigated analytically and
numerically. This picture is shown to be supported even at the level in which the vertices in the Dyson-
Schwinger equations are taken to be bare. The gauge invariant running coupling is shown to be uniquely
determined by the equations and to have a large finite infrared [iB0556-282(98)04421-X

PACS numbseps): 12.38.Aw, 11.10.Gh, 12.38.Lg

I. INTRODUCTION antee chiral symmetry breaking in the quark equaf®
In the present paper we investigate the claims made in the
The proof of the renormalizability of non-Abelian gauge new work. We shall write the gluon propagator in Landau
theories such as QCIL], and the discovery of ultraviolet gauge as
asymptotic freedonp2], heralded a new phase in the accep-
tance of quantum field theories as serious candidates for the D2 ()= — §abiA F(—p2
. . .. . My(p) 2 ,uv(p) ( p )1
guantitative description of the weak, electromagnetic and
strong interactions. Since the running coupling in QCD de- oo 5
creases logarithmically to zero as the renormalization point'nérea andb are color indices, and where=A" is the
is taken to infinity, it seems reasonable to calculate it perturProjection operator
batively in the deep ultraviolet regime, where it is very

small, even though a proof is lacking that the perturbation A(P)=0,,~ @
series makes senséfor example, that it is strongly p
asymptotig.

Although one is not sure that perturbation theory is reIi-The ghost propagator will be written in the form

able for QCD at very high energies, at very low energies it is 1
quite clear that it is inadequate. Chiral symmetry breaking G*(p)=— 56" 5G(—p?),
and fermion mass generation are typically non-perturbative b

phenomena. The obverse of ultraviolet asymptotic freedomyq e shall refer to the scalar functioRsand G as the
is infrared slavery or confinement. Since the coupling de'gluon and ghost form factors, respectively.

creases as the energy increases, it increases as one goes t§he claim made in Ref(7] is that, in the infrared limit

lower energies, and the possibility is open that its infrared, _ —p?—0, these form factors have the following behavior:
limit is infinite. Many attemptq 3]—necessarily of a non-

perturbative nature—have been made to show this diver- F(X)~x2¢,  G(x)~x"*, (1)

gence of the coupling in the infrared limit. Mandelstam ini-

tiated the study of the gluon Dyson-Schwinger equation irvherex~0.92. To obtain these results cert#insazewere

the Landau gauggt]. Although he did consider the gluon- made for the three-gluon and ghost-gluon vertices, functional

ghost coupling, Mandelstam concluded provisionally that itsforms inspired, but not uniquely determined by Slavnov-

effect could safely be neglected. This assumption was alsdaylor identities. In fact thénsatzmade in Ref[7] for the

made in subsequent woill6,6]. A deficiency of these at- ghost-gluon vertex is such that actually the infrared behavior

tempts to show that the gluon propagator is highly singulaiEq. (1) is not consistent with the Dyson-Schwinger equa-

in the infrared is the necessity to posit certain cancellationsions. The difficulty is the occurrence of a term

of leading terms in the equations. An uncharitable case of .,

petitio principii might aimost be madé.e. circularity). fAzd f”da sin"é F(z)G(z)G(y)

Recently, a new possibility has been opened up by the 0 Yy 0 z° G(x)

work of von Smekal, Hauck and Alkof¢¥]. In this work the

coupling of the gluon to the ghost was not neglected. Thesin the equation for the ghost form factor, which, with the

authors claim that it is not the gluon, but rather the ghosform (1), would yield an impermissible log factor in the

propagator that is highly singular in the infrared limit. The limit x—0 when the angular integrals are performed exactly,

running coupling itself has &nite though quite large value as shown in Appendix A. The logproblem persists if one

in the limit of zero energy, presumably large enough to guaradopts the simple y-max angular averaging. Von Smekal
et al.introduce a modified angular averaging, after which the
log x problem disappears; but since their equations do not

*Email address: atkinson@phys.rug.nl have a solution of the fornil) beforeaveraging, it would
"Email address: bloch@phys.rug.nl seem that the averaging is not justified—it completely
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changes the properties of the equation.

PHYSICAL REVIEW D58 094036

quark-gluon vertices have been provisionally thrown away.

Since we found this last replacement questionable, wd&o obtain these equations from the Dyson-Schwinger equa-
decided first to see what would happen if one simply retions, we performed a contraction with the tensa, (
places the full vertices by bare ones. In this case the prob-— 4pMp,,/p2), introduced by Brown and Penningtd6] to
lematic logarithm of Eq.2) does not occur, and we can avoid quadratic ultraviolet divergences, executed a Wick ro-

simply analyze the equation as it stands. If the behaidipr
were to go away, it would bode ill for the new approach.
However, our finding is that, with bare vertices, the fofn

tation, and evaluated two trivial angular integrations.
The form factors and the QCD coupling are renormalized
at a scale g, using the renormalization constants

indeed remains good, but with the index changed«to 7z, 7. 7, 7, for the gluon field, the ghost field, the triple

~0.77. Moreover, we can show that the solutions of thegluon vertex and the gluon-ghost vertex defined by
coupled gluon and ghost equations lie on a three-dimensional

manifold, i.e. the general solution has three free parameters;
nevertheless all solutions have the infrared beha\liprOur

F(P% A, 6)=Z5(p, A\, E)F (P2, 1, 8),

primary purpose in this initial paper is to explain the above

findings in detalil.

In Landau gauge, the QCD Dyson-Schwinger equations
lead to the following coupled integral equations for the

renormalized gluon and ghost form factors:

_ 9° - JA2dq2
102y — 2
Fip)=2Zat g aa| 7 G(a)

X f;de sir? OM(p?,g%,r?)G(r?)

2 2
g A2 dq 2
Fiepd, )
X fwda sin? 6Q(p%,g%r)F(r3) (3
0

2

~ 30~ (a2
G YpH=23- 8.3 Zlf dg?g’G(q?)
0

= sint @ )
xjd6r4FU% (4)
0

with r?=p2+q2—2pq coséh. The kernels are

1 p2+q2 q4 1 2q2 I,-2
2 42 .2\ _ _ - _
M(p%a%r) =2 |— 52+2+?_ 02"
6 212 4 6
p 159°p° g* o°| 1
2 A2 — 4__ | —
2p* 19° 139° 8qg*\ 1
N\ 2 T2 T
15p?2 13 1897
_(4q2 PR
+ ! + 2+ i
st 3|t =,
29 p®)  p*q’

G(p2 A, &) =Z5(p, A, £)G(P% 1, 6), (5)
A9 _JQWAéﬁdmA@g ©
_ N

9= Z(m,AL8) %0 El(MvAvf)

whereF(p?),G(p?) are the unrenormalized gluon and ghost
form factors,F (p?),G(p?) the renormalized ones, is the
bare coupling andy its renormalized value. We will see in
the following sections that the concept of renormalization
scale can be generalized in the nonperturbative treatment to
what we will call renormalization prescriptions, each corre-
sponding to a solution of the nonperturbative integral equa-
tions. The renormalization group invariance of the running
coupling corresponds to an invariance under an arbitrary
transformation in the three-dimensional space of solutions of
the integral equations.

We wish to solve the coupled integral equatidBg (4)
for F andG, and we propose to do that in a future publica-
tion [9,10]. For the moment we introduce a further simplifi-
cation, the y-max approximation. This amounts to replacing
F(r?) and G(r?) in Egs. (3), (4) by F(p? and G(p?) if
p2>q?, but by F(g?) and G(g?) if p?<q?. This approxi-
mation facilitates the analytical and numerical analysis of the
equations, since the angular integrals can now be performed
exactly, and indeed the resulting one-dimensional Volterra
equations can be converted into nonlinear ordinary differen-
tial equations. This y-max approximation is very widely em-
ployed for these reasons, however let us sound a note of
warning: although we do not expect the qualitative picture of
the solutions(1) to change, we do expect the value of the
index « to be different when we treat the coupled equations
without the y-max approximatiof®]. We have already seen
that « is sensitive to the choice ofnsatzfor the vertex
functions, and it is also affected by the y-max approximation.
The bare verteXAnsatzis of course only a first guess; and it
is clear also that thAnsatzof von Smekakt al. needs to be
improved to avoid the logarithm problem to which we al-
luded above. Nevertheless, the picture that von Smekal,
Hauck and Alkofer have uncovered appears to be robust in
its qualitative, and hopefully also in its semi-quantitative fea-

Here the full three-gluon and the ghost-gluon vertices havéures: the gluon propagator $®ftin the infrared(i.e. it van-
been replaced by their bare values, while the four-gluon anghes in this limit, instead of blowing up like a pdlavhile
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the ghost propagator tsard (it is more singular than a pole ll. SYMMETRIES OF THE REDUCED EQUATIONS
The consequences for the physics of the strong interaction

need to be investigated. A very interesting simplification of Eqg9), (10) is ob-

tained if we throw away the gluon loop in E(P), keeping
only the ghost loop. This truncation is particularly intriguing
because, as we will show, its properties agree with the re-
The set of coupled integral equations for the gluon andiuirements of renormalization group invariance, thus allow-

ghost propagator, using the bare triple gluon vertex and th#d Us to specify the running coupling in a unique way,
bare gluon-ghost vertex, and introducing the y-max approxiWhereas the inclusion of the approximate gluon loop intro-

Il. THE COUPLED GLUON-GHOST EQUATIONS

mation in Egs(3), (4), is as follows: duces an ambiguity. The truncated set of equations is
FY(x)=Z3+\Zy| G(x) JOX d%( - z(i; %)G(y) F X (x)=F X(0)+\Z4| G(x) f: d?y( - i—; i—i)G(y)
+ [V ey |z Foo —G(o>f0”d;y(—§z+§—i G(y)
SO Yo o[ o)
6100=25- 7y Foo [ Lay) Fo [ L e+ [ G'%F(y)csm}
- [" d—yF<y>G<y)}, ®) -
x Y We will show that Eqs(11), (12) have a three-dimensional

space of solutions and that these solutions can be trans-
formed into one another by means of simple scalings.
First of all, if we have a solutiofr(x) andG(x), we can

where\ =g?/1672, x=p? andy=0q>.
To solve Eqs(7), (8), we eliminate the renormalization

constantsZ; andZ, by subtracting the equations &t - build a two-dimensional infinity of solutions simply by scal-
) ing these functions:
1 . xdy(7y® 17y 9
FL0=F Y0)+AZ F(x) | | 52— 50— g|FW) -
o X |2x2 2x 8 F(x)=F(x)/a 13
ody/7y? 17y 9 -
—F(U)j0 ?(F_Z_g F(y) G(x)=G(x)/b (14)
ody _, azdy(7x| _, which simply amounts to a redefinition @ andZs, i.e. to
_7L 7': (y)+ fx 7 5 F=(y) a change in the renormalization prescription. The new func-
tions satisfy the same integral equations, with the rescaled
A2dy( 7o ~ x dy coupling constant:
- [ S F |z eoo [T
o y 8y o X ~
, A=\ab’.
L e [ 2
X2 X ) (o) 0 O Although the value of\ is in general changed, this has no
) physical consequence, since the following gauge invariant
ys 3y fﬂ dy , quantity
X| =2t 556+ ) EG (y) ) o
AF(X)G2(x) =\F(x)G4(x),
_ _ 9 - xdyy
G (X)=G (o)~ M2y F(x) - YCW) which will be shown to be the running coupling in Sec. IV, is

unchanged by the above transformations. Thus the two-
sdyy o dy dimensional manifold of solutions corresponds to the same
—F(U)J ——G(y)+f —F(y)G(y)}. physics.
079 x ¥ A second, less trivial feature is the possibility to derive an
(20 infinite number of solutions starting fro(x) and G(x)
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just by scaling the momentumto tx. The new functiond

and G take the same values at momentsmasF andG at
momentumtx:

F(X)=F(tx), G(x)=G(tx). (15)

In terms of the scaled quantities,
o=olt

X=x/t, y=ylt,

we find

PHYSICAL REVIEW D58 094036

Wherea0:g§/4w and we denote the explicit dependence of
the renormalization constants on the renormalization seale
the ultraviolet cutoff A and the gauge parametér The
renormalization scale: is defined as the momentum scale
where the full propagators and vertices are taken to be iden-
tical to their bare quantities, such that the renormalized form
factors satisfy:

Flu,u, ) =1=G(u,p,$). (17)

Such a renormalization is achieved by a proper choice of the
renormalization constant&; andZ in the construction of
the renormalized form functions from the unrenormalized
ones, as given in Ed5).

From Eq.(16) and the definition$5) of Z; andZ5 we can
derive the two following quantities, which are renormaliza-
tion group invariants, since the right-hand sides of their defi-

nitions only involve unrenormalized quantities:

Z2(u, A, &) e ) F (X, 1, €) GA(X, 1, )
= aoF (X, A, £)GAX,A, £) (18)

and

Z3(p, AL €) a( ) F3(X, 1, €)= agF3(X, A, £),

where u is the renormalization scale andis an arbitrary
momentum.

We now evaluate the renormalization group invariant ex-
pression Eq(18) at momentunx, using two different renor-

(19

This means thaf:(x) and G(x) are also solutions of the
integral equations solved by(x) andG(x). Again, all the  malization scalex and x and Eq.(17) (which is valid for
solutions obtained by varying the scaling fadtaorrespond  any w):

to the same physical picture, since a scaling of momentum

merely corresponds to choosing the units for the momentum

variable when renormalizing the coupling constant at a cer- a(X
tain physical scale. It is clear that the three above-mentioned

scaling properties allow us to construct the whole three- -
dimensional space of solutions starting from one specific soSince, in Landau gaugé;(u,A,0)=1 for any u according
lution. to Taylor[11], we have

_ZpAY

22( A 6) a(M)F(XIMI‘f)GZ(Xyﬂ,g).
1 X, A\,

(20

a(x)=a(p)F (X, 1,00 G?(x, 1,0). 21

IV. THE RUNNING COUPLING
This three-fold scaling invariance is important as it is con-Since the functions(x) and G(x) depend on the momen-
nected to the renormalization group invariance of the runiuM. and Eq(21) is defined forall momenta, this evolution
ning coupling, as we will now show. yields theno_n—perturban_vergnnlng couplmg in QCliTms_
The Green'’s functions are functions of momentum and irfEXPression is renormalization group invariant as the right-
quantum field theory they are generally divergent. To rendef@nd side of Eq(2D) is independent of the scaje ,
all the Green’s functions finite it suffices to renormalize the . However, we will show that the concept of renormaliza-
parameters occurring in the original Lagrangian of thelion scale, as defined in Eq9.6), (17), can be generalized to
theory. The concept of multiplicative renormalizability re- What we will call renormalization prescriptions, which cor-
lates the renormalized parameters to the bare parameters if@sPoNd to solutions of the nonperturbative field equations.
way that leaves the form of the Lagrangian unchanged. 140 the derivation of the running coupling, Eq$6)—(21), we
this way a renormalized coupling is introduced. In QCD theUSed the concepenormalization scaldo describe how the
renormalized coupling obeys the following equations: renorma_llzatlon of the fo_rm factors is performed. prever,
we can interpret Eq(16) in a more general way, as is sup-

Zo(u, A EZ5(w,AE)  Z3 (AL E)
a(lu’ = ~ ap= 2 ap,
Z3(w, A &) Zi(m,AL8)

1The expression(21) for the nonperturbative running coupling

(16)  was first proposed by von Smelet al. in Ref. [7].
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ported by the symmetries of the nonperturbative equationthe approximation employed, destroys this invariance, and
discussed in Sec. lll. The renormalization constadgsand  different renormalization prescriptions no longer lead to the

Z5 from Eq. (5) can be scaled by arbitrary real numbers Same running coupling.

andb as in Eqs(13), (14), and still satisfy the renormaliza-

tion group invariance Eq21), even though Eq(17) will in V. INFRARED BEHAVIOR
general no longer be satisfied since it can happen that no

renormalization scalew can be found whereF(u)=1 We will show analytically that Eqs(9), (10) and Egs.

(11), (12) have a consistent infrared asymptotic solution:

=G(u).

We now clarify this point. Suppose we found renormal- F(x)=Ax2< (24)
ization constantsZs(u,A,&) and Zs(u,A,€) such that
Flu,pu,&)=1=G(u,u,€). To change the renormalization G(x)=Bx™ ¥, (25)

scale fromu to v we have to scal@; andZ; so that now
F(v,v,8)=1=G(v,v,£). To achieve this, the new renor-
malization constants have to be

and that these solutions even solve ghest-loop-onlyequa-
tions(11), (12) exactly for all momenta. Let us try thensatz

F(x)=Ax% G(x)=Bx". (26)
Z3(V,A,§)=F(V,M,f)z:g(M,A,g)
In the infrared asymptotic regime the gluon loop does not
23(1/,/\,5)=G(v,,u,§)23(,u,A,§), contribute to lowest order. Substituting Eg6) into the in-
tegral equation$l1), (12) we calculate

which means that the form factors at any momentynex-
pressed with two different renormalization scajesand v, A x"=A"1lg *+\Z,B?
are related as follows:

1 1 1 }

2B_ ;2B
F(x,v,&) =F(X,u,&)/F(v,u,€) X(xF=aP) (27)

and
G(X,v,8)=G(X,u,&)/G(v,u,§).

9 . 1 1
Iy B=Bl58_ _ _
Hence, an arbitrary change of renormalization scale fgpom B~x B "o 4)‘ZlAB 2+B8 a+p
to v corresponds to scaling&3), (14) where
X (X B— gatP) (28)

a=F(v,u,b), b=G(v,u,é). 22 .
(v 8) (v 8) 22 on condition that

However, the reasoning followed in Eqd6)—(21), using B>—2 (29
guantities renormalized at a scale can be generalized by

applying arbitrary scalinga andb to Z; andZ, provideda  to avoid infrared singularities. The powers on both sides of
is scaled accordingly, so that Egs.(27), (28) agree if

a(x)=aF(x)G?(x), (23 a=-—2p,
remains unchanged for any choiceafindb. The valuesa ~ 2nd defining the index by
andb of Eq. (22) are just special sets and the renormalization
scale invariance as shown above in E2{l), is only a sub-
group of the more general renormalization group invariancye find that both the constant and the power terms in Eq.
summarized in Eq(23). The renormalized quantities in the (27) and Eq.(28) match if
right-hand side of Eq(23) can no longer be regarded as

3 1 1 }1

a=2k, B=-—«k (30

being dependent on a renormalization sgalesince in gen- ~ 5
eral Eq.(17) is no longer satisfied, but correspond to a spe- NZ,AB —{2(2_ ) 3 <7
cific choice of renormalization prescription instead. This
more general renormalization group invariance is supportednd
by the results of the nonperturbative integral equations as
discussed in Sec. IlI.

In our nonperturbative treatment the renormalization
group invariance corresponds to an invariance of the running

coupling with respect to an arbitrary transformation in thegjimination of AZ;AB? yields a quadratic equation fo,

three-dimensional space of solutions of the equations. Thighich remarkably does not depend on the value of the cou-
invariance ofa(x) is exactly reproduced in the ghost-loop- pling strengthh:

only truncation. We will see in Sec. IX that the loss of sym-
metry of the equations, when we include the gluon loop in 19«%— 77k +48=0, (33

(31)

(32
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which has two real solutions parts of the solutions, making us believe at first that the
numerical program was giving us spurious pseudo-solutions,

_ 77%y2281 g4 due to some numerical inaccuracies or artifacts. One of the

K= 38 ’ (34 main reasons was that the infrared power behavior only con-

tains one free parameter, and a standard asymptotic expan-
or sion does not add any corrections to the leading power. If the

infrared asymptotic solution contains only one parameter, it

x1~0.769479 and x,~3.28315. (39 was very unclear how an infinite number of solutions with

IIQg-taiIs could develop out of each power solution. Never-
éheless the numerical results indicated that each power solu-
tion had an infinite number of corresponding log-tailed solu-
tions, and each solution seemed to be characterized by the
momentum at which the log-tail sets in.

The second root is spurious: it must be rejected because
gives rise to infrared singularities and thus does not give
solution of the integral equation.

Replacement ok by «; in Eqg. (31) or Eq.(32) yields the

condition: The traditional asymptotic expansion one would normally
v=\Z;AB?~0.912771. (36 [y, is as follows:
. L N
From Eq.(23) we know that the running coupling is given by F(x)=x2"2 Ax (39)
a(X)=4m\F(X)G(X) (37) =0
N
in the Landau gauge. Condition E(6) is important, as it e i
tells us that the running coupling has a non-trivial infrared G(x)=x i:EO Bix.. (40
fixed point
. _ The reason for this is that each term in the expansion usually
)l('mo a(x)~11.4702. (38) generates terms, through integration, that are of the same

power or one unit higher. However, the fact that the equa-

This means that the ghost field, which only introduces quantions under consideration aexactly solved by the power

titative corrections to the perturbative ultraviolet behavior ofSolution alters the reasoning. The leading power term does
the running coupling, does alter its infrared behavior in ghot generate additional, next-to-leading order terms, and all
very drastic way. A; ,B; for i>0 have to be zero for consistency reasons.

We will show further on that the running coupling re-  However, the fact that the power solution solves the inte-
gral equations does not mean that this is the unique solution,

mains almost constant up to a certain momentum sale and we next tried an infrared asymptotic solution of the

after which it decreases as 1/lsgThe momentum scale at

which the constant bends over into a logarithmic tail isshape.

closely related to the value dfqcp. This is easily under- F(X) = Agx2*+ A, x1

stood intuitively, since the perturbative ultraviolet behavior

of the running coupling blows up very quickly as the mo- G(X)=Box “+Bx1 (41)

mentum gets down t@(Aqcp)-

with a1>2k and B,> — k. Substitution of these solutions

VI. INFRARED ASYMPTOTIC SOLUTION into Egs.(11), (12), tells us that consistency is obtained if

. . . a,— B1=k, as for the leading power, but it gives an addi-
Although gveh h"’?"e S&f” in th derrewouls stictlon dthat dthetional constraint, fixing the value of the exponent of the next-
pure power behaviors fdF(x) andG(x) solve the reduce to-leading exponent. However, the solution proposed above

Eguz(ijt]ons e_xactlly, these fpov;'etr squE'ons only t%'ve rse t_oazoes generate additional higher order terms, and consistent
o-dimensional space of solutions. However, thé numeric symptotic infrared expansions can be built as follows:

results told us that the equations were much richer then we

initially believed. These numerical results tended to suggest N
that the power solutions are only one very special two- F(x)=x2"2 Ax?
dimensional family of solutions in the midst of a whole =0

three-dimensional space. Typical non-power solutions
showed an infrared behavior completely consistent with the
power solution mentioned earlier, which then bends over
quite rapidly at some momenturinto a completely differ-
ent ultraviolet behavior which seemed to be proportional tovhere the exponents of successive powers always increase
some power of the logarithm of momentum. A straightfor- by the same amoumt>0. To check the consistency of these
ward investigation of the ultraviolet asymptotic behavior of infrared asymptotic expansions, we substitute them into Egs.
the solutions tells us that such powers of logarithms are in¢11), (12). We make a Taylor expansion of the left-hand
deed consistent ultraviolet solutions, but no obvious mechasides of these equations and expand the series multiplica-
nism seemed available to match the infrared to the ultravioletions, before integration, on the right-hand sides. Consis-

N
G(x)zx*“ZO Bix'”, (42)
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tency requires that the coefficients of equal powers of mo- The linear homogeneous set of equations then yields
mentum match each other on both sides of the equations.

The conditions on the leading term remain unchanged as n=b;/a;=0.829602, (45
described in Sec. V, withc=~0.769479 andv=\Z,A,B3
~0.912771. Equating the second order terms on left- an@
right-hand sides of both integral equations yields the follow-
ing set of twohomogeneousinear algebraic equations for

nd the solutions of this set of equations can, for instance, be
arametrized by, .
Let us define

a;=A;/Ay, andb;=B,/By: a,=A,/A,, b,=B,/Bg, (46)
a + 3 _ 1 in terms of which we find the followingeterogeneouset of
v \2(2—k+p) 3—k+tp equations fora, andb,:
3 1 1
220 3-x —2rtp P70 2 s ., 3
(2—x) 3—k —2k+p v |2(2—k) 33—k 2(2—k+2p)
X ! ! + ! ! + 4 b,=0 1 1
k+p 2—«k & k+p 2—k+p gyt — — b,
3—kt+2p —2k+2p
This set of equations will only have non-trivial solutions if
its determinant is zero, in which case it will have a one- aj 3 1 1 5
parameter infinite number of solutions. The characteristic = =, "\ 22— x+p) 3—x+p 2(—2x+2p)] !
equation is
_ 4_ 3 2 _ 1 1 1 1 4
9.2768%*—15.5544°+30.2899%“+ 71.5686 = 0. > _ a,+ _ +—1p
(43 k+2p 2—k| 2 |k+2p 2—-k+2p 9u|?
The four solutions are: 4bi 1 1
=9, — 5= aiby, (47)
p=0, p=1.96964, p=—1.82316-0.770012. 9v \k+2p 2—k+p
(44) _ _ .
with unique solution
The solutionp=0 corresponds to the pure power solution.
The two complex solutions are spurious as they are not con- a2:O.4087321§, b,= 1.3116@1%
sistent with Rep>0, while the solutionp=1.96964 gives
rise to consistent infrared asymptotic expansions. and foras,bs:
|
as 3 1 3 1 1
—+ - + - - bs
v |2(2—k) 33—k 2(2—«+3p) 3—k+3p —2«+3p
~ 2a,a,—a 3 1 3 1 1 ob 1 1
B v 2(2—k+2p) 3—k+2p2(2—k+p) 3—k+tp —2k+3p| 1 k+3p 2—«k as
+ ! ! + 4 b
k+3p 2—k+3p 9| 3
4(2b,b,—bd) 1 1 1 1
B 9v a K+3p_2—K+2p 33b,~ K+3p_2—K+p azby (48)

with unique solution
a;=—0.7616533, b;=0.78390%5.

By induction one can prove that the higher order terms all yield sets of equations of the same natur@@dsaaqg. Eq.(48),
where the right-hand side of the set defining the coefficiaptb,, are proportional t@} . This means that we have a general
solution for thenth order coefficient of the type

a,=f,a], b,=g,a] (49
for n>1, where thef,,,g, are constantéindependent ok and ofZ,).
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The asymptotic expansions E@.2) can thus be written in the form

F(X)=Ax?~

N
1+, fiailxip)
=1

G(X)=Bgx™ *

N
1+_Zl giailx”’), (50

whereA,, By anda;=A; /A, are chosen to be the free parameters spanning the whole three-dimensional space of solutions
of Egs.(11), (12) in the infrared region, and whel& 6 significant figures

V=M\Z,AB2=0.912771, «=0.769479, p=1.96964
fi=1, f,=0.408732, fy=—0.761655...

g,= 7=b,/a,=0.829602, g,=1.31169, gs=0.783905... . (51)

It is precisely the existence of a third independent parameter, .

namelya,, which allows the infrared power solution to bend G(X)=(t"*“Bg)x “

over in a logarithmic tail in a way consistent with the integral

equations. To build a solution that is both consistent with th his shows that the infrared expansions for the momentum

infrared asymptotic expansion set up in this section and th oL N P )

asymptotic ultraviolet logarithmic behavior which will be de- Scaled functions(x),G(x) correspond to asymptotic expan-

rived in the next section, the parametgrhas to be negative, SiONS parametrized by

as has been inferred from the numerical results calculated - ) N B N

with the Runge-Kutta method and with the direct integral Ap=t"Ag, Bo=t""By and a;=tfa;, (53

equation method. I&;=0 we retrieve the pure power solu- . . .

tion and ifa;>0 there does not seem to be a singularity—freeand that 'ghe asymptotic expansions indeed obe.y(m).and

solution forx e [0,A2]. the conditions Eq(51). As we expected,. there is a one-to-
As we have shown in Sec. Ill, the three-dimensional fam-°"€ correspondence between the solutions constructed from

ily of solutions can also be constructed once we have founH1e scaling invariances based on the symmetries of the equa-

one solution, just by relying on the three distinct scale invari-1ons; and the parametesg, Bo anda, characterizing their

ances(13), (14), (15). How these scale invariances corre- mfrlislrted expansion?. tth ot . fh
spond to choices of infrared asymptotic parameters will now etus n_ow C‘?nsfuc € agymp otic expa.n5|on ot the run-
be elucidated. ning coupling(with Z;=1) using the expansion&0):

The function scaling$13), (14) of F(x),G(x) correspond
to similar scalings ofA;,Bg in the infrared expansions Eq.

N
1+Zl gi(tpal)ix”’).

A(X)=NF(x)G?(x)

(50), N ' N . 2
=\AGB2| 1+, falx?||| 1+ > gia'lx'f’)
~ ~ =31 i1
Aop=Ap/a, By=By/b,
0=Ao 0=Bo (54)
such that condition Eq.(51) remains satisfied withx  Or (again truncating at N
=\ab?, anda, is left unchanged. \
Less trivial is the momentum scaling invariance of the _ i ip

space of solutions: Ax)=v 1+§1 hiapx* |, (59

EO)=F(tx), G(x)=G(tx). (52 “Where

h,=2.65920, h,=5.37956, h;=6.97232...,

Using these definitions in E@50), we find, after some rear-

rangement, which tells us that the running coupling only depends on the

dimensionful parametea;=A/Ay, and is independent of
N N\, Ag and By. Furthermore, we can show from Ed&2),
) (53) that the running coupling corresponding to the param-

F(X)=(t2Ag)x2*| 1+ D, fi(tPay)'x'” ~ . . .
(x)=( o) .21 (thay) etera,, is identical to the running coupling with parameter

094036-8



RUNNING COUPLING IN NONPERTURBATIVE QCD: ... PHYSICAL REVIEW [38 094036

a, after scaling the momentum with a factor (a,/a;).  After evaluating the integral we get
This tells us that the momentum units &f are unambigu-

-5
ously related to the physical scale of the experimentally deG » Iog +1
termined running coupling.
We now introduce a momentum scdle: _ >
. I i1 ONZ,F, G,
e 1 - =G, v log| ~ “ T do(y+o+1)
~(hylag))*? o y+o+1 X y+o+1
w log —)+1 —| w log —)+1 }
(recall thata; <0), such that M M
. (61
[ x\'P
A(X)= V(1+_2 (‘D'W(ﬁ) ) (570 Matching the index of the leading powers of logarithms in
i=1 . . .
Eqg. (61) one finds the consistency condition:
where we defined y+26=—1 (62)
~ hi = and, equating the leading log coefficients in Egfl), using
h‘_ﬁg' h,=1, h,=0.760753, h;=0.370785... Eq. (62), we get
. . 2 ~ 2w
We will see from the numerical results thét“ is a good NZ,F,G2=""(y+1). 63)

estimate of the scale up to which the infrared asymptotic

expansion remains valid. o _ )
Substituting the solutions Eqé58), (59) in the gluon equa-

VIl ULTRAVIOLET BEHAVIOR tion Eq.(11) and keeping only the leading log terms, we find

We now turn to the investigation of the ultraviolet F 4w Iog(i +1 7
asymptotic behavior of the solutions. As discussed before, m M
the numerical results show a three-dimensional space of so- —y
lutions, which has been confirmed by an analytical study of —F 1w log )+1
the global symmetries of the integral equations and by the ” M

study of the infrared asymptotic expansions of the solutions.

- 26
Except for the pure power solution, all these solutions bend +)\'21c52f d_y w log X) +1 (64)
over in a log-tail above a certain momentum socal&Ve will lx 2y M
now check the consistency of such ultraviolet logarithmic ) . i
solutions. After performing the integrals, we find
Suppose the solutions fé¥(x) and G(x), taking on the —y
valuesF, andG, at some momenturp in the perturbative F,' o log ) +1
regime, have the following ultraviolet behavior: K
Y \Z,G?
X Y - 1Pu
F(x)=F,| » log m +1 (58 _Fu w Iog +1 o+ 2w(25+1)
26+1 X 26+1
X ° o log—|+1 —wlog—)+1 J
G(x)=G,| w log| —|+1 (59 2
(65

We check the consistency of these ultraviolet solutions b
substituting these expressions in E¢kl), (12), thus deter-
mining the values ofy, 6 and w.

The ghost equatiofil?2) yields, to leading log,

3tonsistency of the exponents on both sides of the equation is
automatically guaranteed by E@2). Then, equating the co-
efficients of the leading log contributions of E5), and
substituting Eq(62), we obtain

-0

G Yo log| =] +1 \Z,F,G:=2wYy. (66)
5 g _ From Egs.(62), (63), (66) we then find
=GM wlog +1 —Z)\ZlFMGM 1 9
o dy y yt+é fy:§, 5:_E (67)
Xf — |wlog| = |+1 (60 , . .
x Y M and the equivalent conditions Eq$§3), (66) yield
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100 pr——r———
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0.0001 0.001 0.01 0.1 1 10 100 1000 10000

(70 ¢

10000 T

w=4\Z,F G (68)

Thus, the ultraviolet solutions fd¥(x),G(x) can be written
as

F(x)=F, +1

~ ) X
4NZ,F G log ;

G(x)=G, 4)\21F#Gilog(

X
o

and the renormalization group invariant running coupling is i
given by 1000
100 F

(7)  cw O

AX)=NF(X)G3(x) =

47,1 (X i;
1 Og — |+ 2 :
m/  AF,Gy, 0.LF
. .. 0.01
We can rewrite this in the form [ . . ]
1 0‘03.10001 0.001 001 0.1 1 10 100 1000 10000
Nx)= T (72) ’
Bo log| — ) FIG. 1. Gluon and ghost form factois(x) and G(x) versus
AQCD momentumx (on log-log plo}, for A\=1, A=1 andF;=10 %(a),

10 4(b), 10 3(c), 0.04d) and 0.1e).
where Bo=4, and the QCD scale is given by

) can always be absorbed in a redefinition of the unknown
AJcp=m exp( TANFE G2 (73 functions F(x) and G(x), such that knowing the solution
we space for one value of, we can build the solutions for any
ez - 2 . arbitrary value ol in a straightforward way. Moreover, such
i Zl_l'.We see thfm fixing\F,G), at a sca_le_,u_, in the scalings of\ leave the running coupling F(x)G?(x) un-
perturbative regime, indeed amounts to a definition the Valu%hanged
. - o . . In practice, we choose an alternative pair of parameters,
The Ieatdm%;hlog (t:oiff'?emtr'fo_‘l' ?]Ut tTSlis r|_1|ot In F(o) and A, whereA is the leading infrared gluon coeffi-
agreement with perturbation theory, wheg=11. How- cient defined in Eq(24). The choice of these two parameters

ever, the reason f_or this is obvious, as we (_)nly considered thl?: suggested by the numerical solution method described in
ghost loop and discarded the gluon loop in the gluon equaAppendix B. Indeed, using Eq36), the value ofA also

tion. determines the leading infrared ghost coefficiBntand al-
lows us to compute a quite accurate analytical approximation
VIIl. RESULTS to the infrared part of the integral ovgd,e?], if the infrared
Knowing the infrared and ultraviolet asymptotic behay- CUtoff e” is sufficiently small. The choice d#() as second
iors of the coupled equationdl), (12), we now go on to parameter can be wevyed as a measure of the deviation from
solve the equations numerically in order to see if we can find"€ Pure power behavior at momentumWe have taken the
consistent solutions over the whole momentum range, corsubtraction scale to be=1 and varied both parametefs
necting both asymptotic regions, hopefully giving us more@NdF(1)=F, to scan the two Earameter space of solutions
insight into the transition from the regime of asymptotic free-for a fixed value ofA=1 andZ,;=1. The equations are
dom to the state of confinement. solved using the iterative solution method outlined in Appen-
We use a numerical method developed by one of us fodix B, starting from initial guesses constructed in Appendix
the study of dynamical fermion mass generation in QED C. As expected, the results exhibit the scaling invariances
[12]. This method, which directly solves the coupled integraldiscussed in the previous sections.
equations by an iterative numerical scheme, is explained in If we plot the solutions foF (x) andG(x) for various sets
more detail in Appendix B. (A,F,), asin Fig. 1, we can check that every solution can be
Using this method, we performed a meticulous study oftransformed into another one by a unique transformgtion
the equations Eq€11), (12). We note that, for a fixed value corresponding to a momentum scalingand a function scal-
of \, the equations have two free parameters, for instancing rF (x), G(x)/+r. The numerical results clearly show the
F(o) and G(o) [restricted by Eq.(36), N\F(0)G%(o) expected power behavior in the infrared region and the loga-
<0.912771 Furthermore, as shown in Sec. lll, a scaling\of rithmic behavior in the ultraviolet region. The value of the

1
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100 p—rr——r g 100 p—rr—— 7

T —T T g
running coupling — 3
IR asymptotic expansion ----- ]
UV logarithmic behavior ------ 1

0.1 —— o~ 0.1 —— o~
0.0001 0.001 0.01 0.1 1 10 100 1000 10000 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
xr x
FIG. 2. Running couplingx(x) = aF (x)G?(x) versus momen- FIG. 3. Running coupling:F (x) G2(x) versus momenturr (on
tum x (on log-log ploy, for A=1 and F;=103%(a), 10 *(b), log-log plot), for parameter valueA=1 andF;=0.1 together with
10 3(c), 0.04d) and 0.1e). its infrared asymptotic expansion and its ultraviolet asymptotic be-

- . . havior.
exponents and of the coefficients in front of the power in the

infrared region is completely consistent with the analytical.l.he ultraviolet asymptotic behavior, derived in Sec. VI, is
treatment of Sec. V, which was also used to compute th%iescribed by Eq(72): ' B

infrared part[0,€2] of the integrals analytically. As can be y EQS)
seen from the plots, the gluon form factor, which starts off as

a power with a given coefficier&, will bend over at some a(x)i/ 47
cross-over poink, such that the further logarithmic behavior ’
of the function consistently leads to a valkg at the sub- 4 log Aczyco

traction scaleoc=1. The logarithmic behavior of (x) and

G(x) also satisfies the ultraviolet leading log behavior ana
lyzed in Sec. VII. It is remarkable that both asymptotic re-
gimes, infrared and ultraviolet, seem to connect onto each

other at some momentum with scarcely any intermediate AéCD: o ex;{ —
regime.

If we look at the running coupling we see that all the .
solutions are just translations of each other when plotted on ¥ compute the value ofocp for the case under consider-
logarithmic momentum scale, as is illustrated in Fig. 2. Thisation. We choosg in the perturbative regime, for example
corresponds to the invariance of the space of solutions wite=1032.15, where the numerical results yiekd(wu)
respect to scaling of momentum. It also shows the physicaiE ANF (1) G?(1)~0.0259676, and find
equivalence of all solutions as such a transformation can al-
ways be absorbed into a redefinition of momentum units. AZQCDZ 0.06802,

We also checked the results with a Runge-Kutta method
applied to the set of differential equations derived from thestill in arbitrary units, which should be fixed after compari-
integral equationgsee Appendix D Comparison of the re-  son of the numerical results with experimental data. Because
sults obtained with both methods shows that a very highy the incorrect leading log perturbatiyecoefficient of the
accuracy can be achieved over quite a broad momentumiysst-loop-only truncatiorisee Sec. VI we will not actu-

range(see Appendix . ... ally fix the units as this would give a far too low value of
It is also interesting to compare the numerical results with
QCD-

the analytic asymptotic calculations in order to investigate in In Fig. 3 we plot the running coupling versus momentum,

which momentum regions the asymptotic solutions are valid T ) ;

As example we consider the cage=1 andF,=0.1. To tqgetherwnh its mfrared_ asymptotic expansion and the ultra-
\Mlolet asymptotic behavior. The agreement between the ana-

Iytical and numerical results is extremely good, and it can be

the Runge-Kutta method, described in Appendix D, in orderS€en that both asymptotic behaviors flow into each other,
to determine the value o, yielding a value ofF(1)=0.1 almost without any intermediate regime. The vertical line in
for the gluon form factor, withA=1. For this specific case, Fig. 3 situates the scale dfgcp. We see thatgcp lies in

the value isa;~—10.27685 or)?~0.186475[from Eq. the momentum regime where the infrared asymptotic expan-
(56)]. The infrared asymptotic expansion, derived in Sec. VI,sion has already taken over from the logarithmic behavior,
is calculated from Eq(57) and truncated after four terms: and where the running coupling has become almost constant.

Furthermore, the infrared scal@?~0.186 seems to be a
X >2P good measure to delimit the infrared region where the

‘Where we use Eq.73),

S
AN(p)

the value of the infrared paramet@y in Eq. (50). We used

ir
a(X)~4mv

X \P
1- ( W) + 0.76075%

02 asymptotic expansion is valid.
. We can even give a numerical relation betwef and
X\ %P A2 (Where the latter is computed from leading log onl
—0.37078%52 } neo, P glog only
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Aéco can be reached by simple symmetry operations, while the
T~2.74, third dimension now corresponds to deformations of the so-
lutions.

It is important to note that the loss of symmetry is entirely
and the ratio is the same for all solutions of the equationgjue to the weakness of the truncation. The exact inclusion of
(11), (12). The simple relation betweeft and Agcp is @ gluon loop, i.e. using the exact full triple gluon vertex and
consequence of the symmetries of ffeost-loop-onhytrun-  the exact renormalization consta®f, will lead to a recov-
cation. If we include the gluon loop, with a bare triple gluon ery of the three-fold symmetry exhibited by the ghost-loop-
vertex andZ; =1, the asymptotic expansion of the running only truncation.
coupling will no longer depend oa, alone, but on the other
parameters of the infrared expansions as well. Hence an ul- B. Infrared behavior
traviolet renormalization, leading to a specific value of
AéCD, will correspond to a family of running couplings, all
having slightly different behaviors in the intermediate re-
gime, and there will be an ambiguity in the determination of
the non-perturbative running coupling. This is a consequenc
of the violation of renormalization group invariance in that
truncation, which implies that different solutions of the equa-
tions will correspond to couplings running in different ways.

Because the ghost equation remains unchanged, it is easy
to see that the leading infrared behavior in this case will be
the same as in thghost-loop-onlycase. The additional gluon
g)op in the gluon equation only yields higher order correc-
tions. The asymptotic expansion set up in Sec. VI is still
generated in this case, but at some higher order it will have
to be supplemented by other higher order series, which will
be related to the leading asymptotic series. We also note that
the power solution will not be an exact solution of the equa-
IX. INCLUDING THE GLUON LOOP tions any more, although it remains the correct leading infra-

. . . , red asymptotic behavior.
We will now briefly discuss Eq99), (10), i.e. the equa-

tions where both gluon loop and ghost loop are included in
the gluon equation. Although it is this specific truncation
which attracted our attention when we started the investiga- We will show that the leading log ultraviolet behavior of
tion of the coupled gluon-ghost equations, the requirementthe running coupling still has the 1/logbehavior, as ex-
of renormalization group invariance were better met by omit{ected from perturbation theory, but that {Beoefficient is
ting the gluon loop. As discussed in the previous sectionsglifferent from the perturbative one. This discrepancy is a bit
the ghost-loop-only truncation yielded an unambiguous runsurprising, since one expects the perturbative result to be
ning coupling, determined by one physically relevant paramcontained in the ghost and gluon equations considered. The
eter, Agcp. In the following subsections, we will briefly reason why this happens is that, for some reason, the pure
show what changes occur when we do include the gluon looperturbative result does not consistently solve the non-
and why an ambiguity occurs. perturbative equations.

As in Sec. VI, we try the following ultraviolet solutions
for F(x) andG(x), taking on the valueB , andG,, at some
momentumg in the perturbative regime:
We can repeat the analysis of Sec. Il in the truncation we

C. Ultraviolet behavior

A. Symmetries of the equations

are cqnside_ring now. It is easy to see that the solutiqn space F(x)=F,|  log| =] +1 7 (74)
will still be invariant under scaling of momentufb), i.e. s

when scaling the momentum of any solution of the equa-

tions, we retrieve another solution of the same equations. d

However, the two-parameter scaling invariande), (14), G(x)=G,| w log| —|+1] . (75

with respect to the functions themselves, is now reduced to a
one-parameter scaling invariance because of the additionglie check the consistency of these ultraviolet solutions by
constrainta=b on the scaling factors, which comes from substituting the expressions in Edq8), (10). For the ghost

adding the gluon loop. While thghost-loop-onlycase was  equation, Eq(10), the treatment is identical to that of Sec.
solely a function of products(x)G(y)G(z), for various VIl and we again have

combinations ofx,y,z, the current truncation depends on

F(X)F(y)F(z) as well as orF(x)G(y)G(z). The fact that y+26=-1, (76)
the three-dimensional space of solutions has lost part of its
symmetry is important, as it means thef(x)G?(x) is not and
unique, even after an appropriate scaling of momentum. Glo-
bally we can say thakF(x)G?(x) is no longer invariant,
because of the admixture F3(x) terms. However, even in

the absence of the three-fold symmetry, after inclusion of the
gluon loop, the coupled equations still have a three-Substituting the solutions Eqé74), (75) in the gluon equa-
dimensional manifold of solutions. The only difference beingtion Eq.(9) and keeping only the leading log terms, we now
that only two of the three dimensions of the solution spacdind

~ 2w
)\ZlFMGiZT()ﬁL 1). (77)
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—y 1/3
-1 -1
F,|olog —|+1 F,olog —|+1
-1 o 7 2 -1 A 2,35 2
=F,olog|—[+1| —7\Z;F; =F, | olog —|+1 +Z —2121FH+5216M
o dy y 2y o 1/3 X 1/3
xf — w logl —|+1 X wlog—)+1 —wlog—)+1 ]
x Y M M
B o d 25 (85
+>\zlc;2f it Iog(x +1 (79 . .
Hlx 2y M which leads to the condition:
After evaluation of the integrals and substitution of Ezp), o=\ lelFi— X ZlF,uGi . (86)
_1 Y
F,.|olog —|+1 Equations(84), (86) give us
o Y INZyF? , 282, ,
=F .Y o log —)+1 -— GL= Pl (87)
M Iz ~ M
M w(2'y+ 1) 1121
. 2y+1 X 2y+1 . . . . .
X1 | w log| —|+1 —lo Iog(— +1 ] which is a relation between the leading log renormalized
2 values ofF, andG,, , when the renormalization scaleis in
5 , the perturbative regime, in which the leading log dominates.
_ N, G, o log g i1 This might seem to be in contradiction to perturbation
2wy theory, where the values of the renormalized quantities can
—y take an arbitrary value and are usually fixed to 1. However,
—| w log X +1 ] (79 ~Eq. (87) still contains the~renormalization constazts and
Z,. Taylor has shown that;=1 in the Landau gauggl1],

Consi £ thi _ . 13 i d but one could still hope to be able to achieve the arbitrary
onsistency of this equation requirgss —1/3, In order 10 onormajization of andG by a suitable choice of; .

equate the leading log terms on both sides of the equation. ; :
We first consider the case<—1/3, for which the gluon If we write the far UV behavior of (x) andG(x) as

loop does not contribute to leading log. Then, the consis-
tency of Eq.(79) requires that

F(x)~Clog™*®x and G(x)~D log-*3x, (89

then, from Eqs(74), (75), (84), (87), the log-coefficient

)\leﬂeizzw% (80) andD of F(x) andG(x) are given by
. -1/3
From Eqgs.(77), (80) we then find C=F w_1,3:£ T\NZy 9
m 3\ 11
1 1
Y=g+ 3 (8D  and
2 [112Z3) 70
which is inconsistent with the initial assumptign< —1/3. _ -13_% 1
oS! , D=G,o0 (90
The only possibility left is 3\ 774
y=—1/3, (82 It is interesting to note that these leading log coefficients are

_ . independent of the value, and G, if we take Z,=7,
for which both the gluon and the ghost loop contribute to=1, and therefore this truncation contradicts the require-
leading order. From Eq76) we then also find ments of renormalization group invariance.
Let us now look at the ultraviolet behavior of the running
coupling. Using the solutions Eg&4), (75) and substituting
Eq. (84), we find

6=—1/3, (83

and the condition Eq(77) derived from the ghost equation

yields
27 5
w=z)\21FMGM. (84

Equation(79) then becomes

2
aF#G#

aF (X)G2(x)= > (91

~ 2 X
—\Z;F,Gllog| —| +1
4 K

Now, divide numerator and denominator NFMGii
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A 10000 '"I'"I'"I"'I"'Il't"'l"'l'"
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aF(X)G (X)_ 27~ 1 ) (92) 100 tarting g
— Zqlog| — | + 10
e P N 1E
a(z) 0.1
which can be written in the familiar form 00631 ~
4 0.0001 -
aF(X)G?(x) = . (93) le-05 -
X 1e-06 -]
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x

The leading log coefficientB,=27/4 if Z,=1, is not in FIG. 4. Gluon form factoF (x) versus momentum (on log-log

agreement with perturba}tion theory, for whigg=11. This plot), for A=1 andF ,=0.001(a), 0.0tb), 0.1(c), 0.3d) and 0.5e).
seems somewhat puzzling, because all the one-loop pertur-

bative ingredients are contained in our truncation of the nong ofF(u) andG(u) destroys the invariance of the run-

perturbative equations, and indeed the leading log perturb ing coupling with respect to the choice of the individual

tive results can be retrieved from a perturbative expansion Ofenormalizations off and G. Hence. choosin F(n) 100
these equations. However, the leading log ultraviolet behavl- . i L ’ N .
. . - " : arge will prohibit the construction of a consistent solution
ior of the nonperturbativesolutions does not coincide with having the correct ultraviolet asymptotic behavior. Fgj)

the leading log perturbative results. This is in contrast to thesmall%his is not an obstacle asywep can show tha.t theﬁe is an
ghost-loop-onlytruncation, where the leading log ultraviolet : '

behavior of the nonperturbative solutions yields a g- intermediate regime, where the log of momentum takes a
coefficient that is identical to that of the perturbative ghost—g:gz:/eigltetp g\gﬁ;’vi\’c\ﬁ]mh allows us to connect to the correct
loop-only calculation. i : . .

To show how this disagreement arises, we will briefly 1T0053e ngglsovéeiﬁl?:t?(xwol: ?;_cllegr(:Ez;t_tg.eoot(?ﬁoflo,rm
discuss the difference in the determination of the uItravioIetfaict’or'Which st.arts offgés é owdn® bends o ger at the
behavior of the nonperturbative solutions in both approxima- ’ P ' v

tions, with and without gluon loop. In the ghost-loop-only Cross-over poink, such that the further logarithmic behavior
case we saw in Sec. VIl that the anomalous dimensions ¢@f the function leads to a valug; at the subtraction scale
F(x) andG(x) are determined by equating tieeefficients X=1. From this plot it is however clear that the curdse)

of the leading logs in the integral equations, as the considave a quite different behavior from the others. Their ultra-
tency of the log-exponents on left- and right-hand sides oViolet behavior is consistent with the loYf® analytic predic-
both equations is automatically guaranteed. When we intion from Sec. IX C, while the other curves seem to show a
clude the gluon loop the situation is different and the anomalogarithmic increase instead. This is of course plausible, as it
lous dimensions are determined by the consistency requirdS Possible that the ultraviolet asymptotic behavior only sets
ments of the log-exponents. The equality of the coefficientdn at much higher momenta, and that in between the infrared
of the leading log terms yields an additional constraint giver@nd ultraviolet asymptotic behaviors there is a intermediate
by Eq. (87). It is this difference in the way of determining r€gime.

the anomalous dimensions that seems to be responsible for From a careful investigation of the equations, we can even
the contradiction between perturbative and nonperturbativlnd a consistent analytical description of the intermediate
results when we include the gluon-loop. Although our trun-régime, connecting the region of confinement to that of
cation approximates the full vertices by bare ones and se@symptotic freedom, which fits the numerical results ex-
Z,=1, the question whether the ultraviolet behavior of thetremely well. Consider a case whaf€(o)|<|G(o)|. Then,

full nonperturbative solution coincides with the results ofin the intermediate regionF(x)G*(x)>F*(x), and the

perturbation theory remains an important issue which wedluon loop will be negligible compared to the ghost loop, in
will investigate in the future. the gluon equation, Eq9). Keeping in mind the treatment of

Sec. VII, we know that this has a consistent ultraviolet solu-
tion F(x)~log®x and G(x)~log~¥*¢x, which remains
5 valid all the way down to the region where the power behav-
We solved Eqgs(9), (10) with A\=1 andZ,=2,=1, for  ior bends over to a logarithmic behavior. Comparison with
widely varying values of the parameteksandF, in order to  the numerical results shows that indeed the intermediate re-
scan the two-parameter space of solutions for a gixen gime is very well reproduced by these powers of log. The
However, the loss of symmetry seems to cut out part of theiltimate ultraviolet behavior of Sec. IX C will only set in at
solution space. Although we have made a rather thorougkxtremely high momentum, after the intermediate regime has
investigation of this, we will not swamp the paper with a allowed the form factors to evolve sufficiently in order to
detailed discussion since we think that this loss of symmetrgonnect to the stringently constrained ultraviolet asymptotic
is unphysical, thus making this truncation less interestingoehavior. The connection of the asymptotic infrared regime,
than theghost-loop-onlytruncation. To put it briefly, the fact the intermediate log behavior and the asymptotic ultraviolet
that the ultraviolet behaviors &f(x) andG(x) are indepen- behavior reproduce the numerical result to a good accuracy.

D. Results
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100 =TT LAV I, cal asymptotic infrared expansion, and showed that it de-
; starting guess ----- ] pends on three independent parameters defining the infrared
. behavior of a three-dimensional family of solutions. We also
derived the analytic ultraviolet asymptotic behavior of the
solutions, which are proportional to powers of logarithms.
We then computed the solutions fBi(x), G(x) and a(x)
over the whole momentum range with two different numeri-
cal techniques, the direct solution of the integral equations
] using a Newton iteration method to find Chebyshev approxi-
0.1 -0-(;01- -0-:]1- -6'1- : ; ‘s -1'0- -1-(']0- -1(-]'00- = mations to the unknown functions on the one hand, anq on
: : : : the other hand, the Runge-Kutta method on the set of differ-
ential equations derived from the integral equations. The nu-
FIG. 5. Running couplingx(x) versus momenturr (on log-log  merical results agree very well with both asymptotic behav-
plot), for A=1 andF,=0.001(a), 0.0(b), 0.1(c), 0.3d) and 0.8¢).  ors in the infrared and ultraviolet regions. Furthermore the
To evaluate the relevance of this truncation. it is mos results of the direct integral equation m_ethod and of the
interesting to plot the running coupling in Fig 5 We SeetRunge-Kutta methoq agree to a very h'g.h accuracy. W.e
C found that the equations possess a three-dimensional family

that, In contrast to thghost—Ioop—.onIytruncgtmn of Fig. 2, of solutions and that they all correspond to one and the same
the various curves for the running coupling are no longer

. hysical running coupling(x) = AF (X) G2(x).
mere translations of each other on log-log scale; and thus, R s )
we choose the units on each curve such tk(at)zaix", we We repeated the study with inclusion of the gluon loop,

o ; : o . . using a bare triple gluon vertex and takiny=1, and
will f_|nd couplings which run in different ways in the inter- showed that since renormalization group invariance is now

9iolated, the nonperturbative running coupling cannot be de-
Miermined unambiguously in this truncation.
To improve on the current study, we should try to incor-
porate the gluon loop in the gluon equation in a way that
X. CONCLUSIONS respects the physical invariances of the problem. For this, we

Following the study of von Smekat al.[7], where these believe that the bare triple gluqn vertex will have to be re-
authors studied the coupled system of Dyson-SchwingeP'aced by an'lmproved vertex, I|I§e the Ball-Chiu vertex, and
equations for the gluon and ghost propagators, using a Balfhe renormalization constad will have to be chosen ap--
Chiu vertexAnsatzor the triple gluon vertex and a Slavnov- proprlatel_y. Furthermore it would be |nte_rest|_ng to investi-
Taylor improved form for the gluon-gluon-ghost vertex, we 92até the importance of the y-max approximation.
performed a detailed analytical and numerical analysis of the
coupled gluon-ghost equations using thare triple gluon ACKNOWLEDGMENTS
and gluon-gluon-ghost vertices. The reason that we went . . .
backg{o thegleadir?g-order perturbative vertices was to avoid We thank A, Hams fpr f_runful discussions. J.C.R.B. was
the “log X" problem inherent in theAnsatzof Ref. [7]. We supported by F_.O.M(Stlchtlng voor Fundamenteel Onder-
have obtained a clear understanding of the mechanism that {gek der Materig
the source of the new qualitative behavior of the non-
perturbative gluon and ghost propagators and of the running APPENDIX A: LOG PROBLEM

coupling. First, the qualitative changes to the infrared behav- Let us spell out in more detail the “log’ problem inher-

lors of the propag_ators are solely dl“.'e to the coup_llng of both nt in theAnsatzof Ref.[7]. With the aforementionednsatz
propagator equations, and the details of the vertices seemqfo

introduce merely quantitative changes. Secondly, the use Pr the ghost-gluon vertex, one obtains for the ghost form
the bare vertices ensures that no infrared singularities occur";’ICtor
hence no additional approximations, except for the vertex 2 .
Ansdze and the y-max approximation, are in principle 15 39 5[4 m s
| y PP o P P G (X)=Z3—5g3Z41 dyy| d6 ——F(2)

needed in order to solve these equations. 8 0 0 z

However, we did apply one more truncation to the
coupled gluon-ghost equations. From an analysis of the sym- %
metries of the equations and their solutions, we noted that
removing the gluon loop, and keeping only the ghost loop in
the gluon equation, leads to a set of equations which is corwhere x= p?, y=0q° z=(p—q)?, instead of Eq.4). The
sistent with the renormalization group invariance of the run-difficulty is that, if one substitutes Eql) into the right hand
ning coupling, while this is not the case in the presence ofide of Eq.(Al), one does not produce a behavioy
the gluon loop in the approximations employed. +c,x*, but ratherc,+x*[c,+c3 log x], where thec’s are

We performed a detailed analytical and numerical studyconstants. The problematical term is the last one in the
of the equations with and without the gluon loop. In the casesquare parentheses. In fact, after substitution of the infrared
where we removed the gluon loop, we computed the analytibehavior(1),

running of the strong coupling cannot be determined una
biguously in this case.

G(2)G(y)

G() -G+~

, (A1)
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A2 = sinf0 F(2)G(2)G(y) bo
d f de = —x| 290 T.
fo yy| dé— 50 G(x)=Bx""| 5 +j§:‘,1 b; Tj(s(x)) (B2)
2 ™ .
~x"jA dyyl"‘f dé sintez< 2. with
0 0
__log;o(x/A€)
The 6 integral can be evaluated explicitly in terms of the S)= logio(Ale) (B3)

hypergeometric functioh9]. We obtain
and whereA is the ultraviolet cutoff, anck is the infrared
cutoff, only needed for numerical purposes. We require both
integral equations to be satisfied Mt fixed external mo-
menta, in order to determine théN2Chebyshev coefficients

1 dt . a;,b;. Using smooth expansions has the advantage of allow-
f 2t 2F1(2=x,— ki3] ing us an absolute freedom in the choice of quadrature rules

used to compute the various integrals numerically. This is

and the second of these integrals behaves, for stratid/or ~ required if we want to achieve a high accuracy in our results.
large A, like log A%/, plus a constant. This is what we mean The integration region is first split into an analytical integral
by the logx problem. The divergence cannot be absorbed®Ver[0,6°] and a numerical integral ovée®, A?]. The in-
into the renormalization constait, and we conclude that t€gral over [0.€°] is computed analytically from the

the form (1) is not a solution of the equations of Ref7], asymptotic infrared behavior discussed in Sec. V. This is
before the angular averaging is made. needed as the infrared part of the integral is highly non-

The logx problem persists if one adopts the simple y_maxneglig_ib_le, espepially in the case of the quo'n equation. .For
angular averaging as the problematical term becomes an efﬂuent choice of quadrature rule we Spl'zt th_e numerical
integral into three regions, these arge”, min(x,0)],

a2 dy F(y)GA(y) [min(x,0),max,0)] and[ max,o),A%], wherex is the ex-

f 7 W ternal momentum and is the subtraction point. The split-

X ting of the region of numerical integration into three subre-
gions is needed as the integrands are not smooth at the
boundaries of these regions and too much accuracy is lost if
one uses quadrature rules spanning these boundaries. A sen-
sible choice of quadrature rule on each integration region is
for instance a composite 4-points Gaussian integration rule,
where the composite rules are delimited by the region bound-
A2 dy aries and the values of the external momenta at which we
f —F(y)G(y). require the integral equation to be satisfied. This setup will

x Y yield 2N coupled, non-linear, algebraic equations for tie 2
Chebyshev coefficients; and b;. In traditional Dyson-
SSchwinger studies, the unknowns are usually determined by
what is often called th@atural iteration methodwhere the
current approximation to the unknowns is used in the inte-
grals of the right-hand side of the equations in order to pro-
vide a new approximation to the unknowns used in the left-
APPENDIX B: NUMERICAL METHOD hand side of the equations. This iteration method however is

We give an outline of the main features of the numericalnot necessarily convergent, and when it is convergent it often

method used to solve the coupled integral equations directl;ﬁlom’erges \;ery slowly, as has been Ishpw?rir? Rkél]bThis
i.e. without transforming it into a set of differential equa- >/OW rate of convergence is not only inefficient, but more

tions. Unlike most other methods used thus far, we replacelftPortantly it makes it very difficult to get a reliable estimate
the widely used discretization of the unknown functions byof the accuracy of the solution. For this reason, our numeri-
smooth polynomial approximations, introducing Chebysheyf@l method uses the Newton method to solve sets of non-

expansions for the gluon and ghost form factbis) and linear equations. This method uses the derivatives of the

G(x) and using the logarithm of momentum squared as Vari_equations with respect to the unknowns to speed up the con-

able. To improve the accuracy of the Chebyshev approximal&'9ence. If the starting guess to the unknown coefficients is

tions we first extract the infrared power behaviors of theCl0S€ €nough to the solution, the convergence rate is even

form factors, although this only has a minor influence. Thequadratic. Let us symbolically rewrite the coupled functional

form factors are approximated by equations as follows:

3 .
B8 X

1
fo dttl %,F (2— k,— k;3;t)

xI A

Von Smekalet al. circumvent this problem by introducing a
modified angular averaging, replacing the form fadgdix)

at external momentum by its valueG(y) at radial integra-
tion momentuny in the ultraviolet part of the integrals. The
term in question then becomes

Now the logx problem disappears, but since their equation
do not have a solution of the forifi) beforeaveraging, it
would seem difficult to justify the averaging, since it com-
pletely changes the properties of the equation.

N-1 f()[F,G]=0

F(x)=Ax2< ?Jr 21 a;Tj(s(x)) (B1)
=

9(x)[F,G]=0,
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wheref and g are equivalent to the Eq$l1), (12) and x 0 pr—r— Ty
€[0,A?]. For the numerical solution, we require this equa- LE .
tion to be satisfied at the external momenrtathe functions 0.1F
F and G are expanded as Chebyshev polynomials with co- .01k

efficientsa; andb;, and the integrals are approximated by a r(«)

0.001
suitable quadrature rule. The equations then become [

0.0001 F
le-05 |

T(x)la;,bj1=0

1e-06 |

~ b1=0 T3 PRI R PPN RN RN RSP I
g(xi)la;,b;1=0, 00001 0001 001 0.1 1 10 100

x

ool o 0]
1000 10000

Whe_rei J=0..N—1 andf andg are the numerical approx_i- FIG. 6. Comparison of the solutions fét(x) and G(x) with
mations tof and g when the integrals are replaced with yejr starting guesses used in the iterative Newton method for

quadrature rules. =1,A=1 andF,;=0.1.
The Newton method will yield successive approximations
to the solutions, given by =F(1). The leading order infrared ghost coefficient is com-

puted from Eq.(36):
]

v
bl *=b]'—Abl*, B=\/ =
NZA

a)t=al—Aa]"t

and the +1)-th improvementsal**, Ab** are given s

by the solutions of the I8 2N set of linear equations and we definex as
~ ~ 1/2«
CHCOIPRINE LCOJNPEN e E) |

which can be seen as a crude approximation to the bend-over
point. A possible construction for the starting guesses is

5gn(xi)AaU+1+ 5gn(xi)Ab”+l:O
58, . b . 7 - 12« 18
X X
where the equations are taken at fexternal momenta; FOO=Al | |4 lod o 1+l
and each equation includes implicit summations gver ~;+ 1
The total accuracy depends on the combination of the - -
accuracies of the Chebyshev expansion and of the quadrature R X —9/16
rule and on the convergence criterion of the Newton itera- G(x)=B| — {41, log{=+1|+1 ,
tion. X1 X
[x

APPENDIX C: STARTING GUESS . . . . .
which has the correct leading infrared asymptotic behavior

The Newton method, which is at the core of our numeri-for F(x) and G(x) and agrees well with their leading ultra-
cal method, is a quadratically convergent iterative method, itiolet logarithmic behavior, as is illustrated in Fig. 6.
the initial approximations to the unknown functions ard- Although it seems that the starting guess$gs) and
ficiently closeto the exact solutions. The meaning of suffi- G(x) are extremely close to the final numerical solutions, we
ciently close depends however entirely on the kernel of theee that the Newton method does alter the running coupling
integral equation. We observed that for the coupled gluonu(x)=4m\|:(x)(32(x) substantially while converging to the
ghost equations, the starting guess must not be too remogwlution, as is shown in Fig. 7.
from the exact solution, if the method is to converge. This is
in contrast with previous work on chiral symmetry breaking APPENDIX D: RUNGE-KUTTA METHOD
in QED and on the Mandelstam approximation to the gluon
propagator in QCD, where the method was extremely insen- Rewrite the equationéll), (12), for =1, as
sitive to the starting guess. )

It turns out that in the case of the coupled gluon-ghost G(x) fxd (3_y_ V_)G( )
equations, the starting guesses have to be chosen fairly accu- x? y 2 X y
rately, especially in the asymptotic regions. In practice, we
used the analytic asymptotic solutions to build good enough tdy ,
startin f T 2yC W) (D)

g guesses for the form factors. x 2Y

We want to find the solution parametrized by the leading

infrared gluon coefficienfA [defined in Eq.(24)] and F; and

Fi(x)= n+AN
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S L A L AL F=3F(X-Y)-FZ(}X-Y)
10 E GZZG! (D7)
() where
1F X=FGK
Y=FGL
0.1 PR | | I Y N T N [N SR T R 1 | | I
0.0001 0.001 001 0.1 1 10 100 1000 10000
z X(3X—3Y—-2)
I=—F—"——F—. (D8)
FIG. 7. Comparison of the solution for the running coupling 5+ X(3X=Y)

a(Xx) with its starting guess, fox=1, A=1 andF;=0.1.
This system is suitable for an application of the Runge-Kutta
9 [F(x) (x 1 dy method; but we must first address the question of the exis-
G ix)=¢- Z)\ — f dyyGy)+ f —F(y)G(y)}, tence and multiplicity of the solutions, first of the differential
X 0 x Y system, and then of the integral equati@¢Bs), (D4) from
(D2)  which they were derived. We already know @xac} solu-

where 7 and ¢ are constants. As discussed before we carions namely
choose\ =1, since an arbitrary value of can be recovered
by applying an appropriate scaling to the form factbfx)
and G(x).
Let us rewrite the above equations in the form

F(x)=Ax3~
G(X)=BXx"*, (D9)

where k was defined in Eq(34), and wherg compare Eq.
)=t o _ 1(rdy (32) with A=1]
F(x)=n+5GOOKX)=GIL(X) + 5 LY G(y)
1 1 )1’2 0.955

(D3) 2
e ~— (D10)
K 2—«k

B:_
and 3‘/K ‘/K

9 9 (1dy A priori we would expect there to Heur free parameters for
G Yx)=¢— -F(X)K(X)— — f —F(y)G(y), the differential system, corresponding say to the values of
4 4 )y F(1), G(1), K(1) andL(1), from which the differential
(D4) equations could step-by-step be integrated, for example by
the Runge-Kutta method. In general, solutions of the differ-
ential system would not satisfy the requirememnf (x)
1 (x —0 andx3L(x)—0 asx—0. In fact the lower limits of the
K(X)=— f dyyQy) (D5)  integrals in Eqs(D5), (D6) would be incorrectly replaced by
x= Jo nonzero constants. Imposing the requisite boundary condi-
tions atx=0, we expect to reduce the number of arbitrary
constants in the general solution from four to two. Since
1 (x there is a scaling invariance that lea¥G? unchanged, this
L(X)=— J dyy?G(y). (D6) ~ Means that, after we have removed this trivial degree of free-
X=Jo dom by fixingA in Eq. (D9), we should still have one non-
trivial free parameter. Where is it?
On differentiating the above four equations, we obtain In Sec. VI we have seen that we can construct the follow-

) o 3f o o ing infrared asymptotic expansion, E&Q), for the general
F=F{-3GK-3GK+GL+GL]+;F°G solutionsF(x) and G(x):

where

and

G=3GFK+FK]-2FG? F (0 = Agx™

N
1+, fiailx”’)
i=1
K=G-2K

N
[=G-3L, G0=Box | 1+ gia‘lx“’). (D11)

where F=dF/dt=x(dF/dx) etc., with t=logx. After a We expect these series to have zero radius of convergence,
little algebra, we can throw the first two of these equationsso they have been truncated in the anticipation that they are
into the form asymptotic series—that is, for small valuesxpfthere will
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be an optimal truncation poinl, for which the finite series red coefficientAy anda,, while the direct method usel,
is a good approximation. From this expansion we see thagndF,. To compare results, we first have to determine the
besides the parametefs, and B, there is one more free parameter sets corresponding to the same solution in the
parametera;. On substituting the series f@ in the defi- three-dimensional space of solutions. We run the Runge-
nitions Egs.(D5), (D6), we find Kutta method withh =1, Aj=1, and leta, vary till we find

the solution yielding=(1)=0.1. As mentioned before this is

1 . giax'” found for a;=—10.27685. We then compute the solutions
KOX)=Box ™| = Kk+2 +i21 —k+ip+2 of the Runge-Kutta method at the N values of external mo-
menta used in the direct integral equation method and com-
1 N galxi® pare the numerical values found with both methods, using
LOO=Box | ——> +§1 Tetipi3) (D12)  the maximum norm. FoN=81, we find
N—1
The knowledge of the infrared asymptotic expansions for  [[F4"—FR<|=maxFa"(x;)— FR¥(x;)|=5.7x10"°
F(x), G(x), K(x) andL(x) allows us to use a Runge-Kutta i=0
method, starting from a momentum point deep in the infrared N—1
region and building the solution for increasing momenta. The |G — GRK||=max GU"(x;) — GR(x;)| = 6.0x 10" 5.
Runge-Kutta method was run using tkesoLVvEroutine of i=0

MATHEMATICA 3.0. The problem is solved as a function of
t=log x and as the starting point, the IR series E@&11),  The agreement between these two very different numerical
(D12) are evaluated at=0.0001 withN=8, using the coef- Solution methods by far surpasses our initial expectations.
ficientsf; andg; which are calculated withiaTHEMATICA s~ Especially for the direct method it was hoped that the accu-
well. The Runge-Kutta routine is run with 25 digit precision racy would be between 1/100 and 1/1000. However, the
and 10,000 steps from=10"* to x=10* for various values above mentioned numbers show that also this method
of a,<0. The results produced by this method agree exachieves an even better accuracy. _
tremely well with those found with the direct integral equa- The Newton iteration of the direct method requires about
tion method, as can be seen in Appendix E. 4 iterations to converge and the program needs approxima-
tively 19 sec real time to run on a Linux operated Pentium
200MHz PC. The Runge-Kutta method runs in approxima-
tively 9 sec using th&ATHEMATICA 3.0 routineNDSOLVE on
the same computer. The use of two different methods is ex-
It is interesting to compare the two numerical methodstremely important, to check the validity and accuracy of the
used to solve the coupled set of integral equations. Theolutions, especially in the case where the family of solutions
Runge-Kutta method is a local method, which computes thés quite intricate.
function values at each point using the function values at Although the Runge-Kutta method is faster and very ac-
neighboring points, starting from a momentum value deep ircurate, it can only be used if the integral equations can be
the infrared region and the asymptotic expansion at thatransformed into differential equatiof®oundary condi-
point, while the direct integral equation method is a globaltions. It also requires a very accurate evaluation of the start-
method, the complete momentum range being solved simuing values of the functions using the infrared asymptotic ex-
taneously. Each method employs a different set of parampansion. When the problem cannot be turned into differential
eters. For a givein, the Runge-Kutta method uses the infra- equations, only the direct method will be usable.

APPENDIX E: COMPARING THE RUNGE-KUTTA
AND THE DIRECT METHOD
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